WIDEBAND TYMPANOMETRY IN CHILDREN WITH

SEVERE TO PROFOUND HEARING LOSS WITH AND WITHOUT

COCHLEAR IMPLANT: A COMPARISON STUDY

SIMI MILIND WAGHOLIKAR

Registration number: P01II21S0070

A Dissertation Submitted in Part Fulfilment

for the Degree of Master of Science

(Audiology)

University of Mysore

ALL INDIA INSTITUTE OF SPEECH AND HEARING

MANASAGANGOTHRI, MYSURU-570006

SEPTEMBER 2023

CERTIFICATE

This is to certify that this dissertation entitled **"Wideband Tympanometry in Children with Severe to Profound Hearing Loss with and without Cochlear Implant: A Comparison Study"** is a bonafide work submitted in part fulfillment for the Degree of Master of Science in Audiology of the student with Registration Number **P01II21S0070**. This has been carried out under the guidance of a faculty of this institute and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Place: Mysuru Date: September 2023

Dr. M. Pushpavathi Director All India Institute of Speech and Hearing, Manasagangothri,

Mysuru- 570006

CERTIFICATE

This is to certify that this dissertation entitled "Wideband Tympanometry in Children with Severe to Profound Hearing Loss with and without Cochlear Implant: A Comparison Study" has been prepared under my supervision and guidance. It is also certified that this dissertation has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Place: Mysuru Date: September 2023

Dr. Niraj Kumar Singh Guide Associate Professor in Audiology Department of Audiology All India Institute of Speech and Hearing, Manasagangothri, Mysuru- 570006

DECLARATION

This is to certify that this dissertation entitled "Wideband Tympanometry in Children with Severe to Profound Hearing Loss with and without Cochlear Implant: A Comparison Study" is the result of my own study under the guidance of Dr. Niraj Kumar Singh, Associate Professor, Department of Audiology, All India Institute of Speech and Hearing, Mysuru, and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Place: Mysuru Date: September 2023 **Registration No. P01II21S0070**

ACKNOWLEDGEMENT

"Perseverance: the bridge to success."

First and foremost, I extend my deepest gratitude to the individuals who have played a crucial role in shaping my journey and the culmination of this dissertation. Their support, guidance, and presence, whether directly or indirectly, have been instrumental in making this endeavour a reality.

I am grateful to my guide, *Dr. Niraj Kumar Singh*, for their guidance, expertise, and insightful feedback that shaped the direction of this research. His mentorship and willingness to share knowledge have been instrumental in enhancing the quality of this dissertation. His guidance has been a beacon of light, guiding me through the complexities of this academic journey.

I want to thank the Director of our institute, *Dr. M. Pushpavathi*, for providing academic support and the HOD, *Dr. Devi N*, for granting permission to conduct the research.

To my cherished grandparents, whose unwavering love, wisdom, and life experiences have helped me grow personally and professionally. I dedicate this work in honour of their memory. My late grandfather, in particular, held a special place in my heart. His enduring legacy of resilience and determination continues to inspire me in my pursuit of knowledge and growth. This work is dedicated to you, as a tribute to the legacy you've imparted and the values you've instilled in me. Thankyou *Ajoba*.

I am indebted to my parents for their boundless support, sacrifices, and belief in my abilities. Your unflinching encouragement and belief in me have been the driving force behind my academic pursuits. Your unwavering faith in my potential has been the cornerstone of my achievements, and I am forever grateful for the sacrifices you've made to ensure my success. Thank you, *Mummy and Daddy*.

I am grateful to *Nirmala Ma'am* and *Rajesh Sir* for their openness to addressing any questions I had throughout the process. Their assistance greatly facilitated the progress of my work. I also extend my appreciation to *Srinivas sir* for providing valuable assistance with statistics.

I extend my thanks to my friends and peers who provided me with a network of support, engaging discussions, and moments of respite throughout this journey. Thank you, *Shahzada* for being there in every crisis with me, your constant companionship and understanding have brought positive light in every situation. I appreciate you for pushing me whenever I doubted my abilities, you're truly a treasure to me. Thank you, *Sumokshi*, my partner in this dissertation journey, for being there through every moment of struggle, hard work, late nights, and all the fun we managed to have despite our heavy workload, thank you for all your positive energy during those difficult times.

Thank you, my Hostel Family, "7 Ajoobe" Urvi, Rinki, Muskan, Mansi, Disha and Divya, who have not only shared the joys and challenges of academic life but have also created an environment with fun and personal growth. Thankyou Urvi, "Aapla Maanus", for being an affectionate and supportive sister from another mother, guiding me through every step. Thankyou Rinki, my hunger saviour, for consistently ensuring I never went hungry, for waking me up for college in the mornings, and for caring for me during times of illness. Thankyou Muskan for the dance sessions in between the work that made me livelier. Thanks to Sudarshana, Nutan, and Swetha for being a valuable source of knowledge and encouragement. Thankyou Sejal for being a support despite the distances between us. In sum, this accomplishment is a reflection of the collective effort, encouragement, and wisdom of those who have been part of my journey. Your support has not only enriched my academic pursuits but has also shaped my growth as an individual. I am profoundly grateful for your contributions, and this dissertation stands as a testament to our shared commitment to knowledge, learning, and personal growth.

Chapter	Title	Page Number
Ι	Introduction	2-7
Π	Review of Literature	8-19
III	Method	20-27
IV	Results	28-152
V	Discussion	153-165
VI	Summary & Conclusion	166-169
	References	170-179
	Appendix	180

TABLE OF CONTENT

LIST OF TABLES

Table	Title	Page
no.		no.
3.2.2.1	Demographic data for the study participants of CI group	23
3.2.2.2	Demographic characteristics of CI group	24
4.1.1	Mean, standard deviation, median and interquartile range of absorbance values at peak pressure in the frequency range of 226 Hz to 8000 Hz in both ears of the CI group	30-35
4.1.2	Mean, standard deviation, median and interquartile range of absorbance values at peak pressure in the frequency range of 226 Hz to 8000 Hz in both ears of SNHL group	36-41
4.1.3	Mean, standard deviation, median and interquartile range of absorbance values at peak pressure in the frequency range of 226 Hz to 8000 Hz in both ears of the NH group	42-47
4.1.4	Mean, standard deviation, median and interquartile range of absorbance values at ambient pressure in the frequency range of 226 Hz to 8000 Hz in both ears of the CI group	48-53
4.1.5	Mean, standard deviation, median and interquartile range of absorbance values at ambient pressure in the frequency range of 226 Hz to 8000 Hz in both ears of the SNHL group	54-59
4.1.6	Mean, standard deviation, median and interquartile range of absorbance values at ambient pressure in the frequency range of 226 Hz to 8000 Hz in both ears of the NH group	60-65
4.1.7	The outcome of Kruskal-Wallis <i>H</i> test for comparison of absorbance values at peak pressure at each frequency among CI, SNHL and NH group (N=20 for each group)	67-70
4.1.8	The outcome of Kruskal-Wallis <i>H</i> test for comparison of absorbance values at ambient pressure at each frequency among CI, SNHL and NH group (N=20 for each group)	71-74
4.1.1.1	The outcome of Mann-Whitney <i>U</i> test for pair-wise comparison of absorbance at peak pressure between the CI ears of the CI group and the CI-matched ears of the SNHL group	76-77
4.1.1.2	The results of the Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance across frequencies between the CI ears of the CI group and the CI-matched ears of the SNHL group	81-82

Table	Title	Page
no.		no.
4.1.1.3	The outcome of Mann-Whitney U test for pair-wise comparison of absorbance values at peak pressure between the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group	84
4.1.1.4	The results of the Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance across frequencies between the non-CI ears of the CI group and the non-CI matched ears of the SNHL group	88-89
4.1.2.1	The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI ears of the CI group and the CI-matched ears of the NH group	91-92
4.1.2.2	The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI ears of the CI group and the CI-matched ears of the NH group	93
4.1.3.1	The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI- matched ears of the SNHL group and the CI-matched ears of the NH group	96-97
4.1.3.2	The outcome of Mann-Whitney <i>U</i> test for pair-wise comparison of absorbance at peak pressure between the non- CI-matched ears of the SNHL group and the non-CI- matched ears of the NH group	98
4.1.4.1	The outcome of Mann-Whitney <i>U</i> test for pair-wise comparison of absorbance at ambient pressure between the CI ears of the CI group and the CI-matched ears of the SNHL group	101-102
4.1.4.2	The results of Equality of test for proportions for comparison of proportion of abnormal absorbance across frequencies between the CI ears of the CI group and the CI-matched ears of the SNHL group	106-107
4.1.4.3	The results of Equality of test for proportions for comparison of proportion of abnormal absorbance across frequencies between the non-CI ears of the CI group and the non-CI matched ears of the SNHL group	113-114

Table	Title	Page
4.1.5.1	The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at ambient pressure between the CI ears of the CI group and the CI-matched ears of the NH group	116-117
4.1.6.1	The outcome of Mann-Whitney <i>U</i> test for pair-wise comparison of absorbance at ambient pressure between the CI-matched ears of the SNHL group and the CI-matched ears of the NH group	120-121
4.1.7.1	Mean, standard deviation, median and interquartile range of resonance frequency of middle ear in both ears of CI group, SNHL group and NH group	123
4.2.1	The outcome of Wilcoxon signed rank test for pair-wise comparison of absorbance at peak pressure and ambient pressure between CI and non-CI ears of the CI group	126-129
4.2.2	The result of McNemar test for comparison of the proportion of ears with abnormal absorbance at peak and ambient pressure between the CI ears and non-CI ear of the CI group	135-137
4.3.1	The outcome of Mann-Whitney <i>U</i> test for pair-wise comparison of absorbance at peak and ambient pressure between the two electrode types	141-144
4.3.2	The results of Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance across frequencies between the two electrode types at peak and ambient pressure	150-152

LIST OF FIGURES

Figure	Title	Page
no.		no.
4.1.1.1	Mean and standard deviation of absorbance values at peak pressure across frequencies in CI ears of the CI group and the CI-matched ears of the SNHL group	75
4.1.1.2	Abnormal absorbance across frequencies in the peak pressure in (A) CI ears of the CI group and (B) CI-matched ears of the SNHL group.	78
4.1.1.3	Absorbance curves at peak pressure in (A) CI ears of the CI group, and (B) CI-matched ears of the SNHL group	79
4.1.1.4	Mean and standard deviation of absorbance values at peak pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group	83
4.1.1.5	Abnormal absorbance across frequencies in the peak pressure in (A) non-CI ears of the CI group and (B) non-CI matched ears of the SNHL group	85
4.1.1.6	Absorbance curves at peak pressure in (A) non-CI ears of the CI group, and (B) non-CI matched ears of the SNHL group	86
4.1.2.1	Mean and standard deviation of absorbance at peak pressure across frequencies in the CI ears of the CI group and the CI- matched ears of the NH group	90
4.1.2.2	Mean and standard deviation of absorbance values at peak pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group	93
4.1.3.1	Mean and standard deviation of absorbance at peak pressure across frequencies in CI-matched ears of the SNHL group and CI-matched ears of the NH group	95
4.1.3.2	Mean and standard deviation of absorbance at peak pressure across frequencies in the non-CI-matched ears of the SNHL group and non-CI-matched ears of the NH group	98
4.1.4.1	Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI ears of the CI group and the CI-matched ears of the SNHL group	99

Figure	Title	Page
no. 4.1.4.2	Abnormal absorbance across frequencies in the ambient pressure condition in (A) CI ears of the CI group and (B) CI- matched ears of the SNHL group	no. 103
4.1.4.3	Absorbance curves at ambient pressure in (A) CI ears of the CI group, and (B) CI-matched ears of the SNHL group	104
4.1.4.4	Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group	108
4.1.4.5	Abnormal absorbance across frequencies in ambient pressure in (A) non-CI ears of CI group and (B) non-CI matched ears of SNHL group	110
4.1.4.6	Absorbance curves at ambient pressure in (A) non-CI ears of the CI group, and (B) non-CI-matched ears of the SNHL group	111
4.1.5.1	Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI ears of the CI group and the CI-matched ears of the NH group	115
4.1.5.2	Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group	118
4.1.6.1	Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI-matched ears of the SNHL group and the CI-matched ears of the NH group	119
4.1.6.2	Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI-matched ears of the SNHL group and the non-CI-matched ears of the NH group	122
4.2.1	Mean and standard deviation of absorbance across frequencies in the CI ears and the non-CI ears of the CI group (A) peak pressure and (B) ambient pressure	124
4.2.2	Abnormal absorbance across frequencies in the peak pressure in (A) CI ears of the CI group and (B) non-CI ears of the CI group	130
4.2.3	Abnormal absorbance across frequencies in the ambient pressure in (A) CI ears of the CI group and (B) non-CI ears of the CI group	131

Figure	Title	Page
no.		no.
4.2.4	Absorbance curves at peak pressure in (A) CI ears of the CI group, and (B) non-CI ears of the CI group	132
4.2.5	Absorbance curves at ambient pressure in (A) CI ears of the CI group, and (B) non-CI ears of the CI group	133
4.3.1	Mean and standard deviation of absorbance across frequencies at (A) peak pressure and (B) ambient pressure in group of children implanted with CI422 electrode array and Sonata Ti100 electrode array	139
4.3.2	Abnormal absorbance across frequencies in the peak pressure in (A) ears with CI422 electrodes and (B) ears with Sonata Ti100	145
4.3.3	Abnormal absorbance across frequencies in the ambient pressure in (A) ears with CI422 electrodes and (B) ears with Sonata Ti100	146
4.3.4	Absorbance curves at peak pressure in (A) ears with CI422 electrodes, and (B) ears with Sonata Ti100 electrodes	147
4.3.5	Absorbance curves at ambient pressure in (A) ears with CI422 electrodes, and (B) ears with Sonata Ti100 electrodes	148

ABSTRACT

This study aimed to investigate the differences in wideband tympanometry (WBT) among normal-hearing children and children with sensorineural hearing loss (SNHL), with or without cochlear implantation. It also aimed to compare the effects of different electrode types on WBT. The study included normal hearing group, nonimplanted SNHL group and unilateral cochlear implantation group, each with twenty participants. Each participant underwent WBT in the frequency range of 226-8000 Hz using Interacoustics Titan Suite IMP440/WBT440 equipment, and the findings were compared within and between the groups. The implant ears (CI ears) of children with cochlear implantation exhibited lower absorbance in the low-frequency region, than the other two groups and their non-implant ears. Further, the CI ears showed higher absorbance than their non-implant ears and ears of SNHL group in the mid-to-high frequency region. However, there was no significant difference between the two electrode types. These findings have clinical implications as they highlight distinctions in WBT results following cochlear implantation compared to sensorineural hearing loss without cochlear implants. This study opens avenues for further research into the potential contribution of middle ear changes to understand the findings of other tests requiring an air-conduction route for the inner ear stimulation.

Chapter I

Introduction

The invention of Wideband tympanometry (WBT) was a ground-breaking effort which produced an efficient method for assessing middle ear function. WBT can be equated to simultaneous multiple tympanograms for several probe tone frequencies; and therefore, it not only yields information obtained from a traditional single frequency tympanogram but also enables the extraction of absorbance graph (amount of energy absorbed across frequencies by the middle ear system), resonance frequency, and wideband averaged tympanogram (Feeney et al., 2009; Keefe & Simmons, 2003; Shahnaz, Longridge, et al., 2009; Terzi et al., 2015; Keefe & Simmons, 2003; Voss & Allen, 1994). WBT employs a broadband click which has a broad frequency composition and therefore allows for absorbance measures in the frequency range of 226 Hz to 8000 Hz. It takes about the same amount of time to execute as a typical tympanogram.

WBT provides a window of opportunity to evaluate and differentially diagnose the middle ear pathologies that are often associated with frequency specific characteristics alteration. In infants and children, it is particularly important to be able to determine middle ear function using wideband acoustic stimuli in ambient ear canal settings (Park et al., 2015; Shahnaz et al., 2008). The use of WBT to diagnose and monitor newborn's hearing as well as adults with otosclerosis, ossicular chain disruptions, tympanic membrane perforations, superior semicircular canal dehiscence syndrome, and middle ear effusions has increased (Feeney et al., 2003; Shahnaz, Bork, et al., 2009; Feeney et al., 2003; Shahnaz, Bork, et al., 2009; Nakajima et al., 2013). Moreover, pre-and post-operative monitoring with WBT is done utilizing nonpressurized wideband absorbance (Park, 2017). Otosclerosis can be detected and monitored using WBT absorbance and resonance data (Feeney et al., 2003; Shahnaz et al., 2009). Low absorbance at < 1 kHz is a typical finding associated with an otosclerotic ear.

Additionally, modifications in resonance frequency over time might reveal the development of a disease. The resonance frequency rises over time as otosclerosis worsens due to middle ear stiffening (Feeney et al., 2003; Shahnaz et al., 2009). Wideband reflectance has a noticeable notch due to ossicular discontinuities between 400 and 800 Hz, which aids in differentially diagnosing it from other middle ear disorders (Nakajima et al., 2013). Using the absorbance measurement, WBT can distinguish between an ear that is air-filled and an ear that has complete otitis media with effusion (Beers et al., 2010; Feeney et al., 2003). WBT can identify perforations and distinguish them from the presence of grommets (Park, 2017). The success of the grommet can also be monitored using pre- and post-insertion WBT measures. In perforated ears, there is higher absorbance at low frequencies, with the smallest perforations showing the highest impact (Feeney et al., 2003).

WBT not only has differential diagnosis applicability for middle ear disorders but has also been found valuable in conditions involving the inner ear, such as Meniere's disease (Miehe et al., 2022; Tanno et al., 2022) and semicircular canal dehiscence (Nakajima et al., 2013). According to Nakajima et al. (2013), the presence of a cliff at 1kHz in the absorbance curve (notch at 1kHz in the power reflectance curve) has a 100% sensitivity and 95% specificity for detecting semicircular canal dehiscence. Further, the traditional tympanometry uses pressure variation, which makes its use difficult soon after a surgery; however, WBT can be done without applied pressure, which makes it a viable tool to assess the middle ear function immediately after an ear surgery (Feeney et al., 2003; Nakajima et al., 2013). While the findings of WBT in other conditions of sensorineural hearing loss remain relatively unknown, the findings in cases like Meniere's disease seem to suggest the potential value of WBT in assessing the middle ear status and its interaction with the inner ear in individuals with a sensorineural hearing loss.

Sensorineural hearing loss (SNHL) due to several causes could involve structural alterations to the cochlear partition (Bommakanti et al., 2019; Linthicum et al., 2013; Santos & Nadol, 2017), such as abnormal tectorial membranes in association with hair cell degeneration (Ishai et al., 2019), stria vascularis fibrosis (Zhang et al., 2020), or perilymph fibrosis (Linthicum et al., 2013). Some of these abnormal structural changes show modifications to the stiffness and impedances of the cochlear partition, which was evidenced by a decrease in the vibrations of stapes footplate at high frequencies and a lowering of the resonance frequency of the partition (Dewey et al., 2018; Dong & Olson, 2009; Kim & Koo, 2015).

For those with sensorineural hearing loss, cochlear implant (CI) has emerged as the leading rehabilitation solution (Yoon, 2011). A cochlear implant (CI) is a surgically implanted electronic device that restores hearing in patients with severe to profound hearing loss who derive little or no benefit from conventional amplification devices. There are internal and external components to the device. A transmitter, speech processor, and microphone are included in the external components. The internal component of the surgically implanted device has an electrode array that is inserted into the cochlea. Cochlear implant electrode arrays can contain electrodes varying in number from 12 to 24, depending upon the manufacturers (Dhanasingh & Jolly, 2017). It is plausible that the insertion of these electrode arrays into the cochlea creates changes in the stiffness characteristics, or that the surgical procedure for CI has an iatrogenic influence on the middle ear structures, which may lead to changes in the middle ear characteristics. However, the explorations for evidence to gather information about the consequences of cochlear implantation on the middle and inner ear mechanics are still in their nascency.

1.1 Need of the Study

Following the surgical procedure for implantation, extreme repercussions, such as ossicular displacement, have been reported in a few studies (Coco et al., 2007; Donnelly et al., 2009). While these conditions would be expected to definitely affect WBT outcomes, they are rarely encountered and do not completely justify the need for WBT investigation among cochlear implantees. Nonetheless, even among those with no such obvious post-implantation structural abnormalities, Donnelly et al. (2009) demonstrated that the vibration patterns of the stapes footplate were altered probably by the presence of an impeding electrode array in the scala tympani, which in turn is connected to the scala vestibuli where oval window containing the stapes footplate is present. This hypothesis was supported by the findings of increased postimplantation air-conduction thresholds despite the unchanged bone-conduction thresholds (Raveh et al., 2015).

The literature on the findings of WBT in CI has been emerging steadily. The ears with CI were found to have different WBT patterns from those of normal-hearing individuals (Attias et al., 2022; Merchant et al., 2015; Saki et al., 2022; Saoji et al., 2020; Zhang et al., 2020; Singh et al., 2022). A common finding across the studies is a decrease in absorbance. While a majority of these studies show reduced absorbance in the low to mid-frequency range, there is a discrepancy in the range of frequencies themselves. For example, the reduced absorbance was observed in the frequency range of 600 to 1100 Hz (Saoji et al., 2020), in the frequencies up to 1200 Hz

(Merchant et al., 2015; Zhang et al., 2020), at 400-800 Hz (Attias et al., 2022); at 1260 to 3175 Hz and 5040 to 8000 Hz (Saki et al., 2022) and in the range of frequencies between 900 Hz and 1800 Hz (Singh et al., 2022). In addition, Attias et al. (2022) reported significantly lower absorbance at 1600 Hz, and additionally reduced absorbance in the frequency range of 4000-5000 Hz. Investigations proposed a relationship between WBT fluctuations and increased inner-ear stiffness. The above findings represent highly variable outcomes of WBT following cochlear implantation. A possible reason for this could be the small sample size in a majority of these studies or even the differences in the electrode arrays between the studies. Additionally, some studies have used non-CI ears as the control ear to compare the changes in the absorbance in the CI ear. However, studies on unilateral mastoidectomy have shown temporary changes in the middle ear characteristics even on the contralateral side where the mastoidectomy was not performed. Since, CI also involves radical mastoidectomy, changes in middle ear characteristics could be expected even on the non-implant side. Therefore, the non-implant ear of a cochlear implantee cannot be considered as control ear to decipher the change of CI ears. Since, ears undergoing cochlear implantation have high degree of sensorineural hearing loss, an SNHL group could be a better control group. Also, none of these studies compared sensorineural hearing loss and cochlear implantees to show that there is a difference between those two as well, and therefore it is the result of CI and not just sensorineural hearing loss or vice versa. It is critical to distinguish WBT patterns associated with the implantation from those associated with the sensorineural hearing loss itself because implanted ears are typically associated with severe to profound SNHL.

1.2 Aim

This study aimed to evaluate the findings of WBT in normal-hearing individuals and those with sensorineural hearing loss with or without CI.

1.3 Objectives

- To compare the findings of WBT at peak and ambient pressure among typically hearing children and children with SNHL using hearing aids and cochlear implants.
- 2. To compare findings of WBT between the implant and non-implant ears of children with a unilateral cochlear implant.
- 3. To compare the findings on WBT among different electrode arrays used in the implanted ears.

Chapter II

Review of Literature

The development of Wideband tympanometry (WBT) marked a significant breakthrough in evaluating middle ear function. WBT not only provides information from a conventional single frequency tympanogram but also offers valuable insights into parameters like absorbance graph, resonance frequency, and wideband averaged tympanogram (Feeney et al., 2009; Keefe & Simmons, 2003; Shahnaz, Longridge, et al., 2009; Terzi et al., 2015; Keefe & Simmons, 2003; Voss & Allen, 1994). WBT employs a broadband click spanning 226 Hz to 8000 Hz, to evaluate the middle ear transfer characteristics, which was not previously possible for other immittance measurements.

WBT facilitates the assessment and differential diagnosis of middle ear pathologies with frequency-specific characteristics alterations, especially crucial for infants and children in ambient pressure setting in the ear canal (Park et al., 2015; Shahnaz et al., 2008). Its applications have expanded to include diagnosing and monitoring various conditions such as otosclerosis, ossicular chain disruptions, tympanic membrane perforations, superior semicircular canal dehiscence syndrome, and middle ear effusions (Feeney et al., 2003; Shahnaz, Bork, et al., 2009; Nakajima et al., 2013). WBT is also utilized for pre- and post-operative monitoring, particularly for otosclerosis detection and evaluation of grommet effectiveness (Park, 2017).

Notably, WBT extends its diagnostic utility beyond middle ear disorders, proving valuable in assessing inner ear conditions like Meniere's disease and semicircular canal dehiscence (Miehe et al., 2022; Tanno et al., 2022; Nakajima et al., 2013). Its non-invasive nature makes it suitable for immediate post-surgery middle ear function evaluation, unlike traditional tympanometry (Feeney et al., 2003; Nakajima et al., 2013).

While the potential of WBT in sensorineural hearing loss remains relatively unexplored, its application in conditions like Meniere's disease suggests its value in assessing the middle ear's interaction with the inner ear in individuals with sensorineural hearing loss. Sensorineural hearing loss may result from various causes, including structural alterations to the cochlear partition such as abnormal tectorial membranes, stria vascularis fibrosis, or perilymph fibrosis, which affect cochlear stiffness and impedance (Bommakanti et al., 2019; Linthicum et al., 2013; Santos & Nadol, 2017; Ishai et al., 2019; Zhang et al., 2020).

Cochlear implantation has emerged as a primary rehabilitation option for severe to profound sensorineural hearing loss (Yoon, 2011). The advent of cochlear implant technology has revolutionized the field of auditory rehabilitation, offering hope and transformative opportunities to individuals with profound hearing loss. Cochlear implants are electronic devices designed to provide access to sound and facilitate auditory communication for those who derive limited or no benefit from conventional hearing aids.

Cochlear implants are surgically implanted devices that harness the principles of neuroplasticity to bypass damaged or non-functioning hair cells in the inner ear and directly stimulate the auditory nerve fibers. This enables individuals with severe to profound sensorineural hearing loss to perceive sound and speech more effectively than traditional amplification devices, such as hearing aids (Yoon, 2011). Unlike hearing aids, which merely amplify sounds, cochlear implants transform acoustic information into electrical signals that directly stimulate the auditory nerve, allowing for improved speech comprehension (Wilson & Dorman, 2008).

Cochlear implants represent a remarkable and transformative leap forward in the world of auditory rehabilitation. Their advantages are nothing short of extraordinary, bringing profound benefits to individuals facing the challenging reality of severe to profound hearing loss. The most significant advantage of cochlear implants is their potential to restore or significantly improve hearing in individuals with profound hearing loss (Clark, 2015). This restoration can enhance speech understanding and overall quality of life, particularly for those who have never experienced hearing or have lost their hearing later in life. Cochlear implant recipients often experience improved speech perception, which is especially crucial for communication, language development, and social integration (Blamey et al., 2013). Cochlear implants provide access to a broader range of sounds and frequencies compared to traditional hearing aids, allowing recipients to appreciate music, environmental sounds, and nuances in speech (Jiam et al., 2022). Cochlear implants are highly adaptable and can be tailored to meet individual hearing needs through programming adjustments, making them suitable for various age groups and degrees of hearing loss (Dorman et al., 2016).

While the advantages are many, certain shortcomings of cochlear implant persist. Cochlear implantation involves a surgical procedure that carries inherent risks, such as infection, device malfunction, or damage to adjacent structures thereby altering the physiology of auditory system as well (Gaylor et al., 2013). Another noteworthy concern is the occurrence of facial nerve paralysis following implantation surgery, which has been reported in the literature (Vincent et al., 2016). Beyond these concerns, other complications have been documented in the literature. These encompass a range of issues, such as infections at the surgical site (Vincent et al., 2016), device malfunctions (Battmer et al., 2009), and device extrusion or migration (Todt et al., 2018). Additionally, electrode misplacement or insertion trauma (Gstoettner et al., 1997) has been reported, emphasizing the importance of precise electrode positioning during surgery. This complication, although relatively rare, underscores the importance of meticulous surgical technique to minimize the risk to the facial nerve during electrode insertion. Also, successful cochlear implantation involves a lengthy and intensive process of auditory rehabilitation, including speech therapy and device adjustments, which may require significant time and commitment from the recipient and their caregivers (Pisoni et al., 2008). Furthermore, studies have also explored the potential impact of cochlear implantation on the vestibular system, a system in close proximity of the surgery site for cochlear implantation. Most of the literature in this regard involves the use of vestibular-evoked myogenic potentials (VEMP). Research by Merchant et al. (2020) delves into this area, suggesting that cochlear implantation can lead to alterations in VEMP responses. This finding highlights the significance of monitoring vestibular function in patients undergoing cochlear implant surgery, as changes in VEMPs may have implications for balance and spatial orientation. However, most studies showing affected or absent VEMP responses after cochlear implantation have used air-conduction VEMPs. Since, the CI surgery involves the middle ear exploration, it is plausible that middle ear changes cause alteration to the energy reaching the saccule via this route when using AC-VEMP. Therefore, this chapter reviews the changes in middle ear characteristics after CI to fathom the extent of middle ear changes as a result of CI.

During the surgery for inserting the cochlear implant, the middle ear is widely exposed. This surgical procedure has the tendency to change the middle ear characteristics after surgery, as previously reported in various studies (Saoji et al., 2020; Orhan et al., 2020; Merchant et al., 2020; Scheperle & Hajicek, 2021; Racca et al., 2022; Attias et al., 2022; Saki et al., 2022). However, different studies incorporated different groups as their control. Few studies incorporated no control group as they compared the pre-implant WBT to the post-implant WBT in the same group of individuals. (Saoji et al., 2020; Saki et al., 2022). Other studies included individuals with normal hearing as control group (Merchant et al., 2020; Scheperle and Hajicek, 2021; Attias et al., 2022). Yet others used the non-implant ears of unilateral cochlear implantees as control (Orhan et al., 2022). While they have all reported changes in WBA, there is variability in the frequency region of differences among the studies.

2.1 Comparison of WBA between the CI group and NH group

In few studies the absorbance was compared between the children with CI and normal hearing children. These studies reported varied findings (Merchant et al., 2020; Scheperle & Hajicek, 2021; Attias et al., 2022).

In study by Merchant et al. (2020), 27 ears with cochlear implants (mean age = 14.74, age range = 7 to 31 years) were compared against 10 age-matched ears normal hearing (mean age = 17.8, age range = 7 to 31 years) on chirp-evoked wideband acoustic immittance measures at ambient pressure. The authors reported reduced absorbance in the CI ears in the frequency range of 500-1200 Hz and increased absorbance around 2000 Hz than the ears with normal hearing. In this study, the average time elapsed after CI placement was 11.7 years (with a range from 1 to 23 years and a standard deviation of 4.76). It would be beneficial to gather data both before the implantation and immediately after the implantation, as comparing these two sets of data within the same individuals can offer insights into how these responses change over time. The participants of CI group in the study had diverse etiologies of hearing loss, and this diversity could lead to varying effects depending

on the location for abnormality or anatomical structures involved. Additionally, participants were implanted with different types of implants, and this variation could introduce confounding results because the dimensions and characteristics of the implants differ among them.

A study by Scheperle and Hajicek (2021) included 11 CI recipients (mean age = 55 years, age range=13-78 years). Their WBT results were compared against a normative dataset from 28 adults without CIs and with normal middle ear function (mean age = 40 years, age range = 21 to 67 years). The results revealed reduced absorbance for the frequency range of 250-891 Hz and 4238-4490 Hz in CI ears compared to the normative dataset, signifying increased middle ear stiffness in a restricted band of low and high frequencies. The generalization of the results of this study could be limited by the use of small sample size in the implant group. Another potential limitation is that while the inclusion criteria ensured that participants had no middle ear pathology by a less than 10 dB air-bone gap or 'A' type tympanogram, it did not ascertain whether the control group had normal hearing or not.

Another study by Attias et al. (2022) aimed to investigate the impact of cochlear implantation and SNHL on WBT patterns, potentially shedding light on changes in middle- and inner-ear mechanics associated with cochlear implantation. The participants included 24 individuals with normal hearing and 17 with cochlear implants (15 unilaterally implanted and 2 bilaterally implanted). All participants exhibited normal otoscopy and inner-ear anatomy. Pure-tone audiometry, standard tympanometry, and click-evoked WBT were administered, with WBT recorded at ambient and peak pressures. The analysis compared normal-hearing ears with impaired non-implanted ears to understand the effect of SNHL on WBT. Additionally, the impact of cochlear implantation was assessed by comparing the

WBT of implanted and non-implanted ears within the same participants. The results indicated that implanted ears exhibited decreased absorbance at low frequencies (400-800 Hz) and increased absorbance around 1600 Hz, likely attributed to increased stiffness due to implantation surgery and the presence of the implant in the inner ear. Conversely, the specific decrease in absorbance around 4000-5000 Hz in both implanted and non-implanted ears compared to normal ears was attributed to aging or the influence of severe-to-profound SNHL on cochlear input impedance. The study underscores the need for further research to discern the combined effects of hearing loss severity and age on wideband acoustic immittance in the ear. Several aspects of this study could be potentially producing bottlenecks to the generalization of its results. First, there is a disparity in the ages of the participants. Most of those with normal hearing were young, whereas among the participants with sensorineural hearing loss (SNHL), whether with or without cochlear implants, there was a wide age range spanning from young adults (6 ears) to middle-aged adults (14 ears) and older adults (14 ears). Age can influence the function and size of the external and middle ear, and in older adults, it has been associated with specific findings related to wideband tympanometry. Furthermore, the electrodes used in the participants varied in design and mass, which could potentially introduce variability into the results. Additionally, the time elapsed since implantation ranged over a period of 16 years, and the post-implantation processes, such as fibrosis or ossification, may progress differently over time, potentially impacting the study outcomes.

