AUDIOLOGICAL FINDINGS AND NON-AUDIOLOGICAL CORRELATES IN INDIVIDUALS WITH ACOUSTIC NEUROMA: A SYSTEMATIC REVIEW

J. CHINNARASU

20AUD014

A Dissertation Submitted in Part of Fulfillment of the Degree of

Master of Science

(Audiology)

University of Mysore

All India Institute of Speech and Hearing

Manasagangothri, Mysuru-570006

August 2022

CERTIFICATE

This is to certify that this dissertation entitled "Audiological Findings and Nonaudiological Correlates in Individuals with Acoustic Neuroma: A systematic review" is a bonafide work submitted as a part of the fulfilment of the degree of Master of Science (Audiology) of the student with Registration Number: 20AUD014. This has been carried out under the guidance of the faculty of this institute and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru

Dr. M. Pushpavathi

August, 2022

Director

All India Institute of Speech and Hearing

Manasagangothri, Mysuru-570006

CERTIFICATE

This is to certify that this dissertation entitled "Audiological Findings and Nonaudiological Correlates in Individuals with Acoustic Neuroma: A systematic review" has been prepared under my supervision and guidance. It is also being certified that this dissertation has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru August 2022 Dr Devi N Associate professor in Audiology All India Institute of Speech and Hearing Manasagangothri, Mysuru-570006

DECLARATION

This is to certify that this dissertation entitled "Audiological Findings and Nonaudiological Correlates in Individuals with Acoustic Neuroma: A systematic review" is the result of my own study under the guidance of Dr. Devi N, Associate professor in Audiology, Department of Audiology, All India Institute of Speech and Hearing, Mysuru and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru August 2022 **Registration No: 20AUD014**

Dedicated to My APPA (நா. ஜெயகோபி) INDIRAMMA (இந்திரா) CHITRAMMA (சித்ரா) AND MÝ BIG FAMILÝ.....

Acknowledgment

I would like to express my sincere gratitude to my guide **Dr. Devi N**. Without your support and I can't even think about finishing My dissertation. Thank you very much Mam for your patience and guidance throughout this dissertation.

I thank **Dr.Pushpavathi M**, Director, AIISH, Mysore for supporting and guiding us towards the better life.

Firstly, I would like to share My happiness with My very big family, Appen anna, Pappal anna, Santhosh anna, Saranya anni, Shyla anni, Chittu, NP mama, Bully(Kani) and the younger version of myself, My nephew Siddharth. Without your support, I could not reach this height.

And next, My very special person, இறைவி, thanks for your permanent shoulders which hold me when I was sad. Thanks for your constant ears, which listens to words that has all kind of suprasegmentals. Thank you very much for your motivation and the thank you very much for your love and support.

I won't miss you my dear constant best friend **Blesswin Richie.** Though we did not been in constant touch, I knew you always have best place for me in your life. And my dear Tome and Jerry friend, **Sathya (Vilvijayan)**, Thanks for the time which mase us very closer.

I can't miss my Second home **Chennai**, Thanks to you Madras which made a innocent school boy into the Man with dreams.

Thank very much da Narikootam Boys - Ashokganesh, Gnanaudhayan(neenga udhainey kooptukalam), Mohanlal. You guys are the constant pillars which made my UG Hostel life into a dream world.I won't forget those memories with Room no- 52. Want your friendship throughout the life. Thank you very much my dear college friends **Mymoonputhera and Monisha muniyan** for the good memories.

Thanks to your My dear Brother **Veeraamani Gilgamesh** for your endless talking and the provoking speeches which changed my way of thinking and guided me toward the path for equality.

Thank you **My dear MMC seniors** who guided and taught me the very good things for the life and Thanks to **My Juniors** for the good rapport and relationship in the college

I would like to show my gratitude towards my AIISH friends and Seniors. Thank you very much Bodhi Boys hostel which paved many ways for my thinking.

Mr.Guruvignesh karuppasaamy, thanks for the good friendship and support macha .Thank you very much **Gowthami BN** (**Astey**) for the best memories in the AIISH.I won't forget your friendship in these two years of the Master's programme.

Thank you very much My lovable batchmates, Akki (B), Sahil, Shubham, Delvin, Bahis, Ashiq, Boshu, Secretary Shashish, Rohit, Ritwik, Sandeep, Amar, Amit sha, Ranjeet. Thanks for Making these two years memorable.

Thank you very much My JC partners, Malavika P, Gurpreet and Harshadha mali for the good preparation and presentation for our JC.

Thanks to, **Muthukarthick**, **Abishek**, **Abbuthalla**, **Akshith**, **Sunny**, **Prateek**, and all My Aiish seniors who enjoyed and made My First year of MSc as an enjoyable year. Thanks to **Dhivagar**, **Anirban**, **Mani**, **Nishanth**, **Nithya**, and all other Aiish juniors who made my college life into a joyful ride

I would like to mention and thank My unofficial Co-guide **Ms. Monisha C**, who helped me a lot in this dissertation, and My dissertation partner **Nikki** for the good times during this dissertation preparation.

Thank you a lot to My Class Msc Audiology section A (2020-2022)for the kind cooperation during the presentations and the internals. Thanks to Sahana, Sanjay, Nethra, Sajana, Gayathri, Jayashree, Aishwarya, Bhuvi, Swathi (Kolantha), Banu, Teja, Vrushali, Mudra, Prerna, Aradhana, Adya and all My Artifacts batchmates (2020 – 2022).Thank you very much for the good two years in AIISH.

Thank you so much to Everyone who wished and supported for my Success and Health.

Thank you all.

யாதும் ஊரே யாவரும் கேளிர்

"Yaadhum Oore Yaavarum Kelir"

The World is My town and its people are My kinsmen

Chapter	Caption	Page Number	
	List of Tables	ii	
	List of Figures	ii	
	Abstract	1	
1	Introduction	3	
2	Method	9	
3	Results	12	
4	Discussion	56	
5	Summary and Conclusion	66	
	References	68	

TABLE OF CONTENTS

LIST OF TABLES

Table number	Caption	Page Number
3.1	Study Characteristics of the selected articles	16
3.2	Results of the quality assessment for all of the selected studies	52

LIST OF FIGURES

Figure number	Caption	Page Number
3.1	PRISMA flowchart of the selection process of articles that were included in the review	13

ABSTRACT

Tumors affecting the eighth cranial are often referred to as eighth nerve tumors, acoustic neuromas or vestibular schwannoma, acoustic neurilemomas, acoustic neurinomas, and acoustic tumors. Many individuals with vestibular schwannoma experience hearing loss along with tinnitus and dizziness. The accurate diagnosis of acoustic neuromas requires audiological evaluation, radiological evaluations, and other brain imaging findings. This review study aims to compile the articles comprising audiological and non-audiological evaluations of computed tomography (CT) and Magnetic resonance imaging (MRI) and their correlations in individuals with acoustic neuroma. The full-length articles published in the English language during the past ten years (2011 - 2021) were selected for this systematic review. These selected studies were analyzed using the CASP (Critical Appraisal Skills Programme) checklist for qualitative research to avoid the risk of bias. Of 38 full-length articles, 13 studies were included in the systematic review. The results of these articles reported that most patients with acoustic neuroma have significant unilateral hearing loss, mostly descending or sloping type. Along with the hearing loss, these individuals showed marked abnormality in auditory brainstem response (ABR) peaks and a decrement in the speech discrimination scores. About 4 to 6% of the patients with acoustic neuroma did not show any symptoms of hearing loss. The audiological test results did not significantly correlate with the tumor size or the site. However, small tumors or tumors at the early stage are difficult to find and diagnose through audiological tests alone. Non-audiological evaluations such as CT and MRI have increased the diagnosis of acoustic neuroma at the early stage. The incidence of vestibular schwannoma has increased globally during the past thirty years. This systematic review insists on the utility of non- audiological evaluation in diagnosing

acoustic neuroma, even though the patient shows no audiological symptoms such as hearing loss and tinnitus. Also, it recommends the audiologist consider the radiological findings while determining the diagnosis in patients indicating unilateral hearing loss, sudden SNHL, tinnitus, reduced speech understanding, and dizziness.

