EXPLORING THE NEUROAUDIOLOGICAL PATHOPHYSIOLOGY OF MISOPHONIA: A SYSTEMATIC REVIEW

SAJANA ARYAL

Register No: 20AUD029

This dissertation is submitted in part fulfilment for the degree of

Masters of Science (Audiology)

University of Mysore

ALL INDIA INSTITUTE OF SPEECH AND HEARING

Manasagangothri, Mysuru- 570006

August 2022

CERTIFICATE

This is to certify that this dissertation entitled 'Exploring the Neuroaudiological Pathophysiology of Misophonia' is a bonafide work submitted as a part of the fulfillment for the degree of Master of Science (Audiology) of the student with Registration Number: 20AUD029. This has been carried out under the guidance of the faculty of this institute and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru

August 2022

Dr. M. Pushpavathi

Director

All India Institute of Speech and Hearing

Manasagangothri, Mysuru 570006

CERTIFICATE

This is to certify that this dissertation entitled "**Exploring the Neuroaudiological Pathophysiology of Misophonia: A Systematic Review**" has been prepared under my supervision and guidance. It is also being certified that this dissertation has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru	Guide
August 2022	Dr. Prashanth Prabhu
	Assistant Professor in Audiology,
	Department of Audiology,
	All India Institute of Speech and Hearing
	Manasagangothri, Mysuru 570006

DECLARATION

This is to certify that this dissertation entitled "**Exploring the Neuroaudiological pathophysiology of Misophonia: A Systematic Review**" is the result of my study under the guidance of Dr. Prashanth Prabhu, Assistant Professor in Audiology, Department of Audiology, All India Institute of Speech and Hearing, Mysore and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru

Registration No: 20AUD029

August 2022

Dedicated to ममी, बाबा

&

मेरो प्यारो देश नेपाल

ACKNOWLEDGEMENT

Dr.Prashanth Prabhu, sir, I feel very lucky to have you as my mentor. You have been such an exemplary mentor, and I cannot thank you enough. Millions of students dream to get a mentor like you, sir, and I feel so lucky that I got you as my mentor. Thank you for always guiding me on the right path.

Sir, your support and teaching have gifted me with perspective and direction I would not have otherwise. What I am today and what I know about research is only because of you, sir. Your useful and excellent advice will always remain with me. I don't have any words to explain for your patience, dedication, care, love, and focused guidance.

You have worked tirelessly to help and motivate me in any way you saw possible. I will never forget your kindness and always follow in your footsteps. I will always miss you, sir!

I would like to thank the Director of AIISH, Prof. M. Pushpavathi.

I would like to thank the Head of the Department of Audiology, Dr. Prawin Kumar, for permitting this study.

I would like to thank **all the respected teachers of AIISH** who directly and indirectly motivated and helped me throughout the study period.

I would like to thank my family members; my caring and beautiful Mamuu, my caring Baba, my lovely Sisters, and my caring Bhai. I survived here at the hostel away from home for two years because of your love, care, and guidance. I don't have any words to explain my feelings for you. I would like to thank my brother 'Suvash' especially for giving quiet encouragement and positive belief in my success that kept me going regardless of my challenges.

Love of my life 'Biraj,' thank you for always being with me aside. Your love, care, and guidance always motivated me to do better. Thank you for making my life exciting and for making me feel loved and safe.

I would like to thank **Dipika**, **Dilli**, **Shraddha di**, **Ajapa**, **Shashish bhaii**, **Prabuddha daii**, **Prateek bhaiya**, **and Asis daii** for always motivating me to do things better in all the possible ways.

Last but not least, I would like to thank all my **dearest and nearest friends**, seniors, and juniors at AIISH for all the love and care you guys showered on me. You guys will always remain in my heart.

THANK YOU EACH AND EVERYONE!

Table of contents

Chapter No.	Title	Page no.
1.	Introduction	2-13
2.	Method	14-15
3.	Results	16-50
4.	Discussion	51-57
5.	Summary and Conclusion	58-61
	References	62-69

	List of figures	
Figure no.	Figure description	Page no.
3.1	Flowchart depicting the selection process of the articles	17

Table	Title	Page
no.		no.
3.1	Tabular representation of quality analysis of the	19-20
	studies selected for the review using QUADAS-2	
3.2	The outcome of ten neuroimaging studies	23-45
3.3	The outcome of the physiological tests used across	47-50
	the studies	

List of Tables

Abstract

Misophonia is a neurophysiological disorder in which certain sounds trigger an intensely emotional or physiological response caused by an increased autonomic nervous system reaction to the triggers. This is a relatively new condition, and the neurophysiological mechanism behind this condition is not known yet. The assessment and management of misophonia need a team approach. Audiologists are key members of the team. However, their roles in this condition are not well understood. Our study aims to review the neurophysiological mechanism of misophonia, highlighting the mechanism involved in the audiological pathway and direct the discussion towards applications of findings in the assessment and management of misophonia from the audiological perspective. A review of 12 articles from different databases was conducted to highlight neurophysiological mechanisms. Most of the studies selected were experimental designs involving individuals with misophonia. Assessment of study quality reported an overall low risk of bias. This review also highlights the need to include an audiologist as a team member in the assessment and management of misophonia.

Keywords: Misophonia; Neurophysiology; Audiologist; Systematic Review; Assessment and management

Chapter 1

Introduction

Misophonia is derived from the Greek word misos (hate) and phone (voice), which means hatred of sound. It is a new condition that is not clearly understood yet. Misophonia or sound selectivity syndrome is the sound tolerance disorder in which certain sounds trigger an intensely emotional or physiological response caused by increased autonomic nervous system reaction to certain triggers (Jastreboff & Jastreboff, 2014). Jastreboff first described this phenomenon in 2001 (Jastreboff & Jastreboff, 2001). Misophonia is not classified as a phobia because, unlike phonophobia, it is not characterized by a dread of occurring sounds. Jastreboff defined phonophobia as a kind of misophonia; hence the definitions and classification of these categories are debatable (Jastreboff, Margareth M.; Jastreboff, 2001)

Triggers are the sound that causes emotional outburst in a patient with misophonia. People with misophonia exhibit various physiological and emotional responses when exposed to certain auditory triggers, including an accelerated heart rate, sweating, anxiety, rage, irritability, and disgust (Jastreboff & Jastreboff, 2014). Since triggers are very much common in misophonic individuals, they can lead to social isolation and psychological problems. Jastreboff and Jastreboff (2002) reported that the triggers need not be only related to the human body. Misophonia can also be triggered by human-made sounds that are not directly related to the human body, such as pen clicking, rustling, tapping, etc.

The current knowledge level indicates that noises' acoustic properties have no impact on emotional arousals (Brout et al., 2018). The types of aversive triggers vary from individual to individual and depend on various factors, such as experience, social context, and the psychological profile of the person (Jastreboff & Jastreboff, 2014). The sounds created by the human mouth or nose, such as chewing, breathing sounds, and sniffing are the most unpleasant of the many triggers that have been found. Few researchers have discovered that high-pitched sounds or baby crying can cause misophonia (Quek et al., 2018). However, a study by Kumar et al. (2017) found that compared to noises associated with eating, breathing, and sniffing, baby crying or high-pitched sounds produced significantly different responses on the psychophysiological and neurophysiological levels. According to their findings, these eating-related triggers in people with misophonia result in altered anterior insular cortex (AIC) activity and improper functional connectivity of these regions with the other brain regions in charge of processing and regulating emotions.

1.1 Prevalence of misophonia

Misophonia can occur on its own as a distinct disorder or in conjunction with other psychiatric disorders such as obsessive-compulsive disorders (OCD), attention deficit hyperactivity disorder (ADHD), and mood disorders. Additionally, misophonia often coexists with other similar conditions, such as tinnitus, hyperacusis, and phonophobia, which is necessary to differentiate (Jastreboff & Jastreboff, 2014). Tinnitus, typically linked to hearing loss, is the perception of sound without acoustic stimuli (Waechter, 2021). Contrarily, hyperacusis is an enhanced sensitivity to noises that causes discomfort or uncomfortable feelings in the sufferers and is correlated with the strength of the sounds (Tyler et al., 2014). Phonophobia is the fear of the occurrence of particular sounds.

The onset of the problem in misophonia patients has been reported variably across the literature. Few studies have mentioned that the onset is during adolescence (Palumbo et al., 2018), few authors have mentioned during adulthood (Sanchez & Silva, 2018), and few have mentioned that there are no age criteria for the occurrence of misophonia as it can happen at any age (Potgieter et al., 2019). Very few studies have been reported regarding the prevalence of misophonia. Determining the prevalence of misophonia has been difficult due to a lack of diagnostic standards; however, estimates in the audiology literature suggest that the prevalence of decreased sound tolerance in the general population is roughly 3.5% (Jastreboff, 2015). Naylor et al. (2021) reported clinically significant misophonia in 49.1% of the study sample population among the UK undergraduate medical student population. Comparably, a study by Wu et al. (2014) involving a sample of 483 US college students using an online questionnaire revealed a prevalence of misophonia at 19.9%. The prevalence of misophonia was 20% in a study by Zhou et al. (2017), and there were no gender differences in the severity of misophonia. Hence, it can be stated that the prevalence of misophonia does not differ by age, gender, and ethnicity (Zhou et al., 2017; Wu et al., 2014)

1.2 Etiology

The exact cause of the misophonia is not known yet. Various researchers have given various hypotheses regarding the etiology of misophonia. According to Dozier (2015), misophonia is a conditioned behavior that becomes a bodily reflex as a result of Pavlovian conditioning. They hypothesized that misophonia is a two-step phenomenon in which the sound elicits an aversive conditioned physical reflex, and the adverse conditioned physical reflex generates aversion or disgust towards the sound. Due to a family history, they discovered in misophonic people, Edelstein et al. (2013) reported misophonia as a genetic condition. Psychiatric illnesses like OCD, anxiety disorders, and mood disorders are more prevalent in those with misophonia. Additionally, tinnitus, hyperacusis, and phonophobia frequently coexist with misophonia and other sound-related diseases. Ferreira et al. (2013) reported that misophonia is not an auditory disorder caused by neurological dysfunction reporting the psychological nature of misophonia. This is evidenced by many individuals with misophonia showing normal hearing thresholds (Schroder et al., 2013). However, misophonia is connected to more powerful limbic and sympathetic nervous system connections, which might result in aberrant processing of auditory inputs (Jastreboff & Jastreboff., 2014). Hence, it can be stated that there can be both audiological and psychiatric causes for misophonia as it borders the field of audiology and psychiatry.