2.2 Comparison of WBA between the CI group and SNHL group

There are no studies of direct comparison between cochlear implant group and sensorineural hearing loss group. However, there are few studies comparing the findings of pre-implant WBT to post-implant WBT. Since, implantation is done mostly in cases with sensorineural hearing loss, it may not be completely out of place to equate the pre-implant middle ear status to middle ear status in an independent SNHL group. While the SNHL group might seem like a better choice as a control group compared to the NH group to understand effect of CI surgery alone, there could be a potential problem. The SNHL group may have some issues because individuals in this group can have varying degrees of hearing loss and different reasons for their hearing problems. Since the SNHL group and the NH group consist of entirely different individuals compared to the experimental CI group, there may be individual differences that are challenging to account. Nonetheless, a detailed literature search in this regard produced no relevant publication.

2.3 Comparison of absorbance between implant and non-implant ears of the CI group

When investigating the effects of CI surgery on the absorbance of middle ear, rather than having a different group of individuals as the control group some studies had non-implant ears of the same cochlear implanted individuals as control group (Orhan et al., 2020; Attias et al., 2022). This was done in order to minimize the individual differences when two different groups of individuals are compared.

This prospective comparative clinical study by Orhan et al. (2020) aimed to assess the impact of cochlear implantation on middle ear status using wideband tympanometry measurements. The study included 48 participants under 18 years of age with congenital bilateral profound sensorineural hearing loss who underwent unilateral CI. WBT measurements of the implanted ears were compared to those of non-implanted ears within the same patient group. The results revealed significant reductions in the average absorbance across all measured frequencies and a more pronounced increase in the average resonance frequency in the implanted ears compared to the non-implanted ears. These findings suggest that CI is associated with decreased absorbance and increased resonance frequencies, potentially indicating heightened stiffness in the middle and inner ear system. Contrary to these findings, Attias et al. (2022), reported reduced absorbance for CI ears reported for frequencies 400 Hz, 500 Hz, 630 Hz and 800 Hz, and increased absorbance for the CI ears at 1600 Hz when compared the non-implant ears. Therefore, the two available studies comparing the absorbance in implant ears and non-implant ears of unilateral cochlear implantees show differences in findings, at least in the mid-frequency regions.

To address individual variability, it's beneficial to compare the implanted ears to non-implant ears within the same person. However, it's worth noting that some studies have shown that surgical procedures like mastoidectomy or other middle ear surgeries can affect the non-operated ear due to vibrations from bone drilling (Latheef et al., 2018). These effects could be equitable on the contralateral side due to equal energy transfer from one side mastoid to the other side mastoid caused by virtually no interaural attenuation between them (Studebaker 1967; Silman, 1991). This might have an effect on the bone in the contralateral ear. Therefore, it's important to consider and measure the impact of bone drilling on the non-implanted side.

2.4 Comparison of WBA between the pre- and post-CI implanted individuals

Previous studies have shown changes in the absorbance characteristics of middle ear after cochlear implantation (Saoji et al, 2020; Saki et al, 2022; Racca et al, 2022). In study by Saoji et al. (2020), the objective was to investigate changes in middle ear absorbance measured through wide-band tympanometry (WBT) following cochlear implantation (CI). The study involved five individuals with sensorineural hearing loss who later underwent unilateral cochlear implantation. These participants were in the age range of 7-84 years. Wideband absorbance measurements were done bilaterally during the pre- and post-operative clinical visits. The post-operative visits took place after 45 to 60 days following the cochlear implant surgery. Cochlear implantation was carried out using the facial recess approach, employing devices from Advanced Bionics and Cochlear Corporation. In every case, a successful full insertion was accomplished without any complications. They measured absorbance at a fixed tympanometric pressure. The analysis of the study was done at fifteen 1/3-octave frequency bands spanning 226-8000 Hz. Results revealed a broad spectral pattern of WBT absorbance measurements across a frequency range of 226 to 8000 Hz. Notably, postoperative WBT patterns exhibited significantly reduced low-frequency absorbance in the implanted ears, specifically in the frequency region from 0.6 to 1.1 kHz, with the maximum effect observed at 1 kHz. This reduction suggests a potential decrease in low-frequency acoustic absorbance as a consequence of cochlear implantation, indicating its impact on the high impedance status of the middle and inner ears. Although the CI ears showed a change after implantation, the non-CI ears of the same individual showed no significant change in the absorbance pattern after the surgery. The wide age disparity among the participants of the study might have had an effect on the results; similar age group participants could have been used to eliminate the maturational or developmental and aging effects on the findings of WBT outcomes.

In a prospective study by Saki et al. (2022) involving 35 unilaterally implanted children under 24 months of age with normal temporal bone anatomy, the objective was to investigate the impact of cochlear implantation (CI) on sound conduction mechanisms in the pediatric population. The study employed (WBT) to assess middle ear mechanics recorded at 16 discrete frequencies of 1/3rd octaves from 226 to 8000 Hz frequency range. Preoperative and three-month postoperative assessments of WBT

were conducted in both the implanted and non-implanted ears. The results revealed a significant reduction in absorbance in the mid-frequency (1260 to 3175 Hz) and high-frequency regions (5040 to 8000 Hz) in the implanted ears following CI. Although the CI ears showed a change after implantation, the non-CI ears of the same individual showed no significant change in the absorbance pattern after the surgery.

In a study by Racca et al. (2022), the authors compared pre-CI and post CI ears similar to Saoji et al. (2020) and Saki et al. (2022). However, instead of single time point, when the WBT was performed on multiple time points to also see the effect of duration after CI surgery. WBT was performed at 6 time-points from CIactivation to 6 months after surgery. At the time of CI activation, the mean age of the participants included in the study was 62.52 ± 13.63 years. They reported significantly reduced absorbance in post-CI in the frequency range of 305-938 Hz and 1078-1336 Hz at 1-month after the surgery. Further, they reported notable reduction in absorbance in the implanted ear at all time points following surgery, although the extent of this reduction in absorbance gradually narrowed with increasing time postactivation. Unlike the above two studies, the CI ears showed a change after implantation, the non-CI ears reported significant difference in absorbance in the non-CI ears in the frequency above 1000 Hz before 1-month of post-implantation., after 1 month no differences in absorbances were found in non-CI ears. Few of the limitations pertaining to this study could be the elderly age group involved in the study. Since the study had incomplete data at different time points after the implantation, it is essential to assess each time point because there are rapid changes occurring in the middle and inner ear following cochlear implantation. Additionally, it's worth considering the potential influence of aging on absorbance, as previous research by Mazlan et al. (2015) has noted its effects, which could have affected the

results.

Even if we address the limitations mentioned earlier by comparing different groups, the varying time elapsed after implantation could still have an impact. Therefore, conducting a long-term study that examines the effects of CI surgery at different time points can provide a more comprehensive understanding of the significant changes that occur after the procedure. All the studies discussed focused on addressing the impact of CI surgery specifically in octave frequencies. However, it's important to examine absorbance changes at even more precise frequencies, as there might be specific frequencies where differences are observed while others remain unaffected. Therefore, it would be a limitation to solely compare the groups based on the octave frequencies.

2.5 Comparison of absorbance at peak and ambient pressure conditions between the two electrode types

The electrodes of different manufacturers have somewhat different electrode characteristics such as length, width, material, angle and number of electrodes (Ertas et al., 2022). These differences in the electrodes might have effect on the absorbance patterns of the middle ear and on the stiffness characteristics of the cochlea, due to the variability in the fluid volume displacement caused by them. No literature pertaining to the effect of different types of electrodes on the middle ear impedance were found during the literature review.

Chapter III

Method

The present study aimed to compare the findings of WBT at peak and ambient pressure conditions in normal-hearing children and those with sensorineural hearing loss with or without CI. Additionally, the present study also aimed to compare findings of WBT between the implant and non-implant ears of children with a unilateral cochlear implant. A final aim of the present study was to compare the WBT findings between the electrode types.

3.1 Research design

To accomplish the aims of the study, a 'standard multiple group comparison' research design was used.

3.2 Participants

The present study incorporated three groups of children in the age range of 3-13 years who were divided into three groups on the basis of certain pre-defined criteria. The parents/guardians of these children signed the informed written consent prior to their children's enrolment in the study. The consent form is attached in Appendix A. Their participation in the study was on a non-payment basis.

3.2.1 Group I (Normal hearing children)

Group I consisted of 20 normal-hearing children (10 males & 10 females, mean age = 7.20 years, SD = 2.25, median age = 8.00 years, IQR = 3.00). The normal auditory function in them was ensured through a detailed structured case history, otoscopic examination, and audiological evaluation consisting of pure tone audiometry, immittance evaluation, otoacoustic emissions, and auditory brainstem responses. The participants in this group had air-conduction pure-tone thresholds of 20 dB HL or less across the octave and mid-octave frequencies between 250 to 8000 Hz, 'A' type tympanogram on standard single-frequency (226 Hz) tympanometry, presence of acoustic stapedial reflex at or below 100dB for frequency range of 500–2000 Hz, and presence of transient evoked otoacoustic emissions defined by the signal-to-noise ratio of \geq 6 dB with a response reproducibility of \geq 75%. Furthermore, their auditory brainstem response traces had presence of discernible peaks with inter-aural latency difference of \leq 0.2 ms, inter-peak latency difference of \leq 2.0 ms for waves I-III and III-V and \leq 4.0 ms for waves I-V, and the amplitude ratio of V/I \geq 0.5.

3.2.2 Group II (Children with sensorineural hearing loss who had undergone cochlear implantation)

Group II consisted of 20 children (11 males & 9 females, mean age = 5.20 years, SD = 1.11, median age = 5.30 years, IQR = 1.70). with congenital bilateral hearing impairment who have undergone unilateral cochlear implantation. The individuals in this group had no history of chronic otitis media, other middle-ear diseases, or prior ear surgery other than the CI surgery. The participants' files were explored to verify normal anatomy before the surgery, as evidenced through radiological evaluation. Furthermore, the participants included in this group were devoid of post-surgical complications. The final inclusion criteria was at least a 30 days gap after the cochlear implantation surgery in order to ensure against the presence of post-implantation inflammatory changes at the time of their participation in the study. The mean age of the children in this group was 5.2 years with a standard deviation of 1.11 (age range: 3.1-6.9 years, median age = 5.30 years, IQR = 1.70) and the mean implant age was 5.65 months with a standard deviation of 4.25 (range = 1-16 months, median age = 4.00 years, IQR = 7.00). The demographics including the

age, implant age, side of implant, CI manufacturer and electrode type, model of processor, model of implant and surgeon is given in Table 3.2.2.1 and Table 3.2.2.2.
Table 3.2.2.1.

CI Participants	Age (in years)	Implant Age (in months)	Side of Implant	CI Manufacturer	Processor Model	Implant Model	Surgeon
1	5.1	5	Right	Cochlear	CP802	CI422	А
2	6.3	11	Right	Med-El	Opus 2	Sonata Ti100	В
3	3.5	4	Left	Med-El	Opus 2	Sonata Ti100	С
4	3.9	9	Right	Med-El	Opus 2	Sonata Ti100	В
5	5.2	5	Right	Cochlear	CP802	CI422	D
6	5.6	12	Right	Med-El	Opus 2	Sonata Ti100	Е
7	4.9	3	Right	Cochlear	CP802	CI422	С
8	6.9	8	Right	Med-El	Opus 2	Sonata Ti100	F
9	4.4	2	Right	Cochlear	CP802	CI422	С
10	5.5	3	Right	Cochlear	CP802	CI422	G
11	3.1	1	Right	Cochlear	CP802	CI422	F
12	6.3	3	Right	Cochlear	CP802	CI422	С
13	5.1	3	Right	Cochlear	CP802	CI422	С
14	5.4	1	Right	Cochlear	CP802	CI422	G
15	6.3	11	Left	Cochlear	CP802	CI422	D
16	5.9	2	Right	Cochlear	CP802	CI422	D
17	6.5	8	Right	Med-El	Opus 2	Sonata Ti100	F
18	3.1	16	Right	Cochlear	CP802	CI422	D
19	5.1	4	Left	Cochlear	CP802	CI422	В
20	6	2	Right	Cochlear	CP802	CI422	В

Demographic data for the study participants of CI group

Table 3.2.2.2.

Characteristics	Specifics	No. of patients
Side of Implant	Right	17
	Left	3
CI Manufacturer and electrode type	Cochlear (CI422)	14
	Medel-El (Sonata Ti100)	6
Surgeon	А	1
	В	4
	С	5
	D	4
	E	1
	F	3
	G	2

Demographic characteristics of CI group

3.2.3 Group III (Children with sensorineural hearing loss who use hearing aids in both ears)

Group III consisted of 20 children (10 males & 10 females, mean age = 7.85 years, SD = 3.22, median age = 7.25 years, IQR = 5.85), with sensorineural hearing loss of severe to profound degree, fitted with binaural hearing aids. The diagnosis of the specified degree of hearing loss of sensorineural variety was ensured through a detailed structured case history, otoscopic examination, and audiological evaluation consisting of pure tone audiometry, immittance evaluation, otoacoustic emissions, and auditory brainstem response. In addition, the above-mentioned test battery ensured that the children do not have any middle ear pathology. The other inclusion criteria in this group were the same as in Group II, except that they did not undergo cochlear implantation. Also, the information on inner ear anomalies is not known for several of them, since they have not undergone cochlear implant candidacy assessment.

3.3 Test Environment

The wideband tympanometry was performed in a sound-treated room with ambient noise levels within the permissible limits (ANSI S3.1 1991). The test rooms were air-conditioned and had appropriate illumination.

3.4 Procedure

The WBT measurements were performed using an Interacoustics Titan Suite IMP440/WBT440 version 3.3.1 equipment (Interacoustics A/S, Middelfart, Denmark) with an advanced research module. Participants were seated comfortably and instructed to remain still and quiet for the entire test duration. After completing the otoscopy, an airtight seal was obtained in the ear canal with a suitable ear tip. WBA was obtained using the click stimulus of 100 dB peSPL delivered at a rate of 21.5 Hz. The ear canal pressure was swept from +200 to -400 daPa at a rate of 200 daPa/s. The responses to 40 clicks were averaged to obtain the final WBT graph. The energy absorbance and other WBT parameter values at tympanometric peak pressure and ambient pressure conditions across frequencies were noted. The WBT measurement produced 122 frequency data points (1/24th octave bands) and all the 122 frequencies were analysed in the present study. The system was calibrated every day using the calibration software given by the manufacturer, which is comparable to the source parameter calibration in four metal waveguide calibration units of 0.2, 0.5, 2, and 5 cc volumes. The cavity radius for cavities used in the study was 0.2 cm. The method suggested by Norgaard et al. (2017) was used to reduce evanescent wave effects, and the use of small diameter cavities connected directly to the transducer without a plastic tip assured reliable transducer placement in the calibration cavities (direct coupling). By verifying that all participants had low absorbance at the lowest end of

the frequency (10% or 0.1 absorbances), the probe fit and insertion depth was determined.

3.5 Statistical Analyses:

All statistical analyses were accomplished using SPSS software version 20 or Smith's Statistical Package (SSP, a free public domain software). The Shapiro-Wilk's test of normality was used to decide on the use of parametric or non-parametric procedures to compare wideband tympanometry findings across subjects. The results of Shapiro Wilk's test showed non-normality in both the ears of all the three groups for a majority of the frequencies (p < 0.05) and hence further statistical analyses were carried out using non-parametric tests.

For the comparison of the WBT measures among the groups, a Kruskal-Wallis H test was carried out. In case of a significant difference on the Kruskal-Wallis H test (p < 0.05), Mann-Whitney U test was used for pair-wise comparison between the groups. For a statistically significant difference, the α -correction (p-value divided by the number of pair-wise comparisons) was applied due to which a p-value of < 0.016 was considered for a statistically significant difference. This was done to eliminate the chances of type 1 error due to multiple comparisons. Further, the Mann-Whitney U test was also used for comparison between the two electrode types. For the comparison within the group, the Wilcoxon signed rank test was used.

For analysis and comparison of the individual data, the criteria based on IQR and median of the normal hearing group was used. Whenever the absorbance values in the CI group or the SNHL group fell outside the range of IQR and median of the NH group, (formula mentioned in Equation 1 and Equation 2), the absorbance value was deemed abnormal (Bouton & Cole, 2014; Tukey, 1977).

Lower Bound = $Q1 - 0.75 * IQR$	– Equation 1
Upper Bound = Q3 + 0.75 * IQR	- Equation 2,

where, Q1 is first quartile of the normal hearing group; Q3 is third quartile of the normal hearing group; IQR is interquartile range of the normal hearing group.

The proportion of such abnormal results were compared between the groups using the Equality of test for proportion using the SSP software. For the within group comparison of such proportions, a McNemar test was administered.

Chapter IV

Results

The present study aimed to compare the findings of WBT at peak and ambient pressure conditions in normal-hearing children and those with sensorineural hearing loss with or without CI. Additionally, the present study also aimed to compare the findings of WBT between the implant and non-implant ears of children with a unilateral cochlear implant. A final aim of the present study was to compare the WBT findings between the electrode types. To fulfill these aims, WBT was performed on 60 children, of which 20 had normal hearing (henceforth called NH group) and 40 had congenital hearing impairment of sensorineural type. Among the 40 with a sensorineural hearing loss, 20 had undergone unilateral CI (henceforth called the CI group), whereas the remaining 20 were bilateral hearing aid users (henceforth called the SNHL group). Since the CI group had implantation done in 17 right ears and 3 left ears; the comparison of the implant ears was done with 17 right ears and 3 left ears in the other two groups. A similar approach was used for the comparison of non-implant ears. The absorbance values were recorded at peak pressure and ambient pressure conditions across 122 frequencies ranging from 226 Hz to 8000 Hz. The comparisons of these measures were done separately for peak and ambient pressure conditions. Further, the resonance frequency values were also obtained from both ears of all participants for within and between groups comparisons.

Shapiro-Wilk's test of normality showed a non-normal distribution (p < 0.05) of data at a majority of the test frequencies. Hence, further statistical analyses necessitated the use of non-parametric tests.

4.1 Comparison of absorbance at peak and ambient pressure conditions among the groups.

The absorbance at peak and ambient pressure conditions across 122 frequencies were subjected to descriptive statistics in order to obtain the mean, median, standard deviation (SD), and interquartile range (IQR). The outcomes of the descriptive statistics are shown in Table 4.1.1, Table 4.1.2, and Table 4.1.3 for peak pressure condition, and Table 4.1.4, Table 4.1.5, and Table 4.1.6 for ambient pressure condition.

Table 4.1.1.

Mean, standard deviation, median and interquartile range of absorbance at peak pressure in the frequency range of 226 Hz to 8000 Hz in both

Frequency		CI ears o	of CI group			Non-CI ear	s of CI group	
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
226.00	0.10	0.04	0.09	0.07	0.13	0.06	0.13	0.08
250.00	0.11	0.04	0.09	0.07	0.14	0.06	0.14	0.08
257.33	0.11	0.04	0.10	0.08	0.14	0.06	0.14	0.08
264.87	0.11	0.05	0.10	0.08	0.14	0.06	0.14	0.09
272.63	0.12	0.05	0.10	0.08	0.15	0.06	0.14	0.09
280.62	0.12	0.05	0.10	0.08	0.15	0.06	0.15	0.09
288.84	0.13	0.05	0.11	0.08	0.16	0.06	0.15	0.10
297.30	0.13	0.05	0.11	0.09	0.16	0.06	0.16	0.10
306.12	0.13	0.06	0.11	0.09	0.17	0.07	0.17	0.11
314.98	0.14	0.06	0.12	0.09	0.17	0.07	0.17	0.11
324.21	0.14	0.06	0.12	0.09	0.18	0.07	0.18	0.11
333.71	0.15	0.06	0.13	0.10	0.19	0.07	0.18	0.12
343.49	0.15	0.06	0.13	0.10	0.19	0.08	0.19	0.13
353.55	0.16	0.06	0.14	0.10	0.20	0.08	0.20	0.14
363.91	0.16	0.07	0.14	0.10	0.21	0.08	0.21	0.14
374.58	0.17	0.07	0.15	0.09	0.22	0.09	0.22	0.15
385.55	0.17	0.07	0.16	0.08	0.22	0.09	0.23	0.16
396.95	0.18	0.07	0.16	0.09	0.23	0.09	0.24	0.16

ears of the CI group

Frequency		CI ears o	f CI group		Non-CI ears of CI group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
408.48	0.18	0.07	0.16	0.11	0.24	0.09	0.25	0.17
420.45	0.19	0.07	0.17	0.12	0.25	0.10	0.26	0.18
432.77	0.19	0.08	0.17	0.12	0.26	0.10	0.26	0.18
445.45	0.20	0.08	0.18	0.12	0.27	0.10	0.27	0.19
458.50	0.20	0.08	0.19	0.13	0.27	0.10	0.27	0.19
471.94	0.22	0.08	0.21	0.12	0.29	0.10	0.29	0.20
485.77	0.22	0.08	0.21	0.11	0.30	0.11	0.29	0.19
500.00	0.23	0.08	0.22	0.11	0.31	0.11	0.30	0.19
514.65	0.24	0.08	0.24	0.10	0.32	0.11	0.31	0.19
529.73	0.24	0.08	0.24	0.10	0.33	0.11	0.31	0.19
545.25	0.25	0.09	0.25	0.10	0.34	0.12	0.33	0.19
561.23	0.26	0.09	0.25	0.11	0.36	0.12	0.34	0.18
577.68	0.27	0.09	0.26	0.11	0.37	0.12	0.35	0.18
594.60	0.28	0.09	0.25	0.11	0.39	0.12	0.36	0.17
612.03	0.28	0.09	0.26	0.12	0.39	0.12	0.37	0.17
629.96	0.29	0.09	0.27	0.12	0.40	0.12	0.38	0.17
648.42	0.30	0.10	0.27	0.13	0.41	0.12	0.40	0.17
667.42	0.31	0.10	0.28	0.14	0.42	0.12	0.41	0.16
686.98	0.32	0.10	0.29	0.15	0.43	0.13	0.41	0.15
707.11	0.32	0.11	0.29	0.16	0.45	0.13	0.42	0.15
727.83	0.33	0.11	0.29	0.17	0.46	0.13	0.42	0.16
749.15	0.34	0.12	0.30	0.18	0.47	0.13	0.43	0.15

Table 4.1.1 continued from previous page

Frequency		CI ears o	f CI group		Non-CI ears of CI group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
771.11	0.35	0.12	0.32	0.18	0.48	0.13	0.45	0.15	
793.70	0.36	0.12	0.33	0.19	0.49	0.13	0.46	0.17	
816.96	0.37	0.13	0.34	0.20	0.51	0.13	0.48	0.18	
840.90	0.38	0.13	0.35	0.21	0.52	0.14	0.50	0.20	
865.54	0.39	0.13	0.35	0.21	0.53	0.14	0.52	0.21	
890.90	0.40	0.14	0.36	0.20	0.55	0.13	0.53	0.21	
917.00	0.41	0.14	0.37	0.21	0.56	0.13	0.53	0.21	
943.87	0.42	0.14	0.39	0.21	0.57	0.13	0.54	0.21	
971.53	0.44	0.15	0.41	0.21	0.59	0.13	0.54	0.23	
1000.00	0.45	0.15	0.43	0.22	0.60	0.14	0.55	0.24	
1029.30	0.47	0.15	0.44	0.23	0.61	0.14	0.56	0.25	
1059.46	0.48	0.16	0.46	0.25	0.62	0.14	0.58	0.25	
1090.51	0.49	0.16	0.47	0.27	0.63	0.14	0.60	0.25	
1122.46	0.51	0.17	0.49	0.27	0.65	0.14	0.62	0.27	
1155.35	0.53	0.17	0.52	0.28	0.66	0.13	0.62	0.23	
1189.21	0.54	0.17	0.55	0.29	0.67	0.13	0.64	0.21	
1224.05	0.56	0.17	0.58	0.30	0.67	0.13	0.66	0.21	
1259.92	0.57	0.17	0.61	0.29	0.67	0.14	0.69	0.23	
1296.84	0.59	0.17	0.64	0.27	0.67	0.15	0.70	0.23	
1334.84	0.60	0.17	0.65	0.26	0.68	0.16	0.70	0.24	
1373.95	0.61	0.17	0.66	0.25	0.68	0.16	0.70	0.26	
1414.21	0.62	0.16	0.67	0.23	0.69	0.16	0.69	0.27	

Table 4.1.1 continued from previous page

Frequency		CI ears o	of CI group		Non-CI ears of CI group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
1455.65	0.63	0.16	0.67	0.23	0.70	0.15	0.69	0.27	
1498.31	0.64	0.15	0.68	0.21	0.70	0.15	0.69	0.27	
1542.21	0.64	0.15	0.68	0.20	0.70	0.16	0.70	0.26	
1587.40	0.65	0.15	0.67	0.19	0.69	0.17	0.70	0.25	
1633.92	0.66	0.15	0.65	0.18	0.69	0.17	0.72	0.22	
1681.79	0.67	0.14	0.65	0.19	0.69	0.16	0.74	0.20	
1731.07	0.68	0.14	0.67	0.20	0.69	0.15	0.74	0.18	
1781.80	0.69	0.13	0.69	0.19	0.69	0.15	0.71	0.16	
1834.01	0.71	0.13	0.70	0.17	0.69	0.15	0.71	0.14	
1887.75	0.73	0.13	0.72	0.17	0.68	0.15	0.70	0.14	
1943.06	0.75	0.12	0.73	0.18	0.68	0.15	0.69	0.17	
2000.00	0.76	0.12	0.76	0.19	0.68	0.14	0.68	0.14	
2058.60	0.78	0.12	0.78	0.19	0.68	0.14	0.67	0.16	
2118.93	0.80	0.12	0.80	0.19	0.69	0.15	0.66	0.18	
2181.02	0.81	0.12	0.83	0.17	0.69	0.15	0.68	0.23	
2244.92	0.83	0.11	0.85	0.16	0.71	0.15	0.70	0.26	
2310.71	0.84	0.11	0.86	0.15	0.72	0.15	0.72	0.30	
2378.41	0.85	0.11	0.87	0.15	0.74	0.15	0.74	0.30	
2448.11	0.86	0.11	0.88	0.14	0.76	0.15	0.76	0.29	
2519.84	0.86	0.12	0.90	0.13	0.78	0.15	0.79	0.28	
2593.68	0.86	0.12	0.91	0.11	0.80	0.14	0.83	0.28	
2669.68	0.86	0.12	0.89	0.09	0.82	0.14	0.86	0.26	

Table 4.1.1 continued from previous page

Frequency		CI ears o	f CI group		Non-CI ears of CI group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
2747.91	0.86	0.12	0.89	0.10	0.84	0.13	0.87	0.24	
2828.43	0.86	0.11	0.89	0.12	0.85	0.13	0.89	0.23	
2911.31	0.86	0.11	0.88	0.10	0.86	0.12	0.90	0.21	
2996.61	0.86	0.11	0.88	0.12	0.86	0.12	0.91	0.19	
3084.42	0.86	0.11	0.88	0.15	0.87	0.11	0.91	0.18	
3174.80	0.85	0.12	0.88	0.16	0.87	0.10	0.91	0.14	
3267.83	0.85	0.13	0.87	0.17	0.87	0.09	0.90	0.10	
3363.59	0.84	0.13	0.85	0.17	0.87	0.09	0.90	0.07	
3462.15	0.84	0.14	0.83	0.18	0.87	0.09	0.89	0.08	
3563.59	0.83	0.14	0.82	0.19	0.86	0.10	0.89	0.10	
3668.02	0.83	0.14	0.83	0.21	0.85	0.10	0.89	0.12	
3775.50	0.82	0.14	0.83	0.22	0.84	0.11	0.88	0.15	
3886.13	0.81	0.14	0.80	0.24	0.83	0.11	0.85	0.17	
4000.00	0.79	0.15	0.81	0.23	0.82	0.12	0.84	0.17	
4117.21	0.77	0.15	0.81	0.22	0.81	0.13	0.84	0.20	
4237.85	0.75	0.17	0.80	0.25	0.79	0.14	0.81	0.21	
4362.03	0.73	0.18	0.78	0.28	0.78	0.15	0.77	0.25	
4489.85	0.71	0.19	0.76	0.31	0.77	0.16	0.75	0.26	
4621.41	0.69	0.20	0.74	0.35	0.75	0.17	0.73	0.28	
4756.83	0.68	0.20	0.70	0.35	0.74	0.17	0.72	0.30	
4896.21	0.66	0.21	0.67	0.35	0.73	0.18	0.70	0.32	
5039.68	0.64	0.20	0.65	0.34	0.71	0.18	0.68	0.34	

Table 4.1.1 continued from previous page

Frequency		CI ears o	of CI group		Non-CI ears of CI group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
5187.36	0.62	0.20	0.62	0.31	0.69	0.19	0.66	0.34	
5339.36	0.59	0.19	0.58	0.30	0.66	0.19	0.62	0.34	
5495.81	0.56	0.19	0.54	0.30	0.63	0.19	0.57	0.36	
5656.85	0.52	0.19	0.50	0.29	0.59	0.19	0.52	0.35	
5822.61	0.49	0.18	0.46	0.28	0.55	0.18	0.48	0.35	
5993.23	0.46	0.18	0.42	0.29	0.52	0.18	0.44	0.35	
6168.84	0.43	0.18	0.39	0.28	0.48	0.17	0.41	0.34	
6349.60	0.40	0.17	0.35	0.26	0.45	0.17	0.39	0.33	
6535.66	0.38	0.17	0.33	0.23	0.42	0.16	0.37	0.30	
6727.17	0.36	0.16	0.32	0.20	0.39	0.16	0.36	0.27	
6924.29	0.34	0.15	0.33	0.19	0.37	0.16	0.35	0.27	
7127.19	0.32	0.14	0.31	0.18	0.35	0.16	0.35	0.27	
7336.03	0.31	0.14	0.30	0.19	0.34	0.16	0.35	0.26	
7550.99	0.30	0.14	0.29	0.20	0.33	0.17	0.32	0.26	
7772.26	0.30	0.14	0.29	0.21	0.32	0.17	0.31	0.27	
8000.00	0.30	0.14	0.29	0.21	0.32	0.18	0.31	0.27	

Table 4.1.1 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

Table 4.1.2.