CHAPTER 1

INTRODUCTION

Hearing impairment or hearing loss is the reduction in the hearing ability. It is also called 'hypacusis' or hard of hearing. Majorly it was classified into two types; conductive and sensorineural hearing loss. The most common type was sensorineural hearing loss (SNHL), which refers to any cause of hearing loss due to a cochlea, auditory nerve, or central nervous system pathology. The diseases or disturbances in the cochlea which cause hearing impairment are known as cochlear pathology. The diseases or disturbances which affect the vestibulocochlear nerve and neural auditory pathway are termed retro cochlear pathology, and that type of hearing loss is called neural hearing loss (Dhingra & Dhingra, 2021; Gelfand, 2015; Katz., Chasin, English, Hood, and Tillery, 2015; Zahnert, 2011).

The common cause of neural hearing loss are tumors such as meningioma, acoustic neuroma, and other cerebellopontine angles (CPA) tumors. Tumors affecting the eighth cranial nerve are often referred to as eighth nerve tumors, acoustic neuromas, acoustic neurilemomas, acoustic neurinomas, and acoustic tumors. However, the technically preferred term is vestibular schwannomas because most eighth cranial nerve tumors involve the Schwann cells, which are present in the vestibular division of the nerve (Consensus Developmental Panel, 1994). The great majority of them are unilateral. However, ~ 5% of them are bilateral and are associated with a genetic syndrome called neurofibromatosis type 2. Acoustic tumors in the CPA are also called cerebellopontine angle or posterior fossa tumors. Acoustic neuroma constitutes 90% of all cerebellopontine angle tumors and 10% of all brain tumors (Sekhar & Jannetta, 1984).

Regarding pathology, vestibular schwannomas (VS) are often encapsulated round or oval lesions and originate from the vestibular division of the eighth cranial nerve. VS often develops at the intersection of the schwann and glial cells and extends into the CP angle. They are also typically seen in the internal auditory canals. A significant lesion can occasionally compress the fifth cranial nerve in addition to the cochlear nerve and the lower cranial nerves. A large lesion may compress the brain stem. Early signs of tumors include hearing loss, ringing in the ears, giddiness, and headache due to compression on the vestibulocochlear nerve (Zamani, 2000). Acoustic neuroma might occur sporadically or might be inherited as part of NF2. The autosomal dominant disorder of the 22nd chromosome is associated with acoustic neuroma, meningiomas, neurofibromas, and gliomas (Black, 1983). The tumor may appear in. every age of life, but the main manifestation is between the 3rd and 5th decade (Rosahl et al., 2017).

Traditionally, vestibular schwannomas have been classified according to the tumor size (Tos et al., 1992). But the problem with the traditional classification method was that it was based on the tumor's diameter. Sekiya et al. (2000) proposed classifying vestibular schwannoma based on Magnetic Resonance Imaging (MRI) to precisely delineate the extent of the tumor into the internal auditory canal (IAC) or IAC plus Cerebellopontine angle. The incidence rates of VS vary worldwide from 1 to 20 cases per million inhabitants per year and are reported to be on the increase globally (Hoffman et al., 2006; Howitz et al., 2000; Lanser et al., 1992). More than 3300 vestibular schwannoma cases are diagnosed yearly in the United States. The study findings on the African population strongly suggest that VS is very rare in the African population (Ohaegbulam et al., 2017).

Acoustic neuroma can be diagnosed in many ways, such as through audiological evaluations, radiological testing, and histopathological examination of the temporal bone (Mahmud et al., 2003). Radiological testing includes Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X-ray imaging (Crabtree & House, 1964) .Much literature supports the use of Magnetic Resonance Imaging in diagnosing acoustic neuroma since it visualizes the internal parts of the brain and neural pathways (Consensus Developmental Panel, 1994; Reznitsky et al., 2019; Stangerup & Caye-Thomasen, 2012). Since unilateral hearing loss is the primary symptom of vestibular schwannoma, audiological evaluation could be used to diagnose the patients. The audiological tests used in diagnosis were pure tone audiometry, speech audiometry, acoustic reflex testing, and auditory brainstem response. Auditory brainstem response audiometry was considered the best audiological diagnostic tool for acoustic neuroma (Schmidt et al., 2001).

The sensitivity and specificity of research articles that compare Brainstem Evoked Response Audiometry (BERA) with MRI were not similar (Haapaniemi et al., 2000; Moffat et al., 1993; Quaranta et al., 2001). BERA measurement has high sensitivity compared with MRI for acoustic neuromas, which are larger by 1cm (Chandrasekhar et al., 1995; Dhingra & Dhingra, 2021; Wilson et al., 1992). Many patients with vestibular Schwannoma experience hearing loss and tinnitus. Suppose hearing impairment is present along with tinnitus. In that case, reduced speech identification scores (SIS) and absent ABR peaks with poor morphology, acoustic neuroma could be suspected, and MRI scans were performed on those individuals (Gelfand, 2015; Katz, Chasin, English, Hood, 2015). Since hearing loss could be the earlier symptom of acoustic neuroma, an audiological diagnosis should be made before the MRI (Dhingra & Dhingra, 2021; Gelfand, 2015; Katz, Chasin, English, Hood, 2015). With the increasing research in using the different test battery approaches and higher correlations among the different tests to diagnose individuals with AN, it is required to systematically compile and correlate the audiological and non-audiological findings of acoustic neuroma.

1.1 Need for the study

Vestibular schwannoma or acoustic neuroma is a rare disease, but it accounts for 80% of cerebellopontine (CP) angle 6-7% of all intracranial and tumors (Butowski, 2015; Sanna & Hamada, 2011; Zamani, 2000). Due to the mass effect, vestibular schwannoma, despite being benign, poses a risk to intracranial structures and has a slight risk of developing into malignancy (Gupta et al., 2020). It could cause severe damage to the auditory system of the individual. Jeong et al. (2016), Sakamoto et al. (2001), Zamani, (2000) have concluded that progressive sensorineural hearing loss (SNHL) is one of the prominent symptoms of vestibular schwannoma (VS). There would be a significant difficulty in understanding speech out of proportion to the pure tone hearing threshold (Dhingra & Dhingra, 2021). Only 5 to 10% of tumors have an origin from the auditory branch. However, the early symptoms were mostly auditory, and vestibular symptoms generally occur later (Clemis et al., 1986). The auditory symptoms will manifest earlier than the vestibular symptoms, but a deficiency in vestibular function is most typically found when the AN is already rather substantial (Quaranta et al., 2001). Though some patients with acoustic neuroma exhibit no hearing loss, the percentage in such cases do not exceed 5%. Almost 90% of the patients with acoustic neuroma showed sensorineural hearing loss (Dhingra & Dhingra, 2021; Quaranta et al., 2001). The

prognosis of the condition depends on a timely diagnosis of vestibular schwannoma. All patients with sensorineural hearing loss must have vestibular schwannoma ruled out, especially if the hearing loss is asymmetric (Bento et al., 2012). Due to the loss of normal physiology of hearing in patients with acoustic neuroma, audiological evaluation plays a vital role in identifying acoustic neuromas even at the early stage.

At the same time, radiological evaluations such as Magnetic Resonance Imaging (MRI) and Computed tomography (CT) have improved the detection rate of the lesion in acoustic neuroma. Acoustic/vestibular schwannoma develops gradually, growing at roughly 1-2 mm each year (Gupta et al., 2015). It often may not manifest any obvious symptoms in the earlier stages. Early diagnosis is crucial because surgical therapy leads to better hearing and facial nerve outcomes when the tumor is smaller at the time of diagnosis (Lee et al., 2015). The detection of small size tumors might be difficult in CT, but MRI could detect even the intra-canalicular lesions, which are smaller in size (Lhuillier et al., 1992; Mark et al., 1993). Due to the frequent use of MRI scanning, the percentage of tumors diagnosed in the early stages has increased (Selesnick & Jackler, 1993; Stangerup & Caye-Thomasen, 2012). Through coronal and axial thin sections of MRI, the relation of the tumor to the brainstem and cranial nerves might be seen. Acoustic neuroma detection via MRI has gained popularity due to its increased accuracy and low incidence of false negative instances (Kabashi et al., 2020). In Minnesota, the USA, computed tomography (CT) was utilized for VS diagnosis for the first time in 1978, while MRI for VS diagnosis debuted in 1984. Pre-CT, CT, and MRI incident rates were 1.4, 1.4, and 3.3 per one lakh people year, respectively. Diagnosis of Vestibular

schwannoma has been increased due to the utility of non- audiological evaluations such as Magnetic Resonance Imaging and computed tomography (Marinelli et al., 2018).