1.3 Pathophysiology

The auditory system has two parallel channels, the classical and non-classical pathways, that carry information from the brainstem to the auditory cortex (Moller & Rollins., 2002). The primary location where the architecture of the non-classical pathway and the classical pathway diverge is in the thalamic relay nuclei. In the ventral region of the medial geniculate body, the conventional pathway is uneven. The medial and dorsomedial geniculate bodies' nuclei, however, block the non-classical pathway (Moller & Rollins., 2002). Misophonia is an adverse reaction to sounds driven on by enhanced limbic and autonomic responses without excessive auditory system amplification (Jastreboff., 2007). Due to the interaction between the limbic system and the classical and non-classical pathways, a breakdown in this process may increase the emotional and autonomic response to auditory inputs (Jastreboff., 2007). These concepts were developed in 1990 as the neurophysiological model. According to Jastreboff (1990) and Jastreboff & Jastreboff (2002)'s neurophysiological model, misophonia is a dislike or hatred of sound that is caused by abnormally strong reactions of the autonomic and limbic systems as a result of

enhanced connections between the auditory, limbic, and autonomic systems, or enhanced reactivity of the limbic and autonomic system to sound..

Compared to neutral video clips, the misophonic video clips caused the right insula, right anterior cingulate cortex, and right superior temporal cortex to become more active in neuroimaging studies employing functional magnetic resonance imaging (fMRI) (Schröder et al., 2019). According to a functional magnetic resonance imaging (fMRI) study by Kumar et al. (2017), misophonic trigger sounds caused the anterior insula to become more active and had abnormal functional connections to the hippocampus, amygdala, ventromedial prefrontal cortex, and posteromedial cortex, areas involved in the processing and regulating emotions. In misophonic patients, trigger sounds also increased heart rate (HR) and galvanic skin response (GSR), which were mediated by anterior insular cortex (AIC) activity (Kumar et al., 2017). Similarly, Schröder et al. (2014) revealed that the misophonic group's mean N1 peak amplitude was lower than the control group, suggesting that individual with misophonic may have low-level auditory information processing deficits. The right superior temporal cortex, right anterior insular cortex, and right anterior cingulate all showed greater activity in the misophonic group compared to the control group, according to Schröder et al. (2019). Giorgi (2015) found hyperactivation of the bilateral auditory cortex and left amygdala when exposed to the misophonic triggers compared to the control group.

Misophonia is commonly considered a condition of processing sound emotions in which specific sounds, such as eating or chewing, cause an unpleasant emotional response. However, sounds produced by other people can simulate the actions they represent. Therefore, it may be said that misophonia may just be the means via which the trigger person's action is reflected in the listeners. A study by Kumar et al. (2021) explained the role of the mirror neuron system in misophonia and stated that the motor mechanism is responsible for misophonia. They discovered that trigger noises in misophonia lead the orofacial motor cortex to become hyperactive, suggesting that trigger sounds may excessively "mimic" orofacial activity. As a result of misophonic triggers, the primary auditory cortex won't become overactive, proving that misophonia isn't a problem with how sounds are processed but rather related to the orofacial motion that the sound signifies. This study supports the idea that misophonia is defined by the mirror neuron system's aberrant behaviour, which "mirrors" the trigger-actions person as represented by noises.

1.4 Diagnosis

Although misophonia has undergone substantial advancement, neither the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) nor the International Classification of Diseases, Eleventh Edition recognize misophonia as a distinct illness (ICD-11). However, misophonia is now recognized by Schröder et al. (2013) as a distinct psychiatric condition rather than a symptom of other disorders, and they have provided diagnostic criteria to support this claim. According to these criteria, misophonia is diagnosed when:

• An individual experiences a strong, immediate somatic reaction that begins with irritation or disgust, which quickly turns into anger in the presence or the expectation of aversive sounds. The anger makes a person feel out of control, sometimes leading to aggressive behaviour;

• The person assesses these reactions as disproportionate to the situation;

• Due to the consequences of unpleasant experiences caused by certain sounds, the person, if possible, avoids situations in which the trigger is expected or struggles with

high discomfort in its presence. Therefore, the condition has a significant, negative impact on the person's life;

• The avoidance and emotional reaction to certain triggers cannot be better explained by other disorders, such as post-traumatic stress disorder or obsessivecompulsive disorder.

As misophonia is studied in both audiology and psychiatry, audiologists classify misophonia as an audiological condition with other sound disorders including tinnitus, hyperacusis, and phonophobia. Despite significant symptom overlap and the possibility of having several conditions, misophonia is separate from these disorders (Jastreboff & Jastreboff, 2001; Jastreboff & Hazell, 2004).

Few questionnaires were developed to assess misophonia (Schröder et al., 2013; Wu et al., 2014). Amsterdam misophonia scale (A-MISO-S) is the checklist developed by Schröder et al. (2013) for assessing the severity of symptoms along the dimensions of the proposed criteria for misophonia. Six questions in the A-MISO-S are rated from 0 (none) to 4 (Extreme). The A-MISO-S lacks psychometric data as of yet. The misophonia questionnaire (MQ) developed by Wu et al. (2014) has two main dimensions: first one asks participants to self-rate [from 0 (not at all true) to 4 (always true)] their sensitivity to seven different types of sounds (such as eating, repetitive tapping, vocal expressions of consonants or vowels), and the other one consists of ten questions regarding reactions to the sounds rated at a 1 (rarely true) or higher for the prior seven. As the things are added together, the scale is graded. There isn't a defined cut-off point that identifies if someone has misophonia or not. The scale for a global severity rating is 1 (the lowest) to 15 (very severe). Other questionnaires, i.e., Duke Misophonia Questionnaire (Rosenthal et al., 2021) and the

Selective sound sensitivity syndrome scale (S-five) (Vitoratou et al., 2020), has also been developed and are in the validation phase for the assessment of the individuals with misophonia.

Even though few questionnaires were developed to determine the severity of misophonia symptoms, this scale's psychometric properties are unknown. To conduct a full assessment of misophonia, administering these questionnaires is insufficient. We have to rule out the other diagnostic condition that may account for sound sensitivity by administering primary diagnostic tools that may be necessary.

As misophonia borders audiology and psychiatry, audiological assessment is mandatory for misophonia patients. The audiological evaluation of misophonia is challenging, and there are no established techniques. As a result, there is a huge demand for research on misophonia from an audiological standpoint. Audiologists around the world use different protocols to evaluate misophonia. The pure tone threshold and loudness discomfort level (LDL) are part of the audiological evaluation. Individuals with misophonia may or may not have hearing loss. Loudness discomfort level (LDL) may be normal or at a reduced level (Jastreboff., 2013). In the literature, there is no accurate description of how to measure LDL in misophonia patients. Therefore, there is a greater chance of variability in the results due to the specific methods administered (Sherlock & Formby., 2005; Jastreboff., 2015).

Nonetheless, Jastreboff (2015) reported when misophonia is present with hyperacusis, the loudness discomfort level (LDL) value ranges from 30dBHL to 120dBHL. Therefore, LDL alone is not sufficient to correctly diagnose misophonia. Auditory evoked potentials have not been extensively studied in misophonia. According to Schroder et al. (2013), the misophonic individuals' reduced N1 peak in response to the deviant tone during the oddball paradigm compared to the control group may reflect a problem with auditory information processing. In order to develop unbiased tools for misophonia assessment, research into auditory evoked potentials in the field of misophonia is necessary.

1.5 Management

Individuals with misophonia display a broad range of emotional, physiological, and behavioural responses to their triggers depending on the context and environment (Dozier & Morrison., 2017). Avoidance and escape from the situation in which trigger sounds are present is the commonly employed coping strategy by the misophonic patient (Edelstein et al., 2013; Schröder et al., 2013). However, that is not an effective option. No studies have been done yet that looked into pharmacological options for treating misophonia. According to anecdotal evidence, anxiolytics and antidepressants may be used to treat misophonia-related reactions and co-morbid conditions. Despite the lack of pharmacological treatments, misophonia patients have tried various therapies that appear to be having some success.

The treatment program developed by Jastreboff, known as tinnitus retraining therapy (TRT), is primarily for those with tinnitus, with secondary benefits for hyperacusis and misophonia (Jastreboff & Jastreboff., 2006). The concept behind tinnitus retraining therapy (TRT) is that the relationship between the auditory system and the limbic and autonomic nervous systems can be reduced or even removed by altering conditioned reflexes at the subconscious level (Kiessling., 1980). Because misophonia involves an external trigger that may be altered to potentially eliminate the conditioned response, misophonia patients should react better to tinnitus retraining therapy than tinnitus patients (Jastreboff & Jastreboff., 2002). When giving misophonic patients tinnitus retraining therapy, it is advised to avoid using a silent environment and wearing too much ear protection. The patient's response to their trigger sounds should be lessened by the introduction of soothing sounds. For people with misophonia, reclassifying the noises and intensive counseling are advised. The effectiveness of tinnitus retraining therapy in misophonia patients with and without hyperacusis was reported by Jastreboff (2015). In addition to tinnitus retraining therapy, additional neuropsychiatric therapies have been successfully used to treat misophonia in the literature (Schneider & Arch., 2015). Training in Cognitive-Relaxation, Coping Techniques, and Multicomponent In the literature, cognitive-behavioural therapy (CBT) has also successfully been used to treat misophonia (McGuire et al., 2015).