Mean, standard deviation, median and interquartile range of absorbance at peak pressure in the frequency range of 226 Hz to 8000 Hz in both

Frequency	(CI-matched ear	s of SNHL group		Non-CI-matched ears of SNHL group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
226.00	0.17	0.10	0.15	0.09	0.16	0.08	0.14	0.09
250.00	0.18	0.10	0.16	0.10	0.17	0.08	0.15	0.10
257.33	0.18	0.10	0.16	0.10	0.17	0.09	0.15	0.10
264.87	0.19	0.10	0.17	0.10	0.17	0.09	0.15	0.10
272.63	0.19	0.10	0.17	0.10	0.18	0.09	0.16	0.10
280.62	0.20	0.11	0.17	0.10	0.18	0.09	0.16	0.10
288.84	0.20	0.11	0.18	0.10	0.19	0.09	0.17	0.11
297.30	0.21	0.11	0.19	0.11	0.20	0.10	0.18	0.11
306.12	0.22	0.12	0.19	0.11	0.20	0.10	0.18	0.12
314.98	0.22	0.12	0.20	0.11	0.21	0.10	0.19	0.12
324.21	0.23	0.12	0.21	0.11	0.21	0.10	0.20	0.13
333.71	0.24	0.12	0.22	0.12	0.22	0.10	0.21	0.13
343.49	0.24	0.13	0.23	0.12	0.23	0.10	0.22	0.13
353.55	0.25	0.13	0.24	0.13	0.24	0.10	0.24	0.14
363.91	0.26	0.13	0.25	0.14	0.25	0.11	0.25	0.14
374.58	0.27	0.13	0.26	0.14	0.25	0.11	0.26	0.15
385.55	0.28	0.13	0.27	0.15	0.26	0.11	0.27	0.15
396.95	0.28	0.14	0.28	0.15	0.27	0.11	0.27	0.16

ears of SNHL group

Frequency	(CI-matched ear	s of SNHL group		Non-CI-matched ears of SNHL group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
408.48	0.29	0.14	0.29	0.16	0.28	0.11	0.28	0.16
420.45	0.30	0.14	0.30	0.16	0.29	0.11	0.28	0.17
432.77	0.31	0.14	0.31	0.17	0.29	0.11	0.29	0.17
445.45	0.32	0.14	0.32	0.17	0.30	0.12	0.30	0.17
458.50	0.32	0.14	0.33	0.18	0.31	0.12	0.31	0.17
471.94	0.34	0.15	0.35	0.19	0.32	0.12	0.32	0.17
485.77	0.34	0.15	0.36	0.19	0.33	0.12	0.32	0.18
500.00	0.35	0.15	0.36	0.19	0.34	0.12	0.33	0.18
514.65	0.36	0.15	0.37	0.18	0.36	0.13	0.35	0.19
529.73	0.37	0.16	0.37	0.17	0.37	0.13	0.36	0.19
545.25	0.38	0.16	0.38	0.17	0.38	0.13	0.36	0.20
561.23	0.39	0.16	0.38	0.16	0.39	0.14	0.36	0.22
577.68	0.40	0.16	0.39	0.15	0.41	0.14	0.37	0.24
594.60	0.40	0.16	0.39	0.14	0.42	0.15	0.37	0.26
612.03	0.41	0.16	0.39	0.14	0.42	0.15	0.38	0.26
629.96	0.41	0.16	0.40	0.14	0.43	0.15	0.39	0.26
648.42	0.42	0.16	0.41	0.14	0.45	0.16	0.40	0.27
667.42	0.43	0.17	0.42	0.13	0.46	0.16	0.40	0.28
686.98	0.44	0.17	0.43	0.13	0.46	0.16	0.41	0.28
707.11	0.45	0.17	0.44	0.13	0.47	0.16	0.42	0.27
727.83	0.46	0.17	0.44	0.14	0.48	0.16	0.42	0.26
749.15	0.47	0.17	0.44	0.14	0.48	0.16	0.43	0.26

Table 4.1.2 continued from previous page

Frequency	(CI-matched ear	s of SNHL group	HL group Non-CI-matched ears of SNHL group					
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
771.11	0.47	0.17	0.45	0.14	0.49	0.16	0.43	0.27	
793.70	0.48	0.17	0.45	0.15	0.50	0.16	0.44	0.27	
816.96	0.49	0.17	0.45	0.15	0.51	0.16	0.45	0.27	
840.90	0.50	0.17	0.46	0.16	0.51	0.16	0.46	0.27	
865.54	0.51	0.17	0.47	0.18	0.52	0.16	0.47	0.27	
890.90	0.52	0.17	0.48	0.19	0.53	0.16	0.48	0.27	
917.00	0.53	0.17	0.49	0.19	0.55	0.16	0.50	0.27	
943.87	0.54	0.17	0.50	0.21	0.56	0.16	0.51	0.27	
971.53	0.55	0.16	0.51	0.22	0.57	0.16	0.53	0.27	
1000.00	0.56	0.16	0.53	0.22	0.58	0.16	0.55	0.27	
1029.30	0.56	0.15	0.54	0.21	0.59	0.16	0.56	0.26	
1059.46	0.57	0.15	0.56	0.18	0.60	0.15	0.58	0.26	
1090.51	0.57	0.14	0.56	0.16	0.61	0.15	0.59	0.25	
1122.46	0.58	0.14	0.57	0.16	0.61	0.14	0.60	0.22	
1155.35	0.58	0.14	0.57	0.17	0.62	0.14	0.61	0.20	
1189.21	0.58	0.14	0.59	0.18	0.62	0.13	0.62	0.19	
1224.05	0.59	0.13	0.59	0.18	0.63	0.13	0.65	0.17	
1259.92	0.59	0.13	0.58	0.18	0.63	0.12	0.65	0.14	
1296.84	0.59	0.13	0.57	0.21	0.63	0.12	0.65	0.13	
1334.84	0.59	0.13	0.56	0.22	0.63	0.12	0.65	0.13	
1373.95	0.59	0.13	0.56	0.21	0.63	0.12	0.64	0.12	
1414.21	0.59	0.13	0.55	0.20	0.62	0.11	0.64	0.12	

Table 4.1.2 continued from previous page

Frequency	(CI-matched ear	s of SNHL group		Noi	n-CI-matched e	ears of SNHL gro	up
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
1455.65	0.59	0.12	0.57	0.20	0.62	0.11	0.63	0.12
1498.31	0.59	0.12	0.58	0.19	0.62	0.10	0.63	0.13
1542.21	0.59	0.11	0.58	0.20	0.62	0.10	0.63	0.16
1587.40	0.59	0.11	0.59	0.21	0.63	0.10	0.63	0.16
1633.92	0.59	0.11	0.60	0.21	0.63	0.10	0.62	0.15
1681.79	0.60	0.11	0.59	0.21	0.63	0.11	0.61	0.15
1731.07	0.60	0.11	0.59	0.21	0.64	0.12	0.62	0.16
1781.80	0.60	0.11	0.59	0.21	0.64	0.12	0.64	0.17
1834.01	0.61	0.11	0.59	0.21	0.64	0.13	0.64	0.17
1887.75	0.61	0.12	0.60	0.22	0.65	0.14	0.66	0.18
1943.06	0.61	0.12	0.61	0.23	0.65	0.15	0.67	0.19
2000.00	0.62	0.13	0.62	0.22	0.66	0.16	0.65	0.23
2058.60	0.63	0.13	0.62	0.22	0.66	0.17	0.66	0.27
2118.93	0.64	0.14	0.62	0.23	0.67	0.17	0.68	0.30
2181.02	0.65	0.14	0.63	0.24	0.67	0.18	0.68	0.31
2244.92	0.66	0.15	0.65	0.26	0.68	0.18	0.69	0.28
2310.71	0.67	0.16	0.66	0.26	0.68	0.18	0.68	0.25
2378.41	0.67	0.17	0.68	0.26	0.69	0.18	0.68	0.26
2448.11	0.68	0.17	0.70	0.27	0.69	0.19	0.68	0.26
2519.84	0.68	0.18	0.69	0.28	0.69	0.19	0.68	0.25
2593.68	0.68	0.18	0.69	0.29	0.69	0.19	0.70	0.26
2669.68	0.69	0.18	0.70	0.29	0.69	0.20	0.71	0.29

Table 4.1.2 continued from previous page

Frequency	CI-matched ears of SNHL group				Noi	n-CI-matched e	ears of SNHL gro	up
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
2747.91	0.69	0.17	0.69	0.30	0.69	0.20	0.73	0.26
2828.43	0.70	0.17	0.69	0.29	0.69	0.21	0.74	0.23
2911.31	0.70	0.17	0.68	0.25	0.69	0.22	0.74	0.27
2996.61	0.71	0.17	0.69	0.27	0.70	0.22	0.74	0.32
3084.42	0.71	0.17	0.71	0.28	0.71	0.23	0.74	0.33
3174.80	0.71	0.18	0.72	0.23	0.71	0.23	0.76	0.32
3267.83	0.70	0.20	0.72	0.23	0.72	0.23	0.76	0.33
3363.59	0.70	0.21	0.73	0.25	0.72	0.22	0.76	0.34
3462.15	0.70	0.21	0.74	0.24	0.72	0.22	0.73	0.32
3563.59	0.70	0.20	0.73	0.22	0.72	0.22	0.73	0.30
3668.02	0.71	0.19	0.73	0.21	0.71	0.21	0.73	0.28
3775.50	0.72	0.17	0.74	0.22	0.71	0.20	0.73	0.29
3886.13	0.72	0.16	0.74	0.19	0.71	0.19	0.74	0.32
4000.00	0.72	0.15	0.75	0.22	0.70	0.18	0.73	0.35
4117.21	0.72	0.15	0.75	0.24	0.70	0.18	0.71	0.32
4237.85	0.71	0.15	0.73	0.24	0.70	0.17	0.70	0.29
4362.03	0.70	0.15	0.70	0.25	0.69	0.17	0.71	0.29
4489.85	0.69	0.16	0.68	0.25	0.68	0.17	0.72	0.30
4621.41	0.67	0.16	0.66	0.24	0.68	0.17	0.72	0.29
4756.83	0.66	0.16	0.65	0.22	0.67	0.16	0.72	0.28
4896.21	0.65	0.15	0.63	0.19	0.67	0.16	0.73	0.27
5039.68	0.64	0.15	0.62	0.19	0.66	0.15	0.69	0.26

Table 4.1.2 continued from previous page

Frequency	(CI-matched ear	s of SNHL group)	Noi	Non-CI-matched ears of SNHL groupMeanSDMedianIQR0.650.150.640.250.620.150.620.260.590.140.610.230.550.140.600.210.520.140.560.220.480.140.510.220.450.140.480.200.420.140.480.200.390.140.400.210.370.150.380.220.350.150.360.23		
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
5187.36	0.62	0.14	0.62	0.18	0.65	0.15	0.64	0.25
5339.36	0.59	0.14	0.60	0.17	0.62	0.15	0.62	0.26
5495.81	0.56	0.13	0.57	0.15	0.59	0.14	0.61	0.23
5656.85	0.53	0.14	0.52	0.17	0.55	0.14	0.60	0.21
5822.61	0.49	0.14	0.47	0.18	0.52	0.14	0.56	0.22
5993.23	0.46	0.15	0.43	0.20	0.48	0.14	0.51	0.22
6168.84	0.43	0.15	0.40	0.22	0.45	0.14	0.48	0.20
6349.60	0.41	0.15	0.38	0.24	0.42	0.14	0.44	0.21
6535.66	0.39	0.16	0.37	0.24	0.39	0.14	0.40	0.21
6727.17	0.37	0.16	0.35	0.25	0.37	0.15	0.38	0.22
6924.29	0.35	0.16	0.34	0.25	0.35	0.15	0.36	0.23
7127.19	0.34	0.17	0.31	0.26	0.33	0.15	0.34	0.23
7336.03	0.34	0.18	0.28	0.28	0.32	0.15	0.31	0.23
7550.99	0.34	0.19	0.26	0.30	0.31	0.15	0.31	0.24
7772.26	0.34	0.20	0.25	0.31	0.31	0.15	0.31	0.25
8000.00	0.34	0.20	0.27	0.30	0.31	0.16	0.31	0.25

Table 4.1.2 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

Table 4.1.3.

Mean, standard deviation, median and interquartile range of absorbance at peak pressure in the frequency range of 226 Hz to 8000 Hz in both

Frequency		CI-matched ea	ars of NH group		Non-CI-matched ears of NH groupMeanSDMedianIQR0.140.050.130.050.140.050.130.060.150.050.130.060.150.050.140.070.150.050.150.070.160.050.150.080.160.050.160.080.170.060.170.080.180.060.180.090.190.060.190.090.200.060.190.09			p
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
226.00	0.15	0.05	0.15	0.06	0.14	0.05	0.13	0.05
250.00	0.16	0.05	0.15	0.06	0.14	0.05	0.13	0.06
257.33	0.16	0.05	0.16	0.06	0.15	0.05	0.13	0.06
264.87	0.16	0.05	0.16	0.06	0.15	0.05	0.14	0.07
272.63	0.17	0.05	0.16	0.07	0.15	0.05	0.15	0.07
280.62	0.17	0.05	0.17	0.07	0.16	0.05	0.15	0.08
288.84	0.18	0.06	0.18	0.07	0.16	0.05	0.16	0.08
297.30	0.19	0.06	0.18	0.08	0.17	0.06	0.17	0.08
306.12	0.19	0.06	0.19	0.08	0.17	0.06	0.17	0.08
314.98	0.20	0.07	0.19	0.08	0.18	0.06	0.18	0.09
324.21	0.20	0.07	0.20	0.08	0.18	0.06	0.18	0.09
333.71	0.21	0.07	0.21	0.09	0.19	0.06	0.19	0.09
343.49	0.22	0.07	0.22	0.09	0.20	0.06	0.19	0.09
353.55	0.23	0.08	0.22	0.10	0.20	0.07	0.20	0.09
363.91	0.23	0.08	0.23	0.10	0.21	0.07	0.21	0.10
374.58	0.24	0.08	0.23	0.11	0.22	0.07	0.21	0.10
385.55	0.25	0.09	0.24	0.12	0.23	0.08	0.22	0.10
396.95	0.26	0.09	0.25	0.13	0.23	0.08	0.23	0.11

ears of the NH group

Frequency		CI-matched ea	ars of NH group		Non-CI-matched ears of NH group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
408.48	0.27	0.09	0.26	0.14	0.24	0.08	0.24	0.11	
420.45	0.27	0.10	0.27	0.14	0.25	0.09	0.24	0.11	
432.77	0.28	0.10	0.28	0.14	0.26	0.09	0.25	0.12	
445.45	0.29	0.10	0.29	0.14	0.27	0.09	0.26	0.12	
458.50	0.30	0.10	0.29	0.15	0.28	0.10	0.27	0.12	
471.94	0.32	0.11	0.31	0.16	0.30	0.10	0.28	0.13	
485.77	0.33	0.11	0.32	0.16	0.30	0.11	0.29	0.13	
500.00	0.34	0.11	0.33	0.17	0.31	0.11	0.30	0.14	
514.65	0.35	0.12	0.35	0.18	0.33	0.12	0.32	0.15	
529.73	0.36	0.12	0.36	0.18	0.34	0.12	0.33	0.15	
545.25	0.37	0.12	0.36	0.18	0.35	0.12	0.34	0.15	
561.23	0.39	0.12	0.38	0.17	0.37	0.13	0.35	0.16	
577.68	0.41	0.13	0.40	0.17	0.38	0.13	0.36	0.17	
594.60	0.42	0.13	0.41	0.18	0.40	0.13	0.38	0.17	
612.03	0.43	0.13	0.41	0.18	0.41	0.13	0.39	0.18	
629.96	0.44	0.13	0.42	0.18	0.42	0.14	0.40	0.18	
648.42	0.46	0.13	0.43	0.18	0.43	0.14	0.43	0.19	
667.42	0.47	0.14	0.45	0.17	0.45	0.14	0.43	0.21	
686.98	0.49	0.14	0.46	0.15	0.46	0.14	0.44	0.22	
707.11	0.50	0.14	0.47	0.15	0.47	0.14	0.45	0.22	
727.83	0.52	0.15	0.49	0.16	0.49	0.14	0.47	0.24	
749.15	0.54	0.15	0.50	0.17	0.50	0.14	0.48	0.25	

Table 4.1.3 continued from previous page

Frequency		ars of NH group	N	on-CI-matched	l ears of NH grou	р		
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
771.11	0.55	0.15	0.51	0.18	0.52	0.14	0.49	0.27
793.70	0.57	0.15	0.53	0.19	0.53	0.14	0.50	0.28
816.96	0.58	0.15	0.54	0.20	0.55	0.14	0.51	0.27
840.90	0.60	0.15	0.56	0.20	0.56	0.14	0.52	0.25
865.54	0.61	0.15	0.57	0.20	0.57	0.14	0.54	0.22
890.90	0.62	0.14	0.58	0.20	0.58	0.14	0.56	0.21
917.00	0.64	0.14	0.60	0.20	0.60	0.14	0.58	0.21
943.87	0.65	0.13	0.62	0.21	0.61	0.14	0.59	0.21
971.53	0.66	0.12	0.64	0.21	0.63	0.13	0.58	0.21
1000.00	0.68	0.12	0.65	0.21	0.64	0.13	0.60	0.21
1029.30	0.69	0.11	0.65	0.19	0.65	0.13	0.62	0.22
1059.46	0.69	0.11	0.66	0.19	0.66	0.13	0.64	0.23
1090.51	0.70	0.11	0.68	0.18	0.66	0.13	0.66	0.24
1122.46	0.71	0.11	0.69	0.17	0.67	0.13	0.67	0.22
1155.35	0.71	0.11	0.68	0.17	0.67	0.13	0.69	0.19
1189.21	0.71	0.11	0.69	0.18	0.68	0.13	0.71	0.16
1224.05	0.71	0.11	0.69	0.19	0.68	0.13	0.71	0.15
1259.92	0.71	0.12	0.69	0.20	0.68	0.13	0.71	0.15
1296.84	0.71	0.12	0.71	0.19	0.68	0.13	0.71	0.17
1334.84	0.71	0.12	0.72	0.19	0.67	0.13	0.70	0.18
1373.95	0.70	0.12	0.72	0.19	0.67	0.13	0.70	0.18
1414.21	0.70	0.12	0.73	0.20	0.67	0.13	0.69	0.17

Table 4.1.3 continued from previous page

Frequency		CI-matched ea	ars of NH group		Non-CI-matched ears of NH group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
1455.65	0.70	0.12	0.73	0.20	0.67	0.13	0.69	0.15
1498.31	0.70	0.12	0.72	0.19	0.67	0.13	0.69	0.15
1542.21	0.70	0.12	0.70	0.19	0.67	0.13	0.69	0.14
1587.40	0.70	0.11	0.68	0.18	0.67	0.13	0.69	0.13
1633.92	0.70	0.11	0.68	0.17	0.67	0.13	0.69	0.14
1681.79	0.70	0.10	0.69	0.17	0.67	0.13	0.69	0.15
1731.07	0.70	0.10	0.71	0.16	0.68	0.14	0.69	0.15
1781.80	0.71	0.10	0.71	0.16	0.68	0.14	0.69	0.17
1834.01	0.71	0.10	0.72	0.14	0.69	0.15	0.69	0.21
1887.75	0.72	0.10	0.72	0.14	0.69	0.15	0.69	0.25
1943.06	0.73	0.11	0.71	0.15	0.69	0.16	0.70	0.27
2000.00	0.73	0.11	0.72	0.16	0.70	0.16	0.72	0.26
2058.60	0.74	0.11	0.75	0.16	0.70	0.16	0.72	0.25
2118.93	0.76	0.11	0.77	0.17	0.71	0.16	0.72	0.25
2181.02	0.77	0.11	0.77	0.20	0.71	0.16	0.72	0.25
2244.92	0.79	0.11	0.80	0.20	0.72	0.17	0.74	0.25
2310.71	0.80	0.11	0.83	0.21	0.73	0.17	0.77	0.24
2378.41	0.82	0.11	0.84	0.20	0.73	0.17	0.79	0.22
2448.11	0.83	0.11	0.86	0.19	0.74	0.17	0.81	0.22
2519.84	0.84	0.11	0.88	0.18	0.75	0.18	0.83	0.22
2593.68	0.85	0.11	0.89	0.18	0.76	0.18	0.83	0.20
2669.68	0.85	0.11	0.89	0.21	0.76	0.18	0.84	0.18

Table 4.1.3 continued from previous page

Frequency		CI-matched ea	ars of NH group		Non-CI-matched ears of NH group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
2747.91	0.86	0.11	0.89	0.20	0.77	0.18	0.82	0.16
2828.43	0.86	0.11	0.88	0.20	0.77	0.18	0.82	0.19
2911.31	0.86	0.10	0.87	0.19	0.78	0.18	0.82	0.20
2996.61	0.86	0.10	0.88	0.17	0.78	0.18	0.82	0.20
3084.42	0.87	0.10	0.88	0.17	0.78	0.18	0.82	0.20
3174.80	0.87	0.11	0.89	0.16	0.78	0.18	0.80	0.22
3267.83	0.86	0.11	0.89	0.18	0.78	0.18	0.79	0.23
3363.59	0.86	0.12	0.89	0.17	0.78	0.18	0.80	0.23
3462.15	0.85	0.12	0.87	0.18	0.77	0.19	0.80	0.26
3563.59	0.84	0.13	0.85	0.20	0.77	0.19	0.81	0.29
3668.02	0.83	0.13	0.84	0.20	0.77	0.19	0.82	0.26
3775.50	0.82	0.14	0.85	0.22	0.77	0.18	0.83	0.22
3886.13	0.82	0.14	0.84	0.22	0.77	0.18	0.81	0.24
4000.00	0.81	0.15	0.83	0.21	0.77	0.17	0.79	0.21
4117.21	0.80	0.15	0.80	0.20	0.76	0.17	0.79	0.20
4237.85	0.78	0.16	0.80	0.20	0.75	0.17	0.81	0.22
4362.03	0.77	0.16	0.79	0.19	0.74	0.18	0.79	0.24
4489.85	0.75	0.16	0.77	0.17	0.72	0.18	0.78	0.25
4621.41	0.73	0.15	0.76	0.15	0.71	0.18	0.77	0.26
4756.83	0.71	0.15	0.74	0.14	0.69	0.18	0.74	0.26
4896.21	0.70	0.15	0.72	0.13	0.67	0.18	0.72	0.25
5039.68	0.68	0.15	0.69	0.14	0.65	0.17	0.69	0.24

Table 4.1.3 continued from previous page

Frequency (in Hz)		CI-matched ea	ars of NH group		Mean SD Median IQR 0.63 0.17 0.66 0.24 0.60 0.16 0.62 0.23 0.56 0.15 0.58 0.23 0.53 0.14 0.53 0.24 0.49 0.13 0.49 0.24 0.46 0.12 0.46 0.21 0.43 0.12 0.43 0.21 0.40 0.12 0.41 0.20 0.38 0.12 0.37 0.23			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
5187.36	0.66	0.14	0.66	0.16	0.63	0.17	0.66	0.24
5339.36	0.62	0.14	0.62	0.17	0.60	0.16	0.62	0.23
5495.81	0.58	0.14	0.57	0.18	0.56	0.15	0.58	0.23
5656.85	0.54	0.13	0.52	0.19	0.53	0.14	0.53	0.24
5822.61	0.50	0.13	0.47	0.18	0.49	0.13	0.49	0.24
5993.23	0.46	0.13	0.43	0.19	0.46	0.12	0.46	0.21
6168.84	0.42	0.13	0.40	0.20	0.43	0.12	0.43	0.21
6349.60	0.40	0.14	0.36	0.20	0.40	0.12	0.41	0.20
6535.66	0.37	0.15	0.33	0.20	0.38	0.12	0.38	0.23
6727.17	0.36	0.16	0.30	0.19	0.36	0.12	0.37	0.22
6924.29	0.34	0.17	0.28	0.20	0.35	0.13	0.34	0.22
7127.19	0.34	0.18	0.28	0.21	0.34	0.14	0.32	0.23
7336.03	0.33	0.19	0.29	0.21	0.33	0.15	0.31	0.25
7550.99	0.33	0.19	0.28	0.23	0.32	0.15	0.30	0.25
7772.26	0.32	0.19	0.28	0.24	0.32	0.16	0.29	0.24
8000.00	0.32	0.19	0.28	0.25	0.32	0.16	0.29	0.24

Table 4.1.3 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

Table 4.1.4.

Mean, standard deviation, median and interquartile range of absorbance at ambient pressure in the frequency range of 226 Hz to 8000 Hz in

Frequency		CI ears o	f CI group			Non-CI ear	s of CI group	
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
226.00	0.10	0.04	0.09	0.07	0.12	0.06	0.11	0.10
250.00	0.10	0.04	0.09	0.07	0.13	0.07	0.12	0.11
257.33	0.10	0.04	0.09	0.08	0.13	0.07	0.12	0.12
264.87	0.10	0.04	0.09	0.08	0.13	0.07	0.12	0.12
272.63	0.11	0.05	0.10	0.08	0.13	0.07	0.12	0.13
280.62	0.11	0.05	0.10	0.08	0.14	0.07	0.12	0.14
288.84	0.11	0.05	0.10	0.09	0.14	0.07	0.13	0.14
297.30	0.12	0.05	0.11	0.09	0.15	0.08	0.13	0.15
306.12	0.12	0.05	0.11	0.09	0.15	0.08	0.13	0.15
314.98	0.13	0.06	0.11	0.09	0.16	0.08	0.13	0.15
324.21	0.13	0.06	0.12	0.09	0.16	0.08	0.14	0.16
333.71	0.13	0.06	0.12	0.10	0.17	0.09	0.14	0.16
343.49	0.14	0.06	0.12	0.10	0.18	0.09	0.14	0.17
353.55	0.14	0.07	0.13	0.10	0.18	0.09	0.15	0.17
363.91	0.15	0.07	0.13	0.10	0.19	0.10	0.15	0.18
374.58	0.15	0.07	0.14	0.10	0.19	0.10	0.15	0.19
385.55	0.16	0.07	0.15	0.11	0.20	0.10	0.15	0.19
396.95	0.16	0.07	0.15	0.11	0.21	0.11	0.16	0.20

both ears of the CI group

Frequency		CI ears o	f CI group					
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
408.48	0.17	0.07	0.15	0.11	0.21	0.11	0.17	0.21
420.45	0.17	0.08	0.16	0.11	0.22	0.11	0.18	0.21
432.77	0.18	0.08	0.16	0.11	0.23	0.11	0.19	0.21
445.45	0.18	0.08	0.17	0.12	0.24	0.11	0.20	0.21
458.50	0.19	0.08	0.17	0.12	0.25	0.12	0.20	0.20
471.94	0.19	0.09	0.18	0.12	0.26	0.12	0.21	0.22
485.77	0.20	0.09	0.18	0.12	0.26	0.12	0.22	0.23
500.00	0.20	0.09	0.19	0.12	0.27	0.13	0.22	0.24
514.65	0.21	0.10	0.20	0.13	0.28	0.13	0.24	0.25
529.73	0.22	0.09	0.21	0.13	0.29	0.13	0.25	0.25
545.25	0.22	0.09	0.22	0.13	0.30	0.14	0.26	0.25
561.23	0.24	0.09	0.22	0.13	0.31	0.14	0.28	0.25
577.68	0.25	0.09	0.23	0.13	0.33	0.14	0.29	0.23
594.60	0.26	0.10	0.24	0.14	0.34	0.14	0.30	0.21
612.03	0.26	0.10	0.24	0.14	0.34	0.14	0.31	0.21
629.96	0.27	0.10	0.24	0.15	0.35	0.14	0.32	0.20
648.42	0.27	0.10	0.24	0.16	0.36	0.14	0.33	0.18
667.42	0.28	0.10	0.24	0.15	0.37	0.14	0.35	0.17
686.98	0.29	0.11	0.24	0.16	0.38	0.15	0.36	0.17
707.11	0.30	0.11	0.25	0.17	0.39	0.15	0.37	0.16
727.83	0.31	0.11	0.26	0.18	0.40	0.15	0.36	0.16
749.15	0.32	0.12	0.27	0.20	0.40	0.15	0.39	0.20

Table 4.1.4 continued from previous page

Frequency		CI ears o	f CI group			s of CI group		
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
771.11	0.32	0.13	0.27	0.22	0.41	0.16	0.41	0.23
793.70	0.33	0.13	0.28	0.22	0.42	0.16	0.41	0.21
816.96	0.34	0.14	0.29	0.22	0.43	0.16	0.41	0.18
840.90	0.35	0.14	0.29	0.23	0.44	0.16	0.42	0.20
865.54	0.35	0.15	0.30	0.23	0.45	0.16	0.43	0.22
890.90	0.36	0.15	0.32	0.23	0.46	0.16	0.45	0.22
917.00	0.37	0.16	0.33	0.24	0.47	0.16	0.46	0.24
943.87	0.38	0.17	0.34	0.24	0.48	0.16	0.48	0.25
971.53	0.39	0.17	0.35	0.25	0.49	0.17	0.48	0.25
1000.00	0.40	0.18	0.36	0.25	0.50	0.17	0.49	0.25
1029.30	0.42	0.18	0.37	0.27	0.51	0.17	0.50	0.25
1059.46	0.43	0.18	0.40	0.28	0.52	0.17	0.53	0.23
1090.51	0.45	0.18	0.42	0.30	0.52	0.17	0.54	0.22
1122.46	0.46	0.18	0.45	0.32	0.53	0.17	0.54	0.23
1155.35	0.48	0.18	0.47	0.34	0.54	0.17	0.55	0.22
1189.21	0.49	0.18	0.49	0.35	0.55	0.17	0.56	0.22
1224.05	0.51	0.18	0.51	0.35	0.56	0.17	0.58	0.24
1259.92	0.53	0.18	0.53	0.34	0.57	0.17	0.60	0.28
1296.84	0.54	0.17	0.57	0.33	0.57	0.18	0.61	0.30
1334.84	0.56	0.17	0.60	0.31	0.58	0.18	0.61	0.28
1373.95	0.57	0.18	0.62	0.31	0.59	0.18	0.61	0.28
1414.21	0.57	0.19	0.63	0.34	0.59	0.19	0.61	0.27

Table 4.1.4 continued from previous page

Frequency		CI ears o	f CI group					
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
1455.65	0.58	0.20	0.63	0.35	0.60	0.19	0.61	0.26
1498.31	0.59	0.20	0.64	0.34	0.60	0.19	0.61	0.27
1542.21	0.60	0.20	0.65	0.32	0.60	0.19	0.61	0.27
1587.40	0.61	0.18	0.66	0.29	0.61	0.18	0.59	0.27
1633.92	0.62	0.17	0.66	0.27	0.61	0.18	0.58	0.23
1681.79	0.64	0.16	0.66	0.27	0.62	0.17	0.58	0.22
1731.07	0.65	0.16	0.66	0.27	0.63	0.17	0.61	0.22
1781.80	0.66	0.15	0.67	0.25	0.63	0.16	0.64	0.23
1834.01	0.67	0.15	0.67	0.22	0.64	0.15	0.66	0.23
1887.75	0.69	0.16	0.68	0.21	0.65	0.15	0.65	0.24
1943.06	0.71	0.16	0.69	0.21	0.65	0.15	0.64	0.23
2000.00	0.73	0.16	0.71	0.21	0.67	0.15	0.66	0.23
2058.60	0.75	0.16	0.74	0.21	0.68	0.15	0.67	0.24
2118.93	0.77	0.15	0.76	0.20	0.69	0.15	0.71	0.25
2181.02	0.78	0.15	0.78	0.20	0.71	0.15	0.71	0.27
2244.92	0.80	0.15	0.80	0.20	0.72	0.15	0.72	0.28
2310.71	0.81	0.15	0.83	0.20	0.74	0.15	0.74	0.29
2378.41	0.82	0.15	0.85	0.19	0.76	0.15	0.78	0.32
2448.11	0.83	0.15	0.88	0.16	0.77	0.15	0.82	0.34
2519.84	0.83	0.15	0.89	0.15	0.79	0.15	0.83	0.32
2593.68	0.84	0.14	0.89	0.15	0.80	0.14	0.83	0.29
2669.68	0.85	0.14	0.88	0.15	0.81	0.14	0.85	0.28

Table 4.1.4 continued from previous page

Frequency		CI ears o	f CI group			Non-CI ears of CI group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
2747.91	0.85	0.14	0.88	0.15	0.82	0.13	0.84	0.26	
2828.43	0.85	0.13	0.89	0.15	0.83	0.13	0.86	0.23	
2911.31	0.85	0.13	0.89	0.16	0.83	0.12	0.88	0.20	
2996.61	0.86	0.13	0.90	0.16	0.84	0.11	0.88	0.20	
3084.42	0.85	0.13	0.90	0.19	0.85	0.11	0.87	0.20	
3174.80	0.85	0.13	0.90	0.22	0.85	0.10	0.88	0.21	
3267.83	0.85	0.14	0.90	0.24	0.85	0.10	0.88	0.21	
3363.59	0.84	0.15	0.89	0.25	0.85	0.10	0.88	0.19	
3462.15	0.83	0.15	0.87	0.25	0.85	0.10	0.88	0.17	
3563.59	0.83	0.15	0.86	0.25	0.85	0.10	0.88	0.17	
3668.02	0.82	0.15	0.86	0.25	0.85	0.10	0.88	0.16	
3775.50	0.82	0.15	0.86	0.25	0.84	0.11	0.88	0.14	
3886.13	0.80	0.15	0.84	0.26	0.83	0.11	0.86	0.16	
4000.00	0.78	0.16	0.83	0.26	0.82	0.12	0.85	0.17	
4117.21	0.76	0.16	0.82	0.28	0.81	0.13	0.83	0.17	
4237.85	0.74	0.17	0.79	0.32	0.80	0.14	0.82	0.19	
4362.03	0.72	0.18	0.76	0.34	0.78	0.15	0.79	0.24	
4489.85	0.70	0.19	0.71	0.33	0.77	0.16	0.76	0.28	
4621.41	0.68	0.19	0.66	0.35	0.76	0.17	0.74	0.31	
4756.83	0.67	0.20	0.64	0.35	0.74	0.18	0.72	0.32	
4896.21	0.65	0.20	0.63	0.34	0.73	0.19	0.70	0.33	
5039.68	0.63	0.19	0.62	0.34	0.72	0.19	0.68	0.32	

Table 4.1.4 continued from previous page

Frequency		CI ears o	of CI group			Non-CI ear	s of CI group	
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
5187.36	0.61	0.19	0.60	0.32	0.70	0.19	0.64	0.32
5339.36	0.58	0.18	0.58	0.31	0.67	0.19	0.62	0.32
5495.81	0.55	0.17	0.54	0.30	0.64	0.18	0.62	0.33
5656.85	0.51	0.17	0.50	0.29	0.61	0.18	0.60	0.33
5822.61	0.48	0.16	0.45	0.30	0.57	0.18	0.57	0.32
5993.23	0.45	0.16	0.42	0.29	0.54	0.17	0.52	0.33
6168.84	0.42	0.16	0.38	0.28	0.50	0.17	0.48	0.33
6349.60	0.40	0.16	0.35	0.26	0.47	0.17	0.45	0.33
6535.66	0.38	0.15	0.33	0.24	0.44	0.17	0.42	0.31
6727.17	0.35	0.15	0.32	0.21	0.41	0.16	0.39	0.31
6924.29	0.34	0.14	0.33	0.19	0.39	0.16	0.38	0.31
7127.19	0.32	0.13	0.31	0.18	0.37	0.17	0.38	0.29
7336.03	0.31	0.13	0.31	0.19	0.35	0.17	0.37	0.27
7550.99	0.30	0.13	0.30	0.20	0.34	0.17	0.35	0.26
7772.26	0.30	0.13	0.29	0.20	0.34	0.17	0.33	0.26
8000.00	0.30	0.13	0.30	0.21	0.33	0.18	0.33	0.26

Table 4.1.4 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

Table 4.1.5.