Many audiological studies, as well as radiological evaluations, have been done on patients with vestibular schwannoma. But collective data and the recent updates in the findings are not reviewed much. Also, a systematic review study which comprises the recent audiological findings, comparison and correlation of audiological and nonaudiological findings such as CT, MRI, and the incidence and prevalence among the various people, is much needed to know more about the disease.

1.2 Aim of the study

The current study aims at reviewing the significant audiological and nonaudiological correlates in the studies conducted in the past ten years (2011 - 2021) on individuals diagnosed with acoustic neuroma.

1.3 Objectives of the study:

The specific research questions for the study include:

1. What are the audiological findings in individuals with acoustic neuroma over the past ten years?

2. What are the comparison and correlations between audiological and non – audiological findings in patients with an acoustic neuroma?

Chapter 2

METHODS

The systematic review was conducted based on the Preferred Reporting Systematic Review and Meta-Analysis Statement (PRISMA) (Page et al., 2021). A systematic literature search was carried out for peer-reviewed articles published from 2011-2021.

2.1 Information Source

The databases for the following were extensively searched for studies on audiological findings and non- audiological correlates in individuals with acoustic neuroma in databases such as Pub Med, Google Scholar, and Science Direct. Lists of references and citations were searched manually for further relevant studies.

2.2 Search Strategy

The search in the informational source was carried out using key terms, related search phrases, derivatives, and MeSH words relevant to the study combined with Boolean operators such as 'AND,' 'OR,' 'NOT'. "Acoustic neuroma" OR "Vestibular schwannoma" OR "Auditory tumors" OR "Acoustic tumors" AND "Cerebello pontine angle tumors" AND "Space occupying lesions in the auditory pathway" NOT "Brain tumors" NOT "Neurofibromatosis type-2" were used as the key terms for searching studies. The lists of references and citations were manually checked to find more relevant studies.

2.3 Study Selection

The specific inclusion and exclusion criteria for the selection of studies were as follows.

2.3.1 Inclusion Criteria:

- Original articles containing human participants with appropriate samples and relevant diagnostic tests were considered.
- Articles focused on the audiological and non-audiological findings of acoustic neuroma were included.
- The articles published in the English language were considered for the review.
- The selection was based on the PECOS criteria (Methley et al., 2014)

Participant Individuals diagnosed with acoustic neuroma

- **Exposure** Audiological tests and non-audiological evaluations such as CT and MRI
- **Control** Individuals without acoustic neuroma or with other types of tumors
- Outcomes Findings, comparisons, and correlations of audiological and nonaudiological evaluations
- Study design Retrospective and prospective studies

2.3.2 Exclusion Criteria:

• Articles with low methodological quality and language apart from English were excluded.

• Case reports, systematic reviews, meta-analysis letters to editors, and editorials were excluded.

2.4 Data extraction:

The review results were analyzed using the Rayyan QCRI systems (Qatar Computing Research Institute) and Mendeley desktop reference manager system, and the duplicate studies were eliminated. The studies that met the inclusion criteria were identified by screening the titles and abstracts retrieved from the search strategies. After that, the full text of the potential studies was retrieved and matched to see if they were eligible. The extracted data included article title, author detail with their affiliation, year of publication, research design, study, population sample size, age group comparison group method of outcome measures, and keyword specific to the title of this study.

2.5 Quality assessment:

The Critical Appraisals Skills Programme for Diagnostic test study (CASP) was used to assess the quality of the individual studies. The findings have been shown in the result section in detail.

Chapter 3

RESULTS

A total of 4180 articles were identified using database searches, references, and citations. With 14 duplicates eliminated, the remaining 4166 articles were included for title/ abstract screening. Following the title and abstract review, 38 articles were selected for the full-length article screening. Out of 38 full-length articles chosen for the eligibility assessment, 20 were excluded due to the irrelevant study design (only audiological findings or the radiological evaluations). Of the left out 18 articles, one article was excluded again as it was a case report study, one article was removed because it was a background article about Cerebello pontine angle tumors, and at last three articles were removed because they consisted of the irrelevant study population (patients with tumors other than acoustic neuroma and vestibular schwannoma). Finally, 13 articles were selected for this study. A detailed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart for the selection of the study is shown in Figure 3.1

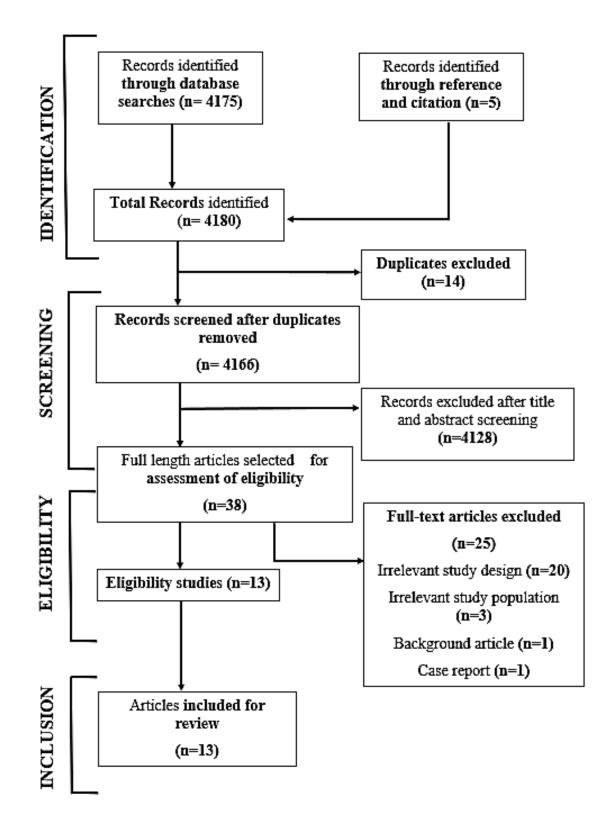


Figure 3.1: PRISMA flowchart for the selection process of articles included in the review

3.1 Study Characteristics

All articles that were finalized and selected for the review focused on the retrospective analysis of audiological evaluation, such as pure tone audiometry, non-audiological evaluation, such as Magnetic Resonance Imaging, and five articles focused on the diagnostic results of auditory brainstem response (ABR) audiometry. One article thoroughly evaluated the medial acoustic neuroma – a type of acoustic neuroma.

Population: The participants in the included studies are individuals with acoustic neuroma, and they are all in the age range of 11 to 81 years. The total population in these 13 studies was 6797 patients.

Exposure: In this study, the exposure of interest was audiological and non-audiological evaluations in individuals with acoustic neuroma. The audiological test analyzed in these studies were pure tone audiometry, speech audiometry, tinnitogram, and auditory brainstem response, and one study even included Cervical VEMP. The non-audiological evaluations examined are Magnetic Resonance Imaging and Computed Tomography.

Comparators: The outcomes of both audiological tests and non-audiological evaluations such as CT and MRI of individuals with acoustic neuroma are compared with individuals without acoustic neuroma (Ahsan et al., 2015; Jeong et al., 2016; Lee et al., 2011), individuals with tumors other than acoustic neuroma (Kim et al., 2016). In some studies, the results are compared within individuals with acoustic neuroma or vestibular schwannoma (Bento et al., 2012; Eliezer et al., 2019; Kim et al., 2014; Lee et al., 2015; Patel et al., 2015; Salem et al., 2019; Valame & Gore, 2017). One article compared the

results of cerebellopontine angle tumors with or without internal acoustic canal extension (Tutar et al., 2013).