People with misophonia may benefit from neuromodulation methods such as transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, neurofeedback, epidural and subdural cortical and deep brain stimulation, and vagus nerve stimulation to lessen hyperactivity in the non-classical auditory pathway (Umashankar & Prabhu., 2021). The individual with misophonia who is intolerant to specific sounds due to hyperactivity in the auditory and limbic system can be tried with vagus nerve stimulation as they have an auricular branch that inserts into the brainstem nucleus, thus reducing the hyperactivity (Yap et al., 2020).

1.6 Need for the study

Misophonia is the condition that borders between psychology and audiology. In psychology, researchers try to explain misophonia as a psychiatric disorder (Schröder et al., 2013), and they try to assess and treat the patient with misophonia using the psychiatric approach. However, misophonia is less explored in audiology and a relatively new term. Nevertheless, the prevalence of misophonia is increasing with time, and many misophonia patients are seeking professional helps (Zhou et al., 2017; Wu et al., 2014). The neuroimaging data using functional magnetic resonance imaging (fMRI) has shown hyperactivation of the non-classical auditory pathway (Moller & Rollins., 2002). Similarly, the auditory evoked potentials (AEP) study using the oddball paradigm has shown a deficit in the misophonic group's auditory processing at the cortical level compared to the control group (Schröder et al., 2014).

These neurophysiological shreds of evidence suggest that misophonia should be treated using the audiological approach, which is lacking in the current scenario. Jastreboff (2015) has shown the efficacy of audiological approaches, such as tinnitus retraining therapy (TRT), in treating a patient with misophonia. However, it is not widely explored clinically. The complex nature of misophonia has made it a stressful disorder for sufferers and family members. Yet, little research has been done about underlying pathophysiological mechanisms, assessment, and management. To date, no specific protocols have been developed for misophonia assessment and management. Proper assessment and management of misophonia are impossible without understanding its core mechanism. Misophonia is still in its infancy stage and is not readily accepted in the scientific community as a valid disorder. Therefore, it can be hypothesized that highlighting more on the neurophysiological mechanism will help recognize misophonia as a separate and genuine disorder and provide a path for assessment and management using a team approach.

1.7 Aim of the study

This review aims to highlight the Neuroaudiological pathophysiology of misophonia and its implications in the assessment and management of misophonia from an audiological perspective.

1.8 Objectives of the study

- To explore the Neuroaudiological pathophysiology of misophonia.
- To investigate the methods and study design used in studying the Neuroaudiological pathophysiology of misophonia.
- To direct the discussion, particularly towards applications of findings of Neuroaudiological pathophysiology in assessment and management of misophonia from the audiological perspective.

Chapter 2

Methods

The study was carried out following ethical standards established by the institutional board of the All India Institute of Speech and Hearing (AIISH), Mysore. The procedures used for the study under the following headings are the main emphasis of this chapter.

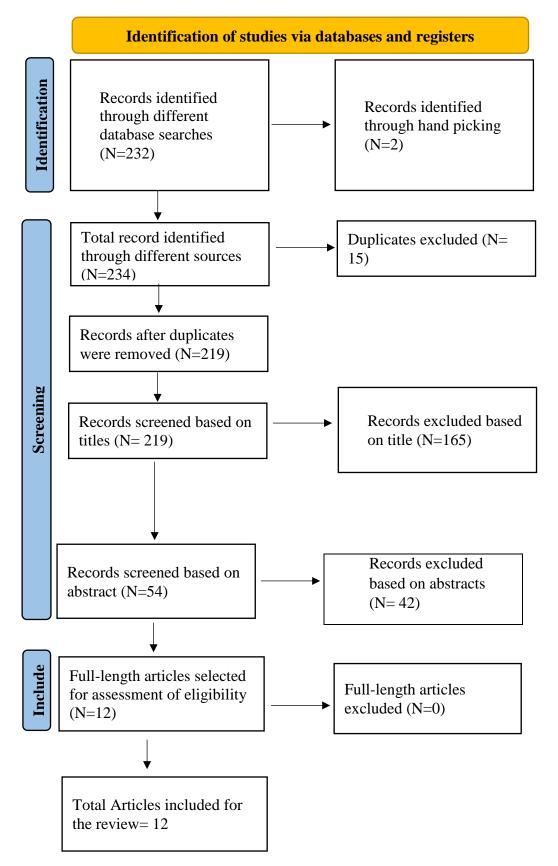
- 2.1 Search Engines
- 2.2 Data extraction (Selection and Coding)

2.1 Search Engines

Studies were selected from various database searches such as African Journal Online (AJOL), Google Scholar, PubMed (National Center for Biotechnology Information), MEDLINE (US National Library of Medicine), Web of Science, Elsevier, Schematic Scholar, Cochrane library, and Comdisdome. The search was done with appropriate keywords to find articles related to this topic. These keywords included were "Misophonia," "Neuroaudiology," and "Pathophysiology" the derivatives of these words were used with the usage of appropriate Boolean operators. The inclusion criteria for the study were the article published in peer-reviewed journals till 2021 and articles published in English, including human participants. Duplicates were found and removed from the primary sample. Articles related to Neuroaudiological pathophysiology of tinnitus, hyperacusis, and phonophobia, articles based on animal models, and articles with insufficient data were excluded. Similarly, reviews, single case reports, histopathological studies, studies with duplicated data, studies with a heterogeneous data group, and articles published in a language other than English were also excluded from this study.

2.2 Data Extraction (Selection and Coding)

The review was carried out using PRISMA guidelines (Moher et al., 2009). A comprehensive list of keywords was used to identify the relevant articles. The keywords used were 'Misophonia'; 'Selective sound sensitivity syndrome'; 'Sound rage'; 'Neuroaudiology'; 'Neurophysiology'; 'Pathophysiology'; and 'Mechanism .'The articles were selected based on the title and abstract screening using exclusion and inclusion criteria. All eligible articles' full texts were reviewed to assess eligibility as per the criteria. A manual search was also done to identify known articles, and a few articles were selected via hand picking. Disagreements at the screening stage between the reviewers were restored through discussion. A pre-piloted form was used to extract data from the included studies. The extracted information included the authors' names, type of research design, type of study population and the sample size, methodology, participant demographics, outcomes of the study, and the critical analysis of the findings.


Chapter 3

Results

This chapter deals with the results obtained from the review in terms of extraction of study, quality analysis of the selected articles, and a summary of the selected articles showing the Neuroaudiological pathophysiology using the various neuroimaging techniques in the participants suffering from misophonia.

3.1. Selection of the studies

Applying the initial search strategy and the inclusion and exclusion criteria provided 12 papers for quality analysis and synthesis. Among the 232 articles identified using database searches such as google scholar, PubMed, semantic scholar, Comdisdome, Research Gate, and Cochrane library, 15 were excluded due to duplicates, and a total of 217 articles were included for title screening. Among 217 articles for title screening, 165 were excluded by title screening and 42 by abstract screening. Ten articles met the inclusion criteria for complete reading, and two articles were selected through hand picking. Altogether 12 articles were finalized for review. All the studies included in the study were experimental. The selection process was further validated by inter-judge selection and discussion in case any ambiguity arises in finalizing the published manuscript. The detailed Preferred Reporting Items for Systematic Reviews (PRISMA) flow diagram for the selection of studies was used for the present systematic review, and the same is mentioned in figure 3.1

Figure 3.1: Flowchart depicting the selection process of the articles in the systematic review

3.2 Result of Quality Analysis after data extraction

Quality assessment is essential for the proper understanding of nonrandomized studies. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies (Whiting et al., 2011) was used to determine the quality and strength of the study selected for the review. QUADAS-2 was developed for a systematic review to assess the quality and accuracy of diagnostic studies. Patient selection, index testing, reference standards, and flow and timing make up the four domains of this technology. Each domain is evaluated for bias risk, and the first three domains are evaluated for issues about applicability. Signalling inquiries are included to aid in assessing the likelihood of bias. This tool is suitable for a more transparent rating of the bias and applicability of diagnostic accuracy studies. Each item is rated as "high," "low," and "unclear" for assessing the risk of bias, source of variation, and quality.

All the studies were experimental design using calibrated instrumentation, standardized questionnaires, and proper methodology. Almost all the studies were well-controlled with proper selection and representativeness of cases and controls. There was good control of the study factors almost in all the studies with a low risk of bias. However, most of the studies lack the identification of the additional and confounding factors that might have deviated from the results and accounting for the same while analyzing the results. Misophonia is a complex neurological disorder and occurs with various co-morbid conditions; it is impossible to account for and remove all confounding factors. Most of the studies had shown a low risk of bias and source of variation in patient selection, flow, timing, and index test and had good implications for practice. The summary of the quality analysis of selected studies is shown in table 3.1.

Table 3.1

Tabular representation of quality analysis of the studies selected for the review using QUADAS-2

	Study		Ris	sk of Bias			Applicability of	concern
SN	Authors	Patient Selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard
1.	Kumar et al., 2021	L	L	L	L	L	L	L
2.	Eijsker et al., 2021	L	L	L	L	L	L	L
3.	Libra et al., 2021	L	L	L	L	L	L	L
4.	Cerliani & Rouw., 2020	L	L	L	L	L	L	L
5	Schröder et al., 2019	L	L	L	L	L	L	L
6	Eijsker et al., 2019	L	L	L	L	L	L	L
7	Kumar et al., 2017	L	L	L	L	L	L	L

8	Eijsker et al., 2017	Н	L	L	L	Н	L	L
9.	Schröder et al., 2015	Н	L	L	L	Н	L	L
10.	Giorgi et.al., 2015	L	L	L	L	L	L	L
11.	Schröder et al., 2014	L	L	L	L	L	L	L
12.	Edelstein et al., 2013	Н	L	L	L	U	L	L

L=Low risk	H=High risk	U=? Unclear risk

3.3 Summary of data extraction

Data were extracted from all the selected articles and classified using the following criteria-author, year of publication, research design, research question, type of population, method, outcome, and discussion. The data extraction sheet reveals that the studies included were published from 2013 to 2021. Selected studies mainly consisted of experimental studies. All the subjects included in the study were diagnosed with misophonia using standardized diagnostic protocols. Different standardized questionnaires, such as the misophonia Amsterdam questionnaire, the misophonia Questionnaire (MQ), misophonia symptoms severity questionnaire, and so on, have been used in most studies to differentiate the misophonia group from the control group.