Mean, standard deviation, median and interquartile range of absorbance at ambient pressure in the frequency range of 226 Hz to 8000 Hz in

Frequency	(CI-matched ear	s of SNHL group	1	Noi	oup		
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
226.00	0.16	0.09	0.14	0.10	0.15	0.08	0.13	0.08
250.00	0.17	0.10	0.15	0.11	0.16	0.08	0.13	0.08
257.33	0.17	0.10	0.15	0.11	0.16	0.08	0.13	0.09
264.87	0.18	0.10	0.15	0.11	0.16	0.09	0.14	0.09
272.63	0.18	0.10	0.16	0.11	0.17	0.09	0.14	0.09
280.62	0.19	0.10	0.16	0.11	0.17	0.09	0.15	0.09
288.84	0.19	0.11	0.17	0.11	0.18	0.09	0.15	0.09
297.30	0.20	0.11	0.18	0.12	0.19	0.09	0.16	0.10
306.12	0.21	0.11	0.18	0.12	0.19	0.10	0.16	0.10
314.98	0.21	0.11	0.19	0.12	0.20	0.10	0.17	0.10
324.21	0.22	0.11	0.19	0.12	0.20	0.10	0.17	0.11
333.71	0.22	0.12	0.20	0.13	0.21	0.10	0.19	0.11
343.49	0.23	0.12	0.21	0.13	0.22	0.10	0.20	0.11
353.55	0.24	0.12	0.21	0.14	0.22	0.10	0.21	0.11
363.91	0.25	0.12	0.22	0.15	0.23	0.10	0.22	0.12
374.58	0.25	0.12	0.23	0.15	0.24	0.11	0.22	0.12
385.55	0.26	0.12	0.24	0.16	0.25	0.11	0.23	0.12
396.95	0.27	0.12	0.25	0.16	0.25	0.11	0.23	0.13

both ears of the SNHL group

Frequency	(CI-matched ear	s of SNHL group		Noi	n-CI-matched	ears of SNHL gro	oup
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
408.48	0.28	0.12	0.26	0.16	0.26	0.11	0.24	0.13
420.45	0.28	0.13	0.27	0.17	0.27	0.11	0.24	0.14
432.77	0.29	0.13	0.28	0.17	0.28	0.11	0.24	0.15
445.45	0.30	0.13	0.29	0.17	0.28	0.11	0.25	0.16
458.50	0.30	0.13	0.30	0.18	0.29	0.11	0.26	0.16
471.94	0.32	0.13	0.32	0.18	0.30	0.11	0.28	0.17
485.77	0.32	0.13	0.32	0.18	0.31	0.11	0.29	0.17
500.00	0.33	0.13	0.33	0.18	0.32	0.11	0.30	0.17
514.65	0.34	0.13	0.34	0.18	0.33	0.11	0.31	0.17
529.73	0.35	0.13	0.34	0.17	0.34	0.12	0.32	0.18
545.25	0.35	0.13	0.35	0.17	0.35	0.12	0.33	0.18
561.23	0.36	0.14	0.36	0.17	0.37	0.12	0.35	0.18
577.68	0.37	0.14	0.37	0.16	0.38	0.13	0.36	0.18
594.60	0.38	0.14	0.39	0.15	0.39	0.13	0.37	0.18
612.03	0.38	0.14	0.39	0.14	0.39	0.13	0.38	0.17
629.96	0.39	0.14	0.39	0.13	0.40	0.14	0.39	0.17
648.42	0.40	0.15	0.39	0.12	0.41	0.14	0.39	0.17
667.42	0.40	0.15	0.40	0.12	0.42	0.14	0.40	0.18
686.98	0.41	0.15	0.41	0.12	0.43	0.14	0.40	0.19
707.11	0.42	0.16	0.42	0.13	0.44	0.14	0.40	0.19
727.83	0.43	0.16	0.43	0.14	0.44	0.14	0.41	0.19
749.15	0.43	0.16	0.43	0.14	0.45	0.14	0.41	0.21

Table 4.1.5 continued from previous page

Frequency	(CI-matched ear	s of SNHL group		Noi	n-CI-matched	ears of SNHL gro	up
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
771.11	0.44	0.16	0.43	0.15	0.46	0.14	0.42	0.23
793.70	0.45	0.16	0.44	0.16	0.46	0.14	0.42	0.24
816.96	0.46	0.17	0.44	0.18	0.47	0.14	0.43	0.25
840.90	0.47	0.17	0.44	0.19	0.48	0.15	0.43	0.26
865.54	0.48	0.17	0.45	0.19	0.49	0.15	0.44	0.26
890.90	0.48	0.17	0.46	0.20	0.50	0.15	0.45	0.27
917.00	0.49	0.17	0.46	0.21	0.51	0.15	0.47	0.26
943.87	0.50	0.17	0.47	0.21	0.53	0.15	0.49	0.24
971.53	0.51	0.17	0.48	0.20	0.54	0.15	0.51	0.22
1000.00	0.52	0.17	0.50	0.19	0.55	0.15	0.53	0.21
1029.30	0.53	0.16	0.51	0.18	0.56	0.15	0.54	0.20
1059.46	0.53	0.16	0.52	0.17	0.57	0.15	0.56	0.19
1090.51	0.54	0.16	0.52	0.15	0.58	0.15	0.58	0.19
1122.46	0.54	0.16	0.52	0.17	0.59	0.14	0.60	0.18
1155.35	0.55	0.15	0.54	0.19	0.60	0.14	0.61	0.18
1189.21	0.56	0.15	0.54	0.19	0.61	0.14	0.62	0.18
1224.05	0.56	0.15	0.53	0.19	0.62	0.14	0.63	0.17
1259.92	0.56	0.15	0.53	0.19	0.62	0.13	0.65	0.17
1296.84	0.57	0.14	0.52	0.19	0.63	0.13	0.65	0.18
1334.84	0.57	0.14	0.53	0.19	0.63	0.13	0.65	0.18
1373.95	0.57	0.14	0.54	0.19	0.63	0.12	0.64	0.19
1414.21	0.57	0.14	0.55	0.19	0.62	0.12	0.64	0.19

Table 4.1.5 continued from previous page

Frequency	CI-matched ears of SNHL group				Non-CI-matched ears of SNHL group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
1455.65	0.57	0.13	0.56	0.20	0.62	0.12	0.62	0.19	
1498.31	0.57	0.13	0.57	0.21	0.62	0.11	0.62	0.18	
1542.21	0.58	0.12	0.57	0.21	0.62	0.11	0.62	0.19	
1587.40	0.58	0.12	0.56	0.21	0.63	0.11	0.63	0.18	
1633.92	0.58	0.12	0.57	0.22	0.63	0.11	0.63	0.16	
1681.79	0.59	0.11	0.58	0.21	0.64	0.12	0.61	0.15	
1731.07	0.60	0.11	0.59	0.22	0.64	0.12	0.61	0.15	
1781.80	0.60	0.11	0.61	0.22	0.64	0.13	0.62	0.16	
1834.01	0.61	0.11	0.61	0.23	0.64	0.14	0.64	0.17	
1887.75	0.62	0.12	0.62	0.21	0.65	0.14	0.64	0.17	
1943.06	0.63	0.12	0.63	0.20	0.66	0.15	0.64	0.17	
2000.00	0.63	0.12	0.64	0.19	0.66	0.16	0.67	0.20	
2058.60	0.64	0.12	0.65	0.19	0.67	0.17	0.68	0.26	
2118.93	0.66	0.12	0.65	0.19	0.68	0.18	0.69	0.30	
2181.02	0.67	0.12	0.65	0.20	0.68	0.18	0.69	0.33	
2244.92	0.68	0.13	0.67	0.21	0.69	0.18	0.69	0.31	
2310.71	0.69	0.14	0.68	0.22	0.70	0.18	0.68	0.27	
2378.41	0.70	0.15	0.70	0.22	0.70	0.19	0.69	0.24	
2448.11	0.70	0.15	0.71	0.23	0.70	0.19	0.69	0.25	
2519.84	0.70	0.16	0.71	0.26	0.71	0.19	0.68	0.28	
2593.68	0.70	0.16	0.71	0.29	0.71	0.20	0.69	0.29	
2669.68	0.71	0.16	0.70	0.29	0.70	0.20	0.70	0.30	

Table 4.1.5 continued from previous page

Frequency	(CI-matched ear	s of SNHL group		Noi	n-CI-matched e	ears of SNHL gro	up
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
2747.91	0.71	0.16	0.72	0.30	0.70	0.21	0.72	0.30
2828.43	0.71	0.15	0.72	0.29	0.70	0.21	0.74	0.30
2911.31	0.72	0.15	0.70	0.27	0.70	0.22	0.75	0.30
2996.61	0.72	0.15	0.71	0.24	0.71	0.22	0.75	0.30
3084.42	0.72	0.15	0.71	0.23	0.71	0.22	0.73	0.30
3174.80	0.72	0.16	0.73	0.23	0.71	0.22	0.73	0.29
3267.83	0.72	0.18	0.73	0.24	0.72	0.22	0.75	0.31
3363.59	0.71	0.19	0.72	0.25	0.72	0.22	0.76	0.32
3462.15	0.71	0.20	0.73	0.23	0.72	0.22	0.74	0.31
3563.59	0.71	0.20	0.74	0.22	0.72	0.22	0.73	0.28
3668.02	0.71	0.19	0.75	0.21	0.72	0.21	0.74	0.27
3775.50	0.72	0.17	0.75	0.21	0.72	0.20	0.74	0.29
3886.13	0.73	0.15	0.75	0.20	0.71	0.19	0.74	0.31
4000.00	0.73	0.14	0.76	0.24	0.71	0.18	0.73	0.32
4117.21	0.73	0.13	0.76	0.21	0.71	0.18	0.71	0.31
4237.85	0.73	0.13	0.74	0.21	0.71	0.17	0.70	0.30
4362.03	0.72	0.13	0.72	0.20	0.70	0.17	0.71	0.30
4489.85	0.71	0.13	0.70	0.19	0.69	0.17	0.70	0.31
4621.41	0.70	0.13	0.67	0.20	0.68	0.17	0.70	0.31
4756.83	0.69	0.13	0.65	0.19	0.68	0.17	0.70	0.30
4896.21	0.67	0.13	0.65	0.18	0.67	0.16	0.71	0.28
5039.68	0.65	0.13	0.64	0.18	0.66	0.16	0.68	0.27

Table 4.1.5 continued from previous page
Frequency	(CI-matched ear	s of SNHL group)	Non-CI-matched ears of SNHL group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
5187.36	0.63	0.12	0.63	0.17	0.65	0.15	0.65	0.27
5339.36	0.60	0.12	0.62	0.14	0.62	0.15	0.62	0.26
5495.81	0.57	0.13	0.57	0.13	0.59	0.15	0.61	0.23
5656.85	0.53	0.13	0.52	0.16	0.56	0.15	0.61	0.23
5822.61	0.50	0.14	0.49	0.19	0.52	0.15	0.57	0.23
5993.23	0.47	0.14	0.46	0.20	0.49	0.15	0.51	0.25
6168.84	0.44	0.15	0.42	0.22	0.45	0.15	0.48	0.23
6349.60	0.41	0.15	0.39	0.23	0.42	0.15	0.44	0.22
6535.66	0.39	0.15	0.37	0.23	0.39	0.15	0.41	0.21
6727.17	0.37	0.16	0.36	0.24	0.37	0.15	0.39	0.23
6924.29	0.35	0.16	0.35	0.24	0.35	0.15	0.37	0.24
7127.19	0.34	0.17	0.33	0.25	0.33	0.15	0.33	0.24
7336.03	0.34	0.18	0.30	0.28	0.32	0.15	0.31	0.25
7550.99	0.34	0.19	0.27	0.30	0.31	0.15	0.31	0.25
7772.26	0.34	0.20	0.27	0.30	0.31	0.16	0.31	0.26
8000.00	0.34	0.20	0.27	0.30	0.31	0.16	0.30	0.27

Table 4.1.5 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

Table 4.1.6.

Mean, standard deviation, median and interquartile range of absorbance at ambient pressure in the frequency range of 226 Hz to 8000 Hz in

Frequency	CI-matched ears of NH group				N	Non-CI-matched ears of NH group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
226.00	0.14	0.04	0.15	0.05	0.13	0.04	0.13	0.06	
250.00	0.15	0.05	0.16	0.06	0.14	0.04	0.14	0.07	
257.33	0.15	0.05	0.16	0.06	0.14	0.05	0.14	0.07	
264.87	0.15	0.05	0.16	0.06	0.14	0.05	0.14	0.07	
272.63	0.16	0.05	0.16	0.06	0.15	0.05	0.14	0.07	
280.62	0.16	0.05	0.17	0.07	0.15	0.05	0.15	0.07	
288.84	0.17	0.05	0.18	0.07	0.16	0.05	0.15	0.08	
297.30	0.18	0.06	0.19	0.08	0.16	0.05	0.16	0.08	
306.12	0.18	0.06	0.19	0.08	0.17	0.06	0.17	0.08	
314.98	0.18	0.06	0.20	0.08	0.17	0.06	0.17	0.08	
324.21	0.19	0.06	0.20	0.08	0.18	0.06	0.18	0.08	
333.71	0.20	0.07	0.21	0.08	0.18	0.06	0.18	0.08	
343.49	0.20	0.07	0.21	0.08	0.19	0.06	0.19	0.09	
353.55	0.21	0.07	0.21	0.08	0.19	0.06	0.20	0.09	
363.91	0.22	0.07	0.22	0.08	0.20	0.07	0.20	0.09	
374.58	0.23	0.08	0.23	0.09	0.21	0.07	0.21	0.10	
385.55	0.23	0.08	0.24	0.09	0.21	0.07	0.22	0.11	
396.95	0.24	0.08	0.24	0.09	0.22	0.08	0.22	0.11	

both ears of the NH group

Frequency		ars of NH group	N	Non-CI-matched ears of NH group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
408.48	0.25	0.09	0.25	0.10	0.23	0.08	0.23	0.12
420.45	0.26	0.09	0.26	0.10	0.24	0.08	0.24	0.12
432.77	0.27	0.10	0.27	0.11	0.25	0.09	0.25	0.13
445.45	0.27	0.10	0.28	0.12	0.26	0.09	0.26	0.13
458.50	0.28	0.10	0.29	0.12	0.26	0.09	0.26	0.13
471.94	0.30	0.11	0.31	0.13	0.28	0.10	0.28	0.14
485.77	0.31	0.11	0.32	0.13	0.29	0.10	0.29	0.15
500.00	0.31	0.11	0.33	0.13	0.30	0.10	0.30	0.15
514.65	0.33	0.12	0.34	0.13	0.31	0.11	0.32	0.16
529.73	0.34	0.12	0.34	0.14	0.32	0.11	0.33	0.16
545.25	0.35	0.12	0.35	0.14	0.33	0.11	0.34	0.16
561.23	0.36	0.12	0.37	0.14	0.35	0.12	0.35	0.16
577.68	0.38	0.13	0.38	0.15	0.36	0.12	0.37	0.17
594.60	0.39	0.13	0.40	0.16	0.38	0.13	0.39	0.18
612.03	0.40	0.13	0.40	0.16	0.38	0.13	0.40	0.19
629.96	0.41	0.13	0.41	0.17	0.39	0.13	0.41	0.19
648.42	0.42	0.13	0.42	0.17	0.41	0.13	0.42	0.19
667.42	0.44	0.14	0.42	0.18	0.42	0.13	0.43	0.19
686.98	0.45	0.14	0.42	0.19	0.43	0.13	0.44	0.18
707.11	0.47	0.15	0.44	0.20	0.45	0.13	0.45	0.18
727.83	0.48	0.15	0.46	0.21	0.46	0.13	0.46	0.18
749.15	0.49	0.16	0.47	0.22	0.47	0.13	0.47	0.19

Table 4.1.6 continued from previous page

Frequency		ars of NH group	N	Non-CI-matched ears of NH group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
771.11	0.51	0.16	0.49	0.22	0.49	0.13	0.48	0.20
793.70	0.52	0.17	0.50	0.22	0.50	0.13	0.48	0.20
816.96	0.53	0.17	0.51	0.22	0.51	0.13	0.49	0.20
840.90	0.55	0.17	0.53	0.22	0.52	0.13	0.50	0.20
865.54	0.56	0.17	0.54	0.23	0.53	0.13	0.51	0.20
890.90	0.57	0.17	0.55	0.24	0.55	0.13	0.51	0.20
917.00	0.59	0.16	0.56	0.25	0.56	0.13	0.52	0.19
943.87	0.60	0.16	0.57	0.26	0.58	0.13	0.54	0.17
971.53	0.61	0.15	0.59	0.25	0.59	0.13	0.55	0.16
1000.00	0.63	0.15	0.61	0.25	0.60	0.12	0.57	0.15
1029.30	0.64	0.14	0.62	0.24	0.61	0.12	0.59	0.15
1059.46	0.65	0.13	0.63	0.20	0.62	0.12	0.61	0.16
1090.51	0.66	0.12	0.63	0.19	0.63	0.12	0.63	0.18
1122.46	0.67	0.12	0.65	0.20	0.64	0.12	0.64	0.18
1155.35	0.67	0.11	0.65	0.20	0.65	0.12	0.64	0.18
1189.21	0.67	0.11	0.65	0.19	0.65	0.12	0.66	0.16
1224.05	0.68	0.11	0.65	0.16	0.66	0.12	0.67	0.15
1259.92	0.68	0.10	0.66	0.16	0.66	0.12	0.67	0.15
1296.84	0.68	0.10	0.66	0.18	0.66	0.12	0.66	0.16
1334.84	0.68	0.10	0.67	0.19	0.66	0.12	0.66	0.17
1373.95	0.68	0.10	0.67	0.18	0.66	0.12	0.67	0.18
1414.21	0.68	0.10	0.68	0.18	0.66	0.12	0.67	0.18

Table 4.1.6 continued from previous page

Frequency		ars of NH group	N	Non-CI-matched ears of NH group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
1455.65	0.68	0.10	0.68	0.16	0.66	0.13	0.66	0.18
1498.31	0.68	0.10	0.69	0.17	0.66	0.13	0.66	0.16
1542.21	0.69	0.11	0.70	0.16	0.66	0.12	0.67	0.15
1587.40	0.69	0.11	0.69	0.16	0.66	0.12	0.66	0.14
1633.92	0.70	0.11	0.67	0.18	0.66	0.12	0.67	0.13
1681.79	0.70	0.11	0.69	0.17	0.66	0.13	0.68	0.14
1731.07	0.71	0.11	0.70	0.15	0.67	0.13	0.67	0.14
1781.80	0.71	0.11	0.70	0.15	0.67	0.14	0.68	0.15
1834.01	0.72	0.10	0.72	0.16	0.68	0.15	0.70	0.19
1887.75	0.73	0.10	0.73	0.15	0.69	0.15	0.71	0.23
1943.06	0.73	0.10	0.74	0.14	0.69	0.16	0.72	0.26
2000.00	0.74	0.11	0.74	0.15	0.70	0.16	0.73	0.26
2058.60	0.75	0.11	0.75	0.14	0.71	0.16	0.73	0.25
2118.93	0.77	0.11	0.75	0.14	0.71	0.17	0.71	0.25
2181.02	0.78	0.11	0.77	0.14	0.72	0.17	0.72	0.26
2244.92	0.80	0.10	0.80	0.16	0.72	0.17	0.74	0.26
2310.71	0.81	0.10	0.82	0.17	0.73	0.17	0.76	0.26
2378.41	0.82	0.10	0.84	0.18	0.74	0.17	0.79	0.26
2448.11	0.84	0.10	0.86	0.18	0.75	0.18	0.82	0.25
2519.84	0.85	0.10	0.88	0.17	0.76	0.18	0.82	0.24
2593.68	0.85	0.10	0.89	0.17	0.76	0.18	0.83	0.22
2669.68	0.86	0.10	0.89	0.16	0.77	0.18	0.84	0.20

Table 4.1.6 continued from previous page

Frequency		ars of NH group	N	Non-CI-matched ears of NH group				
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR
2747.91	0.86	0.10	0.89	0.17	0.78	0.18	0.85	0.18
2828.43	0.86	0.10	0.89	0.18	0.78	0.18	0.85	0.17
2911.31	0.87	0.09	0.88	0.16	0.79	0.17	0.84	0.17
2996.61	0.87	0.09	0.87	0.14	0.80	0.17	0.85	0.18
3084.42	0.87	0.10	0.89	0.15	0.80	0.17	0.84	0.16
3174.80	0.87	0.10	0.89	0.15	0.80	0.17	0.82	0.18
3267.83	0.87	0.11	0.89	0.15	0.79	0.17	0.82	0.20
3363.59	0.86	0.11	0.89	0.15	0.79	0.18	0.83	0.21
3462.15	0.85	0.12	0.87	0.16	0.78	0.18	0.82	0.25
3563.59	0.84	0.12	0.84	0.16	0.78	0.19	0.82	0.28
3668.02	0.83	0.13	0.82	0.17	0.78	0.19	0.83	0.29
3775.50	0.82	0.13	0.82	0.18	0.78	0.18	0.84	0.27
3886.13	0.82	0.14	0.83	0.18	0.78	0.18	0.84	0.27
4000.00	0.81	0.15	0.83	0.18	0.78	0.18	0.83	0.23
4117.21	0.80	0.15	0.82	0.17	0.77	0.18	0.81	0.23
4237.85	0.79	0.16	0.80	0.16	0.76	0.18	0.81	0.20
4362.03	0.77	0.16	0.78	0.16	0.75	0.18	0.80	0.20
4489.85	0.75	0.16	0.77	0.18	0.73	0.19	0.78	0.22
4621.41	0.74	0.16	0.76	0.17	0.71	0.19	0.76	0.22
4756.83	0.72	0.16	0.75	0.15	0.69	0.19	0.73	0.24
4896.21	0.71	0.15	0.74	0.14	0.68	0.19	0.70	0.26
5039.68	0.69	0.15	0.73	0.15	0.66	0.18	0.68	0.25

Table 4.1.6 continued from previous page

Frequency		CI-matched ea	ars of NH group		Ν	Non-CI-matched ears of NH group			
(in Hz)	Mean	SD	Median	IQR	Mean	SD	Median	IQR	
5187.36	0.67	0.15	0.70	0.16	0.63	0.17	0.65	0.24	
5339.36	0.64	0.15	0.66	0.17	0.60	0.16	0.62	0.23	
5495.81	0.59	0.14	0.61	0.18	0.57	0.15	0.57	0.23	
5656.85	0.55	0.14	0.55	0.20	0.53	0.14	0.54	0.24	
5822.61	0.51	0.14	0.50	0.19	0.50	0.14	0.50	0.24	
5993.23	0.47	0.14	0.45	0.19	0.46	0.13	0.46	0.22	
6168.84	0.43	0.14	0.41	0.20	0.43	0.12	0.44	0.21	
6349.60	0.40	0.14	0.37	0.21	0.41	0.12	0.41	0.21	
6535.66	0.38	0.15	0.33	0.20	0.38	0.12	0.38	0.23	
6727.17	0.36	0.16	0.30	0.18	0.36	0.12	0.37	0.22	
6924.29	0.35	0.18	0.28	0.19	0.35	0.13	0.34	0.22	
7127.19	0.34	0.19	0.28	0.22	0.34	0.14	0.32	0.23	
7336.03	0.34	0.19	0.28	0.22	0.33	0.15	0.31	0.26	
7550.99	0.33	0.19	0.28	0.23	0.33	0.16	0.30	0.26	
7772.26	0.33	0.19	0.27	0.24	0.33	0.16	0.29	0.25	
8000.00	0.33	0.19	0.27	0.25	0.33	0.17	0.29	0.25	

Table 4.1.6 continued from previous page

Note. 'SD'- standard deviation, 'IQR'- interquartile range

The comparison among the groups was done using Kruskal-Wallis H test. The results showed a significant difference in the absorbance at peak and ambient pressure conditions for several frequencies (p < 0.05). The specific Chi-square values and p-values obtained from the Kruskal-Wallis H Test are shown in Table 4.1.7 for peak pressure condition and Table 4.1.8 for ambient pressure condition. As there was a significant difference in absorbance at some frequencies, Mann-Whitney U test was done for pair-wise comparisons at those frequencies. The results of pair-wise comparisons are presented within the sub-headings of their respective group comparison.

Table 4.1.7.

The outcome of Kruskal-Wallis H test for comparison of absorbance at peak pressure

Frequency	CI ears and C	CI-matched ears	Non-CI ears and non-CI-			
(in Hz)			mate	hed ears		
	$\chi^{2}(2)$	<i>p</i> -value	$\chi^{2}(2)$	<i>p</i> -value		
226.00	11.59	0.003	0.99	0.608		
250.00	10.86	0.004	0.85	0.653		
257.33	10.75	0.004	0.95	0.621		
264.87	10.55	0.005	1.02	0.597		
272.63	10.04	0.006	1.03	0.595		
280.62	9.90	0.007	1.09	0.579		
288.84	9.64	0.008	1.10	0.575		
297.30	9.45	0.008	1.18	0.551		
306.12	9.75	0.007	1.22	0.542		
314.98	9.66	0.007	1.47	0.477		
324.21	9.81	0.007	1.51	0.468		
333.71	9.78	0.007	1.31	0.518		
343.49	10.06	0.006	1.58	0.452		
353.55	10.35	0.005	1.65	0.436		
363.91	10.82	0.004	1.69	0.428		
374.58	10.92	0.004	1.78	0.410		
385.55	11.05	0.003	1.91	0.384		
396.95	11.16	0.003	1.84	0.397		
408.48	11.60	0.003	1.70	0.427		
420.45	11.32	0.003	1.71	0.423		
432.77	11.46	0.003	1.85	0.396		
445.45	11.88	0.002	1.66	0.435		
458.50	11.89	0.002	1.45	0.482		
471.94	12.37	0.002	1.24	0.537		
485.77	12.66	0.001	1.22	0.542		
500.00	12.80	0.001	1.10	0.575		
514.65	12.77	0.001	1.19	0.549		
529.73	13.20	0.001	1.14	0.564		
545.25	13.26	0.001	1.09	0.578		
561.23	13.18	0.001	0.90	0.634		
577.68	14.00	< 0.001	0.78	0.673		
594.60	14.65	< 0.001	0.63	0.729		
612.03	14.55	< 0.001	0.54	0.760		

at each frequency among CI, SNHL and NH group ($N=20$ for each group	up)
---	-----

Frequency (in Hz)	CI ears and C	CI-matched ears	Non-CI ears and non-CI- matched ears		
< <i>'</i>	$\chi^{2}(2)$	<i>p</i> -value	$\chi^{2}(2)$	<i>p</i> -value	
629.96	14.71	<0.001	0.54	0.762	
648.42	15.17	< 0.001	0.61	0.736	
667.42	15.66	< 0.001	0.42	0.810	
686.98	15.42	< 0.001	0.25	0.879	
707.11	15.51	< 0.001	0.11	0.944	
727.83	15.40	< 0.001	0.18	0.911	
749.15	15.48	< 0.001	0.33	0.845	
771.11	15.37	< 0.001	0.50	0.775	
793.70	15.64	< 0.001	0.53	0.765	
816.96	15.90	< 0.001	0.70	0.704	
840.90	15.87	< 0.001	0.90	0.636	
865.54	16.25	< 0.001	1.13	0.565	
890.90	17.10	< 0.001	1.27	0.527	
917.00	18.14	< 0.001	1.51	0.468	
943.87	18.03	< 0.001	1.56	0.457	
971.53	18.34	< 0.001	2.08	0.352	
1000.00	18.62	< 0.001	2.15	0.340	
1029.30	18.42	< 0.001	2.00	0.367	
1059.46	17.19	< 0.001	1.93	0.380	
1090.51	16.61	< 0.001	1.89	0.387	
1122.46	15.66	< 0.001	1.67	0.432	
1155.35	14.38	< 0.001	1.60	0.447	
1189.21	12.08	0.002	1.64	0.438	
1224.05	10.48	0.005	1.80	0.405	
1259.92	9.07	0.010	1.78	0.409	
1296.84	7.38	0.024	2.12	0.345	
1334.84	7.00	0.030	2.18	0.335	
1373.95	7.35	0.025	2.31	0.313	
1414.21	6.78	0.033	3.14	0.207	
1455.65	7.46	0.023	3.44	0.178	
1498.31	7.83	0.019	3.86	0.145	
1542.21	7.10	0.028	3.95	0.138	
1587.40	7.09	0.028	3.11	0.210	
1633.92	7.02	0.029	2.78	0.248	
1681.79	7.19	0.027	2.58	0.275	
1731.07	8.07	0.017	2.45	0.292	
1781.80	8.09	0.017	2.46	0.291	

Table 4.1.7 continued from previous page

Frequency	CI ears and C	CI-matched ears	Non-CI ears and non-CI-		
(in Hz)	2.(2)		mate	hed ears	
	$\chi^{2}(2)$	<i>p</i> -value	$\chi^{2}(2)$	<i>p</i> -value	
1834.01	9.07	0.010	2.05	0.358	
1887.75	10.42	0.005	1.52	0.467	
1943.06	10.97	0.004	1.03	0.594	
2000.00	11.40	0.003	1.06	0.587	
2058.60	12.23	0.002	0.89	0.638	
2118.93	13.24	0.001	0.57	0.750	
2181.02	13.56	0.001	0.65	0.722	
2244.92	14.35	< 0.001	0.63	0.726	
2310.71	14.64	< 0.001	0.67	0.712	
2378.41	13.30	0.001	1.18	0.551	
2448.11	13.60	0.001	1.34	0.510	
2519.84	13.72	0.001	2.18	0.335	
2593.68	14.47	< 0.001	3.51	0.172	
2669.68	15.37	< 0.001	4.47	0.106	
2747.91	15.32	< 0.001	4.98	0.082	
2828.43	14.19	< 0.001	6.77	0.033	
2911.31	12.81	0.001	7.02	0.029	
2996.61	12.45	0.001	6.50	0.038	
3084.42	11.82	0.002	6.36	0.041	
3174.80	11.56	0.003	5.98	0.050	
3267.83	11.04	0.003	5.61	0.060	
3363.59	9.80	0.007	5.26	0.071	
3462.15	8.97	0.011	4.92	0.085	
3563.59	8.32	0.015	4.65	0.097	
3668.02	6.61	0.036	4.76	0.092	
3775.5	5.50	0.063	4.47	0.106	
3886.13	4.82	0.089	4.41	0.110	
4000.00	3.98	0.136	3.79	0.149	
4117.21	3.13	0.208	3.60	0.164	
4237.85	2.67	0.262	3.37	0.184	
4362.03	1.84	0.397	3.03	0.219	
4489.85	1.67	0.431	2.57	0.276	
4621.41	1.28	0.526	2.23	0.327	
4756.83	1.25	0.533	1.59	0.451	
4896.21	1.02	0.598	1.25	0.533	
5039.68	1.22	0.542	0.82	0.660	
5187.36	1.25	0.534	0.70	0.703	

Table 4.1.7 continued from previous page

Frequency (in Hz)	CI ears and C	I-matched ears	Non-CI ears and non-CI- matched ears		
. ,	$\chi^{2}(2)$	<i>p</i> -value	χ ² (2)	<i>p</i> -value	
5339.36	0.80	0.669	0.69	0.706	
5495.81	0.51	0.771	0.75	0.686	
5656.85	0.40	0.816	0.90	0.636	
5822.61	0.31	0.854	0.74	0.690	
5993.23	0.27	0.873	0.64	0.725	
6168.84	0.13	0.932	0.63	0.727	
6349.60	0.13	0.934	0.47	0.787	
6535.66	0.08	0.960	0.41	0.812	
6727.17	0.05	0.972	0.47	0.788	
6924.29	0.06	0.969	0.48	0.786	
7127.19	0.03	0.981	0.39	0.819	
7336.03	0.03	0.980	0.37	0.830	
7550.99	0.12	0.937	0.14	0.932	
7772.26	0.16	0.920	0.05	0.972	
8000.00	0.17	0.916	0.00	0.998	

Table 4.1.7 continued from previous page

Table 4.1.8.