Outcomes: All articles were based on the retrospective analysis of audiological findings and non-audiological evaluations of individuals with acoustic neuroma or vestibular schwannoma. The audiological and non-audiological correlates of acoustic neuroma were the primary outcome interest in all the selected articles.

Table 3.1 Summarizes study design, research question, study population details, testing parameters, and study outcomes focusing on the audiological and nonaudiological correlates of acoustic neuroma.

Sl.no	Author & year	Title	Study design and Research question	Study Population	Testing parameters used	Results	Inference
1.	Jeong et al. (2016)	Abnormal Magnetic Resonance Imaging Findings in Patients with Sudden Sensorineural Hearing Loss	Retrospective study design. →To evaluate MRI findings of patients with Sudden sensorineural hearing loss	291 patients with sudden sensorineural hearing loss(SSNHL) → 153 women and 138 men → Mean age- 45.7 years (11- 81 years)	Pure tone audiometry (PTA), Magnetic resonance imaging (MRI)	 Audiological findings: - → Out of 291, 13 had MRI abnormality, in that nine patients had a vestibular schwannoma → In that nine patients with vestibular schwannoma, i) Mean PTA threshold was 56 ± 23 dB ii) Mean speech discrimination score was 63% ± 34% → In one patient with a nodular enhancing lesion in the left internal auditory canal fundus and basal turn of the cochlea compatible with Intra labyrinthine schwannoma, low frequency mixed hearing loss (46 dB threshold) was found in the left ear → In the 14-year-old 	 → MRI of the internal auditory canal revealed abnormalities in 4.5% (13 of 291) of SSNHL patients; the vestibular schwannoma was the most frequent abnormality found in these patients → Compared to medium- sized (1.1-2.9 cm) and big tumours (>3 cm), SSNHL is more commonly found in tiny tumours (1 cm). → There was no relationship between tumor size and the incidence of SSNHL. → The MRI findings for intralabyrinthine schwannoma typically showed a lack of normal fluid density on T2- weighted images and a comparable enhancement

	patient with subacute	on gadolinium-enhanced
	labyrinthine hemorrhage,	T1-weighted images.
	the right ear which had	
	vestibular schwannoma	\rightarrow Patients with SSNHL
	showed a hearing	who might have a
	threshold of 106 dB	labyrinthine haemorrhage
		may not be detected by an
	\rightarrow For a 56-year-old	MRI performed at early
	patient with distant	stage.
	metastasis into the	C
	internal auditory canal	\rightarrow In patients with IAC
	from stomach cancer,	metastasis, gadolinium-
	pure tone audiometry	enhanced MRI findings of
	revealed total hearing	heterogeneous nodular
	loss on the ear with	enhancement in the
	tumor.	internal auditory canal and
		cerebellopontine angle
	\rightarrow In a 17-year-old	with leptomeningeal
	patient with a dermoid	enhancement may
	cyst, the right ear	contribute to a differential
	threshold was 71 dB, and	diagnosis.
	the SDS was 24%.	_
		\rightarrow Due to the leakage of
		lipid metabolites into the
	Non-audiological	endolymphatic system
	findings: -	following a dermoid cyst
	\rightarrow Out of 291, 13 patients	rupture, which may have
	had an abnormality in	altered endolymphatic
	MRI, and the most	homeostasis and resulted
	common finding was	in SSNHL, precontrast T1
	vestibular schwannoma	weighted MRI might

involving IAC or cerebellopontine angle (n=9) and the age range of those nine patients was 40 to 65 years.
→One patient showed well defined nodular enhancing lesion in the left IAC fundus and basal turn of the cochlea compatible with Intra labyrinthine schwannoma, who has low frequency mixed hearing loss
→Subacute labyrinthine haemorrhage was found in the MRI findings of a 14-year-old patient
→ In a 56-year-old patient with distant metastasis into the internal auditory canal from stomach cancer, the findings of MRI revealed the presence of leptomeningeal

			enhancing lesions in the right IAC →Based on MRI findings, a 17-year-old patient with sudden SNHL was diagnosed with a dermoid cyst. → Hearing loss has been more frequently linked to lateral tumours that	
			lateral tumours that originate in or extend to the internal auditory canal.	

	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
é	Kim et al. (2016)	Audiologic evaluation of vestibular schwannoma and other cerebelloponti ne angle tumors	Retrospective study design → To evaluate the clinical difference between Vestibular schwannoma (VS) and other CPA tumors	171 patients with cerebellopontine angle tumors \rightarrow They were separated into two groups:- 1) Patients with vestibular schwannoma (number of patients =116) \rightarrow 46 males and 70 females. \rightarrow The mean age of this group was 53.9 \pm 14.4 years, and the mean duration of symptoms was 16.3 \pm 13.1 months. 2) Patients with	Pure tone audiometry (PTA), speech audiometry, tinnitogram, auditory brainstem response (ABR) and Magnetic resonance imaging (MRI)	 Audiological findings: In the vestibular schwnnoma group, → the mean hearing threshold was 38.9 ±34.3 dB → Average speech discrimination score was 73.1±34.1% →In tinnitogram findings, 1) Average frequencies = 5012.5 ± 3504.9 Hz. 2) Average loudness = 62.5±27.4 dB. → Out of 116 patients with vestibular schwannoma, ABR was present in 92, complete absent in 24, and abnormal in 104. → Measurement values of ABR in VS group as follows: - i) wave V latency - 4.57 ± 2.36 ii) ILD of wave V - 	 → Cerebellopontine angle constitutes about 5 to 10% of intracranial tumors. → Vestibular schwannoma accounted for 70-90% of CPA tumors, 5-10% being meningiomas, and 3 to 7% were epidermoid cysts. → In this study, vestibular schwannoma accounted for 65% of the tumors in the cerebellopontine angle → Sensorineural hearing loss was

		NG (C (1
		non- VS tumors	iii) I-V interval - $3.14 \pm$	one of the
		(number of	2.43	strongest clinical
		patients is 55)	iv) I-III interval - $1.78 \pm$	signs of the
			1.63	presence of
		\rightarrow 17 males and	v) III-V interval – 2.20	vestibular
		38 females.	± 2.47	schwannoma.
		\rightarrow The mean age	In the non- vestibular	→ Non-
		of the non- VS	schwannoma group,	vestibular
		group was	\rightarrow the mean hearing	schwannoma
		49.3 ± 15.8 years,	threshold was 31.2±28.3 dB	type of tumors
		and the mean	\rightarrow Average speech	differ from
		duration of	discrimination score was	vestibular
		symptoms was	80.3±37.2%	schwannoma
		15.5±13.7	\rightarrow In tinnitogram findings,	through different
		months.	1) mean frequencies = (1)	symptom
			$4281.2 \pm 3504.9 \text{ Hz}$	patterns, shapes,
			2) loudness = 61.3 ± 25.3	and neuro
			dB.	anatomic
			\rightarrow Out of 55 patients, ABR	locations.
			was present in 45 and absent	locations.
			in 10.	\rightarrow The sloping
			m 10.	sensorineural
			\rightarrow Measurement values of	hearing loss was
			ABR in the non- vestibular	the characteristic
				of vestibular
			schwannoma group are as	
			follows: -	schwannoma,
			i) wave V latency -	which was not a
			5.46 ± 2.47	clinical sign of
			ii) ILD of wave V -	patients with
			3.45 ± 2.62	meningioma.