Various modifications of the neuroimaging method such as functional magnetic resonance imaging (fMRI), structural fMRI, resting-state functional magnetic resonance imaging, sound-evoked fMRI, fMRI acquisition using BOLD during a stop-signal task (SST), fMRI acquisition during the performance of the visual stop-signal task and so on has been used in most of the studies to find the neurological pathophysiology of the misophonia (Kumar et al., 2021; Eijsker et al., 2021; Kumar et al., 2017). Along with that, evoked response potential (ERP) during the oddball task using electroencephalography (EEG) and comparison of Skin conductance response (SCR) among auditory and visual stimuli has also been used in a few studies to find the site of lesion in the misophonia participants (Edelstein et al., 2013; Schröder et al., 2014).

3.4 Neuroaudiological pathophysiology found across studies

The functional magnetic resonance imaging (fMRI) paradigm with different modifications has been used as the preferred method in selected ten studies to determine the size of the lesion by comparing misophonia participants with the control group. The result of the fMRI acquisition showed hyperactivation of the various cortical areas, such as the medial premotor cortex, mid-cingulate, and ventrolateral premotor cortex, which are the region involved in planning and preparing motor movements and related to the urge to avoid or react to the trigger sounds in an individual with misophonia. In addition, fMRI analysis showed greater white matter volume in the left frontal cortex including the area inferior frontaloccipital fasciculus (IFOF), anterior thalamic radiation (ATR), and the body of the corpus callosum (BCC) in the misophonic participants compared to the control. The outcome of the ten-neuroimaging studies using fMRI with different modifications is shown in table 3.2

Table 3.2

The outcome of ten neuroimaging studies

Study	Research design	Characteristics/ Research question	Population type (n)	Testing parameters used	Outcome	Discussion
Kumar et al.,	Experimental	Will there be	17	1) The	The result	Misophonia is typically
2021	design	stimulation of	participants	misophonia	showed that	thought of as a condition of
		the motor	with	Amsterdam	misophonia is	the processing of sound
		system in the	misophonia	questionnaire	characterized	emotions in which specific
	participants mi		by:	sounds, such as eating,		
		2) The		chewing, etc., cause a		
		misophonia	1) Increased	negative emotional response.		
			Questionnaire	functional	However, sounds produced by	
		mirror neuron	fMRI		connection	other people can simulate the
		system related		3) Resting-	between the	actions they represent.
		to orofacial	20	state fMRI	auditory and	Therefore, misophonia may
		movements	misophonic	(RS-fMRI)	visual cortex	just be the conduit by which
		underlie	participants		and the	the trigger person's behaviour
		misophonia?	and 22 control	4) Sound evoked	orofacial motor region during	is reflected in the listeners.
			participants for SE-	fMRI	rest;	As a result, it can be said that trigger sounds in misophonia
			fMRI		2) Increased	induce the orofacial motor
					functional	cortex to become hyperactive
					connectivity of	suggesting that trigger sounds
					the orofacial	may excessively "mimic"
					motor regions	orofacial activity
					and auditory	
					cortex in	

. 11	
response to all	Since the primary auditory
kinds of sound;	cortex does not become
	hyperactive in response to
3) Increased	misophonic triggers, it is clear
orofacial motor	that misophonia is related to
region	the orofacial motion that the
activation	sound symbolizes rather than
primarily in	a disorder of sound
response to	processing.
trigger sounds;	In misophonic people, mirroring of the action also
4) As	underlies the activation of the
misophonic	anterior insula-based network.
discomfort	Authors have shed light on an
develops, an	alternative perspective on
orofacial motor	misophonia that emphasizes
region becomes	the trigger's activity more than
more active;	the sounds that result from it.
5) Enhanced	
functional	
connection	
between the	
insula and the	
orofacial motor	
region of the	
vPMC during	
rest.	
1050.	

Eijsker et al., 2021	Experimental design	Will there be structural and functional abnormalities in the brain in misophonic individuals?	24 participants with misophonia and 25 control participants	 Structural magnetic resonance imaging Resting- state functional magnetic resonance imaging 	 Misophonic individuals showed larger grey matter volume in the right Amygdala. A multivariate functional connectivity analysis showed altered strong connections of the left Amygdala with the bilateral cerebellum, mainly the medial parts of crus 1 and 2, in patients with misophonia compared to the control group. Misophonic patients showed greater connectivity of ventral attention network in the 	The authors come to the conclusion that increased emotional reactivity is reflected by expanded grey matter volume in the right Amygdala in misophonia patients because the Amygdala is involved in detecting affective valence and associative unpleasant learning. The functional network involved in affective sound processing includes the amygdala and cerebellum The ventral attention network and left Amygdala can modulate activity in the auditory and visual areas to adequately process important information. In individuals with misophonia, triggers activate enhanced sensory processing because they have emotional value. Patients' sensitivity to sounds that are barely audible to most people may be described by this.
-------------------------	------------------------	---	---	---	--	--

					bilateral superior lateral occipital extending to inferior lateral occipital cortices and fusiform gyri compared to the control group.	
Liebra et al., 2021	Experimental design	Will there be abnormalities of white matter in individuals with misophonia?	25 participants with misophonia and 25 control subject	Amsterdam misophonia scale Hamilton anxiety and depression rating scale	Misophonic participants were found to have a larger severity scale on the Amsterdam misophonia scale.	The co-overactive brain function that was discovered to be impacted in misophonic participants involves social- emotional processing and attention to emotionally salient information.
				fMRI acquisition	Misophonic participants also showed higher anxiety, depression, hate, and general psychopathy scores than the control group.	The participants with misophonia had microstructural and microstructural white matter changes, which supported the neurobiological theory of misophonia.

fMRI analysis showed greater white matter volume in the left frontal cortex, including the area inferior fronto-occipital fasciculus (IFOF), anterior thalamic radiation (ATR), and the body of the corpus callosum (BCC) in the misophonic participants compared to the control. Misophonic participants also showed lower than average Radial and mean diffusivities with fractional anisotropy. Vowel-wise

					comparison	
					showed larger	
					clusters of lower	
					mean diffusivity	
					for the	
					misophonia	
					group compared	
					to the control.	
					Similarly,	
					macrostructural	
					white matter	
					differences were	
					found in the	
					tract connecting	
					the frontopolar	
					and basal	
					orbitofrontal	
					cortex to the	
					occipital and	
					superior parietal	
					cortex and	
					medial portion	
					of superior	
					frontal gyri	
					bilaterally.	
Cerliani & Rouw., 2020	Experimental design	What will be the neural	19 participants with misophonia	1) Misophonia symptoms severity	Results showed:	The ventral anterior insula has a different functional
	-	mechanism for	and 20 participants	questionnaire	1) Increased	connection than the dorsal
		an individual	in the control		anterior dorsal	anterior insula. The study
		with	group.	2) fMRI paradigm	insular activity	supports the hypothesis that
		misophonia?			in the	emotional reaction in

Will there be a
higher-order
cognitive
association of
misophonia?

misophonia group in the right hemisphere, reporting that the left anterior insula and Right anterior insula proceed with different aspects of the audiovisuallinguistic association and emotional content, respectively. However, the result did not show any evidence for increased ventral anterior insular activity during the specific trigger. 2) Increased activation of the medial premotor

cortex,

misophonia is mediated by a higher-order construct rather than by a direct auditorylimbic connection by revealing the limited effect of the trigger in the ventral insula compared to the dorsal insula.

Instead of the primary emotional association, higher order brain mechanisms were implicated in the emotional and behavioral response to the trigger, as evidenced by the increased activity in the medial premotor cortex, midcingulate, and ventrolateral premotor cortex.

The increased activity of the primary visual region may be because the stimuli used were audio-visual rather than visual only.

Given the role of this brain region in the reappraisal of stimuli associated with negative emotions, increased trigger-specific functional

mid-cingulate and ventrolateral premotor cortex which are the region involved in planning and preparing motor movements and related to the urge to avoid or react to the trigger sounds in an individual with misophonia. 3) Increased activity of the primary visual region. 4) Increased interaction between premotor and cingulate cortices with the orbitofrontal cortex in individuals with misophonia

connectivity of the lateral OFC in the misophonia patient may reflect an effort to downregulate the emotional response, which is automatically prompted by the trigger stimuli. Increased synchronization between the Mid-cingulate and primary auditory cortex is evidence for the abnormal auditory activity in the primary auditory region in misophonia, according to the proposed model of the disorder. Misophonia is linked to an altered connection between the auditory and limbic systems.