The outcome of Kruskal-Wallis H test for comparison of absorbance at ambient pressure at each frequency among CI, SNHL and NH group (N=20 for each group)

Frequency	CI ears and C	CI-matched ears	Non-CI ears and non-CI-		
(in Hz)			matched ears		
	$\chi^{2}(2)$	<i>p</i> -value	$\chi^{2}(2)$	<i>p</i> -value	
226.00	10.15	0.006	1.34	0.510	
250.00	10.00	0.007	1.65	0.436	
257.33	10.25	0.006	1.63	0.442	
264.87	10.24	0.006	1.61	0.446	
272.63	10.35	0.006	1.57	0.456	
280.62	10.41	0.005	1.68	0.430	
288.84	10.26	0.006	1.76	0.413	
297.30	10.02	0.007	2.01	0.365	
306.12	9.97	0.007	2.06	0.356	
314.98	10.20	0.006	2.11	0.347	
324.21	10.37	0.006	2.11	0.348	
333.71	10.44	0.005	2.32	0.312	
343.49	10.47	0.005	2.44	0.295	
353.55	10.59	0.005	2.63	0.267	
363.91	10.42	0.005	2.74	0.253	
374.58	10.89	0.004	2.65	0.265	
385.55	11.23	0.004	2.71	0.257	
396.95	11.53	0.003	2.57	0.276	
408.48	11.13	0.004	2.54	0.281	
420.45	11.29	0.004	2.42	0.297	
432.77	11.12	0.004	2.26	0.323	
445.45	11.15	0.004	2.04	0.359	
458.50	11.52	0.003	1.81	0.403	
471.94	11.91	0.003	1.71	0.424	
485.77	12.42	0.002	1.72	0.422	
500.00	13.12	0.001	1.77	0.411	
514.65	13.55	0.001	2.12	0.346	
529.73	13.29	0.001	2.14	0.341	
545.25	13.27	0.001	1.99	0.368	
561.23	12.78	0.002	1.92	0.382	
577.68	12.67	0.002	2.01	0.365	
594.60	13.05	0.001	2.06	0.356	
612.03	12.85	0.002	2.08	0.353	

Frequency (in Hz)	ncy CI ears and CI-matched ears		Non-CI ear mate	Non-CI ears and non-CI- matched ears		
	$\chi^{2}(2)$	<i>p</i> -value	$\chi^{2}(2)$	<i>p</i> -value		
629.96	12.94	0.002	2.03	0.361		
648.42	13.28	0.001	2.31	0.314		
667.42	13.03	0.001	2.48	0.288		
686.98	12.92	0.002	2.10	0.349		
707.11	13.15	0.001	2.16	0.339		
727.83	13.50	0.001	2.50	0.285		
749.15	12.88	0.002	2.71	0.257		
771.11	12.60	0.002	3.09	0.212		
793.70	12.39	0.002	3.25	0.196		
816.96	12.37	0.002	3.32	0.190		
840.90	12.60	0.002	3.34	0.187		
865.54	12.61	0.002	3.85	0.146		
890.90	12.91	0.002	4.30	0.116		
917.00	12.94	0.002	4.60	0.100		
943.87	12.98	0.002	5.15	0.076		
971.53	14.15	0.001	5.65	0.059		
1000.00	14.22	0.001	5.63	0.060		
1029.30	14.15	0.001	5.60	0.061		
1059.46	15.15	0.001	5.00	0.082		
1090.51	14.53	0.001	4.49	0.106		
1122.46	14.48	0.001	4.35	0.113		
1155.35	13.00	0.001	4.11	0.128		
1189.21	11.28	0.004	3.46	0.177		
1224.05	10.25	0.006	3.38	0.184		
1259.92	8.69	0.013	3.07	0.215		
1296.84	7.40	0.025	2.59	0.273		
1334.84	6.95	0.031	1.90	0.385		
1373.95	6.54	0.038	1.79	0.408		
1414.21	6.55	0.038	1.57	0.456		
1455.65	6.07	0.048	1.50	0.470		
1498.31	6.62	0.036	1.62	0.443		
1542.21	6.80	0.033	1.61	0.447		
1587.40	6.58	0.037	1.53	0.465		
1633.92	6.33	0.042	1.20	0.549		
1681.79	6.26	0.044	1.08	0.580		
1731.07	5.90	0.052	1.25	0.533		
1781.80	6.42	0.040	1.10	0.574		

Table 4.1.8 continued from previous page

Frequency	CI ears and C	CI ears and CI-matched ears		Non-CI ears and non-CI-		
(1n HZ)	-2(2)		$\frac{\text{match}}{v^2(2)}$	ied ears		
1024.01	<u>χ²(2)</u>	<i>p</i> -value	$\frac{\chi^2(2)}{1.06}$	<i>p</i> -value		
1834.01	6.60	0.037	1.06	0.588		
1887.75	7.24	0.027	1.23	0.540		
1943.06	7.64	0.022	1.17	0.556		
2000.00	7.55	0.023	0.99	0.607		
2058.60	9.11	0.011	0.65	0.720		
2118.93	9.94	0.007	0.41	0.814		
2181.02	10.33	0.006	0.41	0.813		
2244.92	11.03	0.004	0.40	0.816		
2310.71	10.36	0.006	0.44	0.799		
2378.41	9.98	0.007	0.59	0.744		
2448.11	9.99	0.007	0.91	0.633		
2519.84	10.48	0.005	1.55	0.460		
2593.68	11.27	0.004	2.27	0.320		
2669.68	13.06	0.001	2.56	0.278		
2747.91	13.25	0.001	2.98	0.225		
2828.43	13.59	0.001	3.84	0.146		
2911.31	12.56	0.002	4.31	0.116		
2996.61	12.34	0.002	4.01	0.134		
3084.42	11.98	0.002	4.12	0.127		
3174.80	11.12	0.004	4.27	0.118		
3267.83	10.17	0.006	4.03	0.133		
3363.59	9.49	0.009	3.91	0.141		
3462.15	8.65	0.013	3.84	0.146		
3563.59	7.87	0.019	3.84	0.146		
3668.02	6.66	0.036	3.69	0.158		
3775.50	5.70	0.058	3.99	0.136		
3886.13	4.42	0.110	4.04	0.133		
4000.00	3.29	0.192	3.31	0.191		
4117.21	2.28	0.319	3.36	0.186		
4237.85	1.77	0.412	3.06	0.216		
4362.03	1.53	0.465	2.65	0.265		
4489.85	1.47	0.477	2.27	0.320		
4621.41	1.26	0.531	2.02	0.364		
4756.83	1.03	0.595	1.31	0.519		
4896.21	1.26	0.531	0.99	0.609		
5039.68	1.37	0.502	0.85	0.652		
5187.36	1.77	0.412	0.93	0.628		

Table 4.1.8 continued from previous page

Frequency (in Hz)	CI ears and CI-matched ears		Non-CI ears and non-CI- matched ears		
× ′ _	χ ² (2)	<i>p</i> -value	χ ² (2)	<i>p</i> -value	
5339.36	1.65	0.438	1.04	0.592	
5495.81	1.18	0.552	1.57	0.456	
5656.85	0.85	0.653	1.83	0.400	
5822.61	0.61	0.736	1.85	0.395	
5993.23	0.45	0.795	1.66	0.436	
6168.84	0.30	0.858	1.57	0.456	
6349.60	0.16	0.919	1.50	0.471	
6535.66	0.10	0.950	1.44	0.485	
6727.17	0.05	0.975	1.33	0.513	
6924.29	0.07	0.964	1.04	0.593	
7127.19	0.06	0.970	0.93	0.626	
7336.03	0.06	0.966	0.68	0.709	
7550.99	0.18	0.911	0.29	0.863	
7772.26	0.16	0.922	0.12	0.939	
8000.00	0.21	0.900	0.04	0.979	

Table 4.1.8 continued from previous page

4.1.1 Comparison of WBA at peak pressure between CI group and SNHL group

Mann-Whitney *U* test was done for pair-wise comparison between CI group and SNHL group, separately for the two ears. The mean and standard deviation of absorbance values across frequencies in cochlear implanted ears (henceforth called CI ears) and matched ears of the SNHL group (henceforth called CI-matched ears of SNHL group) are shown in Figure 4.1.1.1.

Figure 4.1.1.1: Mean and standard deviation of absorbance at peak pressure across frequencies in CI ears of the CI group and the CI-matched ears of the SNHL group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

The absorbance values were significantly lower in the CI ears of CI group than the CI-matched ears of the SNHL group in the frequency range of 226-749.15 Hz after α -correction (p < 0.016). Further, there was a significantly higher absorbance in the CI ears of CI group than the CI-matched ears of the SNHL group in the frequency range of 1834.01-3563.59 Hz after α -correction (p < 0.016). There was no significant difference between them at all other frequencies after α -correction (p > 0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.1.1.

Table 4.1.1.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI ears of the CI group and the CI-matched ears of the SNHL group

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(1n Hz)	2 (0	0.007	(1n Hz)	2.20	0.022
226.00	-2.69	0.007	971.53	-2.28	0.022
250.00	-2.66	0.008	1000.00	-2.24	0.025
257.33	-2.66	0.008	1029.30	-2.08	0.037
264.87	-2.67	0.007	1059.46	-1.94	0.051
272.63	-2.59	0.009	1090.51	-1.69	0.091
280.62	-2.55	0.011	1122.46	-1.37	0.168
288.84	-2.46	0.014	1155.35	-1.00	0.317
297.30	-2.42	0.015	1189.21	-0.64	0.516
306.12	-2.46	0.014	1224.05	-0.33	0.735
314.98	-2.48	0.013	1259.92	-0.08	0.935
324.21	-2.50	0.012	1296.84	-0.40	0.685
333.71	-2.54	0.011	1334.84	-0.73	0.465
343.49	-2.61	0.009	1373.95	-0.90	0.365
353.55	-2.65	0.008	1414.21	-1.01	0.310
363.91	-2.71	0.007	1455.65	-1.12	0.262
374.58	-2.70	0.007	1498.31	-1.44	0.148
385.55	-2.78	0.005	1542.21	-1.50	0.133
396.95	-2.78	0.005	1587.40	-1.59	0.110
408.48	-2.84	0.005	1633.92	-1.70	0.088
420.45	-2.81	0.005	1681.79	-1.86	0.062
432.77	-2.85	0.004	1731.07	-2.02	0.042
445.45	-2.97	0.003	1781.80	-2.27	0.023
458.50	-3.00	0.003	1834.01	-2.51	0.012
471.94	-3.02	0.002	1887.75	-2.80	0.005
485.77	-3.02	0.002	1943.06	-3.00	0.003
500.00	-3.09	0.002	2000.00	-3.13	0.002
514.65	-3.08	0.002	2058.60	-3.31	0.001
529.73	-3.13	0.002	2118.93	-3.36	0.001
545.25	-3.11	0.002	2181.02	-3.36	0.001
561.23	-3.05	0.002	2244.92	-3.50	< 0.001
577.68	-3.05	0.002	2310.71	-3.53	< 0.001
594.60	-3.00	0.003	2378.41	-3.32	0.001
612.03	-3.00	0.003	2448.11	-3.32	0.001
629.96	-2.97	0.003	2519.84	-3.35	0.001

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
648.42	-2.90	0.004	2593.68	-3.38	0.001
667.42	-2.82	0.005	2669.68	-3.44	0.001
686.98	-2.63	0.008	2747.91	-3.42	0.001
707.11	-2.51	0.012	2828.43	-3.28	0.001
727.83	-2.46	0.014	2911.31	-3.15	0.002
749.15	-2.43	0.015	2996.61	-3.02	0.002
771.11	-2.29	0.021	3084.42	-2.86	0.004
793.70	-2.21	0.027	3174.80	-2.82	0.005
816.96	-2.21	0.027	3267.83	-2.71	0.007
840.90	-2.19	0.028	3363.59	-2.56	0.010
865.54	-2.21	0.027	3462.15	-2.46	0.014
890.90	-2.21	0.027	3563.59	-2.43	0.015
917.00	-2.27	0.023	3668.02	-2.21	0.027
943.87	-2.24	0.025			

Table 4.1.1.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance. Figure 4.1.1.2 shows the participants with an abnormal absorbance at peak pressure at various frequencies in CI ears of the CI group and CI-matched ears of the SNHL group. Figure 4.1.1.3 shows the individual absorbance curves across frequencies when compared against the mean absorbance curve and standard deviation of the NH group at peak pressure condition.

Figure 4.1.1.2: Abnormal absorbance across frequencies in the peak pressure in (A) CI ears of the CI group and (B) CI-matched ears of the SNHL group. The digits on the Y-axis represent participant number and the prefix of 'CI' and 'SN' indicates CI group and SNHL group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significantly difference in proportions of abnormal results.

Figure 4.1.1.3: Absorbance curves at peak pressure in (A) CI ears of the CI group, and (B) CI-matched ears of the SNHL group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance values and the gray shaded region covers 2 standard deviations of absorbance found in the CI-matched ears of the NH group (normative data).

At peak pressure, the proportion of ears with an abnormal absorbance was compared between the groups using the Equality of test for proportions. This was done at each frequency separately. The results showed a significant difference in proportion of abnormal absorbance at 727.83 Hz, and in the frequency range of 865.54-1090.51 Hz and 2181.02-3174.8 Hz between the groups for the comparison of CI ears of the CI group with the CI matched ears of the SNHL group (p < 0.05). The specific Z-values and *p*-values for the comparisons are shown in Table 4.1.1.2.

Table 4.1.1.2.

The results of the Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance at peak pressure across frequencies between the CI ears of the CI group and the CI-matched ears of the SNHL group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	0.37	0.705	1414.21	0.88	0.375
250.00	0.73	0.465	1455.65	0.47	0.632
257.33	0.35	0.723	1498.31	0.00	1.000
264.87	0.35	0.723	1542.21	0.47	0.632
272.63	0.35	0.723	1587.40	0.88	0.375
280.62	0.73	0.465	1633.92	1.43	0.151
288.84	1.13	0.256	1681.79	1.05	0.291
297.30	1.13	0.256	1731.07	0.47	0.632
306.12	1.46	0.144	1781.80	0.88	0.375
314.98	1.46	0.144	1834.01	1.58	0.113
324.21	1.46	0.144	1887.75	1.89	0.058
333.71	1.46	0.144	1943.06	1.89	0.058
343.49	1.13	0.256	2000.00	1.89	0.058
353.55	1.13	0.256	2058.60	1.58	0.113
363.91	1.13	0.256	2118.93	1.89	0.058
374.58	1.13	0.256	2181.02	2.37	0.017
385.55	1.24	0.211	2244.92	2.39	0.016
396.95	1.77	0.076	2310.71	2.39	0.016
408.48	1.77	0.076	2378.41	2.08	0.037
420.45	1.77	0.076	2448.11	2.08	0.037
432.77	1.77	0.076	2519.84	2.37	0.017
445.45	1.77	0.076	2593.68	2.37	0.017
458.50	1.43	0.151	2669.68	2.08	0.037
471.94	1.43	0.151	2747.91	2.08	0.037
485.77	1.05	0.291	2828.43	2.08	0.037
500.00	0.47	0.632	2911.31	2.37	0.017
514.65	0.47	0.632	2996.61	2.19	0.028
529.73	0.47	0.632	3084.42	2.47	0.013
545.25	0.47	0.632	3174.80	2.19	0.028
561.23	0.47	0.632	3267.83	1.89	0.058
577.68	0.47	0.632	3363.59	1.46	0.144
594.60	0.47	0.632	3462.15	1.13	0.256
612.03	0.00	1.000	3563.59	0.79	0.429
629.96	0.00	1.000	3668.02	1.05	0.291
648.42	0.37	0.705	3775.50	1.05	0.291
667.42	0.35	0.723	3886.13	1.05	0.291
686.98	1.93	0.052	4000.00	0.47	0.632

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)		_	(in Hz)		
707.11	1.93	0.052	4117.21	0.79	0.429
727.83	2.23	0.025	4237.85	0.416	0.677
749.15	1.93	0.052	4362.03	0.00	1.000
771.11	1.63	0.102	4489.85	0.00	1.000
793.70	1.38	0.167	4621.41	0.73	0.465
816.96	1.77	0.076	4756.83	1.68	0.09
840.90	1.38	0.167	4896.21	1.68	0.09
865.54	2.36	0.018	5039.68	1.06	0.288
890.90	1.98	0.046	5187.36	0.73	0.465
917.00	1.98	0.046	5339.36	0.79	0.429
943.87	2.76	0.005	5495.81	0.79	0.429
971.53	2.36	0.018	5656.85	1.43	0.151
1000.00	2.76	0.005	5822.61	1.43	0.151
1029.30	2.36	0.018	5993.23	1.05	0.291
1059.46	2.76	0.005	6168.84	0.60	0.548
1090.51	2.28	0.022	6349.60	0.00	1.000
1122.46	1.93	0.052	6535.66	0.00	1.000
1155.35	1.32	0.184	6727.17	0.60	0.548
1189.21	1.68	0.091	6924.29	0.73	0.465
1224.05	0.79	0.429	7127.19	1.05	0.291
1259.92	1.24	0.211	7336.03	0.60	0.548
1296.84	1.24	0.211	7550.99	0.60	0.548
1334.84	0.41	0.677	7772.26	0.60	0.548
1373.95	0.41	0.677	8000.00	0.60	0.548

Table 4.1.1.2 continued from previous page

The mean and standard deviation of absorbance values across frequencies in the non-implanted ears of the CI group (henceforth called non-CI ears) and the same side ears of the SNHL group as the non-CI ears (henceforth called as non-CI-matched ears of the SNHL group) are shown in Figure 4.1.1.4.

Figure 4.1.1.4: Mean and standard deviation of absorbance at peak pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group. The star-marked comparisons have a significant difference after α -correction (p < 0.016).

The absorbance values in the non-CI ears of the CI group were significantly higher than the non-CI-matched ears of the SNHL group in the frequency range of 2828.43-3084.42 Hz (p < 0.016) but not at other frequencies. The specific Z-values and *p*-values for the pair-wise comparisons are shown in Table 4.1.1.3.

Table 4.1.1.3.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group

Frequency	Z-value	<i>p</i> -value
(Hz)		
2828.43	-2.475	0.013
2911.31	-2.597	0.009
2996.61	-2.489	0.013
3084.42	-2.421	0.015

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance. Figure 4.1.1.5 shows the participants with an abnormal absorbance at peak pressure at various frequencies in non-CI ears of the CI group and non-CI matched ears of the SNHL group. Figure 4.1.1.6 shows the individual absorbance curves across frequencies when compared against the mean absorbance curve and standard deviation of the NH group at peak pressure condition.

Figure 4.1.1.5: Abnormal absorbance across frequencies in the peak pressure in (A) non-CI ears of the CI group and (B) non-CI matched ears of the SNHL group. The digits on the Y-axis represent participant number and prefix of 'CI' and 'SN' indicates CI group and SNHL group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significant difference ib proportions of abnormal results.

Figure 4.1.1.6: Absorbance curves at peak pressure in (A) non-CI ears of the CI group, and (B) non-CI matched ears of the SNHL group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance values and the gray shaded region covers 2 standard deviations of absorbance found in the CI-matched ears of the NH group (normative data).

At peak pressure, the proportion of ears with an abnormal absorbance was compared between the groups using the Equality of test for proportions. This was done separately at each frequency. The results showed a significant difference in proportion of abnormal absorbance at 432.77-445.45 Hz, 561.23-577.68 Hz, and 2747.91-3363.59 Hz and 3775.5 Hz between the groups for the comparison of non-CI ears of the CI group with the non-CI matched ears of the SNHL group (p < 0.05). The specific Z-values and *p*-values for the comparisons are shown in Table 4.1.1.4.

Table 4.1.1.4.

The results of the Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance at peak pressure across frequencies between the non-CI ears of the CI group and the non-CI matched ears of the SNHL group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	0.69	0.490	1414.21	0.47	0.632
250.00	0.73	0.465	1455.65	1.13	0.256
257.33	0.35	0.723	1498.31	0.47	0.632
264.87	0.73	0.465	1542.21	1.58	0.113
272.63	0.41	0.677	1587.40	1.06	0.288
280.62	0.88	0.375	1633.92	1.58	0.113
288.84	1.43	0.151	1681.79	0.79	0.429
297.30	0.88	0.375	1731.07	0.41	0.677
306.12	0.88	0.375	1781.80	0.88	0.375
314.98	0.88	0.375	1834.01	0.60	0.548
324.21	0.88	0.375	1887.75	0.00	1.000
333.71	0.88	0.375	1943.06	0.00	1.000
343.49	1.13	0.256	2000.00	0.00	1.000
353.55	1.13	0.256	2058.60	0.00	1.000
363.91	1.58	0.113	2118.93	1.01	0.311
374.58	1.58	0.113	2181.02	1.01	0.311
385.55	1.58	0.113	2244.92	1.01	0.311
396.95	1.58	0.113	2310.71	1.45	0.146
408.48	1.58	0.113	2378.41	0.60	0.548
420.45	1.89	0.058	2448.11	1.05	0.291
432.77	2.37	0.017	2519.84	1.05	0.291
445.45	2.08	0.037	2593.68	1.05	0.291
458.50	1.77	0.076	2669.68	1.77	0.076
471.94	1.24	0.211	2747.91	2.37	0.017
485.77	1.24	0.211	2828.43	2.65	0.007
500.00	0.88	0.375	2911.31	2.10	0.035
514.65	0.47	0.632	2996.61	2.39	0.016
529.73	0.47	0.632	3084.42	2.10	0.035
545.25	0.47	0.632	3174.80	2.10	0.035
561.23	2.08	0.037	3267.83	2.10	0.035
577.68	2.08	0.037	3363.59	2.10	0.035
594.60	1.24	0.211	3462.15	1.80	0.071
612.03	1.24	0.211	3563.59	1.45	0.146
629.96	1.43	0.151	3668.02	1.80	0.071
648.42	1.43	0.151	3775.50	2.10	0.035
667.42	0.60	0.548	3886.13	1.45	0.146
686.98	0.60	0.548	4000.00	1.43	0.151

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
707.11	0.60	0.548	4117.21	1.43	0.151
727.83	#	#	4237.85	1.05	0.291
749.15	#	#	4362.03	1.05	0.291
771.11	#	#	4489.85	0.00	1.000
793.70	#	#	4621.41	1.01	0.311
816.96	#	#	4756.83	1.01	0.311
840.90	#	#	4896.21	0.00	1.000
865.54	#	#	5039.68	1.05	0.291
890.90	1.01	0.311	5187.36	0.60	0.548
917.00	0.00	1.000	5339.36	1.05	0.291
943.87	1.05	0.291	5495.81	1.45	0.146
971.53	1.05	0.291	5656.85	1.45	0.146
1000.00	1.80	0.071	5822.61	1.80	0.071
1029.30	1.45	0.146	5993.23	1.43	0.151
1059.46	1.45	0.146	6168.84	1.43	0.151
1090.51	0.60	0.548	6349.60	0.60	0.548
1122.46	0.60	0.548	6535.66	0.60	0.548
1155.35	0.60	0.548	6727.17	0.60	0.548
1189.21	0.47	0.632	6924.29	1.58	0.113
1224.05	0.00	1.000	7127.19	0.00	1.000
1259.92	0.00	1.000	7336.03	0.00	1.000
1296.84	1.05	0.291	7550.99	0.60	0.548
1334.84	1.05	0.291	7772.26	0.60	0.548
1373.95	0.47	0.632	8000.00	0.60	0.548

Table 4.1.1.4 continued from previous page

Note. '#'- Equality of test for proportions could not be performed because of no

abnormal results at those particular frequencies in both the groups.

4.1.2 Comparison of WBA at peak pressure between CI group and NH group

Mann-Whitney U test was done for pair-wise comparison between the CI group and the NH group, separately for the two ears. The mean and standard deviation of absorbance values across frequencies in the CI ears of the CI group and the CI-matched ears of the NH group are shown in Figure 4.1.2.1.

Figure 4.1.2.1: Mean and standard deviation of absorbance at peak pressure across frequencies in the CI ears of the CI group and the CI-matched ears of the NH group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

The absorbance values in the CI ears were significantly lower than in the CImatched ears of the NH group in the frequency range of 226 Hz-1259.92 Hz after α correction (p < 0.016). There was no significant difference in absorbance between the CI ears and the CI-matched ears of the NH group at any other frequency after α correction (p > 0.016). The specific Z-values and *p*-values for the pair-wise comparisons are shown in Table 4.1.2.1.

Table 4.1.2.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
226.00	-3.17	0.001	971.53	-4.11	< 0.001
250.00	-3.01	0.003	1000.00	-4.11	< 0.001
257.33	-2.98	0.003	1029.30	-4.00	< 0.001
264.87	-2.92	0.003	1059.46	-3.76	< 0.001
272.63	-2.86	0.004	1090.51	-3.70	< 0.001
280.62	-2.86	0.004	1122.46	-3.57	< 0.001
288.84	-2.89	0.004	1155.35	-3.38	0.001
297.30	-2.88	0.004	1189.21	-3.04	0.002
306.12	-2.92	0.003	1224.05	-2.78	0.005
314.98	-2.86	0.004	1259.92	-2.56	0.010
324.21	-2.89	0.004	1296.84	-2.13	0.033
333.71	-2.84	0.005	1334.84	-1.81	0.070
343.49	-2.84	0.005	1373.95	-1.56	0.117
353.55	-2.86	0.004	1414.21	-1.40	0.160
363.91	-2.92	0.003	1455.65	-1.44	0.148
374.58	-2.94	0.003	1498.31	-1.33	0.180
385.55	-2.89	0.004	1542.21	-1.13	0.256
396.95	-2.92	0.003	1587.40	-0.91	0.358
408.48	-2.98	0.003	1633.92	-0.73	0.465
420.45	-2.94	0.003	1681.79	-0.52	0.598
432.77	-2.94	0.003	1731.07	-0.41	0.675
445.45	-2.92	0.003	1781.80	-0.10	0.914
458.50	-2.89	0.004	1834.01	-0.25	0.797
471.94	-3.00	0.003	1887.75	-0.52	0.598
485.77	-3.08	0.002	1943.06	-0.73	0.465
500.00	-3.04	0.002	2000.00	-0.94	0.344
514.65	-3.05	0.002	2058.60	-1.05	0.291
529.73	-3.11	0.002	2118.93	-1.36	0.172
545.25	-3.16	0.002	2181.02	-1.31	0.189
561.23	-3.20	0.001	2244.92	-1.24	0.213
577.68	-3.39	0.001	2310.71	-1.14	0.250
594.60	-3.57	< 0.001	2378.41	-0.97	0.330
612.03	-3.54	< 0.001	2448.11	-0.77	0.441
629.96	-3.59	< 0.001	2519.84	-0.64	0.516

pressure between the CI ears of the CI group and the CI-matched ears of the NH group

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
648.42	-3.71	< 0.001	2593.68	-0.52	0.598
667.42	-3.84	< 0.001	2669.68	-0.04	0.968
686.98	-3.88	< 0.001	2747.91	-0.12	0.903
707.11	-3.90	< 0.001	2828.43	-0.39	0.695
727.83	-3.89	< 0.001	2911.31	-0.20	0.839
749.15	-3.89	< 0.001	2996.61	-0.12	0.903
771.11	-3.92	< 0.001	3084.42	-0.14	0.882
793.70	-4.01	< 0.001	3174.80	-0.17	0.860
816.96	-4.00	< 0.001	3267.83	-0.17	0.860
840.90	-3.99	< 0.001	3363.59	-0.05	0.957
865.54	-4.00	< 0.001	3462.15	-0.02	0.978
890.9	-4.08	< 0.001	3563.59	-0.05	0.957
917.00	-4.13	< 0.001	3668.02	-0.06	0.946
943.87	-4.11	< 0.001			

Table 4.1.2.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

The mean and standard deviation of absorbance across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group are shown in Figure 4.1.2.2. There was no significant difference in absorbance between the non-CI ears of the CI group and the non-CI-matched ears of the NH group at any frequency after α -correction (p > 0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.2.2.

Figure 4.1.2.2: Mean and standard deviation of absorbance at peak pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group.

Table 4.1.2.2

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI ears of the CI group and the CI-matched ears of the NH group

Frequency (in Hz)	Z-value	<i>p</i> -value	
2828.43	-1.39	0.164	
2911.31	-1.43	0.152	
2996.61	-1.46	0.144	
3084.42	-1.48	0.137	

Note. Pair-wise comparison was done at these frequencies due to a significant group

difference on Kruskal-Wallis H test only at these frequencies.

4.1.3 Comparison of WBA at peak pressure between SNHL group and NH group

Mann-Whitney *U* test was done for pair-wise comparison between SNHL group and NH group, separately for the two ears. The mean and standard deviation of absorbance across frequencies in the CI-matched ears of the SNHL group and the CImatched ears of the NH group are shown in Figure 4.1.3.1. The CI-matched ears of the SNHL group had significantly lower absorbance than the CI-matched ears of the NH group in the frequency range of 1000-3563.59 Hz after α -correction (p < 0.016). For the remaining frequencies, there was no significant difference in absorbance values between the CI-matched ears of the SNHL group and the CI-matched ears of the NH group (p > 0.016). The specific Z-values and *p*-values for the pair-wise comparisons are shown in Table 4.1.3.1.

Figure 4.1.3.1: Mean and standard deviation of absorbance at peak pressure across frequencies in CI-matched ears of the SNHL group and CI-matched ears of the NH group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

Table 4.1.3.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the CI-matched ears of the SNHL group and the CI-matched ears of the NH group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	-0.40	0.685	971.53	-2.28	0.022
250.00	-0.37	0.705	1000.00	-2.42	0.015
257.33	-0.32	0.745	1029.30	-2.69	0.007
264.87	-0.32	0.745	1059.46	-2.82	0.005
272.63	-0.32	0.745	1090.51	-2.89	0.004
280.62	-0.32	0.745	1122.46	-2.97	0.003
288.84	-0.32	0.745	1155.35	-3.01	0.003
297.30	-0.36	0.715	1189.21	-2.89	0.004
306.12	-0.40	0.685	1224.05	-2.78	0.005
314.98	-0.40	0.685	1259.92	-2.62	0.009
324.21	-0.45	0.646	1296.84	-2.50	0.012
333.71	-0.45	0.646	1334.84	-2.57	0.010
343.49	-0.54	0.588	1373.95	-2.77	0.006
353.55	-0.62	0.534	1414.21	-2.66	0.008
363.91	-0.64	0.516	1455.65	-2.78	0.005
374.58	-0.75	0.449	1498.31	-2.78	0.005
385.55	-0.74	0.457	1542.21	-2.65	0.008
396.95	-0.75	0.449	1587.40	-2.67	0.007
408.48	-0.71	0.473	1633.92	-2.65	0.008
420.45	-0.67	0.499	1681.79	-2.63	0.008
432.77	-0.62	0.534	1731.07	-2.78	0.005
445.45	-0.63	0.525	1781.80	-2.62	0.009
458.50	-0.62	0.534	1834.01	-2.67	0.007
471.94	-0.55	0.579	1887.75	-2.73	0.006
485.77	-0.51	0.607	1943.06	-2.61	0.009
500.00	-0.51	0.607	2000.00	-2.50	0.012
514.65	-0.45	0.646	2058.60	-2.47	0.013
529.73	-0.41	0.675	2118.93	-2.56	0.010
545.25	-0.29	0.766	2181.02	-2.69	0.007
561.23	-0.14	0.882	2244.92	-2.75	0.006
577.68	0.00	1.000	2310.71	-2.84	0.005
594.60	-0.27	0.787	2378.41	-2.79	0.005
612.03	-0.32	0.745	2448.11	-2.93	0.003
629.96	-0.35	0.725	2519.84	-2.96	0.003

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(1n Hz)			(1n HZ)		
648.42	-0.55	0.579	2593.68	-3.13	0.002
667.42	-0.75	0.449	2669.68	-3.31	0.001
686.98	-0.97	0.330	2747.91	-3.32	0.001
707.11	-1.21	0.223	2828.43	-3.19	0.001
727.83	-1.29	0.194	2911.31	-3.01	0.003
749.15	-1.39	0.164	2996.61	-3.05	0.002
771.11	-1.48	0.137	3084.42	-3.05	0.002
793.70	-1.50	0.133	3174.80	-3.02	0.002
816.96	-1.65	0.099	3267.83	-3.00	0.003
840.90	-1.70	0.088	3363.59	-2.82	0.005
865.54	-1.79	0.072	3462.15	-2.70	0.007
890.90	-1.96	0.050	3563.59	-2.54	0.011
917.00	-2.17	0.029	3668.02	-2.21	0.027
943.87	-2.21	0.027			

Table 4.1.3.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

The mean and standard deviation of absorbance across frequencies in the non-CI-matched ears of the SNHL group and the non-CI-matched ears of the NH group are shown in Figure 4.1.3.2. While the frequency range of 1000-3563.59 Hz had lower mean absorbance values in the non-CI-matched SNHL ears than the non-CImatched NH ear, there was no significant difference between them after α -correction (p > 0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.3.2.

Figure 4.1.3.2: Mean and standard deviation of absorbance at peak pressure across frequencies in the non-CI-matched ears of the SNHL group and non-CI-matched ears of the NH group.

Table 4.1.3.2.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak pressure between the non-CI-matched ears of the SNHL group and the non-CI-matched ears of the NH group

Frequency (Hz)	Z-value	<i>p</i> -value
2828.43	-1.43	0.152
2911.31	-1.28	0.199
2996.61	-1.16	0.245
3084.42	-1.19	0.234

Note. Pair-wise comparison was done at these frequencies due to a significant group

difference on Kruskal-Wallis H test only at these frequencies.

4.1.4 Comparison of WBA at ambient pressure between CI group and SNHL group

Mann-Whitney U test was done for pair-wise comparison between CI group and SNHL group, separately for the two ears. The mean and standard deviation of absorbance across frequencies in CI ears of the CI group and CI-matched ears of the SNHL group are shown in Figure 4.1.4.1.

Figure 4.1.4.1: Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI ears of the CI group and the CI-matched ears of the SNHL group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

The absorbance values were significantly lower in the CI ears of the CI group than in the CI-matched ears of the SNHL group in the frequency range of 226-686.98 Hz after α -correction (p < 0.016). Further, there was a significantly higher absorbance in the CI ears of the CI group than the CI-matched ears of the SNHL group in the frequency range of 2058.6-3174.8 Hz after α -correction (p < 0.016). There was no significant difference between them at all other frequencies after α -correction (p >0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.4.1.