				[]
			iii) I-V interval - $3.46 \pm$	
			2.62	\rightarrow Though the
			iv) I-III interval - $1.42\pm$	size of the tumor
			1.26	is similar, the
			v) III-V interval – 2.82	hearing level of
			± 2.36	the patients with
				vestibular
			\rightarrow There was no difference	schwannoma
			between	
				were poorer than
			audiological test results and	those of patients
			the tumor site in both	with non- VS
			groups.	tumor
				_
				\rightarrow This study
			\rightarrow Sensorineural hearing	concludes that
			loss was considered the	the most typical
			strongest clinical sign of	combination was
			vestibular schwannoma	hearing loss and
				tinnitus in
			\rightarrow During the early stage of	patients with
			the tumor, hearing loss	vestibular
			might occur at all	schwannoma. Of
			frequencies	symptoms,
				whereas, in
			\rightarrow The characteristic of a	patients with
			large tumor was low-	non-vestibular
			frequency hearing loss,	schwannoma
			specifically at 500 Hz.	type of tumor,
			specifically at 500 HZ.	• 1
			- Most typical audiometric	hearing loss with
			\rightarrow Most typical audiometric	dizziness was
			configuration in patients	more common in

	with vestibular schwannoma was the sloping hearing loss which is also mentioned as a descending type →Compared with the non- VS type of tumor, the hearing level in patients with vestibular schwannoma was significantly poor.	combined symptoms
	Non-audiological findings: → In this study, vestibular schwannoma accounted for 65% of the tumors in the cerebellopontine angle → The internal auditory canal and cerebellopontine angle, IAC with CPA plus brainstem compression, and	
	internal auditory canal alone were the areas where vestibular schwannoma was most frequently seen. → Non-vestibular schwannoma type of tumors were most often	

			present in the cerebellopontine angle alone, followed by Cerebellopontine angle plus brainstem compression	

Sl.no	Author	Title	Study design	Population	Testing	Results	Inference
	& year		and Research question		parameters used		
3.	Tutar et al. (2013)	Audiological correlates of tumor parameters in acoustic neuroma	Retrospective study design → To determine whether PTA and SDS are correlated with the size of the tumor and the presence of intrameatal extension in the acoustic neuroma	 115 patients with CPA tumor with/without IAC extension →Thirty-seven patients were excluded because of neurofibromatosis →76 unilateral Acoustic neuroma patients included →43 Male and 33 Female. → Mean age at diagnosis was 46.10 years 	PTA, Speech audiometry, Magnetic Resonance Imaging	 Audiological findings → Out of 76 patients, 73 with unilateral Acoustic neuroma were affected with a unilateral SNHL, and three patients had normal hearing at the time of diagnosis. → A high-frequency sloping hearing loss was present in most of the patients with Acoustic neuroma (61%); about 12% of cases had a flat configuration, and the audiogram was U shaped in 8% of cases. → In the contralateral ear, 48 individuals had normal hearing, and 28 indicated sensorineural hearing loss. → On the tumor ear;-1) Mean SDS =57%, 2) Mean SRT = 46 dB → On the opposite ear 1) Mean SDS = 96% 2) Mean SRT = 10 dB 	 → One of the most vital clinical signs for the presence of acoustic neuroma is sensorineural hearing loss. → High-frequency slope had the highest occurrence in acoustic neuromas, followed by flat loss. → There was a marked decrease in speech discrimination scores and speech recognition scores → The tumor's size and hearing

				si b tu 0 	→ There was a statistically significant difference between SDS of ear with umor and opposite ears (p < 0.001) → Pure tone thresholds, SRT, and SDS did not significantly correlate with he tumor size or its expansion into the IAC Non-audiological findings → Of 76 patients, 33 had an extension to the internal auditory canal; the mean umor size was 18.58 mm → The patients were divided nto two groups based on the umor size, 1) group 1 → < 20 mm 2) group 2 → > 20 mm. → The findings of the t-tests lid not reveal a significant difference between the two groups thresholds at each requency, SRT, and SDS.	level at each frequency did not correlate with one another → Additionally, there is no apparent relationship between the tumor's size, its extent to the internal auditory canal, and other factors like the speech recognition threshold, maximal speech discrimination scores, the configuration of the audiogram, and other variables.
--	--	--	--	-----------------------------------	---	--

Sl.no	Author &	Title	Study design and Research	Population	Testing parameters	Results	Inference
	year		question		used		
4.	Salem	Audiological	Retrospective	4000 patients	PTA,	\rightarrow Out of 4000 clinical	\rightarrow The female to male
	et al.	Evaluation	study design	were	Auditory	reports of patients with	patient ratio reported
	(2019)	of Vestibular		diagnosed	Brainstem	vestibular schwannoma,	in this study was 2.3:1,
		Schwannoma	\rightarrow to examine	with	Response,	3768 were selected for	and it was similar to
		Patients with	the	vestibular	Computed	this study.	the ratio of 3:1 given
		Normal	characteristics of	schwannoma	Tomography,	Audiological findings:	by various authors
		Hearing	the ABR and the	between	and	-	
			prevalence of	1986 and	Magnetic		\rightarrow There was a slight
			normal hearing	2017	Resonance	\rightarrow ABR data were	predominance
			among patients		Imaging	available for 114	of the vestibular
			with vestibular			patients out of 162 with	schwannoma on the
			schwannoma.			normal hearing.	left side (51.9%)
							found in this study.
			\rightarrow To investigate			\rightarrow The sensitivity of the	
			the relationship			ABR test was 73.6%	\rightarrow In this study, the
			between ABR			(98/133.	majority of the
			abnormalities				patients (64.7%) were
			and the degree of tumour			\rightarrow In findings of ABR, there was a statistically	between the ages of 30 and 50.
			involvement in			significant relationship	and 50.
			the			between tumor grade	\rightarrow Tinnitus was the
			vestibulocochlear			and ABR	most frequent
			nerve or				symptom among the
			brainstem, as			\rightarrow Small tumours	patients (54.4%),
			well as the			(grades 0 and 1) had a	followed by subjective
			impact of tumour			sensitivity of 64.5%,	hearing loss (43.3%)
			size or location			while tumours of	and vertigo (35.3%).
						medium to large size	

r		1		
			had a sensitivity of	\rightarrow As the tumor
			97.2%.	size increased;
				abnormality of the
			Non- audiological	auditory brainstem
			findings: -	response also
				increased.
			\rightarrow The tumors were	
			classified from grade 0	\rightarrow For contralateral
			to grade 5 according to	ABR recording, giant
			their size through	tumors altered the
			imaging techniques.	measurements.
			ining iceninques.	incusurente.
			\rightarrow Grade 0 (intrameatal)	
			was the most prevalent	\rightarrow There was no
			tumour grade, occurring	evident association
			in 64 cases, followed by	between the ABR
			, 5	
			grade 1 (48 patients).	results and symptoms.
				Additionally, the
				occupation of the
				fundus at the tumor's
				site has no impact on
				ABR results.
				\rightarrow Even if the patient
				has normal hearing,
				ABR testing should be
				a part of the usual test
				battery on the patient's
1				initial appointment.
				Given the incidence of

			vestibular schwannoma, starting with ABR testing rather than going to the MRI would be more cost-effective

et al. (2015)Predictors of Abnormal Magnetic Imaging Findings in Patients with Asymmetrical Sensorineural Hearing Lossstudy design study designwith asymmetrical NRISpeech audiometry, Resonance Imaging SNHL Imaging \rightarrow To assess the received MRISpeech audiometry, Resonance Imaging SNHL Patients with Asymmetrica \rightarrow To assess the received MRISpeech audiometry, Resonance Imaging SNHL Patients with Asymmetricawith asymmetrical SNHL patients' abnormal MRI findings and clinical and audiometric factors.with asymmetrical SNHL patients' abnormal MRI findings and clinical and audiometric factors.with asymmetrical study.Speech audiometry, Magnetic Resonance Imagingexamine the correlation between audiometry, Amaginget al. (2015)Primation Single Patients with Asymmetrical Sensorineural Hearing Losswith asymmetrical souldSpeech asymmetrical SouldSpeech audiometry, Resonance ImagingSpeech audiometry, Magnetic Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Resonance ImagingSpeech audiometry, Pother State ImagingSpeech audiometry, Pother State<	Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
had abnormal MRI findings diagnosed directly (10.6%) using standard audiometry. Retro → CPA or IAC tumor was cochlear pathology the most typical abnormality could be detected by	5.	Ahsan et al.	Predictors of Abnormal Magnetic Resonance Imaging Findings in Patients with Asymmetric Sensorineural	Retrospective study design →To assess the relationship between asymmetrical SNHL patients' abnormal MRI findings and clinical and audiometric	with asymmetrical SNHL received	PTA, Speech audiometry, Magnetic Resonance	 → Out of 615 patients, 451 fulfilled the criteria for asymmetric hearing loss, and they are included in this study. → The minimum 10-dB difference at three consecutive frequencies or the highest 15-dB difference at two consecutive frequencies were seen in all patients with the difference of 15 dB at 3 kHz. Non- audiological findings: → Of the 451 patients, 48 had abnormal MRI findings (10.6%) → CPA or IAC tumor was the most typical abnormality 	 correlation between audiometric criteria and tumor size due to the small number of patients with CPA or IAC tumor. → They observed that the presence of a CPA mass was substantially correlated with unilateral tinnitus and a difference of 15 dB at 3 kHz. → Retro cochlear pathology cannot be diagnosed directly using standard audiometry. Retro