With the help of all the available data, the authors proposed that high-order cognitive associations, which may be connected to previously established negative associations with the same stimuli, are a more likely explanation for the selectivity of misophonia for particular sounds and the emotional reaction they cause.

					during the trigger stimuli.	
Schröder et al., 2019	Experimental design	Will there be an alteration of the brain activity in an individual with misophonia?	25 misophonic participants and 25 healthy control group	Amsterdam misophonia scale Electrocardio gram (ECG) fMRI paradigm using misophonia trigger clip, neutral clip, and aversive audio-visual stimuli.	Behavioural analysis showed that misophonic participants showed greater anxiety symptoms, depression symptoms, and psychiatric symptoms than control participants. Physiological investigation using ECG showed misophonic participants showed significantly smaller inter- beat-interval (IBI) across the condition than the control subject.	In misophonia individuals, some audio-visual stimuli may trigger emotions like rage, grief, or disgust. These emotions are then followed by higher physiological arousal and increased activity in the right insula, right ACC, and right superior temporal cortex. Increased activity in the insula, ACC, and right temporal cortex indicate that the symptoms of misophonia may be caused by salience attribution to the misophonic signals. The salience network activity may be amplified by repeated exposure to the same misophonia trigger. Although participants with misophonia showed greater psychiatric symptoms following the misophonic clip, they were not angrier before being exposed to the misophonic clip.

					fMRI data showed larger activation around the occipital, parietal and superior temporal cortex for both misophonic and aversive clips compared to the neutral clip. Also, reduced activity in the right inferior temporal gyrus was found in the misophonic group compared to the control group.	The increased heart rate in response to the misophonic clip and aversive clip suggested that the participant with misophonia experienced extreme aversive reactions in general.
Eijsker et al., 2019	Experimental design	What is the neural basis of response bias on the stop- signal task in misophonia?	22 misophonic participants and 21 healthy control group	The symptom checklist, Hamilton anxiety rating scale, Hamilton depression rating scale, and	Misophonic participants scored higher on the anxiety, depression, and anger scale than the control subjects. The severity score	The participants with misophonia show a marginal response bias on the stop- signal task (SST), favouring speed over accuracy. Additionally, misophonic participants tended to activate the left dorsolateral prefrontal cortex more during

Amsterdam	was higher for	responding than successful
misophonia	the misophonic	inhibition, similar to the
scale.	subject on the	control. Therefore, author
	Amsterdam	concluded that misophonia
Behavioural	misophonia	participants did not show
analysis of	scale.	impaired response inhibition
stop-signal		even though they tend to show
delay (SSD)	Behavioural	response bias on the stop-
and stop-	analysis showed	signal task.
signal	more extended	6
reaction time	SSD for the	
(SSRT)	misophonic	
	participants than	
fMRI	for the control.	
acquisition	However,	
using BOLD	misophonic	
during a stop-	participants and	
signal task	control did not	
(SST)	differ in the	
	SSRT and	
	Reaction time.	
	The participants	
	with	
	misophonia	
	showed a lack	
	of inhibition	
	success related	
	activation of the	
	left dorsolateral	
	premotor frontal	
	cortex that the	

control showed.
Also, they
tended to
activate this
region more
during correct
going than
during
successful
inhibition.
Misophonic
participants
showed less
superior mid
frontal gyri
(SMFG)
activation
during the
inhibition
success
compared to the
failure. Whereas
control showed
inhibition
success-related
activity in the
posterior
cingulate
cortices (PCC)

Kumar et al.,	Experimental	What is the	20	fMRI using	When	AIC is the brain network that
2017	design	brain basis of	misophonic	blood oxygen	participants	is functionally responsible for
	C	misophonia?	participants	level-	listened to three	detecting and directing
		*	and 22	dependent	different types	attention toward the stimuli
			control	(BOLD)	of sounds	which are behaviourally
			subject		trigger,	meaningful and relevant to the
			Ū	Subjective	unpleasant, and	individuals. Hyperactivity in
				rating	neutral sounds,	the AIC in response to the
				-	fMRI data and	trigger sounds supports the
				Behavioural	behavioural	hypothesis that misophonic
				response,	responses were	participants assign aberrantly
				galvanic	acquired.	higher silence to these sounds
				response		
				(GSR), and	Behavioural	Atypical functional
				heart rate	data showed	connectivity of AIC to
				(HR) were	that trigger	vmPFC and PMC in
				also acquired	sounds evoked	microphonic and controls for
				during the	misophonic	the same sounds suggests that
				fMRI data	distress in	these regions play a crucial
				acquisition.	misophonic	role in different emotional
					participants,	responses to the trigger
					whereas	sounds in the two groups and
					unpleasant	could, therefore, underlie the
					sounds,	abnormal activation of AIC
					although	and the aberrant salience
					annoying, did	assigned to trigger sounds by
					not produce	the misophonic group.
					misophonic	
					stress.	
					There was no	
					significant	

difference
between the
misophonia
distress rating of
trigger sounds
by misophonic
participants and
the annoyance
rating of
unpleasant
sounds by the
control group.
Analysis
showed greater
activation of the
Anterior Insular
Cortex (AIC) in
response to the
trigger sounds
in the
misophonic
group compared
to the control
group.
Activation
difference does
not occur
between the
misophonic and
control groups
for unpleasant

and neural
stimuli.
Greater
functional
connectivity of
AIC was
observed in the
ventromedial
prefrontal
cortex
(vmPFC),
posteromedial
cortex (PMC;
posterior
cingulate and
retrosplenial
cortex),
hippocampus,
and amygdala
regions of the
brain for the
misophonic
participants.
Activity in both
right and left
AIC varied
linearly with
subjective rating
of misophonic
distress in the

					misophonia	
					group.	
					Stoup.	
					Physiological	
					response	
					measurement	
					showed greater	
					HR and GSR	
					response evoked	
					by the trigger	
					sounds in the	
					misophonic	
					group compared to the control	
					group throughout the	
					sound	
					presentation. No	
					difference was	
					observed	
					between the	
					unpleasant and	
					neutral sounds.	
Eijsker et al.,	Experimental	Will there be	20	fMRI	According to	Participants with misophonia
2017	design	impaired	participants	acquisition	the horse-race	exhibited reaction inhibition
2017	design	response	with	during the	model, stop	as a behavioural outcome. The
		inhibition in an	misophonia	performance	signal reaction	misophonic individuals may
		individual with	and 20	of the visual	time (SSRT) is	have focused more on
		misophonia?	control	stop-signal	a good indicator	stopping appropriately than
		ł	subject	task.	of how strong	reducing their reaction times,
			·		an inhibitory	as evidenced by the group

response is. The	differenc
difference	stimulus
between the	group di
start of the go	strategies
and stop stimuli	
on stop trials is	Although
known as the	and IFG,
stop-signal	stopping
delay (SSD).	activated
	misopho
Using two-	hypoacti
sample t-tests to	cingulate
analyse group	region th
differences in	improper
the fMRI data, it	cognitive
was discovered	diseases.
that misophonic	less activ
participants had	participa
shorter SSRT	successf
and longer	during th
SSDs than the	inhibitio
control group.	
Misophonic	
participants	
displayed	
slower reaction	
times on both	
successful and	
unsuccessful	
inhibition	
attempts than	

difference for the going stimulus, which could reflect group differences in task strategies.

gh the visual cortex b, which are crucial for a task, were similarly d in both groups, onic subjects displayed ivation of the midte cortex, which is the hat performs erly during the ve task in several s. The left caudate was ive in the misophonic ants during the ful inhibition than he unsuccessful on.

the control
group.
Whole-brain
analysis showed
that during the
successful
stopping
compared to the
going task, both
patient and
controls showed
similar
activation of the
bilateral
occipital cortex,
angular cortex,
and right
inferior frontal
cortex. In
addition,
controls showed
activation of the
bilateral insula,
extending into
the striatum.
A between-
group
investigation
revealed that

					higher	
					midcingulate	
					brain activity	
					during	
					successful	
					versus	
					unsuccessful	
					inhibition than	
					patients. ROI	
					studies showed	
					that the left	
					caudate head	
					was more	
					activated in	
					controls than in	
					patients,	
					although there	
					were no group	
					differences in	
					the right IFG or	
<u> </u>		***1 1 1	10		STN.	
Schröder et	Experimental	What is the	10	1) Amsterdam	In the	The increased activity in the
al., 2015	design	neuroanatomic	participants	misophonia	misophonia	auditory cortex and left
		al correlate of	with	scale	group, neural	Amygdala in the misophonic
		impulsive .	misophonia		activity was	participants might be
		aggression is	and 7	2) fMRI	increased in the	associated with increased
		misophonia?	participants in control	symptom	visual and	vigilance towards specific
				provocation	auditory cortex and weak areas	misophonic sounds.
			group	paradigm		
				using three conditions,	of the brain, i.e.,	·
					the Amygdala during	
				i.e., common	uuring	

			left Amygdala during group engagement with the unpleasant	
			misophonic participants increased activity in the	
			superior temporal cortex. Additionally,	
			participants' auditory cortex in the right	
		cues.	activity in the misophonic	
		noisy breathing), and neutral	condition showed increased	
		(such as lip- smacking and	interaction with the neutral	
		movie clips), misophonia- related cues	control group. The group	
		(violent or repulsive	aversive videos, compared to the	

are	eas in	misophonia	audio-visual	the healthy	experienced a number of
mis	sophonia?	and 10	stimulus of	control group	functional impairments when
		healthy	misophonia	employing the	exposed to misophonia
		control	trigger clip,	misophonia	triggers. In contrast to neutral
		participants	aversive	condition had	settings, the BOLD response
			stimulus, and	similar BOLD	was shown to be greater in th
			neutral	responses,	affective, auditory, and visual
			stimulus	indicating no	processing areas under non-
				discernible	neutral situations. Since
				difference	misophonia and aversive
				between the two	situations are more salient an
				groups. When	involve more sounds and
				contrasting	movement than neutral
				misophonia	recordings, these findings car
				participants	be explained.
				with the	• • • • • • •
				misophonia	Increased attention to auditor
				stimulus and the	stimuli, which has been
				neutral stimulus	associated with
				condition, a	hyperactivation of the
				significant difference in	auditory cortex, may be the
				BOLD response	cause of hyperactivation of the bilateral auditory cortex.
				was discovered.	the bhateral auditory contex.
				According to	The misophonic participants'
				the analysis, the	left Amygdala hyperactivity
				misophonic	has been associated with
				subjects' right	attentional processing and
				and left superior	vigilance. As misophonic
				temporal cortex	sufferers are intensely focuse
				were	on the trigger noises,
				hyperactive.	increased alertness during the

ROI analyses displayed hyperactivity. greater activity in the left Amygdala in the misophonic participants than in the healthy control subject when comparing the misophonia condition with the aversive condition. When comparing misophonia and aversive conditions, ROI analyses of the Amygdala showed no significant difference in the misophonic participants. However, the hearing control subject did not

misophonia condition may cause the amygdala's hyperactivity.

significantly
affect the left
Amygdala when
Amygdala when comparing the
aversive
condition with
the misophonia condition.
condition.