Table 4.1.4.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at ambient pressure between the CI ears of the CI group and the CI-matched ears of the SNHL group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	-2.58	0.010	943.87	-1.96	0.050
250.00	-2.55	0.011	971.53	-1.98	0.047
257.33	-2.58	0.010	1000.00	-1.96	0.050
264.87	-2.56	0.010	1029.30	-1.90	0.056
272.63	-2.59	0.009	1059.46	-1.90	0.056
280.62	-2.62	0.009	1090.51	-1.86	0.062
288.84	-2.65	0.008	1122.46	-1.67	0.094
297.30	-2.62	0.009	1155.35	-1.39	0.164
306.12	-2.59	0.009	1189.21	-1.08	0.279
314.98	-2.67	0.007	1224.05	-0.81	0.417
324.21	-2.70	0.007	1259.92	-0.44	0.655
333.71	-2.73	0.006	1296.84	-0.20	0.839
343.49	-2.74	0.006	1334.84	0.00	1.000
353.55	-2.78	0.005	1373.95	-0.27	0.787
363.91	-2.73	0.006	1414.21	-0.32	0.745
374.58	-2.81	0.005	1455.65	-0.37	0.705
385.55	-2.90	0.004	1498.31	-0.62	0.534
396.95	-2.94	0.003	1542.21	-0.68	0.490
408.48	-2.92	0.003	1587.40	-0.79	0.425
420.45	-2.92	0.003	1633.92	-0.94	0.344
432.77	-2.92	0.003	1681.79	-1.01	0.310
445.45	-2.94	0.003	1781.80	-1.33	0.181
458.50	-3.04	0.002	1834.01	-1.46	0.144
471.94	-3.08	0.002	1887.75	-1.71	0.086
485.77	-3.13	0.002	1943.06	-1.98	0.047
500.00	-3.16	0.002	2000.00	-2.10	0.035
514.65	-3.17	0.001	2058.60	-2.58	0.010
529.73	-3.08	0.002	2118.93	-2.65	0.008
545.25	-3.08	0.002	2181.02	-2.70	0.007
561.23	-2.97	0.003	2244.92	-2.86	0.004
577.68	-2.92	0.003	2310.71	-2.81	0.005
594.60	-2.89	0.004	2378.41	-2.67	0.007
612.03	-2.84	0.005	2448.11	-2.69	0.007
629.96	-2.82	0.005	2519.84	-2.73	0.006

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
	2.72	0.000	2502.69	2.90	0.004
648.42	-2.73	0.006	2593.68	-2.89	0.004
667.42	-2.62	0.009	2669.68	-3.11	0.002
686.98	-2.55	0.011	2747.91	-3.05	0.002
707.11	-2.36	0.018	2828.43	-3.08	0.002
727.83	-2.28	0.022	2911.31	-2.97	0.003
749.15	-2.19	0.028	2996.61	-3.00	0.003
771.11	-2.05	0.040	3084.42	-2.79	0.005
793.70	-2.00	0.045	3174.80	-2.56	0.010
816.96	-1.93	0.053	3267.83	-2.40	0.016
840.90	-1.94	0.051	3363.59	-2.40	0.016
865.54	-1.88	0.060	3462.15	-2.29	0.021
890.90	-1.97	0.048	3563.59	-2.29	0.021
917.00	-1.97	0.048	3668.02	-2.16	0.030

Table 4.1.4.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance. Figure 4.1.4.2 shows the abnormal absorbance at ambient pressure at various frequencies in each individual in the CI ears of the CI group and the CI-matched ears of the SNHL group. Figure 4.1.4.3 shows the individual absorbance curves compared against the mean absorbance and standard deviation of absorbance of the NH group at ambient pressure condition across frequencies.

Figure 4.1.4.2: Abnormal absorbance across frequencies in the ambient pressure condition in (A) CI ears of the CI group and (B) CI-matched ears of the SNHL group. The digits on the Y-axis represent participant number and prefix of 'CI' and 'SN' indicates CI group and SNHL group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded region indicate statistically significant difference in proportions of abnormal results.

Figure 4.1.4.3: Absorbance curves at ambient pressure in (A) CI ears of the CI group, and (B) CI-matched ears of the SNHL group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance values and the gray shaded region covers 2 standard deviations of absorbance found in the CI-matched ears of the NH group (normative data).

At ambient pressure condition, the proportion of ears with an abnormal absorbance was compared between the groups using the Equality of test for proportions. This was done at each frequency separately. The results showed a significant difference in the proportion of abnormal absorbance at 1059.46 Hz, 1090.51 Hz, and in the frequency range of 2310.71-3174.8 Hz (p < 0.05). The specific Z-values and *p*-values for the comparisons are shown in Table 4.1.4.2.

Table 4.1.4.2.

The results of Equality of test for proportions for comparison of proportion of abnormal absorbance at ambient pressure across frequencies between the CI ears of the CI group and the CI-matched ears of the SNHL group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	0.66	0.507	1414.21	1.46	0.144
250.00	0.66	0.507	1455.65	0.69	0.490
257.33	1.01	0.311	1498.31	0.69	0.490
264.87	1.01	0.311	1542.21	0.69	0.490
272.63	1.01	0.311	1587.40	0.69	0.490
280.62	1.01	0.311	1633.92	0.00	1.000
288.84	0.69	0.490	1681.79	0.00	1.000
297.30	0.69	0.490	1731.07	0.35	0.723
306.12	0.69	0.490	1781.80	0.00	1.000
314.98	0.69	0.490	1834.01	0.37	0.705
324.21	0.69	0.490	1887.75	1.06	0.288
333.71	0.69	0.490	1943.06	1.06	0.288
343.49	0.69	0.490	2000.00	1.13	0.256
353.55	1.01	0.311	2058.60	1.13	0.256
363.91	1.01	0.311	2118.93	1.38	0.167
374.58	1.01	0.311	2181.02	1.89	0.058
385.55	1.32	0.184	2244.92	1.77	0.076
396.95	0.97	0.327	2310.71	2.37	0.017
408.48	0.66	0.507	2378.41	2.37	0.017
420.45	0.66	0.507	2448.11	2.65	0.008
432.77	1.06	0.288	2519.84	2.65	0.008
445.45	0.69	0.490	2593.68	2.37	0.017
458.50	0.69	0.490	2669.68	2.37	0.017
471.94	1.06	0.288	2747.91	2.37	0.017
485.77	0.73	0.465	2828.43	2.08	0.037
500.00	0.35	0.723	2911.31	2.37	0.017
514.65	0.35	0.723	2996.61	2.76	0.005
529.73	0.73	0.465	3084.42	2.47	0.013
545.25	0.73	0.465	3174.80	2.47	0.013
561.23	0.00	1.000	3267.83	1.77	0.070
577.68	0.41	0.677	3363.59	1.77	0.070
594.60	0.00	1.000	3462.15	1.46	0.144
612.03	0.00	1.000	3563.59	0.79	0.429
629.96	0.00	1.000	3668.02	0.79	0.429
648.42	0.41	0.677	3775.50	0.41	0.677
667.42	0.41	0.677	3886.13	0.00	1.000
686.98	0.41	0.677	4000.00	0.37	0.705

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)		_	(in Hz)		
707.11	0.88	0.375	4117.21	0.37	0.705
727.83	0.88	0.375	4237.85	0.00	1.000
749.15	1.05	0.291	4362.03	0.73	0.465
771.11	0.00	1.000	4489.85	1.24	0.211
793.70	0.41	0.677	4621.41	0.79	0.429
816.96	1.24	0.211	4756.83	1.77	0.076
840.90	1.24	0.211	4896.21	1.77	0.076
865.54	1.24	0.211	5039.68	1.77	0.076
890.90	1.24	0.211	5187.36	1.46	0.144
917.00	0.79	0.429	5339.36	1.58	0.113
943.87	1.24	0.211	5495.81	0.88	0.375
971.53	1.13	0.256	5656.85	1.05	0.291
1000.00	1.46	0.144	5822.61	0.60	0.548
1029.30	1.46	0.144	5993.23	0.60	0.548
1059.46	2.28	0.022	6168.84	0.60	0.548
1090.51	1.98	0.046	6349.60	0.00	1.000
1122.46	1.77	0.076	6535.66	0.00	1.000
1155.35	1.77	0.076	6727.17	0.60	0.548
1189.21	1.77	0.076	6924.29	1.05	0.291
1224.05	1.38	0.167	7127.19	0.60	0.548
1259.92	1.38	0.167	7336.03	0.60	0.548
1296.84	1.46	0.144	7550.99	0.60	0.548
1334.84	1.46	0.144	7772.26	1.45	0.146
1373.95	1.46	0.144	8000.00	1.45	0.146

Table 4.1.4.2 continued from previous page

The mean and standard deviation of absorbance across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group are shown in Figure 4.1.4.4. There was no significant difference in absorbance between the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group at any frequency after α -correction (p < 0.016).

Figure 4.1.4.4: Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the SNHL group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

There was no significant difference in absorbance at ambient pressure between the non-CI ears of the CI group and the non-CI matched ears of the SNHL group at any frequency for Kruskal-Wallis *H* test (p > 0.05). Hence, Mann-Whitney *U* test was not performed further. In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance. Figure 4.1.4.5 shows the participants with an abnormal absorbance at ambient pressure at various frequencies in the non-CI ears of the CI group and non-CI matched ears of the SNHL group. Figure 4.1.4.6 shows the individual absorbance curves across frequencies when compared against the mean absorbance curve and standard deviation of the NH group at ambient pressure condition.

Figure 4.1.4.5: Abnormal absorbance across frequencies in ambient pressure in (A) non-CI ears of CI group and (B) non-CI matched ears of SNHL group. The digits on the Y-axis represent participant number and prefix of 'CI' and 'SN' indicates the CI group and the SNHL group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded region indicate statistically significant difference in proportion of abnormal result.

Figure 4.1.4.6: Absorbance curves at ambient pressure in (A) non-CI ears of the CI group, and (B) non-CI-matched ears of the SNHL group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance and the gray shaded region covers 2 standard deviations of absorbance found in the non-CI matched ears of the NH group (normative group).

At ambient pressure, the proportion of ears with an abnormal absorbance at each frequency was compared between the groups using the Equality of test for proportions. This was done at each frequency separately. The results showed a significant difference in proportion of abnormal absorbance in frequency range of 840.9-890.9 Hz, 1498.31-1587.4 Hz and 2747.91-3363.59 Hz (p < 0.05). The specific Z-values and *p*-values for the comparisons are shown in Table 4.1.4.3.

Table 4.1.4.3.

The results of Equality of test for proportions for comparison of proportion of abnormal absorbance at ambient pressure across frequencies between the non-CI ears of the CI group and the non-CI matched ears of the SNHL group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	0.00	1 000	1414 21	1 77	0.076
250.00	0.00	1.000	1455.65	1.77	0.076
257.33	0.00	1.000	1498.31	2.08	0.070
264.87	0.00	1.000	1542.21	2.00	0.017
272.63	0.00	1.000	1587.40	2.65	0.008
280.62	0.00	1.000	1633.92	1.38	0.167
288.84	0.37	0.705	1681.79	0.73	0.465
297.30	0.35	0.723	1731.07	0.37	0.705
306.12	0.35	0.723	1781.80	0.37	0.705
314.98	0.35	0.723	1834.01	0.47	0.632
324.21	0.35	0.723	1887.75	0.00	1.000
333.71	0.35	0.723	1943.06	0.00	1.000
343.49	0.69	0.490	2000.00	0.00	1.000
353.55	0.69	0.490	2058.60	0.00	1.000
363.91	0.35	0.723	2118.93	1.01	0.311
374.58	0.73	0.465	2181.02	1.01	0.311
385.55	0.37	0.705	2244.92	1.01	0.311
396.95	0.37	0.705	2310.71	1.01	0.311
408.48	0.37	0.705	2378.41	1.45	0.146
420.45	0.00	1.000	2448.11	1.45	0.146
432.77	0.41	0.677	2519.84	1.45	0.146
445.45	0.47	0.632	2593.68	1.80	0.071
458.50	0.47	0.632	2669.68	1.80	0.071
471.94	0.47	0.632	2747.91	2.39	0.016
485.77	1.05	0.291	2828.43	2.65	0.007
500.00	0.60	0.548	2911.31	2.65	0.007
514.65	0.60	0.548	2996.61	2.39	0.016
529.73	0.60	0.548	3084.42	2.39	0.016
545.25	1.05	0.291	3174.80	2.10	0.035
561.23	1.05	0.291	3267.83	2.10	0.035
577.68	1.05	0.291	3363.59	2.10	0.035
594.60	1.05	0.291	3462.15	1.80	0.071
612.03	0.60	0.548	3563.59	1.45	0.146
629.96	0.60	0.548	3668.02	1.45	0.146
648.42	0.60	0.548	3775.50	1.45	0.146
667.42	0.60	0.548	3886.13	1.45	0.146
686.98	0.00	1.000	4000.00	0.60	0.548

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
707.11	0.00	1.000	4117.21	0.60	0.548
727.83	0.60	0.548	4237.85	1.43	0.151
749.15	1.05	0.291	4362.03	1.05	0.291
771.11	1.05	0.291	4489.85	0.60	0.548
793.70	1.05	0.291	4621.41	0.00	1.000
816.96	1.77	0.076	4756.83	0.00	1.000
840.90	2.39	0.016	4896.21	1.01	0.311
865.54	2.39	0.016	5039.68	0.60	0.548
890.90	2.10	0.035	5187.36	0.60	0.548
917.00	0.79	0.429	5339.36	1.05	0.291
943.87	0.73	0.465	5495.81	1.80	0.071
971.53	0.69	0.490	5656.85	1.45	0.146
1000.00	0.66	0.507	5822.61	1.45	0.146
1029.30	0.66	0.507	5993.23	1.05	0.291
1059.46	0.37	0.705	6168.84	1.05	0.291
1090.51	0.41	0.677	6349.60	0.60	0.548
1122.46	0.41	0.677	6535.66	0.60	0.548
1155.35	0.88	0.375	6727.17	0.60	0.548
1189.21	0.37	0.705	6924.29	0.00	1.000
1224.05	0.73	0.465	7127.19	0.00	1.000
1259.92	0.73	0.465	7336.03	0.00	1.000
1296.84	1.13	0.256	7550.99	1.01	0.311
1334.84	1.13	0.256	7772.26	0.00	1.000
1373.95	1.58	0.113	8000.00	0.00	1.000

Table 4.1.4.3 continued from previous page

4.1.5 Comparison of WBA at ambient pressure between CI group and NH group

Mann-Whitney *U* test was done for pair-wise comparison between CI group and NH group, separately for the two ears. The mean and standard deviation of absorbance across frequencies in the CI ears of the CI group and the CI-matched ears of the NH group are shown in Figure 4.1.5.1.

Figure 4.1.5.1: Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI ears of the CI group and the CI-matched ears of the NH group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

The absorbance was significantly lower in CI ears of the CI group than the CImatched ears of the NH group in the frequency range of 226 Hz-1296.84 Hz after α correction (p < 0.016). There was no significant difference in absorbance between the CI ears of the CI group and the CI-matched ears of the NH group at any other frequency after α -correction (p > 0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.5.1.

Table 4.1.5.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at ambient pressure between the CI ears of the CI group and the CI-matched ears of the NH group.

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	-2.90	0.004	943.87	-3.57	< 0.001
250.00	-2.89	0.004	971.53	-3.67	< 0.001
257.33	-2.93	0.003	1000.00	-3.67	< 0.001
264.87	-2.94	0.003	1029.30	-3.65	< 0.001
272.63	-2.94	0.003	1059.46	-3.67	< 0.001
280.62	-2.93	0.003	1090.51	-3.57	< 0.001
288.84	-2.86	0.004	1122.46	-3.47	0.001
297.30	-2.82	0.005	1155.35	-3.30	0.001
306.12	-2.84	0.005	1189.21	-3.04	0.002
314.98	-2.81	0.005	1224.05	-2.94	0.003
324.21	-2.82	0.005	1259.92	-2.78	0.005
333.71	-2.81	0.005	1296.84	-2.46	0.014
343.49	-2.79	0.005	1334.84	-2.11	0.035
353.55	-2.78	0.005	1373.95	-1.82	0.068
363.91	-2.79	0.005	1414.21	-1.73	0.083
374.58	-2.84	0.005	1455.65	-1.44	0.148
385.55	-2.82	0.005	1498.31	-1.33	0.181
396.95	-2.85	0.004	1542.21	-1.33	0.181
408.48	-2.77	0.006	1587.40	-1.16	0.245
420.45	-2.81	0.005	1633.92	-0.97	0.330
432.77	-2.75	0.006	1681.79	-1.05	0.291
445.45	-2.73	0.006	1781.80	-1.08	0.279
458.50	-2.73	0.006	1834.01	-0.83	0.402
471.94	-2.81	0.005	1887.75	-0.54	0.588
485.77	-2.89	0.004	1943.06	-0.21	0.829
500.00	-3.04	0.002	2000.00	-0.04	0.968
514.65	-3.15	0.002	2058.60	-0.01	0.989
529.73	-3.19	0.001	2118.93	-0.21	0.829
545.25	-3.19	0.001	2181.02	-0.13	0.892
561.23	-3.19	0.001	2244.92	-0.43	0.665
577.68	-3.21	0.001	2310.71	-0.36	0.715
594.60	-3.32	0.001	2378.41	-0.12	0.903
612.03	-3.32	0.001	2448.11	-0.20	0.839
629.96	-3.35	0.001	2519.84	-0.05	0.957

Frequency	Z-value	<i>p</i> -value	Frequency	Z-value	<i>p</i> -value
(in Hz)			(in Hz)		
648.42	-3.47	0.001	2593.68	-0.14	0.882
667.42	-3.49	< 0.001	2669.68	-0.08	0.935
686.98	-3.49	< 0.001	2747.91	-0.09	0.925
707.11	-3.65	< 0.001	2828.43	-0.08	0.935
727.83	-3.73	< 0.001	2911.31	-0.01	0.989
749.15	-3.62	< 0.001	2996.61	-0.10	0.914
771.11	-3.61	< 0.001	3084.42	-0.08	0.935
793.70	-3.58	< 0.001	3174.80	-0.09	0.925
816.96	-3.59	< 0.001	3267.83	-0.10	0.914
840.90	-3.61	< 0.001	3363.59	-0.08	0.935
865.54	-3.59	< 0.001	3462.15	-0.12	0.903
890.90	-3.59	< 0.001	3563.59	-0.14	0.882
917.00	-3.59	< 0.001	3668.02	-0.05	0.957

Table 4.1.5.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

The mean and standard deviation of absorbance across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group are shown in Figure 4.1.5.2. There was no significant difference in absorbance between the non-CI ears of the CI group and the non-CI-matched ears of the NH group at any frequency after α -correction (p > 0.016).

Figure 4.1.5.2: Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI ears of the CI group and the non-CI-matched ears of the NH group.

4.1.6 Comparison of WBA at ambient pressure between SNHL group and NH group

Mann-Whitney U test was done for pair-wise comparison between SNHL group and NH group, separately for the two ears. The mean and standard deviation of absorbance across frequencies in the CI-matched ears of the SNHL group and the CImatched ears NH group are shown in Figure 4.1.6.1.

Figure 4.1.6.1: Mean and standard deviation of absorbance at ambient pressure across frequencies in the CI-matched ears of the SNHL group and the CI-matched ears of the NH group. The star-marked comparisons have a statistically significant difference after α -correction (p < 0.016).

The CI-matched ears of the SNHL group had significantly lower absorbance than the CI-matched ears of the NH group in the frequency range of 1122.46-1224.05 and 1334.84-3563.59 Hz after α -correction (p < 0.016). For the remaining frequencies, there was no significant difference in absorbance between the CImatched ears of the SNHL group and the CI-matched ears of the NH group after α correction (p > 0.016). The specific Z-values and p-values for the pair-wise comparisons are shown in Table 4.1.6.1.

Table 4.1.6.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at ambient pressure between the CI-matched ears of the SNHL group and the CI-matched ears of the NH group

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
226.00	-0.37	0.705	943.87	-1.65	0.099
250.00	-0.37	0.705	971.53	-1.89	0.058
257.33	-0.39	0.695	1000.00	-1.94	0.051
264.87	-0.37	0.705	1029.30	-2.02	0.042
272.63	-0.37	0.705	1059.46	-2.33	0.019
280.62	-0.39	0.695	1090.51	-2.35	0.019
288.84	-0.39	0.695	1122.46	-2.62	0.009
297.30	-0.40	0.685	1155.35	-2.58	0.010
306.12	-0.41	0.675	1189.21	-2.54	0.011
314.98	-0.47	0.636	1224.05	-2.43	0.015
324.21	-0.50	0.617	1259.92	-2.23	0.026
333.71	-0.52	0.598	1296.84	-2.21	0.027
343.49	-0.58	0.561	1334.84	-2.43	0.015
353.55	-0.59	0.552	1373.95	-2.52	0.011
363.91	-0.59	0.552	1414.21	-2.59	0.009
374.58	-0.59	0.552	1455.65	-2.65	0.008
385.55	-0.59	0.552	1498.31	-2.81	0.005
396.95	-0.64	0.516	1542.21	-2.84	0.005
408.48	-0.64	0.516	1587.40	-2.84	0.005
420.45	-0.67	0.499	1633.92	-2.79	0.005
432.77	-0.71	0.473	1681.79	-2.70	0.007
445.45	-0.73	0.465	1781.8	-2.56	0.010
458.50	-0.68	0.490	1834.01	-2.65	0.008
471.94	-0.58	0.561	1887.75	-2.75	0.006
485.77	-0.54	0.589	1943.06	-2.73	0.006
500.00	-0.55	0.579	2000.00	-2.62	0.009
514.65	-0.41	0.675	2058.60	-2.62	0.009
529.73	-0.40	0.685	2118.93	-2.78	0.005
545.25	-0.35	0.725	2181.02	-2.84	0.005
561.23	-0.20	0.839	2244.92	-2.84	0.005
577.68	-0.10	0.914	2310.71	-2.71	0.007
594.60	-0.10	0.914	2378.41	-2.77	0.006
612.03	-0.16	0.871	2448.11	-2.75	0.006
629.96	-0.21	0.829	2519.84	-2.85	0.004

Frequency (in Hz)	Z-value	<i>p</i> -value	Frequency (in Hz)	Z-value	<i>p</i> -value
648.42	-0.48	0.626	2593.68	-2.89	0.004
667.42	-0.59	0.552	2669.68	-3.12	0.002
686.98	-0.73	0.465	2747.91	-3.21	0.001
707.11	-0.83	0.402	2828.43	-3.27	0.001
727.83	-1.00	0.317	2911.31	-3.13	0.002
749.15	-1.12	0.262	2996.61	-3.05	0.002
771.11	-1.23	0.218	3084.42	-3.16	0.002
793.70	-1.27	0.204	3174.80	-3.16	0.002
816.96	-1.32	0.185	3267.83	-3.07	0.002
840.90	-1.39	0.164	3363.59	-2.89	0.004
865.54	-1.51	0.130	3462.15	-2.77	0.006
890.90	-1.54	0.123	3563.59	-2.54	0.011
917.00	-1.55	0.120	3668.02	-2.28	0.022

Table 4.1.6.1 continued from previous page

Note. Pair-wise comparison was done at these frequencies due to a significant group difference on Kruskal-Wallis *H* test only at these frequencies.

The mean and standard deviation of absorbance across frequencies in the non-CI-matched ears of the SNHL group and the non-CI-matched ears of the NH group are shown in Figure 4.1.6.1. Although the non-CI-matched ears of the SNHL group had lower absorbance than the non-CI-matched ears of the NH group, there was no significant difference between them at any frequency after α -correction (p > 0.016).

Figure 4.1.6.2: Mean and standard deviation of absorbance at ambient pressure across frequencies in the non-CI-matched ears of the SNHL group and the non-CI-matched ears of the NH group.

4.1.7 Comparison of resonance frequency among the groups

In addition to the absorbance at peak and ambient pressure across frequencies, WBT also provided resonance frequency. In order to obtain the mean, median, standard deviation, and interquartile range, resonance frequency values were subjected to descriptive statistics. The outcome of the descriptive statistics is shown in Table 4.1.7.1.

Table 4.1.7.1.

group

Mean, standard deviation, median and interquartile range of resonance frequency of

CI ears of CI group or CI matched Non-CI ears of CI group or non-Group ears of other groups CI-matched ears of other groups SD Median IQR SD Median IQR Mean Mean CI 876.40 946.00 725.00 841.80 265.19 833.50 386.00 433.65 group 809.65 376.17 695.00 400.75 775.40 262.80 707.50 388.00 SNHL group NH 865.00 223.28 883.00 328.75 891.15 199.16 951.00 254.50

middle ear in both ears of CI group, SNHL group and NH group

Note. 'SD'- Standard Deviation, 'IQR'- Interquartile Range

The comparison among groups was done using Kruskal-Wallis *H* Test. The results showed no significant differences in resonance frequency among the three groups for CI ears [χ^2 (2) = 2.038, *p* = 0.361] and for non-CI ears [χ^2 (2) = 2.425, *p* = 0.297].

4.2 Comparison of WBA at peak and ambient pressure within the CI Group between implanted and non-implanted ears

The absorbance in both ears of the CI group was compared with each other at each of the 122 frequencies. These comparisons were made separately for absorbance at the peak pressure and the ambient pressure. The mean and standard deviation of absorbance across frequencies of CI ears of CI group and non-CI ears of the CI group for peak and ambient pressure conditions are shown in Figure 4.2.1.

Figure 4.2.1: Mean and standard deviation of absorbance across frequencies in the CI ears and the non-CI ears of the CI group at (A) peak pressure and (B) ambient pressure. The star-marked comparisons have a statistically significant difference (p < 0.05).

Wilcoxon signed rank test was done to compare the two ears at peak pressure. The CI ears had significantly lower absorbance than the non-CI ears in the frequency range of 226-288.84 Hz, 306.12-374.58 Hz, and 396.95-1296.84 Hz (p < 0.05). Further, the CI ears had significantly higher absorbance than the non-CI ears in the frequency range of 2058.6-2448.11 Hz (p < 0.05). At ambient pressure, the CI ears showed significantly lower absorbance than the non-CI ears in the frequency range of 594.6-1000Hz and at a sporadic frequency of 1059.46 Hz (p > 0.05). At all other frequencies there was no significant difference between the ears at ambient pressure. The specific Z-values and *p*-values obtained on the Wilcoxon signed rank test are shown in Table 4.2.1.

Table 4.2.1

The outcome of Wilcoxon signed rank test for pair-wise comparison of absorbance at

Frequency	Peak pressure condition		Ambient pressure condition	
(11112)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
226.00	-2.09	0.037	-1.49	0.135
250.00	-2.01	0.044	-1.49	0.135
257.33	-2.05	0.040	-1.45	0.145
264.87	-2.01	0.044	-1.53	0.126
272.63	-2.01	0.044	-1.60	0.108
280.62	-1.99	0.046	-1.60	0.108
288.84	-1.97	0.048	-1.60	0.108
297.30	-1.93	0.053	-1.55	0.121
306.12	-2.09	0.037	-1.49	0.135
314.98	-2.16	0.030	-1.49	0.135
324.21	-2.16	0.030	-1.49	0.135
333.71	-2.2	0.028	-1.49	0.135
343.49	-2.16	0.030	-1.45	0.145
353.55	-2.16	0.030	-1.49	0.135
363.91	-2.09	0.037	-1.43	0.151
374.58	-2.01	0.044	-1.45	0.145
385.55	-1.94	0.052	-1.44	0.147
396.95	-2.05	0.040	-1.45	0.145
408.48	-2.05	0.040	-1.51	0.130
420.45	-2.31	0.021	-1.56	0.117
432.77	-2.33	0.020	-1.60	0.108
445.45	-2.42	0.015	-1.68	0.093
458.50	-2.5	0.012	-1.79	0.073
471.94	-2.65	0.008	-1.79	0.073
485.77	-2.68	0.007	-1.75	0.079
500.00	-2.68	0.007	-1.75	0.079
514.65	-2.59	0.009	-1.75	0.079
529.73	-2.61	0.009	-1.79	0.073
545.25	-2.61	0.009	-1.79	0.073
561.23	-2.68	0.007	-1.86	0.062
577.68	-2.72	0.006	-1.86	0.062
594.60	-2.87	0.004	-2.09	0.037

peak pressure and ambient pressure between CI and non-CI ears of the CI group

Frequency (in Hz)	Peak pressure condition		Ambient pressure condition	
(Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
612.03	-2.91	0.004	-2.16	0.030
629.96	-2.94	0.003	-2.24	0.025
648.42	-2.89	0.004	-2.20	0.028
667.42	-2.83	0.005	-2.24	0.025
686.98	-2.83	0.005	-2.31	0.021
707.11	-2.83	0.005	-2.27	0.023
727.83	-2.91	0.004	-2.33	0.020
749.15	-3.06	0.002	-2.24	0.025
771.11	-3.06	0.002	-2.20	0.028
793.70	-3.17	0.002	-2.20	0.028
816.96	-3.21	0.001	-2.35	0.019
840.90	-3.09	0.002	-2.27	0.023
865.54	-3.15	0.002	-2.12	0.033
890.90	-3.21	0.001	-2.24	0.025
917.00	-3.21	0.001	-2.24	0.025
943.87	-3.28	0.001	-2.24	0.025
971.53	-3.28	0.001	-2.12	0.033
1000.00	-3.24	0.001	-1.97	0.048
1029.30	-3.28	0.001	-1.94	0.052
1059.46	-3.17	0.002	-1.97	0.048
1090.51	-3.17	0.002	-1.79	0.073
1122.46	-3.13	0.002	-1.75	0.079
1155.35	-3.09	0.002	-1.60	0.108
1189.21	-2.95	0.003	-1.56	0.117
1224.05	-2.95	0.003	-1.43	0.151
1259.92	-2.61	0.009	-1.15	0.247
1296.84	-2.12	0.033	-0.70	0.478
1334.84	-1.88	0.059	-0.56	0.575
1373.95	-1.75	0.079	-0.52	0.601
1414.21	-1.75	0.079	-0.52	0.601
1455.65	-1.62	0.104	-0.37	0.709
1498.31	-1.67	0.095	-0.41	0.681
1542.21	-1.41	0.156	-0.18	0.852
1587.4	-1.12	0.263	-0.11	0.911
1633.92	-0.97	0.332	-0.16	0.867
1681.79	-0.78	0.433	-0.26	0.794
1731.07	-0.78	0.433	-0.41	0.681
1781.80	-0.37	0.709	-0.48	0.627

Table 4.2.1 continued from previous page

Frequency (in Hz)	Peak pressure condition		Ambient pressure condition		
(Z-value	<i>p</i> -value	Z-value	<i>p</i> -value	
1834.01	-0.11	0.911	-0.67	0.502	
1887.75	-1.08	0.279	-0.85	0.391	
1943.06	-1.56	0.117	-0.89	0.370	
2000.00	-1.68	0.093	-0.98	0.322	
2058.60	-2.05	0.040	-1.17	0.240	
2118.93	-2.27	0.023	-1.32	0.185	
2181.02	-2.35	0.019	-1.43	0.151	
2244.92	-2.42	0.015	-1.51	0.131	
2310.71	-2.43	0.015	-1.60	0.108	
2378.41	-2.22	0.026	-1.23	0.218	
2448.11	-2.09	0.037	-1.08	0.279	
2519.84	-1.71	0.086	-0.95	0.341	
2593.68	-1.54	0.121	-1.00	0.313	
2669.68	-1.19	0.232	-0.92	0.355	
2747.91	-0.89	0.370	-0.97	0.332	
2828.43	-0.44	0.654	-0.89	0.370	
2911.31	-0.05	0.955	-0.78	0.433	
2996.61	-0.22	0.823	-0.78	0.433	
3084.42	-0.44	0.654	-0.70	0.478	
3174.80	-0.44	0.654	-0.71	0.478	
3267.83	-0.70	0.478	-0.32	0.744	
3363.59	-0.48	0.627	-0.07	0.940	
3462.15	-0.57	0.563	-0.22	0.823	
3563.59	-0.57	0.563	-0.26	0.794	
3668.02	-0.33	0.737	-0.38	0.702	
3775.50	-0.37	0.709	-0.48	0.627	
3886.13	-0.48	0.627	-0.59	0.550	
4000.00	-0.44	0.654	-0.61	0.538	
4117.21	-0.42	0.668	-0.74	0.455	
4237.85	-0.70	0.478	-1.12	0.263	
4362.03	-0.84	0.401	-1.19	0.232	
4489.85	-0.98	0.322	-1.23	0.218	
4621.41	-1.00	0.313	-1.13	0.255	
4756.83	-0.93	0.351	-1.06	0.287	
4896.21	-0.95	0.341	-1.08	0.279	
5039.68	-1.00	0.313	-1.15	0.247	
5187.36	-0.97	0.332	-1.23	0.218	
5339.36	-1.02	0.305	-1.30	0.191	

Table 4.2.1 continued from previous page

Frequency (in Hz)	Peak pressure condition		Ambient pressure condition	
	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
5495.81	-1.10	0.271	-1.41	0.156
5656.85	-1.12	0.263	-1.49	0.135
5822.61	-1.08	0.279	-1.53	0.126
5993.23	-0.97	0.332	-1.41	0.156
6168.84	-0.93	0.351	-1.34	0.179
6349.60	-0.88	0.376	-1.19	0.232
6535.66	-0.82	0.411	-0.97	0.332
6727.17	-0.85	0.391	-0.98	0.322
6924.29	-0.82	0.411	-1.00	0.313
7127.19	-0.63	0.526	-1.00	0.313
7336.03	-0.52	0.601	-0.89	0.370
7550.99	-0.59	0.550	-0.85	0.390
7772.26	-0.59	0.550	-0.89	0.370
8000.00	-0.48	0.629	-0.93	0.351

Table 4.2.1 continued from previous page

In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance. Figure 4.2.2 and Figure 4.2.3 show the abnormal absorbance at various frequencies in CI and non-CI ears of the CI group at peak pressure and ambient pressure, respectively. Figure 4.2.4 and Figure 4.2.5 show the individual absorbance curves across frequencies when compared against the mean absorbance curve and standard deviation of the NH group at peak pressure and ambient pressure, respectively.

Figure 4.2.2: Abnormal absorbance across frequencies at peak pressure in (A) CI ears of the CI group and (B) non-CI ears of the CI group. The digits on the Y-axis represent participant number and prefix of 'CI' and 'NI' indicates CI and non-CI ears of the CI group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significant difference in proportions of abnormal results.

Figure 4.2.3: Abnormal absorbance across frequencies at ambient pressure in (A) CI ears of the CI group and (B) non-CI ears of the CI group. The digits on the Y-axis represent participant number and prefix of 'CI' and 'NI' indicates CI and non-CI ears of the CI group, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significant difference in proportions of abnormal results.

Figure 4.2.4: Absorbance curves at peak pressure in (A) CI ears of the CI group, and (B) non-CI ears of the CI group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance values and the gray shaded region covers 2 standard deviations of absorbance found in the matched ears of the NH group (normative data).