	1			
			40%)	\rightarrow ASNHL may be
				screened on patients
			→ An abnormal MRI	using ABR. A
			finding was associated	vestibular
			with sudden hearing loss,	schwannoma larger
			however the association did	than 1 cm can be
			not reach statistical	detected by the ABR
			significance (p=0.054).	test, since the ABR
				sensitivity is higher
			\rightarrow This study found that	for larger tumors.
			only patients with a	
			difference of 15 dB between	\rightarrow This study also
			ears at 3 kHz significantly	concluded that an
			increased abnormal MRI	abnormal MRI did
			results.	not significantly
				indicate a CPA/IAC
				mass in cases of
				sudden acute hearing
				loss.
				\rightarrow However, those
				patients who have
				asymmetric SNHL
				that contains this
				audiometric feature
				should undergo a
				MRI.
				\rightarrow If a patient also
				has unilateral
				tinnitus, vertigo, or

			dizziness in addition to having asymmetric SNHL, they are more certain to have abnormal findings in MRI.

Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
6.	Patel et al. (2015)	Hearing in Static Unilateral Vestibular Schwannoma Declines More Than in the Contralateral Ear	Retrospective study design → In order to determine if the IAC/CPA mass itself causes the affected ear's hearing loss to progress more rapidly than the opposite ear	One hundred fifty patients with a diagnosis of acoustic neuroma. →Only patients with static acoustic neuroma were included. → Patients with other otological history were excluded. → Patients who had progressive tumors were excluded → Finally, 15 patients were included.	Pure tone audiometry, speech audiometry, Magnetic Resonance Imaging.	 Audiological findings: - → There was a significant difference between the unaffected and damaged ears in audiometric measurements (P <.05) → The average increase in the 4 kHz level difference between ears was 10.9 dB, which reaches a maximum difference increase of 45 dB. → The average increase in the difference between the ears' speech discrimination scores was 24%, with a maximum increase of 100%. → It should be mentioned that most patients' hearing 	 → The results of this study showed that, when compared to the opposite ear, hearing thresholds and speech discrimination gradually decline in the ear with a static AN. → The difference in speech discrimination scores tended to expand however some patients displayed transient reduction or widening of the difference. → It is concluded that even if an acoustic neuroma is not growing, hearing thresholds and speech discrimination scores will decline in the affected ear. → Finally, this study revealed that even while patients with static

		 → 4 males and 11 females. → Age range - 32 to 78 years old 	deteriorated with time. However, a small number of them retained stable hearing in some measurements. Non- audiological findings: - → Reviewing the MRI images revealed no evidence of tumor growth. → All patients had tumors that affected the internal auditory canal, and five of them also had tumors that affected the cerebellopontine angle. → The IAC tumor's involvement ranged from 3 to 14 mm. The dimensions of cerebellopontine angle	IAC/CPA masses may still have "serviceable hearing," it is likely that their hearing may decline with time.
			dimensions of	

Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
7.	Dunn et al. (2014)	Medial acoustic neuromas: clinical and surgical implications	Retrospective study design To evaluate the clinical and imaging features of medial acoustic neuroma	52 adult patients who were identified with medial acoustic neuroma → 33 Women, 19 Men. → Age range- 19 to 74 years. Mean 43 years and median 45 years	Pure tone audiometry, speech audiometry, MRI and CT	 Audiological findings: - →Most common Symptoms were progressive hearing loss, about 88% of patients, and unsteady gait (38%). → 46 out of 52 patients with Medial acoustic neuroma reported hearing loss. → Preoperatively, out of 46 patients, 10 had hearing levels ≤ 30dBHL and > 70% speech discrimination, 10 had > 30dBHL but ≤ 50dBHL and > 50% speech discrimination, 6 patients had > 50 dBHL and ≥ 50 speech discrimination and 26 had < 50% speech discrimination with any level of pure tone threshold. 	 → Acoustic neuroma occupies the cisternal compartment with no extension into the lateral IAC and is termed "medial acoustic neuroma." → Some level of hearing could be present despite a larger tumor size. This study showed that hearing preservation is an achievable goal in these patients, especially if they had goa od hearing before surgery. →Tumor adherence to the cochlear nerve in the IAC3 and increases in IAC pressure from tumor13 may be responsible for hearing loss in the acoustic neuroma patient. But the absence of significant

	1	1		1
			\rightarrow Postoperatively, of 10	intracanalicular
			patients with \leq 30dBHL	extension may provide
			before surgery, functional	an opportunity to
			hearing was preserved in	preserve hearing despite
			5 of 10 patients with	the large size of the
			postoperative audiograms	medial tumor.
			Non- audiological	\rightarrow Understanding this
			findings: -	variant of acoustic
			0	neuroma, a high rate of
			\rightarrow The tumor size ranged	hearing preservation
			from 13 mm to 53 mm in	will be achievable even
			maximum diameter, with	with the larger size of
			an average size of 34.5	the medial tumor
			mm	
			\rightarrow Forty-seven patients	
			(90.4%) had tumors of 25	
			mm or larger, and five	
			patients had small tumors	
			(<25 mm).	
			\rightarrow In addition to CN	
			involvement, larger	
			tumors compress and	
			displace the brainstem,	
			distorting the usual view	
			of the brain tumor	
			interface; draining veins	
			in large and giant tumors	
			may be unusually	
	1		may be unubuuny	

	distended and fragile, increasing the risk of hemorrhage	

Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
8.	Lee et al. (2015)	Otologic manifestations of acoustic neuroma	To investigate the otorhinolaryngological factors associated with acoustic neuroma	114 patients with acoustic neuroma \rightarrow 46 males 68 females Mean age = 52.2 ± 13.1 years. \rightarrow 63 had AN on the right ear, and 51 had AN on the left ear.	Pure tone audiometry (PTA), speech discrimination scores, tinnitogram, auditory brainstem response (ABR), and Magnetic resonance imaging (MRI)	 Audiological findings: → The most common AN symptoms were dizziness (31.8%), tinnitus (7.7%), and hearing loss (51.7%). → The sloping hearing loss was the most prevalent, followed by flat-concave and ascending patterns. → 16.3% of 114 patients, or 19 people, had acute sensorineural hearing loss symptoms. → The convex pattern of the audiogram showed the greatest SDS reduction. → Tinnitogram findings revealed, 1) Average frequency = 5012 ± 3379 Hz 	 → There was no correlation between tumour size or location and the degree of hearing loss, speech discrimination scores, tinnitogram findings, or ABR results. → Sudden Sensorineural hearing loss was the initial symptom of acoustic neuroma. → One of the key symptoms in individuals with small tumours is dizziness. As the tumor increases

		 2) Average loudness = 62.5 ± 27.4 dB → Waves I, III, and V latency durations were prolonged or absent in 30.3%, 52.9%, and 49.9% of patients with ABR, respectively. → The interaural wave I-V latency difference is more than 4.4 ms in 30.3% of cases. Non- audiological findings: → Acoustic neuroma was primarily located in the internal auditory canal and Cerebellopontine angle (43.9%), followed by 	experience otologic symptoms like hearing loss, tinnitus, poor speech discrimination scores, and
		canal and Cerebellopontine angle	MRI to rule out an acoustic

		acoustic neuromas in the CPA and CPA plus brainstem compression in any patients. → Most tumors had a dimension of 10 to 20 mm. Only two patients had a size of less than 10mm.	

Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
9.	Valame and Gore (2017)	Role of cervical vestibular evoked myogenic potentials and auditory brainstem response in the evaluation of vestibular schwannoma	Retrospective study design To determine whether cervical VEMP, in conjunction with the ABR, is useful in the diagnosis of vestibular schwannoma	15 cases of vestibular schwannoma, from May 2012 to May 2014 → Age range 19 to 68 years. Mean age – 43.6 years	Pure tone audiometry, cervical VEMP auditory brainstem response (ABR), and Magnetic resonance imaging (MRI)	 Out of 15 patients, unilateral sporadic vestibular schwannoma was present in thirteen, and bilateral neurofibromatosis type2 was present in two. Audiological findings: - → There was a significant severity of hearing loss found in all the patients with large tumors → Out of nine patients with small tumors, three (33.3%) showed severe to profound hearing loss in the ear with vestibular schwannoma. → ABR was absent in the ears of seven patients with large tumors (87.5%). → Only three patients with a small tumor showed an absent ABR (33.3%). 	 → Large tumours that have displaced or compressed the brainstem to the opposite side may exhibit abnormal response in the contralateral ear while passing through the lower brainstem in the cVEMP's descending course → In 80% of patients with large unilateral tumors, the cVEMP was absent or had a lower amplitude in the contralateral ear. It might be caused by the mass effect of the tumor on the descending MVST or the contralateral inferior vestibular nuclei.

Non- audiological detect retrocochlear findings pathology when other audiological → The fifteen patients were classified into two groups based on their groups based on their are ineffective since tumor size. they need residual 1) Small tumors (<2.5 cm) (n=9) 2) 2) Large tumors (>2.5 cm) (n=8)

Sl.no	Author &	Title	Study design and Research	Population	Testing parameters	Results	Inference
	vear		question		used		
10.	Bento et al.	Vestibular schwanno	Retrospective study design	825 Individuals diagnosed with	PTA, speech	Audiological findings:	\rightarrow 90% of acoustic
	(2012)	ma: 825 cases from a 25-years experience	→ To assess the indications and symptoms seen in the 825 vestibular schwannoma cases that	vestibular schwannoma and underwent surgery between January 1984 and August 2006.	audiometry, ABR, and MRI.	→ The most common condition was unilateral progressive hearing loss, which affected 656 patients (79.5%), followed by vertigo (5.1%), tinnitus (8.1%), and sudden hearing loss (48, 5.8%).	neuroma begin with progressive, unilateral hearing loss as a symptom, and in the current study, 80% of cases had this as their main complaint.
			underwent surgery between 1981 and 2006. → To describe	→467 (56.6%) were female, and 358 (43.4%) were male.		→Before surgery, there were 220 patients (26.7%) with profound hearing loss, 261 (31.6%) with severe hearing loss, 279	→ There is no relationship between speech discrimination scores, hearing
			the pertinent features of medical	→Age range and number of patients		(33.8%) with moderate hearing loss, 53 (6.4%) with mild hearing loss,	thresholds, or tumor size.
			diagnosis using audiometry and imaging	0–20 years: 12 (1.5%) 21–30 years: 55		and 12 (1.5%) with normal thresholds.	→ Most of the patients were between 41 years to
				(6.7%) 31–40 years: 108 (13.1%)		→ In 146 patients (17.7%) , the spondee recognition score on the	60 years of age. → Female
				(13.1%) 41–50 years: 329 (39.8%) 51–60 years: 216		tumor side was 100%; in 212 patients (25.7%); in 241 patients (29.2%); in	preponderance was more in this study (60%).

	(26.2%) 61–70 years: 82 (9.9%) 71–80 years: 23 (2.8%).	97 patients (11.8%); and in 129 patients (30%) → 352 people (42.7%) had abnormal ABR results, whereas 29 (3.5%) had results that were within the normal range. In the charts of 111 patients,	 → Imaging tests should be done for definitive diagnosis when there is clinical or audiological suspicion of CPA tumor. → For a certain diagnosis, MRI was
		 → On MRI, the tumour size was consistent with Grade I in 189 cases (22.9%), Grade II in 401 (48.6%), Grade III in 188 (22.8%), and Grade IV in 47 (5.7%). → In 813 patients (98.5%), there were no indications of recurrence or persistent tumor after a minimum 5-year follow-up. 	

Sl.no	Author	Title	Study design	Population	Testing	Results	Inference
	& year		and Research question		parameters used		
11.	Kim et	Clinical	Retrospective	122 patients	Pure Tone	Audiological findings:	
	al.	Significance	study design	with acoustic	Audiometry,		\rightarrow There were no
	(2014)	of an		neuroma	Magnetic	\rightarrow In the Internal auditory	discernible
		Increased	\rightarrow To compare	between 2008	Resonance	canal group (ANIAC), 11	differences between
		Cochlear 3D	imaging results	and 2012.	Imaging	out of 22 patients (50%)	patients with ANIAC
		fluid-	with			had hearing disturbance	and those with
		attenuated	audiometric	\rightarrow 20 patients			ANCPA in terms of
		Inversion	findings and	were		\rightarrow In the ANCPA group, 59	age, sex, or the
		Recovery	hearing	excluded		out of 80 patients (74%)	duration between the
		Signal	problems in	because of		had hearing disturbance.	PTA and MR imaging
		Intensity on	many patients	various			evaluation.
		an MR	with acoustic	reasons.		\rightarrow Out of 102 patients, 45	
		Imaging	neuroma to			had tinnitus $(44\%) - 9$ in	\rightarrow According to the
		Examination	investigate the	→ 102		the ANIAC group and 36	PTA, this study
		in Patients	clinical	patients were		in the ANCPA group.	showed that patients
		with	implications of	included			with ANCPA had
		Acoustic	an elevated			Non-audiological	considerably worse
		Neuroma	cochlear 3D	\rightarrow 58 males;		findings:	hearing function than
			FLAIR signal.	44 females		\rightarrow The 102 patients are	those with ANIAC.
						divided into two groups: -	
				\rightarrow Mean age			\rightarrow In patients with
				-49.9 ± 12.4		1) Acoustic neuroma	ANCPA compared to
				years		limited to the IAC	ANIAC, the cochlear
						(ANIAC) = 22 patients	signal strength on 3D
						2) Acoustic neuroma	FLAIR pictures was
						limited to the IAC and the	considerably higher.
						CPA cistern (ANCPA) =	
						80 patients	\rightarrow In patients with

			→ Additionally, mean rSI (relative signal intensity) was significantly higher in ANCPA patients compared to ANIAC patients.	ANCPA, there was no relationship between the cochlear rSI on 3D FLAIR MR images and the hearing impairment assessed by PTA.
				→ In patients with ANIAC, there was a moderate correlation between the cochlea's rSI on 3D FLAIR MR images and hearing impairment as evaluated by PTA
				→ This study found that for small tumors restricted to the internal auditory canal, an enhanced cochlear signal on 3D FLAIR pictures correlated with the degree of hearing impairment assessed by PTA.