Electrophysiological tests (ERP) and Skin conductance response (SCR) have been used as the preferred method in two studies ((Edelstein et al., 2013; Schröder et al., 2014). The evoked response potential (ERP) result showed a smaller N1 component in response to the deviant tone in the misophonia participants than in the control group. The skin conductance response (SCR) result showed a higher skin conductance response in the misophonic group than in the control group. The detailed outcome of these studies is shown in table 3.3.

Table 3.3

The outcome of the physiological tests used across the studies

Author/year	Research design	Characteristics / Research question	Population type (n)	Testing parameters used	Outcome	Discussion
Schröder et al., 2014	Experimental design	Will there be a deficit in auditory processing in misophonic individuals?	20 participants diagnosed with misophonia and 14 participants in the	Hearing tests (tone and speech audiogram and loudness discomfort levels)	All the participants with misophonia reported normal hearing.	The lower mean N1 peak amplitude in the misophonic group compared to the control group suggests a little auditory information processing
			healthy control group.	Recorded auditory event-related potentials	Compared to the control group, the deviant tones elicited the	disadvantage in misophonic people.
				(ERPs) during the oddball task using EEG	misophonia with a reduced N1 component. There was no	The difference in clinical characteristics between the two groups, according to the author, is what
				Standard tones (80%) had a frequency of	discernible difference in the N1 component's peak latency between the	accounts for the lower N1 peak amplitude in the misophonic group.
				1000 Hz, and the deviant	misophonic group	The misophonic group reported higher TMD

tone was	and the control	scores than the control
lower than	group.	group, which reflects
the standard	Additionally, there	the general
tone (250	were no changes	hyperarousal in
Hz).	between the control	misophonic
A tone higher	group and the	individuals. And
than the	misophonic people	because of
standard	regarding the P1, P2	hyperarousal or
(4000 Hz)	average amplitude,	general irritability,
was added to	or peak latencies.	misophonia patients
the sequence.	Effect of deviant	might not have
Both deviants	tone was found for	attended to the sounds
were	P1, N1, and P2	as much as the
presented in	averages amplitude.	controls group.
10% of trials.	For P1 and P2, low	
	deviant tone elicited	The authors also
Profile of	larger amplitude,	suggest that the
mood states	whereas for N1 low	misophonia patients'
(POMS) scale	deviant tone elicited	usage of psychotropic
	smaller amplitude.	medications or some
Total mood	-	other psychiatric co-
disturbances	Peak latency of N1	morbidity may be to
(TMD) scale	was also found to be	blame for the
. ,	different for high	difference in N1 peak
	deviant tone and low	amplitude between the
	tone. The high tone	misophonia group and
	showed an earlier	the control group.
	peak compared to	
	the low peak.	
	··· I ···· ·	
	No significant	
	differences were	
	reported in the	
	<u> </u>	

					average amplitude and peak latency of the P1, N1, or P2 responses elicited by the standard stimuli between the misophonic group and the control group.	
Edelstein et al., 2013	Experimental Design	Will the misophonic subjective experiences evoke an anomalous physiological response to certain auditory stimuli?	Six participants with misophonia and five control subjects.	Comparison of Skin conductance response (SCR) among auditory and visual stimuli. Subjective aversiveness rating.	Misophonic individuals showed a higher skin conductance response than the control group. Also, misophonic individuals showed higher SCR in response to the auditory stimuli but not visual stimuli.	The authors concluded that the individual with misophonia reports physiological distress to the specific sounds with a high level of knowledge demonstrating prolonged and specific physiological reactions.
					In the subjective aversiveness rating, misophonic individuals rate the auditory stimuli more aversive than visual stimuli. The result showed a positive correlation between subjective	The significant positive correlation between the misophonic aversiveness rating and the control aversiveness rating suggest that misophonia may experience an extreme form of discomfort

aversiveness rating	that the normal
and the SCR	individual experience
measurement.	to normally aversive
	or irritating stimuli.
	This raises the
	important hypothesis
	that there is nothing
	intrinsically different
	about misophonic
	individuals from those
	in the normal
	population, and the
	misophonic individual
	falls at the tail end of
	the distribution.

Chapter 4 Discussion

The present systematic review aimed to study the Neuroaudiological pathophysiology of misophonia. The result of the review revealed abnormal activation and connection among the different higher cortical structures in participants with misophonia. Highlighting the misophonia pathophysiology helps identify misophonia as a separate disorder and provides the pathway for assessment and management of misophonia from different perspectives.

4.1 Different self-report measures used for diagnosing misophonia across studies

Across the studies, various self-report questionnaires have been used along with the interview to characterize the psychological correlates of misophonia. Many studies aim to characterize 1) Subjective response to triggers and experiences 2.) Physiological correlates of the different triggers 3) Correlation of the psychiatric symptoms with the neurophysiological findings. Out of 12 articles selected for the review, five studies have used Amsterdam Misophonia Scale Questionnaire to characterize the subjective response of the individual with misophonia (Liebrand et al., 2021; Kumar et al., 2021; Eijsker et al., 2019). Few studies have used Misophonia Questionnaire (MQ) (Kumar et al., 2021), and others have used the Hamilton anxiety rating scale and Hamilton depression rating scale (Liebrand et al., 2021).

This result shows Amsterdam misophonia scale questionnaire is the most widely used questionnaire to diagnose misophonia. Amsterdam misophonia scale questionnaire developed by Schröder et al. (2013) has been validated in different languages. It is one of the most reliable and valid questionnaires with good sensitivity and specificity across languages (Naylor et al., 2021). The use of the Amsterdam Misophonia questionnaire across most of the studies selected for the review reflects the reliability of the findings.

4.2 Different physiological measures used for studying the brain basis of misophonia

Different methods used for studying the brain basis of misophonia have been explored. Across the studies, various neurophysiological, neurobiological, neuroimaging, and autonomic measures have been explored to find the brain functioning of the individual with misophonia. Across the studies, the subjective response to the misophonics is correlated with the physiological measurement of increased autonomic arousal in response to the misophonic triggers, which validates the experience of sufferers. These findings demonstrate misophonic trigger atypical sympathetic arousal and negative conditioning. Similarly, across the neuroimaging studies, it was found that misophonics showed an atypical neuronal and physical response, which again validates the condition is real and special attention is needed to develop the assessment and management strategies. Neurobiological studies showed central auditory processing impairment in individuals with misophonia. However, the findings of these studies using various methods are inconclusive, and further research is needed in the future, focusing on both the peripheral and central nervous systems.

4.2.1 Neuroimaging findings in misophonia

The neurophysiological correlates of misophonia have been studied, and most research found abnormalities in the auditory cortex, limbic system, and non-classical pathway (Schröder et al., 2019; Eijsker et al., 2019). The Anterior Insular Cortex (AIC) showed increased neural activity in the fMRI study by Kumar et al. (2017), employing the unpleasant trigger sounds, which is regarded as the strongest evidence supporting the neurological etiology of misophonia. Since the AIC is the main region in charge of emotional awareness, we might anticipate that this region will respond more strongly when exposed to trigger sounds.

Another fMRI study by Giorgi (2015) discovered that when an individual with misophonia is exposed to auditory triggers, the left Amygdala and bilateral auditory cortex become hyperactive. Schröder et al (2015) reported similar findings as well. The ventromedial prefrontal cortex (vmPFC), a node of the default mode network, has more gray matter demyelination in misophonics, according to Kumar et al. structural analysis of the brain data (DMN). This anatomical discrepancy may explain the aberrant functional connection of AIC to DMN in misophonics compared to controls. Overall, Kumar et al. findings' indicate aberrant AIC activity and functional connectivity, suggesting potential areas and systems that could represent the neurological process underlying misophonia. Ultimately, these discoveries may be clinically significant since they give clinical scientists important information about potential biological systems that might be changed when creating treatment plans for people with misophonia.

However, there is several limitations to the study by Kumar et al. (2017). The first limitation is a lack of a clinical control group, without which we can not conclude that findings from the study are unique and specific to misophonia. Another drawback is that establishing correlations and connections between behavioral activity and brain patterns does not support causal interpretations.

Further evidence of the misophonia's neurophysiological basis has been given by Schroder et al.(2014). Schroder and colleagues studied the N1 component of the late evoked auditory potentials. They reported reduced amplitude of the N1 component in the oddball stimuli, the marker linked to early attention and detection of abrupt sensory changes. Their findings showed a neurobiological deficit in individuals with misophonia, which could impair auditory processing of the incoming stimuli, although there is no direct causal link. Similary, Schroder et al. (2013) used mismatch negativity response as the objective test of central auditory processing and reported reduced MMN response in individuals with misophonia compared to the control group.

4.2.2.Psychophysiological findings in misophonia

The first study to examine misophonia utilizing psychophysiological testing was conducted by Edelstein et al. (2013). They measure the sympathetic nervous system response utilizing unisensory and multisensory stimuli in people with misophonia and control subjects using the skin conductance response (SCR). When compared to controls, misophonia patients responded more strongly to auditory-only stimuli in SCR data, but there was no discernible difference for visual-only stimuli. The average level of aversiveness and mean SCR across all participants and unisensory and multisensory trials were found to be significantly positively correlated. Similarly, Kumar et al. (2017) reported triggers eliciting increased heart rate and galvanic skin response in individuals with misophonia compared to the control group. From these findings, we can report that misophonic responses can be measured in the autonomic nervous system.

However, there are several limitations in the study by Edelstein et al. (2013). The few limitations to be noted are lack of adequate sample size, lack of clinical comparison group, and lack of proper screening measures for psychiatric and psychological measures. There is a need to carry out research in the future using this method by improving these limitations.