Figure 4.2.5: Absorbance curves at ambient pressure in (A) CI ears of the CI group, and (B) non-CI ears of the CI group. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance values and the gray shaded region covers 2 standard deviations of absorbance found in the matched ears of the NH group (normative data).

In the present study, the individual participants data were also analyzed to find the proportion of ears with abnormal absorbance at each frequency. These proportions were compared between the CI and the non-CI ears using McNemar test. The dichotomy of data is one of the main presumptions when administering the McNemar test (McNemar, 1947; Eliasziw & Donner, 1991; Fagerland, Lyderson, & Laake, 2013). The McNemar test cannot be used if all subjects have only "normal" absorbance values or all subjects have only "abnormal" absorbance values at any given frequency. The results in the present study revealed significant difference in the proportion of abnormal absorbance between the CI ears and non-CI ears at 707.11 Hz and 727.83 Hz, and in the frequency range of 816.96-1189 Hz (p < 0.05) at peak pressure. At the ambient pressure, a significant difference was evidenced only at a sporadic frequency of 2310.71 Hz (p < 0.05). The measures of association could not be computed for some of the frequencies due to non-dichotomous data. Table 4.2.2 shows the results of McNemar test for CI ears and non-CI ears of the CI group at peak and ambient pressure conditions.

Table 4.2.2.

The result of McNemar test for comparison of the proportion of ears with abnormal absorbance at peak and ambient pressure between the CI ears and non-CI ear of the CI group

Frequency	Peak pres	sure condition	Ambient pro	essure condition
(in Hz)	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
226.00	0.39	1.000	0.84	1.000
250.00	0.39	1.000	0.35	0.727
257.33	0.00	1.000	0.00	0.508
264.87	0.00	1.000	0.07	0.727
272.63	0.13	0.687	0.07	0.727
280.62	0.39	1.000	0.31	1.000
288.84	0.93	1.000	0.80	1.000
297.30	0.93	1.000	0.80	1.000
306.12	0.93	1.000	0.80	1.000
314.98	0.93	1.000	0.80	1.000
324.21	0.93	1.000	0.80	1.000
333.71	0.93	1.000	0.07	0.727
343.49	0.93	1.000	0.07	0.727
353.55	2.13	1.000	0.07	0.727
363.91	2.13	1.000	0.00	0.508
374.58	2.13	1.000	0.00	0.508
385.55	3.95	1.000	0.00	0.508
396.95	0.05	1.000	0.35	0.727
408.48	#	#	0.35	0.727
420.45	#	#	0.35	0.727
432.77	#	#	0.00	1.000
445.45	#	#	0.00	1.000
458.50	#	#	0.00	1.000
471.94	#	#	0.07	1.000
485.77	#	#	0.07	1.000
500.00	#	#	0.13	0.687
514.65	#	#	0.01	0.453
529.73	#	#	0.01	0.453
545.25	9.47	1.000	0.01	0.453
561.23	9.47	1.000	0.39	1.000
577.68	2.13	1.000	0.93	1.000
594.60	3.95	1.000	0.39	1.000
612.03	3.95	1.000	0.39	1.000
629.96	3.95	1.000	0.39	1.000
648.42	8.88	0.500	0.93	1.000
667.42	8.88	0.500	0.93	1.000
686.98	0.00	0.109	0.39	1.000

135

Frequency	Peak pre	essure condition	Ambient pressure condition	
(in Hz)	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
707.11	0.39	0.039	0.24	1.000
727.83	0.19	0.021	0.24	1.000
749.15	0.39	0.039	0.11	1.000
771.11	0.66	0.070	0.39	1.000
793.70	4.12	0.063	0.55	0.687
816.96	1.28	0.031	0.74	0.453
840.90	1.28	0.031	0.13	0.687
865.54	1.28	0.008	0.13	0.687
890.90	1.28	0.008	0.74	0.375
917.00	1.28	0.008	0.74	0.375
943.87	1.28	0.008	0.74	0.375
971.53	1.28	0.008	0.42	0.219
1000.00	1.28	0.008	6.55	0.125
1029.30	2.71	0.016	6.55	0.125
1059.46	2.71	0.016	1.68	0.070
1090.51	3.52	0.016	1.25	0.070
1122.46	2.71	0.008	2.55	0.219
1155.35	2.71	0.016	2.55	0.219
1189.21	2.71	0.016	0.20	0.289
1224.05	6.66	0.250	2.54	0.687
1259.92	3.15	0.125	2.54	0.687
1296.84	3.15	0.125	1.83	0.687
1334.84	0.26	0.375	1.83	0.687
1373.95	0.26	0.375	0.84	1.000
1414.21	0.26	0.375	0.84	1.000
1455.65	0.18	0.625	0.84	1.000
1498.31	0.11	1.000	0.01	1.000
1542.21	0.39	1.000	0.01	1.000
1587.40	0.42	0.219	0.01	1.000
1633.92	0.35	0.219	0.00	1.000
1681.79	0.35	0.219	0.07	1.000
1731.07	1.25	0.625	0.80	1.000
1781.80	1.25	0.625	2.85	1.000
1834.01	1.25	0.625	0.00	1.000
1887.75	0.74	0.375	0.49	0.453
1943.06	0.74	0.375	2.55	0.219
2000.00	2.13	1.000	8.23	0.250
2058.60	2.13	1.000	10.5	0.500
2118.93	2.13	1.000	3.51	0.375
2181.02	0.18	0.625	4.12	0.063
2244.92	#	#	2.45	0.063
2310.71	#	#	1.95	0.031
2378.41	0.11	1.000	2.45	0.063

Table 4.2.2 continued from previous page

Frequency	Peak pre	essure condition	Ambient pressure condition	
(in Hz)	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
2448.11	0.11	1.000	3.45	0.063
2519.84	0.11	1.000	4.45	0.063
2593.68	0.11	1.000	0.18	0.625
2669.68	0.05	1.000	0.26	0.375
2747.91	0.11	1.000	0.26	0.375
2828.43	0.11	1.000	0.18	0.625
2911.31	0.11	1.000	0.26	0.375
2996.61	0.24	1.000	0.55	0.687
3084.42	0.11	1.000	0.24	1.000
3174.80	0.11	1.000	0.11	1.000
3267.83	#	#	#	#
3363.59	#	#	5.96	0.500
3462.15	#	#	5.96	0.500
3563.59	#	#	5.96	0.500
3668.02	#	#	5.96	0.500
3775.50	0.05	1.000	5.96	0.500
3886.13	0.05	1.000	4.21	0.250
4000.00	9.47	9.474	4.21	0.250
4117.21	5.96	0.500	6.66	0.250
4237.85	5.96	0.500	6.66	0.250
4362.03	4.21	0.250	2.26	0.375
4489.85	0.39	1.000	3.26	0.625
4621.41	0.72	1.000	0.31	1.000
4756.83	0.13	1.000	0.13	1.000
4896.21	0.13	1.000	0.83	0.727
5039.68	0.58	1.000	0.83	0.727
5187.36	1.26	1.000	0.65	0.727
5339.36	0.00	1.000	0.08	1.000
5495.81	0.00	1.000	0.07	1.000
5656.85	1.25	1.000	0.39	1.000
5822.61	1.25	1.000	0.55	0.687
5993.23	0.88	1.000	0.55	0.687
6168.84	0.39	1.000	0.39	1.000
6349.60	0.11	1.000	0.11	1.000
6535.66	0.11	1.000	0.18	0.625
6727.17	0.18	0.625	0.18	0.625
6924.29	0.95	0.952	0.11	1.000
7127.19	0.05	1.000	0.11	1.000
7336.03	0.05	1.000	0.05	1.000
7550.99	0.05	1.000	0.05	1.000
7772.26	0.05	1.000	#	#
8000.00	0.05	1.000	#	#

Table 4.2.2 continued from previous page

Note. '#'- McNemar test could not be performed due non-dichotomous data

4.2.3 Comparison of resonance frequency of middle ear between CI ear and non-CI ear within the CI group

The comparison between the ears within the CI group was done using Wilcoxon signed rank test. The results showed no significant differences in resonance frequency of middle ear between the ears [Z = 0.299, p = 0.765].

4.3 Comparison of WBA at peak and ambient pressure conditions and resonance frequency between the two electrode types

The participants in the CI group had either of the two electrode types: CI422 electrode array or Sonata Ti100 electrode array. The mean and standard deviation of absorbance across frequencies in the CI ears with CI422 electrode array and the CI ears with Sonata Ti100 electrode array at peak and ambient pressure conditions are shown in Figure 4.3.1.

Figure 4.3.1: Mean and standard deviation of absorbance across frequencies at (A) peak pressure and (B) ambient pressure in group of children implanted with CI422 electrode array and Sonata Ti100 electrode array.

The comparison of absorbance between the two electrode types was done using Mann-Whitney U test. The results showed no significant difference in absorbance between the two electrode types at peak and ambient pressure (p > 0.05), except for a narrow range of frequencies at peak pressure (p < 0.05). The CI422 electrode array produced significantly lower absorbance values than the Sonata Ti100 electrode array in the frequency range of 2000-2244.92 Hz and at sporadic frequencies of 2378.4 Hz and 2519.84 Hz (p < 0.05) at peak pressure alone. The specific Z-values and p-values obtained from the Mann-Whitney U Test for peak and ambient pressure are shown in Table 4.3.1.

For the comparison of resonance frequency of middle ear between the two electrode types, the Mann-Whitney *U* Test was done. The results showed no significant difference in resonance frequency of middle ear between the two electrode types [Z = 0.082, p = 0.934].

Table 4.3.1.

The outcome of Mann-Whitney U test for pair-wise comparison of absorbance at peak

Frequency	Peak pressure condition		Ambient pressure condition	
(In HZ)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
226.00	-0.45	0.650	-0.25	0.805
250.00	-0.16	0.869	-0.25	0.805
257.33	-0.08	0.934	-0.21	0.837
264.87	-0.08	0.934	-0.16	0.869
272.63	-0.08	0.934	-0.16	0.869
280.62	-0.12	0.902	-0.16	0.869
288.84	-0.12	0.902	-0.08	0.934
297.30	-0.12	0.902	-0.04	0.967
306.12	-0.12	0.902	0.00	1.000
314.98	-0.04	0.967	0.00	1.000
324.21	-0.12	0.902	0.00	1.000
333.71	-0.08	0.934	0.00	1.000
343.49	-0.12	0.901	0.00	1.000
353.55	0.00	1.000	0.00	1.000
363.91	-0.08	0.934	-0.04	0.967
374.58	-0.08	0.934	-0.08	0.934
385.55	-0.08	0.934	-0.17	0.869
396.95	-0.08	0.934	-0.16	0.869
408.48	-0.08	0.934	-0.25	0.805
420.45	-0.08	0.934	-0.25	0.805
432.77	-0.21	0.837	-0.25	0.805
445.45	-0.16	0.869	-0.41	0.680
458.50	-0.25	0.805	-0.41	0.680
471.94	-0.08	0.934	-0.41	0.680
485.77	-0.08	0.934	-0.41	0.680
500.00	-0.16	0.869	-0.33	0.741
514.65	-0.08	0.934	-0.25	0.805
529.73	0.00	1.000	-0.16	0.869
545.25	-0.08	0.934	-0.16	0.869
561.23	-0.25	0.805	0.00	1.000
577.68	-0.33	0.741	-0.08	0.934
594.60	-0.17	0.869	-0.08	0.934
612.03	-0.08	0.934	0.00	1.000
629.96	-0.08	0.934	0.00	1.000
648.42	-0.17	0.869	-0.17	0.869

and ambient pressure between CI422 and Sonata Ti100 electrode arrays

Frequency	Peak pressure condition		Ambient pressure condition	
(III HZ)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
667.42	-0.25	0.805	0.00	1.000
686.98	-0.16	0.869	-0.17	0.869
707.11	-0.08	0.934	-0.25	0.805
727.83	-0.21	0.837	-0.25	0.805
749.15	-0.16	0.869	-0.12	0.901
771.11	-0.21	0.837	-0.08	0.934
793.70	-0.16	0.869	-0.21	0.837
816.96	-0.08	0.934	-0.25	0.804
840.90	-0.21	0.837	-0.25	0.805
865.54	-0.49	0.621	-0.17	0.869
890.90	-0.62	0.536	0.00	1.000
917.00	-0.74	0.458	-0.04	0.967
943.87	-0.66	0.509	-0.08	0.934
971.53	-0.66	0.509	-0.08	0.934
1000.00	-0.66	0.509	-0.08	0.934
1029.30	-0.74	0.458	0.00	1.000
1059.46	-0.78	0.433	-0.04	0.967
1090.51	-0.82	0.409	-0.08	0.934
1122.46	-0.91	0.364	0.00	1.000
1155.35	-0.82	0.409	-0.08	0.934
1189.21	-0.82	0.409	-0.16	0.869
1224.05	-0.91	0.364	-0.16	0.869
1259.92	-0.82	0.409	-0.17	0.869
1296.84	-0.91	0.364	-0.21	0.837
1334.84	-0.91	0.364	-0.08	0.934
1373.95	-0.99	0.322	-0.08	0.934
1414.21	-1.07	0.283	-0.25	0.805
1455.65	-1.07	0.284	-0.29	0.773
1498.31	-1.24	0.216	-0.49	0.621
1542.21	-1.53	0.127	-0.49	0.621
1587.40	-1.65	0.099	-0.58	0.564
1633.92	-1.65	0.099	-0.66	0.509
1681.79	-1.73	0.083	-0.74	0.458
1731.07	-1.77	0.076	-0.82	0.409
1781.80	-1.90	0.058	-0.91	0.364
1834.01	-1.81	0.070	-0.82	0.409
1887.75	-1.90	0.058	-0.91	0.364
1943.06	-1.90	0.058	-0.95	0.343
2000.00	-2.06	0.039	-0.91	0.364

Table 4.3.1 continued from previous page

Frequency	Peak pressure condition		Ambient pressure condition	
(III HZ)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
2058.60	-2.06	0.039	-0.82	0.409
2118.93	-2.19	0.029	-0.82	0.409
2181.02	-2.23	0.026	-0.82	0.409
2244.92	-2.19	0.029	-0.78	0.433
2310.71	-1.90	0.058	-0.99	0.322
2378.41	-1.98	0.048	-0.78	0.433
2448.11	-1.86	0.063	-0.74	0.458
2519.84	-1.98	0.048	-0.74	0.458
2593.68	-1.40	0.161	-0.08	0.934
2669.68	-1.15	0.248	-0.08	0.934
2747.91	-0.41	0.680	-0.54	0.592
2828.43	-0.33	0.741	-0.74	0.458
2911.31	-0.25	0.805	-0.82	0.409
2996.61	0.00	1.000	-0.74	0.458
3084.42	-0.08	0.934	-0.82	0.409
3174.80	-0.37	0.710	-0.82	0.409
3267.83	-0.49	0.621	-0.66	0.509
3363.59	-0.66	0.509	-0.87	0.386
3462.15	-0.74	0.458	-0.91	0.364
3563.59	-0.70	0.483	-0.82	0.409
3668.02	-0.82	0.409	-0.78	0.433
3775.50	-0.82	0.409	-0.82	0.409
3886.13	-0.91	0.364	-0.91	0.364
4000.00	-1.11	0.265	-0.91	0.364
4117.21	-1.32	0.187	-1.24	0.216
4237.85	-1.48	0.138	-1.32	0.187
4362.03	-1.65	0.099	-1.40	0.161
4489.85	-1.81	0.070	-1.73	0.083
4621.41	-1.81	0.070	-1.90	0.058
4756.83	-1.81	0.070	-1.81	0.070
4896.21	-1.81	0.070	-1.81	0.070
5039.68	-1.69	0.091	-1.57	0.117
5187.36	-1.61	0.108	-1.61	0.108
5339.36	-1.65	0.099	-1.53	0.127
5495.81	-1.57	0.117	-1.48	0.138
5656.85	-1.40	0.161	-1.53	0.127
5822.61	-1.40	0.161	-1.65	0.099
5993.23	-1.48	0.138	-1.48	0.138
6168.84	-1.65	0.099	-1.57	0.117

Table 4.3.1 continued from previous page

Frequency	Peak pressure condition		Ambient pressure condition	
(In Hz) _	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
6349.60	-1.57	0.117	-1.48	0.138
6535.66	-1.32	0.187	-1.28	0.201
6727.17	-0.91	0.364	-0.91	0.364
6924.29	-0.70	0.483	-0.74	0.458
7127.19	-0.29	0.773	-0.45	0.650
7336.03	-0.08	0.934	-0.12	0.901
7550.99	-0.25	0.805	-0.25	0.804
7772.26	-0.33	0.741	-0.25	0.805
8000.00	-0.33	0.741	-0.25	0.805

Table 4.3.1 continued from previous page

In addition to the group-wise comparison, the individual data were also analyzed to obtain the proportion of ears with an abnormal absorbance at different frequencies. Figure 4.3.2 and Figure 4.3.3 show the abnormal absorbance at various frequencies in each individual with CI422 electrode and Sonata Ti100 electrode at peak and ambient pressure, respectively. Figure 4.3.4 and Figure 4.3.5 show the individual absorbance curves across frequencies when compared against the mean absorbance curve and standard deviation of the NH group at peak and ambient pressure conditions, respectively.

Figure 4.3.2: Abnormal absorbance across frequencies at peak pressure in (A) ears with CI422 electrodes and (B) ears with Sonata Ti100. The digits on the Y-axis represent participant number and prefix of 'CI' and 'Ti' indicates ears with CI422 and Sonata Ti100 electrodes, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significant difference in proportions of abnormal results.

Figure 4.3.3: Abnormal absorbance across frequencies in the ambient pressure in (A) ears with CI422 electrodes and (B) ears with Sonata Ti100. The digits on the y-axis represent participant number and prefix of 'CI' and 'Ti' indicates ears with CI422 and Sonata Ti100 electrodes, respectively. The red-colour lines represent significantly lower absorbance and green-colour lines indicate significantly higher absorbance. The grey shaded regions indicate statistically significant difference in proportions of abnormal results.

Figure 4.3.4: Absorbance curves at peak pressure in (A) ears with CI422 electrodes, and (B) ears with Sonata Ti100 electrodes. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance and the gray shaded region covers 2 standard deviations of absorbance found in the ears of the NH group (normative data).

Figure 4.3.5: Absorbance curves at ambient pressure in (A) ears with CI422 electrodes, and (B) ears with Sonata Ti100 electrodes. The thin red lines represent absorbance curve of each participant in his/her respective group. In each panel, the thick black line represents the mean absorbance and the gray shaded region covers 2 standard deviations of absorbance found in the ears of the NH group (normative data).

At peak pressure and ambient pressure, the proportion of individuals with an abnormal absorbance was compared between the two electrode types using the Equality of test for proportions. The results showed a significant difference in proportion of abnormal absorbance at peak pressure for 4362.03 Hz and 4489.85 Hz frequencies (p < 0.05). In case of ambient pressure, there was no significant difference in proportion of ears with abnormal absorbance. The specific Z-values and *p*-values for the comparisons are shown in Table 4.3.2.

Table 4.3.2.

The results of Equality of test for proportions for comparison of the proportion of ears with abnormal absorbance across frequencies between CI422 and Sonata Ti100 electrodes at peak and ambient pressure

Frequency	Peak press	sure condition	Ambient pressure condition	
(in Hz)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
226.00	0.24	0.807	0.21	0.831
250.00	0.24	0.807	0.21	0.831
257.33	0.56	0.573	0.56	0.573
264.87	0.56	0.573	0.56	0.573
272.63	0.56	0.573	0.56	0.573
280.62	0.24	0.807	0.56	0.573
288.84	0.13	0.891	0.56	0.573
297.30	0.13	0.891	0.56	0.573
306.12	0.13	0.891	0.56	0.573
314.98	0.13	0.891	0.56	0.573
324.21	0.13	0.891	0.56	0.573
333.71	0.13	0.891	0.56	0.573
343.49	0.13	0.891	0.56	0.573
353.55	0.13	0.891	0.56	0.573
363.91	0.13	0.891	0.56	0.573
374.58	0.13	0.891	0.56	0.573
385.55	0.97	0.329	0.56	0.573
396.95	0.67	0.501	0.21	0.831
408.48	0.67	0.501	0.21	0.831
420.45	0.67	0.501	0.21	0.831
432.77	0.67	0.501	0.24	0.807
445.45	0.67	0.501	0.56	0.573
458.50	0.67	0.501	0.56	0.573
471.94	0.67	0.501	1.46	0.143
485.77	0.67	0.501	1.46	0.143
500.00	0.97	0.329	0.56	0.573
514.65	0.97	0.329	0.21	0.831
529.73	0.97	0.329	0.21	0.831
545.25	0.97	0.329	0.21	0.831
561.23	0.97	0.329	0.24	0.807
577.68	0.13	0.891	1.22	0.218
594.60	0.97	0.329	1.46	0.143
612.03	0.13	0.891	1.46	0.143
629.96	0.13	0.891	1.46	0.143
648.42	0.56	0.573	1.22	0.218
667.42	0.85	0.394	1.22	0.218
686.98	0.29	0.768	1.22	0.218

150

Frequency	Peak pressure condition		Ambient pressure condition		
(in Hz)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value	
707.11	0.29	0.768	0.97	0.329	
727.83	0.59	0.550	0.97	0.329	
749.15	0.29	0.768	0.67	0.501	
771.11	0.00	1.000	1.22	0.218	
793.70	0.39	0.690	0.24	0.804	
816.96	0.39	0.690	0.56	0.573	
840.90	0.39	0.690	0.56	0.573	
865.54	0.97	0.329	0.56	0.573	
890.90	0.97	0.329	0.56	0.573	
917.00	0.97	0.329	0.56	0.573	
943.87	0.97	0.329	0.56	0.573	
971.53	0.97	0.329	0.21	0.831	
1000.00	0.97	0.329	0.10	0.918	
1029.30	0.97	0.329	0.10	0.918	
1059.46	0.97	0.329	0.29	0.768	
1090.51	1.27	0.202	0.97	0.329	
1122.46	1.27	0.202	0.39	0.690	
1155.35	1.66	0.095	0.39	0.690	
1189.21	1.66	0.095	0.39	0.690	
1224.05	1.69	0.091	0.39	0.690	
1259.92	1.69	0.091	0.39	0.690	
1296.84	1.69	0.091	0.10	0.918	
1334.84	1.46	0.143	0.10	0.918	
1373.95	1.46	0.143	0.10	0.918	
1414.21	1.46	0.143	0.10	0.918	
1455.65	1.22	0.218	0.10	0.918	
1498.31	0.97	0.329	0.10	0.918	
1542.21	0.97	0.329	0.10	0.918	
1587.40	0.97	0.329	0.10	0.918	
1633.92	0.67	0.501	0.56	0.573	
1681.79	0.67	0.501	0.97	0.329	
1731.07	0.97	0.329	0.56	0.573	
1781.80	0.97	0.329	1.27	0.201	
1834.01	0.97	0.329	0.24	0.807	
1887.75	0.97	0.329	0.24	0.807	
1943.06	0.97	0.329	0.24	0.807	
2000.00	0.97	0.329	1.22	0.218	
2058.60	0.97	0.329	1.22	0.218	
2118.93	0.67	0.501	0.24	0.807	
2181.02	0.67	0.501	0.97	0.329	
2244.92	#	#	0.67	0.501	
2310.71	#	#	0.67	0.501	
2378.41	0.67	0.501	0.67	0.501	

Table 4.3.2 continued from previous page

Frequency	Peak pressure condition		Ambient pressure condition	
(in Hz)	Z-value	<i>p</i> -value	Z-value	<i>p</i> -value
2448.11	0.67	0.501	0.67	0.501
2519.84	0.67	0.501	0.67	0.501
2593.68	0.67	0.501	0.67	0.501
2669.68	0.67	0.501	0.67	0.501
2747.91	0.67	0.501	0.67	0.501
2828.43	0.67	0.501	0.67	0.501
2911.31	0.67	0.501	0.67	0.501
2996.61	0.65	0.515	0.65	0.515
3084.42	0.65	0.515	0.65	0.515
3174.80	0.65	0.515	0.65	0.515
3267.83	0.65	0.515	0.13	0.891
3363.59	0.13	0.891	0.13	0.891
3462.15	0.13	0.891	0.13	0.891
3563.59	0.13	0.891	0.13	0.891
3668.02	1.56	0.117	0.13	0.891
3775.50	1.56	0.117	0.13	0.891
3886.13	1.56	0.117	0.97	0.329
4000.00	0.65	0.515	0.97	0.329
4117.21	1.50	0.132	1.69	0.091
4237.85	1.50	0.132	1.69	0.091
4362.03	2.19	0.028	1.27	0.201
4489.85	2.19	0.028	1.69	0.091
4621.41	1.27	0.201	1.69	0.091
4756.83	0.29	0.768	0.59	0.550
4896.21	0.29	0.768	0.59	0.550
5039.68	0.92	0.350	0.59	0.550
5187.36	0.21	0.831	0.92	0.357
5339.36	0.56	0.573	1.27	0.201
5495.81	0.56	0.573	0.97	0.329
5656.85	0.97	0.329	1.50	0.132
5822.61	0.97	0.329	0.65	0.515
5993.23	0.13	0.891	0.97	0.329
6168.84	0.97	0.329	0.97	0.329
6349.60	0.67	0.501	0.67	0.501
6535.66	0.67	0.501	0.67	0.501
6727.17	0.67	0.501	0.67	0.501
6924.29	0.24	0.807	0.67	0.501
7127.19	0.67	0.501	0.67	0.501
7336.03	0.67	0.501	0.67	0.501
7550.99	0.67	0.501	0.67	0.501
7772.26	0.67	0.501	#	#
8000.00	0.67	0.501	#	#

Table 4.3.2 continued from previous page

Note. '#'- equality of test for proportions could not be performed due no success in either of the group

Chapter V

Discussion

The present study aimed to compare the findings of WBT at peak and ambient pressure in normal-hearing children and those with sensorineural hearing loss with or without CI. Additionally, the present study also aimed to compare the findings of WBT between the implant and non-implant ears of children with a unilateral cochlear implant. A final aim of the present study was to compare the WBT findings between the electrode types. To fulfill these aims, WBT was performed on 60 children, of which 40 children had congenital hearing impairment of sensorineural type, and 20 had normal hearing. Among the 40 children with sensorineural hearing loss, 20 received unilateral CI, whereas the remaining 20 were bilateral hearing aid users. The absorbance at peak and ambient pressure conditions were compared within and between the groups. Further, the resonance frequency values were also compared within and between the groups.

5.1 Comparison of WBA between the CI group and SNHL group

CI ears of the CI group and the CI-matched ears of the SNHL group were compared to investigate the effect of cochlear implantation on the wide-band absorbance. At peak pressure, the CI ears showed significantly lower absorbance at low frequencies below 750 Hz and significantly higher absorbance in the frequency range of about 1800-3600 Hz in comparison to the SNHL ears. In ambient pressure condition, the differences between the two groups of ears followed a similar pattern, although in a slightly narrower range of frequencies than the peak pressure condition. There are no studies of direct comparison between CI group and SNHL group. However, a few studies have compared, the pre-implant WBT to post-implant WBT. Since, implantation is done mostly in cases of sensorineural hearing loss, it may not be completely out of place to equate the pre-implant middle ear status to the middle ear status in an independent SNHL group. Using this consideration, the findings of the present the study are similar to some of the studies reported previously (Saoji et al., 2020; Racca et al., 2022). Saoji et al. (2020) compared the wide-band absorbance before and after implantation in 5 unilateral CI recipients and reported significantly reduced absorbance in the frequency range of 600-1100 Hz. While they did not report about the increased absorbance in the mid-frequency to high-frequency region, the increased absorbance in the mid-to-high frequencies could be visualized in 3 out of the 5 CI ears in the individual data provided in their study. Therefore, the findings of the present study are similar to their findings. The findings of the present study almost completely mirrored those of by Racca et al. (2022).

The findings of the present study show dissonance with those of Saki et al. (2022) who reported significantly reduced post-implantation absorbance in the frequency range 1260-3175 Hz and also 5040-8000 Hz with no change in the low frequency range. The different age group of the participants in the two studies could be one of the reasons of this dissonance. Saki et al. (2022) performed WBT on infants younger than 24 months of age, whereas the individuals in the current study had mean age of 5.2 years (age range 3 - 6 years). Given that maturational changes are seen in WBT findings from birth to 12 years of age (Aithal et al., 2017; Hunter et al., 2016), the age disparities between the two investigations may have led to the contradictory findings. Since the middle ear characteristics of children <24 months could be quite different from those in the 3-6 years age bracket, the way implantation could affect the characteristics of middle ear may be different. This might explain the differences of the present study's findings from those of Saki et al. (2022).

The observed changes in absorbance following cochlear implantation raise important questions regarding the underlying mechanisms. It has been reported that after CI surgery, the middle characteristics are affected. However, it is not apparent whether, how, or to what extent CI surgery affects the sound conduction process.

The changes in absorbance after cochlear implant surgery can be influenced by various factors related to the surgery itself, and the interaction between the cochlear implant and the middle ear structures (Attias et al., 2022; Racca et al., 2022). These changes in the absorbance could be as result of factors originating from middle ear and inner ear. The probable CI surgery related factors affecting the middle ear could be (1) increased stiffness, (2) bone dust accumulation, (3) pressure changes, (4) eustachian tube function, (5) tympanic membrane mechanics, and (6) electrical stimulation.

The stiffness of middle ear may be impacted by each step of the CI procedure, such as mastoidectomy and posterior tympanotomy, as well as by post-operative conditions including fibrosis (Attias et al., 2022). Another factor reported by Wasson et al. (2018) suggested that the bone dust created during mastoid drilling may enhance ossicular mass which could be additional cause for the changes in middle ear properties after CI.

Also, cochlear implantation surgery could induce transient pressure changes within the middle ear cavity (Hartl et al., 2018). These pressure fluctuations might affect the middle ear's acoustic properties and consequently impact absorbance. Other than these factors, cochlear implantation surgery might influence Eustachian tube function and middle ear pressure regulation. These changes in pressure dynamics could affect the middle ear's compliance and contribute to absorbance alterations.

155

These long-term changes might contribute to gradual alterations in absorbance. Furthermore, due to surgery there could be changes in tympanic membrane properties. The presence of a cochlear implant could influence the movement and vibration of the tympanic membrane (Chan et al., 2005). This change in tympanic membrane function could impact the transfer of sound energy into the middle ear, leading to changes in absorbance.

Additionally, the cochlear implant mechanism of working includes electrical stimulation, which further generates neural impulses. This electrical stimulation delivered by the cochlear implant directly activates auditory nerve fibers within the cochlea that could induce neural responses that affect the mechanical properties of the middle ear structures by way of altering the stapedial reflex and the tensor tympani reflex (Rattay, 1999). After cochlear implant surgery, the auditory system undergoes a period of adaptation to the new sensory input provided by the implant. This adaptation could lead to changes in the neural processing of auditory information, potentially influencing the mechanical responses of the middle ear (Glennon et al., 2020). The interplay of various factors mentioned above makes this an intricate and multifaceted phenomenon that requires further investigation for a complete understanding.

There are also factors related to the inner ear that might affect the absorbance after a CI surgery. These effects include (1) cochleostomy, (2) electrode insertion, (3) changes in fluid dynamics, (4) scar tissue formation, and (5) fibrosis. First, cochleostomy could act as a third window and have an impact on absorption and stiffness (Attias et al., 2022). The third window effect due to this cochleostomy may have caused higher absorbance in the mid-to-high frequencies in the present study. The introduction of the facial recess, the cochlear implant electrode array, the positioning and sealing of the electrode at the round window or cochleostomy, are some additional potential factors that could affect ossicular chain mobility as a result of implantation.

Another probable reason for changes in absorbance after cochlear implant surgery might be the electrode insertion effects. The surgical procedure for cochlear implantation involves the insertion of an electrode array into the cochlea. This insertion might mechanically impact the delicate structures of the middle ear, leading to alterations in the compliance and impedance of the middle ear system. Also, the alterations to the middle ear mechanics by the presence of the cochlear implant electrode array within the cochlea can potentially affect the transmission of sound waves through the cochlea and middle ear structures. This altered transmission might result in changes in the resonant frequencies, stiffness, and damping characteristics of the middle ear. The presence of electrodes in the inner ear might have potentials effects on increasing the inner ear stiffness, similar to otosclerotic ears, in which condition the low frequency absorbance is also reported to be reduced (Shahnaz et al., 2009). Also, the presence of a cochlear implant electrode array might influence the fluid dynamics within the cochlea, affecting the movement of perilymph and endolymph (Andersen et al., 2012). Changes in fluid dynamics can indirectly impact the mechanical properties of the middle ear system.

Scar tissue formation around the electrode array or within the middle ear could introduce changes in tissue compliance and stiffness, leading to alterations in absorbance characteristics (Choi & Oghalai et al., 2005). Other effects could include the development of fibrous tissue after surgery, which could limit basal intrascalar fluid circulation and increased impedance at the oval window, indirectly increasing ossicular chain stiffness and lowering middle ear absorption (Saoji et al., 2020). The duration after cochlear implant surgery could have a significant impact on absorbance at different time points. The healing and adaptation processes that occur in the post-operative period can influence how the middle ear absorbance characteristics change over time. Immediate post-operative effects, healing processes, electroderelated interactions, and long-term adaptation of the auditory system all play roles in shaping the absorbance patterns at different stages after surgery.