4.3 Auditory gating and processing in individuals with misophonia

Sensory gating is the brain's capacity to selectively regulate sensitivity to a sensory stimulus (Yadon et al., 2009). Auditory gating is when the brain shows a reduced response to repeated stimuli. There is a role of inhibition in the gating function to filter out the non-novel input leaving adequate resources for the brain to process relevant information. The auditory gating function has been investigated across various disorders such as Autism spectrum disorder (ASD), Schizophrenia, Sensory processing disorder (SPD), hearing loss, and Tinnitus. However, as misophonia is a new condition and is in the developing phase, there are not enough studies investigating auditory gating in misophonia.

In the study by Brett-Green et al. (2010), early evoked response potentials (ERP) have been documented in the sensory cortex suggesting abnormal information processing in sensory over-responsive children. Similarly, the study by Schröder et al.(2014) also supports the previous findings reporting a reduction in the mean amplitude of the N1 peak in individuals with misophonic. These results suggest that atypical sensory processing might be present in adults and children with misophonia and sensory processing disorders (SPD). The reduction in the amplitude of the N1 peak might be suggestive of sound encoding deficits in misophonia. However, there is a need to carry out collaborative studies in the future with different field researchers to gain deep insight into the gating function in an individual with misophonia.

4.4. Implications of Neuroaudiological findings in Assessment of Misophonia

Assessment of misophonia is not known yet. There is no standardized recommended protocol for the assessment of misophonia. The misophonia assessment needs an interdisciplinary approach involving psychologists, audiologists, neurologists, and occupational therapists. Many researchers are trying to show a path for the assessment in different ways using different models and hypotheses.

In the literature, assessment of misophonia has been done subjectively using different questionnaires. However, assessment using subjective questionnaires only is not sufficient, as it is challenging to come to a valid diagnosis using subjective measures only. We need to assess using different objective procedures, including electrophysiological measures and neuroimaging methods. The result from the review showed hyperactivation in the auditory and limbic systems. Hence, there is a need to develop an assessment protocol using a different electrophysiological measure like an auditory long-latency response (ALLR), Mismatch negativity (MMN), and P300. However, the assessment of misophonia from the audiological perspective is not well explored, and there is a need to develop a better assessment protocol using different electrophysiological measures from the audiological perspective.

4.5 Implications of Neuroaudiological findings in the management of misophonia

There is no standardized protocol developed for the management of misophonia. Various medical and non-medical approaches have been tried in literature to manage misophonia. However, success with the different approaches is limited. The result from the review states that using neuromodulation techniques like transcranial magnetic stimulation, transcranial direct current stimulation, transcranial alternating current stimulation, transcranial random noise stimulation, neurofeedback, epidural and subdural cortical and deep brain stimulation, and vagus nerve stimulation, hyperactivity in the auditory and limbic systems of a person with misophonia can be suppressed (Umashankar & Prabhu., 2021). However, these approaches have not been tried clinically.

Various neurophysiological studies have shown hyperactivation of the nonclassical auditory pathway in an individual with misophonia (Kumar et al., 2017). Hence, treatment approaches from audiological perspectives, such as Tinnitus Retraining Therapy (TRT) and Cognitive Behavioural Therapy (CBT), must be explored clinically to properly manage misophonia. Hence, understanding detailed Neuroaudiological pathophysiology will help the clinician to develop the proper management program for the individual suffering from misophonia.

Chapter 5

Summary and Conclusion

Misophonia is a new neurophysiological condition that is relatively less explored. The exact neurophysiology of misophonia is not known yet, and this is the topic of debate between psychology, audiology, and neurology. The proper assessment and management of the individual with misophonia are impossible without understanding the core mechanism behind it. Therefore, to gain detailed insight into the neurophysiology of misophonia, we reviewed all the research articles about the physiology of misophonia published till 2021 using proper inclusion and exclusion criteria.

The main purpose of our study was to see the brain basis of an individual with misophonia highlighting more the auditory neurophysiology. We reviewed 12 research articles that were related to the pathophysiology of misophonia. Most studies have used various neuroimaging methods, such as the functional Magnetic Resonance Imaging (fMRI) paradigm with different modifications to see the neurophysiology of the misophonic brain. Few studies have used electrophysiological measures such as Mismatch negativity (MMN) and P300. In summary, we found that the brain functioning of an individual with misophonia differs from that of a control subject. Most studies have shown hyperactivation of the cortical areas, including the auditory and limbic areas, in individuals with misophonia. In addition, few studies have noted hyperactivation in the non-classical auditory pathway and impaired sensory gating in an individual with misophonia. Even though the aim of the studies and methodology are the same across the studies, there is variation in the findings. This may be due to variation in descriptive characteristics of the individual with

misophonia recruited in the study. Also, none of the studies tries to see neurophysiological mechanisms according to the severity of misophonia. This can also be a confounding variable to result in different findings across studies.

This review will act as the baseline for the researchers interested in researching misophonia from audiological and neurological perspectives. This review highlights the need to develop more advanced objective physiological measures from audiological and neurological perspectives to gain detailed insight into the physiological mechanism of misophonia. Also, there is a need to develop precise subjective tools to categorize the types and severity of misophonia and compare the physiological mechanism accordingly.

5.1. Implications of the study

Misophonia is considered a psychological disorder. By signifying various neurophysiological and neuroradiological findings, the review confirms misophonia is a neurophysiological disorder that may border between audiology, neurology, and psychology. The review also highlights the need to include neurophysiological and audiological measures for diagnosing misophonia as only subjective measures from psychological perspectives are insufficient for properly assessing the misophonia.

As misophonia is the topic of debate in the literature, this review will help to confirm misophonia is a real disorder as there are various neurophysiological alterations in the brains of individuals with misophonia and also may show the significance of including misophonia in the International Classification of Diseases (ICD) classification and Diagnostic and Statistical Manual of Mental Disorders (DSM). The present systematic review helped to understand the gap in the literature classification of misophonia. The present systematic review will shed light on understanding the Neuroaudiological pathophysiology of misophonia and provide the compiled information on the pathophysiology of misophonia. The findings of this review can be used further in the assessment and management of misophonia from audiological and neurological perspectives. In addition, this review's findings help differentiate the pathophysiology of misophonia from other sound disorders like tinnitus and hyperacusis and provide the path for assessment and management strategies.

5.2. Limitation of the study

The present review has a few limitations. Few articles included for the review have an inadequate sample size, which could have biased the results. Misophonia can occur in isolation or as a co-morbid condition. However, most studies did not discuss co-morbidity and exclusion of the participants based on the co-morbidities. Hence, the results obtained may also be due to co-morbidities. In addition, none of the studies tries to see the physiological mechanism based on the severity of the misophonia. Although a salient concern, this review only included studies published in English.

5.3. Future directions

- With the advancement in technology, there is a need to discover various neurophysiological and neuroaudiological tools for assessment protocol which may provide detailed insight into the physiological mechanism of the mechanism
- In the future, we must conduct the research using an adequate sample size and methodology.

- There is a need to develop a reliable and valid tool with good sensitivity and specificity to categorize misophonia according to the degree of severity. There is a need to compare physiological mechanisms across the degree of misophonia.
- There is a need to develop proper management strategies for helping an individual with misophonia, focusing on the neurophysiological mechanism behind it.

References

Brett-Green, B. A., Miller, L. J., Schoen, S. A., & Nielsen, D. M. (2010). An exploratory event-related potential study of multisensory integration in sensory over-responsive children. *Brain Research*, 1321, 67–77.

https://doi.org/10.1016/j.brainres.2010.01.043

- Brout, J. J., Edelstein, M., Erfanian, M., Mannino, M., Miller, L. J., Rouw, R., Kumar, S., & Rosenthal, M. Z. (2018). Investigating misophonia: A review of the empirical literature, clinical implications, and a research agenda. *Frontiers in Neuroscience*, *12*(2), 36. https://doi.org/10.3389/fnins.2018.00036
- Dozier, T. H. (2015). Etiology, Composition, Development, and Maintenance of
 Misophonia: A Conditioned Aversive Reflex Disorder. *Psychological Thought*, 8(1), 114–129. https://doi.org/10.5964/psyct.v8i1.132
- Dozier, T. H., & Morrison, K. L. (2017). Phenomenology of Misophonia: Initial physical and emotional responses. *American Journal of Psychology*, 130(4), 431–438. https://doi.org/10.5406/amerjpsyc.130.4.0431
- Edelstein, M., Brang, D., Rouw, R., & Ramachandran, V. S. (2013). Misophonia:
 physiological investigations and case descriptions. *Frontiers in Human Neuroscience*, 7(6), 1–11. https://doi.org/10.3389/fnhum.2013.00296
- Eijsker, N., Schröder, A., Smit, D. J. A., van Wingen, G., & Denys, D. (2019). Neural Basis of Response Bias on the Stop Signal Task in Misophonia. *Frontiers in Psychiatry*, *10*(10), 1–10. https://doi.org/10.3389/fpsyt.2019.00765

Eijsker, N., Schröder, A., Smit, D. J. A., van Wingen, G., & Denys, D. (2021). Structural and functional brain abnormalities in misophonia. *European Neuropsychopharmacology*, *52*, 62–71. https://doi.org/10.1016/j.euroneuro.2021.05.013

- Ferreira, G. M., Harrison, B. J., & Fontenelle, L. F. (2013). Hatred of sounds: Misophonic disorder or just an underreported psychiatric symptom? *Annals of Clinical Psychiatry*, 25(4), 271–274.
- Jastreboff, Margareth M.; Jastreboff, P. J. (2001). Components of decreased sound tolerance : hyperacusis, misophonia, and phonophobia. *ITHS Newsletter*, 1–5.
- Jastreboff, M. M., & Jastreboff, P. J. (2002). Decreased sound tolerance and tinnitus retraining therapy (TRT). *Australian and New Zealand Journal of Audiology*, 24(2), 74–84. https://doi.org/10.1375/audi.24.2.74.31105
- Jastreboff, P. J. (1990). Phantom auditory perception (tinnitus): mechanisms of generation and perception. *Neuroscience Research*, 8(4), 221–254 https://doi.org/10.1016/0168-0102(90)90031-9
- Jastreboff, P. J. (2007). Tinnitus retraining therapy. *Progress in Brain Research*, *166*, 415–423. https://doi.org/10.1016/S0079-6123(07)66040-3
- Jastreboff, P. J. (2013). Using TRT to Treat Hyperacusis, Misophonia, and Phonophobia. 21(6), 88–90.
- Jastreboff, P. J. (2015). 25 Jahre Tinnitus-Retraining-Therapie. *Hno*, *63*(4), 307–311. https://doi.org/10.1007/s00106-014-2979-1

- Jastreboff, P. J., & Hazell, J. W. P. (2004). Tinnitus retraining therapy: Implementing the neurophysiological model. *Cambridge University Press*, 63-144. http://assets.cambridge.org/97805215/92567/frontmatter/9780521592567_frontmatter .pdf
- Jastreboff, P. J., & Jastreboff, M. M. (2006). Tinnitus retraining therapy: A different view on tinnitus. *Orl*, *68*(1), 23–29. https://doi.org/10.1159/000090487
- Jastreboff, P. J., & Jastreboff, M. M. (2014). Treatments for decreased sound tolerance (hyperacusis and misophonia). *Seminars in Hearing*, 35(2), 105–120. https://doi.org/10.1055/s-0034-1372527
- Kiessling, J. (1980). Masking of tinnitus aurium by maskers and hearing aids. *Hno*, 28(11), 383–388.
- Kumar, S., Dheerendra, P., Erfanian, M., Benzaquén, E., Sedley, W., Gander, P. E., Lad,
 M., Bamiou, D. E., & Griffiths, T. D. (2021). The motor basis for misophonia. *Journal of Neuroscience*, 41(26). https://doi.org/10.1523/JNEUROSCI.0261-21.2021
- Kumar, S., Tansley-Hancock, O., Sedley, W., Winston, J. S., Callaghan, M. F., Allen, M., Cope, T. E., Gander, P. E., Bamiou, D. E., & Griffiths, T. D. (2017). The Brain Basis for Misophonia. *Current Biology*, 27(4), 527–533. https://doi.org/10.1016/j.cub.2016.12.048
- Liebrand, L. C., Smit, D. J. A., Van, G., Eijsker, N., Schr, A., & Denys, D. (2021). NeuroImage : Clinical White matter abnormalities in misophonia, 9(6). https://doi.org/10.1016/j.nicl.2021.102787

- McGuire, J. F., Wu, M. S., & Storch, E. A. (2015). Cognitive-behavioral therapy for two youths with misophonia. *Journal of Clinical Psychiatry*, 76(5), 573–574. https://doi.org/10.4088/JCP.14cr09343
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Journal of clinical epidemiology*, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005
- Moller, A. R., & Rollins, P. R. (2002). The non-classical auditory pathways are involved in hearing in children but not adults. *Neuroscience Letters*, 319(1), 41–44. https://doi.org/10.1016/S0304-3940(01)02516-2
- Naylor, J., Caimino, C., Scutt, P., Hoare, D. J., & Baguley, D. M. (2021). The Prevalence and Severity of Misophonia is a UK Undergraduate Medical Student Population and Validation of the Amsterdam Misophonia Scale. *Psychiatric Quarterly*, 92(2), 609– 619. https://doi.org/10.1007/s11126-020-09825-3
- Palumbo, D. B., Alsalman, O., De Ridder, D., Song, J. J., & Vanneste, S. (2018).
 Misophonia and potential underlying mechanisms: A perspective. *Frontiers in Psychology*, 9(6). https://doi.org/10.3389/fpsyg.2018.00953
- Potgieter, I., MacDonald, C., Partridge, L., Cima, R., Sheldrake, J., & Hoare, D. J. (2019).
 Misophonia: A scoping review of research. *Journal of Clinical Psychology*, 75(7), 1203–1218. https://doi.org/10.1002/jclp.22771

Quek, T. C., Ho, C. S. H., Choo, C. C., Nguyen, L. H., Tran, B. X., & Ho, R. C. (2018).
Misophonia in Singaporean psychiatric patients: A cross-sectional study. *International Journal of Environmental Research and Public Health*, 15(7).
https://doi.org/10.3390/ijerph15071410

Rosenthal, M. Z., Anand, D., Cassiello-Robbins, C., Williams, Z. J., Guetta, R. E.,
Trumbull, J., & Kelley, L. D. (2021). Development and Initial Validation of the Duke
Misophonia Questionnaire. *Frontiers in Psychology*, *12*(9), 1–21.
https://doi.org/10.3389/fpsyg.2021.709928

- San Giorgi, R. (2015). Hyperactivity in Amygdala and auditory cortex in misophonia: preliminary results of a functional magnetic resonance imaging study. *Editorial Board of the ABC Journal Editorials*, 21.
- Sanchez, T. G., & Silva, F. E. da. (2018). Familial misophonia or selective sound sensitivity syndrome : evidence for the autosomal dominant inheritance? *Brazilian Journal of Otorhinolaryngology*, 84(5), 553–559.
 https://doi.org/10.1016/j.bjorl.2017.06.014
- Schneider, R. L., & Arch, J. J. (2015). Letter to the editor: Potential treatment targets for misophonia. *General Hospital Psychiatry*, 37(4), 370–371 https://doi.org/10.1016/j.genhosppsych.2015.03.020

Schroder, A. E., Mazaheri, A., Petropoulos, D., Soto, V., Smolders, R., Vulink, N. C. C.,
& Denys, D. (2013). P.1.b.005 A diminished mismatch negativity response in misophonia, a potential marker for aggressive impulsivity. *European Neuropsychopharmacology*, 23, S177. https://doi.org/10.1016/s0924-977x(13)70269-

4

- Schröder, A., Giorgi, R. S., Van Wingen, G., Vulink, N., & Denys, D. (2015). P.1.i.015
 Impulsive aggression in misophonia: results from a functional magnetic resonance imaging study. *European Neuropsychopharmacology*, 25, S307–S308.
 https://doi.org/10.1016/s0924-977x(15)30374-6
- Schröder, A., van Diepen, R., Mazaheri, A., Petropoulos-Petalas, D., de Amesti, V. S., Vulink, N., & Denys, D. (2014). Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients. *Frontiers in Behavioral Neuroscience*, 8(4). https://doi.org/10.3389/fnbeh.2014.00123
- Schröder, A., Vulink, N., & Denys, D. (2013). Misophonia: Diagnostic Criteria for a New Psychiatric Disorder. *PLoS ONE*, 8(1). https://doi.org/10.1371/journal.pone.0054706
- Schröder, A., Wingen, G. van, Eijsker, N., San Giorgi, R., Vulink, N. C., Turbyne, C., & Denys, D. (2019). Misophonia is associated with altered brain activity in the auditory cortex and salience network. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-44084-8
- Sherlock, L. G. P., & Formby, C. (2005). Estimates of loudness, loudness discomfort, and the auditory dynamic range: Normative estimates, comparison of procedures, and test-retest reliability. *Journal of the American Academy of Audiology*, *16*(2), 85–100. https://doi.org/10.3766/jaaa.16.2.4
- Tyler, R. S., Pienkowski, M., Roncancio, E. R., Jun, H. J., Brozoski, T., Dauman, N.,
 Coelho, C. B., Andersson, G., Keiner, A. J., Cacace, A. T., Martin, N., & Moore, B.
 C. J. (2014). A review of hyperacusis and future directions: Part I. Definitions and
 manifestations. *American Journal of Audiology*, 23(4), 402–419.
 https://doi.org/10.1044/2014_AJA-14-0010

- Umashankar, A., & Prabhu, P. (2021). The application of vagus nerve stimulation in individuals with misophonia. *Neuroscience Research Notes*, 3(5), 36–43. https://doi.org/10.31117/NEUROSCIRN.V3I5.105
- Vitoratou, S., Hayes, C., Uglik-Marucha, E., & Gregory, J. (2020). Selective Sound Sensitivity Syndrome Scale (S-Five): a psychometric tool for assessing misophonia. Summary of three waves of sampling and analysis. https://doi.org/10.31234/osf.io/4dzqn
- Waechter, S. (2021). Association between hearing status and tinnitus distress. *Acta Oto-Laryngologica*, *141*(4), 381–385. https://doi.org/10.1080/00016489.2021.1876919
- Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., Leeflang, M. M. G., Sterne, J. A. C., & Bossuyt, P. M. M. (2011). Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. *Annals of Internal Medicine*, 155(8), 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
- Wu, M. S., Lewin, A. B., Murphy, T. K., & Storch, E. A. (2014). Misophonia: Incidence, phenomenology, and clinical correlates in an undergraduate student sample. *Journal* of Clinical Psychology, 70(10), 994–1007. https://doi.org/10.1002/jclp.22098
- Yadon, C. A., Bugg, J. M., Kisley, M. A., & Davalos, D. B. (2009). P50 sensory gating is related to performance on select tasks of cognitive inhibition. *Cognitive, Affective and Behavioral Neuroscience*, 9(4), 448–458. https://doi.org/10.3758/CABN.9.4.448
- Yap, J. Y. Y., Keatch, C., Lambert, E., Woods, W., Stoddart, P. R., & Kameneva, T. (2020). Critical Review of Transcutaneous Vagus Nerve Stimulation: Challenges for Translation to Clinical Practice. *Frontiers in Neuroscience*, *14*(4). https://doi.org/10.3389/fnins.2020.00284

Zhou, X., Wu, M. S., & Storch, E. A. (2017). Misophonia symptoms among Chinese university students: Incidence, associated impairment, and clinical correlates. *Journal* of Obsessive-Compulsive and Related Disorders, 14(12), 7–12. https://doi.org/10.1016/j.jocrd.2017.05.001