In a study by Racca et al. (2022), the absorbance change in CI ears and non-CI ears at various time points were investigated. They reported dramatic change in absorbance up until three or six months after surgery, at which point it stabilised. With this study, it is clear that post-implantation time is a crucial aspect to take into account. In order to find whether or not post-implantation duration may have played a role in the present study, we divided the CI group by implant age with two different boundaries separating the sub-groups (1) at 3 months (2) at 6 months. The results revealed no significant difference in absorbance in CI ears of children with implant age less than or more than 3 or 6 months for the data of present study. This analysis explains why the study's findings were unaffected by variations in implant ages and proves that the differences in implant age was not the reason behind the findings of the present study. Further research is needed to comprehensively understand the intricate relationship between post-operative duration and absorbance changes.

The comparison of the non-CI ears of the CI group with the non-CI matched ears of the SNHL group showed significantly lower absorbance in a narrow frequency range 2828.43-3084.42 Hz at peak pressure in the non-CI ears of the CI group than the CI-matched ears of the SNHL group, similar to previous studies (Saoji et al., 2020). However, contrary to the findings of present study, Saki et al. (2022) reported no significant difference in the non-CI ears after unilateral CI surgery. Again, the age variations between the included participants in the two studies could be the cause of this discrepancy. For ambient pressure conditions, there was no significant difference between the non-CI ears of CI group and CI-matched ears of the SNHL group, unlike in the study by Racca et al. (2022) the authors reported significant changes in the non-CI ears till one month of implantation after which there were no further changes. The present study included most of the participants of more than 1 month of implant age, and hence, probably the differences in the present study from Racca et al. (2022).

The change in the non-CI ears of the CI group could have occurred due to the hard bone drilling during surgery, as the whole skulls vibrates. Cochlear implant involves extreme drilling of the mastoid on one side in a unilateral CI case. However, the effects could be equitable on the contralateral side due to equal energy transfer from one side mastoid to the other side mastoid caused by virtually no interaural attenuation between them (Studebaker 1967; Silman & Silverman 1991). This might have an effect on the bone in the contralateral ear. Similar results were shown for other surgeries involving unilateral mastoidectomy (Latheef et al., 2018).

5.1.2 Comparison of WBA at peak and ambient pressure condition between the CI group and NH group

CI ears of the CI group and CI-matched ears of NH were compared to investigate the effect of surgery on the findings of WBT. The CI ears of the cochlear implant group showed significantly lower absorbance values compared to the CImatched ears of the NH group at low frequencies from 226 Hz to 1259.92 Hz at peak pressure. At ambient pressure, CI ears of the CI group showed significantly lower absorbance than the CI-matched ears of the NH group in the frequency range of 226 Hz to 1296.84 Hz. The previous studies in this regard also reported a reduction in the low frequency absorbance in the implant ear (Merchant et al., 2020; Scheperle & Hajicek, 2021). However, these studies also reported higher absorbance in the CI ear than normal hearing ears in the region around 2000 Hz, which is contrary to the finding of no significant difference in this region in the present study. This could be due to the differences in the age groups of the individuals included between the studies. While the participants in the present study were children, those in the published studies were adults (Merchant et al., 2020; Scheperle & Hajicek, 2021; Attias et al., 2022). There might be a different age and CI effect interaction in the two age groups, leading to the difference in findings in the 2000 Hz region between the studies.

There are two major possible reasons behind the differences in absorbance between the cochlear implanted ears and normal hearing ears- (1) a congenital sensorineural hearing loss, (2) the surgery. A study have shown differences in absorbance in ears with normal hearing and those with sensorineural hearing loss, possibly caused by the changes in SNHL ears associated with causative factors of SNHL (Attias et al., 2022). An ear that undergoes CI surgery is in most likelihood an ear with sensorineural hearing loss. Therefore, the anatomical differences and thereby the physiological changes could explain the differences in absorbance between the ears of the two groups. Additionally, these differences could be accentuated by further anatomical changes due to surgery. These include bone dust from drilling (Wasson et al., 2018), cochleostomy effects (Attias et al., 2022), and fibrous tissue development (Saoji et al., 2020). Pressure fluctuations (Hartl et al., 2018) and scar tissue formation (Choi & Oghalai el al., 2005) could also play roles. Electrode insertion might affect middle ear compliance, impedance, and fluid dynamics (Shahnaz et al., 2009; Pazen et al., 2017). Eustachian tube function and long-term tissue remodeling may also contribute, along with the changes in tympanic membrane properties (Chan et al., 2005). Furthermore, electrical stimulation by the implant could also affect neural responses and auditory system adaptation (Andersen et al., 2012; Glennon et al., 2020; Rattay, 1999). All these taken together can explain of the difference in absorbance between the CI ears and the NH ears in the present study.

Studies comparing normal hearing individuals to individuals with sensorineural hearing loss have shown lower absorbance in the sensorineural hearing loss individuals in the mid-to-high frequency region (Attias et al., 2022), probably due to higher resistance in these frequencies in individuals with sensorineural hearing loss. The cochleostomy may have resulted in reduction of this resistance allowing the midto-high frequency absorbance values to return to the levels found in the normal hearing children. Therefore, the third window effect due to cochleostomy may have caused revival of absorbance characteristics in the mid-to-high frequencies. In addition, the other factors such as insertion of the cochlear implant electrode array, fibrotic changes after CI surgery, and accumulation of bone dust may have caused the low-to-mid frequency absorbance reduction.

Comparison between the non-CI ears of the CI group and non-CI-matched ears of the NH group were also made at peak and ambient pressure condition, which revealed no significant difference in absorbance at peak as well as at ambient pressure condition. Lower absorbance for the contralateral non-implanted ear of a CI recipient when compared to normal hearing ears at 4000 Hz and 5000 Hz has been reported (Attias et al., 2022). Although our study does show a difference in this frequency region, it could not reach the statistical significance. Since the differences between the studies are within the high frequency region, it could again be due to the age group differences between the studies, as described above.

5.1.3 Comparison of WBA at peak and ambient pressure condition between the SNHL group and NH group

CI-matched ears of the SNHL group and CI-matched ears of NH group were compared to investigate the effect of sensorineural hearing loss on the findings of WBT. The CI-matched ears of the SNHL group showed significantly lower absorbance values compared to the CI-matched ears of the NH group in mid-to-high frequencies from 1000 Hz to 3563.59 Hz at peak pressure. At ambient pressure, CImatched-ears of the SNHL group showed significantly lower absorbance than the CImatched ears of the SNHL group in the frequency range of 1122.46-1224.05 Hz and 1334.84-3563.59 Hz. Therefore, with an exception for a few sporadic frequencies, there was a significant group difference between NH and SNHL group in the mid-tohigh frequency region of about 1000 Hz to 3500 Hz in peak as well as ambient pressure measurements.

Comparison between the non-CI ears of the SNHL group and non-CI-matched ears of the NH group were also made at peak and ambient pressure condition. It revealed no significant difference in absorbance values at peak as well as at ambient pressure. Although the frequency range of 1000-3563.59 Hz had lower mean absorbance values in the non-CI-matched ears of SNHL group than the non-CImatched ears of the NH group, the reduction was not significant at peak and ambient pressure. Therefore, the ears with SNHL had lower absorbance in the mid-to-high frequency region than the NH ears. This is in line with reports relating this reduction in absorbance at mid-to-high frequencies (Attias et al., 2022). Sensorineural hearing loss (SNHL) involves structural and mechanical alterations in the Organ of Corti, such as the loss of cochlear neurons and sensory cells, as well as fibrosis, particularly in the stria vascularis (Linthicum et al., 2013; Bommakanti et al., 2019; Zhang et al., 2020). It might result from an abnormal or missing tectorial membrane due to sensorineural hearing loss (Ishai et al., 2019). An additional contribution to the findings could be from the changes induced by a prolonged use of hearing aids at high gain settings. Large mechanical vibrations to the cochlear partition could have induced changes to its mechanical properties there by leading to differences in absorbance.

5.2 Comparison of WBA between implanted and non-implanted ears of the CI group

CI ears and non-CI ears of the CI group were compared to investigate the effect of surgery on the middle ear. The CI ears showed significantly lower absorbance values compared to the non-CI ears of the CI group in low-to-mid frequencies. The findings of the present study are similar to those of Attias et al. (2022). In a study by Orhan et al. (2020), the authors compared the effect of cochlear implantation by comparing implanted and non-implanted ears of the same individual and reported statistically reduced average absorbance ratio for implanted ears at all measured frequencies from 226 Hz to 8000 Hz.

The post-implantation differences between the ears of unilateral CI cases could be due to multiple factors that influence middle ear absorbance. These encompass surgical procedures and interactions (Attias et al., 2022; Racca et al., 2022), the accumulation of bone dust during drilling (Wasson et al., 2018), cochleostomy impacts (Attias et al., 2022), and the development of fibrous tissue (Saoji et al., 2020). Additionally, fluctuations in pressure within the middle ear (Hartl et al., 2023) and the formation of scar tissue (Choi & Oghalai el al., 2005) could contribute. The insertion of electrodes could alter middle ear compliance and impedance (Shahnaz et al., 2009; Pazen et al., 2017). Eustachian tube function and gradual tissue remodeling could also play important roles, alongside changes in tympanic membrane properties (Chan et al., 2005). Moreover, the cochlear implant's electrical stimulation triggers neural responses, possibly impacting middle ear mechanics via stapedial and tensor tympani reflexes (Rattay, 1999).

5.3 Comparison of WBA between the two electrode types

The results of the present study revealed no significant difference in the WBT findings between the two different electrode types, although a narrow range of frequencies around 2000 Hz showed a significantly lower absorbance for the CI422 electrode array than the Sonata Ti100 electrode array. There are no previous studies on differential effects of different electrode types. The present study had participants with only two electrode types, and there was no significant difference in absorbance between them. While the results of the present study appeared to show no effect of electrode types, it would be pre-mature to conclude the same. This is because there are several electrode types, some of which are standard, short or extra-long. Therefore, it is pertinent to expect differential amount of fluid displacement within the cochlea because of different electrode dimensions. Therefore, further studies are needed to ascertain the differences in absorbance due to different electrode types.

5.4 Comparison of resonance frequency

The comparison of resonance frequency among the groups showed no significant difference. The comparison of resonance frequency between the two ears of CI group also showed no significant difference. Even the comparison between the two electrode types showed no significant difference. These findings on resonance frequency are unlike those reported in the previous study by Orhan et al. (2020). They reported increased resonance frequency of middle ear in implanted ears than nonimplanted ears. Therefore, there is a dissonance in the findings of resonance frequency between the studies. However, since there is only one previous study, more studies are needed to fully understand the effect of cochlear implantation on the resonance of middle ear. As of the findings of the present study, the no difference in resonance frequency despite differences in absorbance properties suggest micro changes that are possibly not large enough to alter the resonance frequency significantly.

Chapter VI

Summary And Conclusion

WBT is an innovative method for assessing middle ear function, offering a comprehensive view of the ear's characteristics. It simultaneously measures multiple tympanograms at various probe tone frequencies, providing insights beyond the traditional single-frequency assessments. WBT can extract absorbance data, resonance frequency, and wideband averaged tympanograms, making it valuable for diagnosing conditions like otosclerosis, middle ear effusions, and grommet presence. Additionally, it provides useful insights into the inner ear conditions such as Meniere's disease and semicircular canal dehiscence. WBT's non-invasive nature also makes it suitable for post-ear surgery evaluations. Its potential in assessing middle ear status in sensorineural hearing loss cases, particularly those with cochlear implants, is an area of ongoing research.

After cochlear implantation surgery, some rare complications like ossicular displacement have been reported, but these findings are not common enough to justify the need for WBT investigations among cochlear implant recipients. However, studies have shown that the presence of the electrode array may alter the vibration patterns of the stapes footplate, leading to changes in air-conduction thresholds, despite unchanged bone-conduction thresholds. Research on WBT findings in cochlear implant cases has been steadily growing, revealing differences in WBT patterns compared to contralateral non-implanted ears of the CI recipients (if unilaterally implanted) or normal-hearing individuals; primarily, a decrease in absorbance across varying frequency ranges has been reported. These findings vary due to small sample sizes, electrode array differences, age effect, individual variations and the control
groups used for comparison. It is critical to distinguish WBT patterns associated with the implantation from those associated with the hearing loss itself because implanted ears are typically associated with severe to profound SNHL. Therefore, the present study aimed at comparing the WBT findings between the normal hearing children and those with sensorineural hearing loss with or without cochlear implantation. The study also aimed at comparing WBT findings between the implanted and non-implanted ears of individuals with unilateral cochlear implantation. The final aim of the present study was also to compare the WBT findings between the two electrode types.

Present study involved three groups of children aged 3 to 13 years. Group I comprised of 20 normal-hearing children, confirmed through routine audiological assessments. Group II consisted of children with sensorineural hearing loss who had undergone unilateral cochlear implantation, ensuring they had no obvious post-surgery middle ear complications. Group III included children with sensorineural hearing loss using bilateral hearing aids, also without middle ear pathology. WBT was performed in a controlled, sound-treated room. The study utilized an Interacoustics Titan Suite IMP440/WBT440 to obtain absorbance measurement across 122 frequencies ranging from 226 Hz to 8000 Hz. Statistical analyses were conducted using SPSS software, employing non-parametric tests for data comparison due to non-normal distribution of data for a majority of test variables.

The study found significant differences in absorbance among groups. To investigate the effect of CI surgery on middle ear, ears of children with CI were compared to children of SNHL group and children of NH group. Additionally, CI ears were also compared to the contralateral non-implanted ears to study the effect of surgery. The impact of hearing loss was examined by comparing the SNHL group with the NH group. CI ears had lower absorbance values than SNHL group in low frequency range (till 800 Hz) and higher absorbance at mid-to-high frequency range (between 1500 Hz to 3500 Hz) at peak and ambient pressure. Further, CI ears had lower absorbance than NH group in low frequency range (till 1300 Hz) at peak and ambient pressure. The comparison between the non-CI ears of CI group to other group showed no significant difference or significant difference in a very narrow range of frequencies which could be a result of high variability. Additionally, in the within group comparisons, the CI ears of the CI group when compared to non-CI ears of the CI group, showed lower absorbance in low-to-mid frequency regions (till 1500 Hz) and higher absorbance at mid-to-high frequency regions (around 2000 Hz) at peak pressure. Similar results were observed at ambient pressure. The type of electrode used in cochlear implants had limited impact on absorbance values, except for a narrow frequency range in peak pressure condition.

These differences could be accentuated by further anatomical changes due to surgery. These include bone dust from drilling (Wasson et al., 2018), cochleostomy effects (Attias et al., 2022), and fibrous tissue development (Saoji et al., 2020). Pressure fluctuations (Hartl et al., 2023) and scar tissue formation (Choi & Oghalai el al., 2005) could also play roles. Electrode insertion might affect middle ear compliance, impedance, and fluid dynamics (Shahnaz et al., 2009; Pazen et al., 2017). Eustachian tube function and long-term tissue remodeling may also contribute, along with the changes in tympanic membrane properties (Chan et al., 2005). Furthermore, electrical stimulation by the implant could also affect neural responses and auditory system adaptation (Shen et al., 2020; Waltzman and Shapiro, 1999). All these taken together can explain the findings of the difference in absorbance between the CI ears and the NH ears in the present study.

Clinical implications of the study

This study aimed to distinguish WBT findings between normal hearing children and those with sensorineural hearing loss, potentially revealing differences in WBT results following cochlear implantation. The findings of the study indicate distinctions in post-cochlear implantation WBT compared to sensorineural hearing loss without cochlear implants, it could lead to further investigations into whether middle ear changes contribute to the absence of cVEMP (cervical vestibular evoked myogenic potentials) after cochlear implantation, offering new research opportunities in this area.

Limitations of the study and future directions

As maturational changes may have an impact, the current study included participants of various ages and implant ages; therefore, restricted age groups may be added in future investigations. To account for individual variability, pre-implanted ears compared to post-implanted ears is even a better comparison, and future studies could consider this route for investigating the effects of cochlear implantation on middle ear characteristics.

The current research included participants with different implant age. The differences in this aspect would cause differences in the amount of changes in middle ear absorbance. However, such an evaluation was not done. Further, the variations in electrode dimensions among clients may have led to differences in absorbance, but in the present study, these distinctions did not reach statistical significance, possibly due to limited sample size. To effectively explore the impact of different electrode types, a larger and more variable sample size would be necessary to achieve sufficient statistical power.

References

- Aithal, S., Aithal, V., & Kei, J. (2017). Effect of ear canal pressure and age on wideband absorbance in young infants. *International Journal of Audiology*, 56(5), 346-355.
- American National Standards Institute. (1991). Maximum permissible ambient noise levels for audiometric test rooms (ANSI S3.1-1991). New York: ANSI
- Attias, J., Shahnaz, N., Efrat, C., Westerberg, B., Lea, J., David, E., Zavdy, O., & Hilly, O. (2022). Wideband tympanometry in adults with severe to profound hearing loss with and without cochlear implants. *Applied Sciences*, 12(17), 8879.
 https://doi.org/10.3390/app12178879
- Battmer, R. D., Linz, B., & Lenarz, T. (2009). A review of device failure in more than 23 years of clinical experience of a cochlear implant program with more than 3,400 implantees. *Otology & Neurotology*, 30(4), 455-463.
- Beers, A. N., Shahnaz, N., Westerberg, B. D., & Kozak, F. K. (2010). Wideband reflectance in normal caucasian and chinese school-aged children and in children with otitis media with effusion. *Ear and Hearing*, 31(2), 221–233. https://doi.org/10.1097/AUD.0b013e3181c00eae
- Blamey, P. J., Maat, B., Baskent, D., Mawman, D., Burke, E., Dillier, N., ... & Lazard, D.
 S. (2015). A retrospective multicenter study comparing speech perception outcomes for bilateral implantation and bimodal rehabilitation. *Ear and Hearing*, 36(4), 408-416.
- Bommakanti, K., Iyer, J. S., & Stankovic, K. M. (2019). Cochlear histopathology in human genetic hearing loss: State of the science and future prospects. *Hearing Research*, 382, 107785. https://doi.org/10.1016/j.heares.2019.107785

- Choi, C. H., & Oghalai, J. S. (2005). Predicting the effect of post-implant cochlear fibrosis on residual hearing. *Hearing Research*, 205(1-2), 193-200.
- Clark, G. M. (2015). The multi-channel cochlear implant: Multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. *Hearing Research*, 322, 4-13.
- Coco, A., Epp, S. B., Fallon, J. B., Xu, J., Millard, R. E., & Shepherd, R. K. (2007). Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? *Hearing Research*, 225(1–2), 60–70. https://doi.org/10.1016/j.heares.2006.12.004
- Dewey, J. B., Xia, A., Müller, U., Belyantseva, I. A., Applegate, B. E., & Oghalai, J. S. (2018). Mammalian auditory hair cell bundle stiffness affects frequency tuning by increasing coupling along the length of the cochlea. *Cell Reports*, 23(10), 2915–2927. https://doi.org/10.1016/j.celrep.2018.05.024
- Dhanasingh, A., & Jolly, C. (2017). An overview of cochlear implant electrode array designs. *Hearing Research*, 356, 93–103. https://doi.org/10.1016/j.heares.2017.10.005
- Dong, W., & Olson, E. S. (2009). In vivo impedance of the gerbil cochlear partition at auditory frequencies. *Biophysical Journal*, 97(5), 1233–1243. https://doi.org/10.1016/j.bpj.2009.05.057
- Donnelly, N., Bibas, A., Jiang, D., Bamiou, D.-E., Santulli, C., Jeronimidis, G., & Fitzgerald O'Connor, A. (2009). Effect of cochlear implant electrode insertion on middle-ear function as measured by intra-operative laser doppler vibrometry. *The Journal of Laryngology and Otology*, 123(7), 723–729.
 https://doi.org/10.1017/S0022215109004290

- Dorman, M. F., Natale, S., Spahr, A., & Castioni, E. (2017). Speech understanding in noise by patients with cochlear implants using a monaural adaptive beamformer. *Journal of Speech, Language, and Hearing Research*, 60(8), 2360-2363.
- Ertas, Y. N., Ozpolat, D., Karasu, S. N., & Ashammakhi, N. (2022). Recent advances in cochlear implant electrode array design parameters. *Micromachines*, 13(7), 1081.
- Feeney, M. P., Grant, I. L., & Marryott, L. P. (2003). Wideband energy reflectance measurements in adults with middle-ear disorders. *Journal of Speech, Language, and Hearing Research*, 46(4), 901–911. https://doi.org/10.1044/1092-4388(2003/070)
- Feeney, M. P., Grant, I. L., & Mills, D. M. (2009). Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone. *Ear and Hearing*, 30(4), 391–400. https://doi.org/10.1097/AUD.0b013e3181a283ed
- Gaylor, J. M., Raman, G., Chung, M., Lee, J., Rao, M., Lau, J., & Poe, D. S. (2013).
 Cochlear implantation in adults: a systematic review and meta-analysis. *JAMA Otolaryngology–Head and Neck Surgery*, 139(3), 265-272.
- Glennon, E., Svirsky, M. A., & Froemke, R. C. (2020). Auditory cortical plasticity in cochlear implant users. *Current Opinion in Neurobiology*, 60, 108-114.
- Gstoettner, W., Plenk, H., Franz, P., Hamzavi, J., Baumgartner, W., Czerny, C., & Ehrenberger, K. (1997). Cochlear implant deep electrode insertion: extent of insertional trauma. *Acta Oto-laryngologica*, 117(2), 274-277.

- Hartl, R. M. B., Greene, N. T., Jenkins, H. A., Cass, S. P., & Tollin, D. J. (2018). Lateral semi-circular canal pressures during cochlear implant electrode insertion: A possible mechanism for postoperative vestibular loss. *Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology*, 39(6), 755.
- Hunter, L. L., Keefe, D. H., Feeney, M. P., Fitzpatrick, D. F., & Lin, L. (2016). Longitudinal development of wideband reflectance tympanometry in normal and atrisk infants. *Hearing Research*, 340, 3-14.
- Ishai, R., Kamakura, T., & Nadol, J. B. (2019). Abnormal tectorial membranes in sensorineural hearing loss: a human temporal bone study. *Otology and Neurotology*, 40(7), e732–e738. https://doi.org/10.1097/MAO.00000000002286
- Keefe, D. H., & Simmons, J. L. (2003). Energy transmittance predicts conductive hearing loss in older children and adults. *The Journal of the Acoustical Society of America*, 114(6), 3217–3238. https://doi.org/10.1121/1.1625931
- Kim, J., & Koo, M. (2015). Mass and stiffness impact on the middle ear and the cochlear partition. *Journal of Audiology and Otology*, 19(1), 1–6. https://doi.org/10.7874/jao.2015.19.1.1
- Latheef, M. N., Karthikeyan, P., & Coumare, V. N. (2018). Effect of mastoid drilling on hearing of the contralateral normal ear in mastoidectomy. *Indian Journal of Otolaryngology and Head and Neck Surgery*, 70, 205-210.
- Linthicum, F. H., Doherty, J., & Berliner, K. I. (2013). Idiopathic sudden sensorineural hearing loss: vascular or viral? *Otolaryngology–Head and Neck Surgery*, 149(6), 914– 917. https://doi.org/10.1177/0194599813506546

- Mazlan, R., Kei, J., Ya, C. L., Yusof, W. N. H. M., Saim, L., & Zhao, F. (2015). Age and gender effects on wideband absorbance in adults with normal outer and middle ear function. *Journal of Speech, Language, and Hearing Research*, 58(4), 1377-1386.
- Merchant, G. R., Röösli, C., Niesten, M. E. F., Hamade, M. A., Lee, D. J., McKinnon, M. L., Ulku, C. H., Rosowski, J. J., Merchant, S. N., & Nakajima, H. H. (2015). Power reflectance as a screening tool for the diagnosis of superior semicircular canal dehiscence. *Otology and Neurotology*, 36(1), 172–177. https://doi.org/10.1097/MAO.00000000000294
- Merchant, G. R., Schulz, K. M., Patterson, J. N., Fitzpatrick, D., & Janky, K. L. (2020). Effect of cochlear implantation on vestibular evoked myogenic potentials and wideband acoustic immittance. *Ear and Hearing*, 41(5), 1111.
- Miehe, J., Mogensen, S., Lyhne, N., Skals, R., & Hougaard, D. D. (2022). Wideband tympanometry as a diagnostic tool for Meniere's disease: a retrospective case-control study. *European Archives of Oto-Rhino-Laryngology*, 279(4), 1831–1841. https://doi.org/10.1007/s00405-021-06882-7
- Mo, J., Jiam, N. T., Deroche, M. L., Jiradejvong, P., & Limb, C. J. (2022). Effect of frequency response manipulations on musical sound quality for cochlear implant users. *Trends in Hearing*, 26, 23312165221120017.
- Nakajima, H. H., Rosowski, J. J., Shahnaz, N., & Voss, S. E. (2013). Assessment of ear disorders using power reflectance. *Ear and Hearing*, 34(Supplement 1), 48s–53s. https://doi.org/10.1097/AUD.0b013e31829c964d

- Norgaard, K. R., Fernandez-Grande, E., & Laugesen, S. (2017). Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements. *The Journal of the Acoustical Society of America*, 142(6), 3497–3509. https://doi.org/10.1121/1.5016808
- Orhan, K. S., Çelik, M., Polat, B., Dikici, T., & Güldiken, Y. (2021). Wideband Absorbance Outcomes of Cochlear Implantation: A Comparative Clinical Study. *The Journal of International Advanced Otology*, 17(1), 9.
- Park, M. K. (2017). Clinical applications of wideband tympanometry. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 60(8), 375–380. https://doi.org/10.3342/kjorl-hns.2017.00605
- Park, M., Han, K.-H., Jung, H., Kim, M.-H., Chang, H.-K., Kim, S. H., Park, M. K., & Lee, J. H. (2015). Usefulness of 1000-Hz probe tone in tympanometry according to age in Korean infants. *International Journal of Pediatric Otorhinolaryngology*, 79(1), 42–46. https://doi.org/10.1016/j.ijporl.2014.10.041
- Pazen, D., Anagiotos, A., Nünning, M., Gostian, A. O., Ortmann, M., & Beutner, D.
 (2017). The impact of a cochlear implant electrode array on the middle ear transfer function. *Ear and Hearing*, 38(4), e241-e255.
- Pisoni, D. B., Conway, C. M., Kronenberger, W. G., Horn, D. L., Karpicke, J., & Henning,
 S. C. (2008). Efficacy and effectiveness of cochlear implants in deaf children. *Deaf* cognition: Foundations and Outcomes, 52-101.
- Racca, J. M., Jones, L. L., Dwyer, R. T., Ferguson, M., Sunderhaus, L., Hood, L. J., & Gifford, R. H. (2022). Changes in Acoustic Absorbance Pre–and Post–Cochlear Implantation. *American Journal of Audiology*, 31(2), 380-391.

- Rask-Andersen, H., Liu, W., Erixon, E., Kinnefors, A., Pfaller, K., Schrott-Fischer, A., & Glueckert, R. (2012). Human cochlea: anatomical characteristics and their relevance for cochlear implantation. *The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology*, 295(11), 1791-1811.
- Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system. *Neuroscience*, 89(2), 335-346.
- Raveh, E., Attias, J., Nageris, B., Kornreich, L., & Ulanovski, D. (2015). Pattern of hearing loss following cochlear implantation. *European Archives of Oto-Rhino-Laryngology*, 272(9), 2261–2266. https://doi.org/10.1007/s00405-014-3184-2
- Saki, N., Shirani, M., Kardooni, M., Mirmoemeni, G., & Bayat, A. (2022). The effects of cochlear implantation on middle ear function: A prospective study. *International Journal of Pediatric Otorhinolaryngology*, 163, 111368. https://doi.org/10.1016/j.ijporl.2022.111368
- Saki, N., Shirani, M., Kardooni, M., Mirmoemeni, G., & Bayat, A. (2022). The effects of cochlear implantation on middle ear function: A prospective study. *International Journal of Pediatric Otorhinolaryngology*, 163, 111368.
- Santos, F., & Nadol, J. B. (2017). Temporal bone histopathology of furosemide ototoxicity. Laryngoscope Investigative Otolaryngology, 2(5), 204–207. https://doi.org/10.1002/lio2.108
- Saoji, A. A., Shapiro, S. B., Finley, C. C., Koka, K., & Cassis, A. M. (2020). Changes in wide-band tympanometry absorbance following cochlear implantation. *Otology and Neurotology*, 41(6), e680–e685. https://doi.org/10.1097/MAO.00000000002625

- Saoji, A. A., Shapiro, S. B., Finley, C. C., Koka, K., & Cassis, A. M. (2020). Changes in wide-band tympanometry absorbance following cochlear implantation. *Otology and Neurotology*, 41(6), e680-e685.
- Scheperle, R. A., & Hajicek, J. J. (2020). Wideband Acoustic Immittance in Cochlear Implant Recipients: Reflectance and Stapedial Reflexes. *Ear and hearing*, 41(4), 883.

Shahnaz, N., & Bork, K. (2006). Wideband reflectance norms for caucasian and chinese young adults. *Ear and Hearing*, 27(6), 774–788. https://doi.org/10.1097/01.aud.0000240568.00816.4a

- Shahnaz, N., Bork, K., Polka, L., Longridge, N., Bell, D., & Westerberg, B. D. (2009). Energy reflectance and tympanometry in normal and otosclerotic ears. *Ear and Hearing*, 30(2), 219–233. https://doi.org/10.1097/AUD.0b013e3181976a14
- Shahnaz, N., Longridge, N., & Bell, D. (2009). Wideband energy reflectance patterns in preoperative and post-operative otosclerotic ears. *International Journal of Audiology*, 48(5), 240–247. https://doi.org/10.1080/14992020802635317
- Shahnaz, N., Miranda, T., & Polka, L. (2008). Multifrequency tympanometry in neonatal intensive care unit and well babies. *Journal of the American Academy of Audiology*, 19(05), 392–418. https://doi.org/10.3766/jaaa.19.5.3

Silman, S. (1991). Auditory diagnosis. Principles and applications, 49-51.

Studebaker, G. A. (1967). Clinical masking of the nontest ear. *Journal of Speech and Hearing Disorders*, 32(4), 360-371.

- Tanno, G. A. Y., Santos, M. A. de O., Sanches, M. T. D., Durante, A. S., Almeida, K. de, Gameiro, M. S., Roque, N. M. C. de F., & Sousa Neto, O. M. de. (2022). Analysis of wideband tympanometry in Ménière's disease. *Brazilian Journal of Otorhinolaryngology*, 88(2), 194–203. https://doi.org/10.1016/j.bjorl.2020.05.029
- Terzi, S., Özgür, A., Erdivanli, Ö. Ç., Coşkun, Z. Ö., Ogurlu, M., Demirci, M., & Dursun,
 E. (2015). Diagnostic value of the wideband acoustic absorbance test in middle-ear
 effusion. *The Journal of Laryngology & Otology*, 129(11), 1078–1084.
 https://doi.org/10.1017/S0022215115002339
- Todt, I., Rademacher, G., Grupe, G., Stratmann, A., Ernst, A., Mutze, S., & Mittmann, P. (2018). Cochlear implants and 1.5 T MRI scans: the effect of diametrically bipolar magnets and screw fixation on pain. *Journal of Otolaryngology-Head & Neck Surgery*, 47, 1-4.
- Vincent, R., Wegner, I., Kamalski, D. M., Bittermann, A. J., & Grolman, W. (2016). Congenital stapes ankylosis in children: surgical findings and results in 35 cases. *Otology and Neurotology*, 37(4), 367-373.
- Voss, S. E., & Allen, J. B. (1994). Measurement of acoustic impedance and reflectance in the human ear canal. *The Journal of the Acoustical Society of America*, 95(1), 372– 384. https://doi.org/10.1121/1.408329
- Wasson, J. D., Campbell, L., Chambers, S., Hampson, A., Briggs, R. J., & O'Leary, S. J. (2018). Effect of cochlear implantation on middle ear function: A three-month prospective study. *The Laryngoscope*, 128(5), 1207-1212.
- Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. *Hearing Research*, 242(1-2), 3-21.

- Yoon, P. J. (2011). Pediatric cochlear implantation. *Current Opinion in Pediatrics*, 23(3), 346–350. https://doi.org/10.1097/MOP.0b013e32834618ec
- Zhang, L., Wang, J., Zhao, F., & Li, Y. (2020). Inner ear pressure evaluation using wideband tympanometry in children with Large Vestibular Aqueduct Syndrome (LVAS): A pilot study. *International Journal of Pediatric Otorhinolaryngology*, 128, 109690. https://doi.org/10.1016/j.ijporl.2019.109690
- Zhang, N., Cai, J., Xu, L., Wang, H., & Liu, W. (2020). Cisplatin-induced stria vascularis damage is associated with inflammation and fibrosis. *Neural Plasticity*, 2020, 1–13. https://doi.org/10.1155/2020/8851525

Appendix A

Informed Consent Form

Information regarding the study:

I, Simi Milind Wagholikar, 2nd M.Sc (Audiology) student of All India Institute of Speech and Hearing, am doing my Dissertation on the topic entitled **"Wideband Tympanometry in Children with Severe to Profound Hearing loss with and without Cochlear Implant: A Comparison Study"** under the guidance of Dr. Niraj Kumar Singh, Associate Professor in Audiology. The evaluations used in the study are meant to assess the middle ear functioning. The procedures used during the study are not harmful in any way and are approved by the governing health agencies worldwide.

Signature (Simi Milind Wagholikar)

To be filled by the participant:

I______, Father/ Mother/Guardian of _______, have been explained the procedure, its benefits, and outcomes. I am also aware of the consequences (if any) and that the information disclosed will be used for publications. I am willing to participate in the study on a non-payment basis.

Left hand thumb impression/Signature