Sl.no		Title	Study design	Population	Testing	Results	Inference
	&		and Research		parameters		
	year		question		used		
12.	Eliezer	Sensorineural	Retrospective	32 patients	PTA	Audiological findings:	\rightarrow This study has
	et al.	hearing loss	study design	were recruited	hearing		found a moderate
	(2019)	in patients		between	levels of	\rightarrow Mean PTA level on the	correlation between
		with	\rightarrow To assess	December	bone	tumor side (57.9 ± 26.5)	the utricular volume
		vestibular	whether the	2015 and May	conduction	dBHL) was higher than on	and the degree of
		schwannoma	volume of the	2017	and	the contralateral side	hearing loss, but not
		correlates	vestibular		3T		significant between
		with the	endolymphatic	\rightarrow 23 patients	Magnetic	\rightarrow Two patients had	saccular volume and
		presence of	space	were	Resonance	Normal hearing, 3 patients	the levels of PTA.
		utricular	correlates with	included.	Imaging	had Mild SNHL, 9 patients	
		hydrops as	the degree of			had Moderate SNHL, 6	\rightarrow There was a
		diagnosed on	hearing loss	→ 13 Female		patients had Severe SNHL,	significant correlation
		heavily T2-		and 10 Male		and 3 patients had	between the volume
		weighted				Profound SNHL	of vestibular
		MRI		\rightarrow Mean age			endolymphatic space
				of 63.5 ± 9.3		\rightarrow The mean SRT on the	and the degree of
				years		tumor side was 60.2 ± 31	hearing loss.
						dB SPL, higher than on the	
						contralateral side.	\rightarrow There was no
							significant correlation
							between tumor
						Non-audiological	volumes and PTA
						findings:	levels
						\rightarrow Mean tumor volume of	\rightarrow There was a
						the 23 included patients	possible mechanism
						was 1.74 ± 2.5 cubic cm.	in Vestibular
							schwannoma which
						\rightarrow All these patients had	senwannonna which

the mean utricular volum was 14.4 ± 5 mm3. → The mean volume of vestibular endolymphati space was 17.45 ± 5.5 mm3	→MR Imaging can reveal Endolymphatic he hydrops associated
--	--

Sl.no	Author & year	Title	Study design and Research question	Population	Testing parameters used	Results	Inference
13.	Lee et al. (2011)	Vestibular schwannoma in patients with sudden sensorineural hearing loss	Retrospective study design To determine the incidence of vestibular schwannoma in individuals with sudden sensorineural hearing loss	Two hundred ninety-five patients with SSNHL between 2002 to 2008.	PTA and Magnetic Resonance Imaging, 3D (FIESTA) temporal MRI	 Audiological findings: → Out of 295, vestibular schwannoma was found in 12 patients (4%). • seven females and five males; Age range-32 to 69 years → Three cases of sudden SNHL in one ear and a coincidental discovery of vestibular schwannoma in the opposite ear were reported. → Hearing loss and vertigo were present in both patients in two cases of 	 → Hearing loss, loss of balance, and tinnitus are some of the symptoms of vestibular schwannoma. The most typical sign of vestibular schwannoma is progressive hearing loss. → In patients with vestibular schwannoma, sudden sensorineural hearing loss has been linked to several causes, including endolymphatic oligohydramnios, conduction blockage of the auditory nerve, and microvascular constriction in the cochlea. → All of the patients in this study had intrameatal tumours ranging in size from small to medium. Small

			vestibular	tumours are more likely
			schwannoma that	than larger ones to cause
			imitated	sudden sensorineural
			labyrinthitis.	hearing loss.
				\rightarrow Due to the
			Non-audiological	widespread of MRI, a
			findings:	greater number of VS
			8~*	cases are detected. This
			\rightarrow There were small	study also recommended
			to medium-sized	that all Sudden SNHL
			intrameatal tumors	cases should undergo
			present in every	MRI
			subject.	

3.2 Quality Assessment

The Critical Appraisals Skills Programme (CASP) was used to assess the quality of the studies. It is a generic tool for appraising the strengths and limitations of any qualitative researchmethodology. It consists of 12 questions to assess the article in depth across each section to reduce bias. The questions in the tool are marked as "Yes', 'No' or "Can't tell," depending on the question's requirement. The results of the quality assessment for allthe selected studies are provided in Table 3.2

							Questions						
Authors & Years	Sectio	on A: Are	e the resu	lts of the	trial vali	id?	Section	<i>n B:</i> What	are the res	<i>Section C:</i> Will the results help locally?			
	Q1	Q2	Q3	Q4	Q5	Q6	Q7		Q8		Q9	Q10	Q11
							a)	b	a)	b)			
Jeong et al., (2016)	Yes	Yes	Yes	Can't Tell	Yes	Yes	No	Yes	No	No	Can't Tell	Yes	No
Kim et al., (2016)	Yes	Yes	Yes	Can't Tell	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No
Tutar et al., (2013)	Yes	Yes	Yes	Can't Tell	Yes	Yes	No	Yes	No	No	Yes	Yes	No
Salem et al., (2019)	Yes	Yes	Yes	Can't Tell	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No

Table 3.2. Results of the quality assessment for all of the selected studies

Ahsan et al., (2015)	Yes	Yes	No	Can't Tell	Yes	Yes	Yes	Yes	No	No	No	Yes	No
Patel et al., (2015)	Yes	Yes	No	Can't Tell	Yes	Yes	No	Yes	No	No	No	No	No
Dunn et al., (2014)	Yes	Yes	Yes	Can't Tell	Yes	No	No	Can't Tell	Can't Tell	No	Yes	Yes	No
Lee et al., (2015)	Yes	Yes	Yes	Can't Tell	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No
Valame and Gore, (2017)	Yes	Yes	Yes	Can't Tell	Yes	Yes	No	No	Can't Tell	No	No	Yes	No
Bento et al., (2012)	Yes	Yes	Yes	Can't Tell	Yes	No	No	Yes	Can't Tell	No	Yes	Yes	No

Kim et al., (2014)	Yes	Yes	Yes	Can't Tell	Yes	Yes	No	Yes	No	No	Yes	Yes	No
Eliezer et al., (2019)	Yes	Yes	No	Can't Tell	Yes	Yes	No	Yes	No	No	Yes	No	No
Lee et al., (2011)	Yes	Yes	Yes	Can't Tell	Yes	No	No	Yes	No	No	No	No	No
Total % of yes	100%	100%	77%	0%	100%	77%	30%	77%	0%	0%	70%	84%	0%

CASP Checklist – Diagnostic Test Study

Questions:

- Q1. Was there a clear question for the study to address?
- **Q2.** Was there a comparison with an appropriate reference standard?
- Q3. Did all patients get the diagnostic test and reference standard?

Q4. Could the results of the test have been influenced by the results of the reference standard?

Q5. Is the disease status of the tested population clearly described?

Q6. Were the methods for performing the test described in sufficient detail?

Q7. What are the results?

- a. Are the sensitivity and specificity and/or likelihood ratios presented?
- b. Are the results presented in such a way that we can work them out?

Q8. How sure are we about the results? consequences and cost of alternatives performed?

- a. Could they have occurred by chance?
- b. Are there confidence limits?

Q9. Can the results be applied to your patients/the population of interest?

- Q10. Can the test be applied to your patient or population of interest?
- Q11. Were all outcomes important to the individual or population considered?

Chapter 4

DISCUSSION

The space bounded by the petrous temporal bone, pons, and anterior cerebellum, represents the Cerebellopontine angle (CPA) (Bonneville et al., 2007). It is a triangular space in the posterior cranial fossa that is superiorly bounded by the tentorium, posteromedially by the brainstem, and posterolaterally by the petrous part of the temporal bone. Since it houses the trigeminal nerve, abducens nerve, facial nerve, vestibulocochlear nerve, and the anterior inferior cerebellar artery, anatomically and clinically, it is an important landmark (Samii & Gerganov, 2012). Any lesions in the CP angle can cause severe problems in the function of those cranial nerves. So, it is essential to have various diagnostic procedures that will show the effect of the lesion on CP angle anatomically and physiologically. The CP angle tumors account for about 5 to 10% of intracranial tumors. Vestibular schwannoma is 70 to 90%, 5 to 10% are meningiomas, and 3 to 7% are epidermoid cysts (Butowski, 2015). The diagnostic procedures such as audiological and non-audiological evaluations such as Magnetic Resonance Imaging and Computed Tomography are well proven and show greater sensitivity while diagnosing the presence of vestibular schwannoma.

4.1 Audiological findings in individuals with Acoustic neuroma.

The findings through the audiological tests such as pure-tone audiometry, speech discrimination score, and auditory brainstem response are majorly affected in individuals with acoustic neuroma. Almost all the articles reviewed in this study reported that sensorineural hearing loss was one of the strongest signs in individuals with acoustic neuroma. About 4 - 4.5% of the patient with sudden sensorineural hearing loss exhibited

the presence of acoustic neuroma in this systematic review (Jeong et al., 2016; Lee et al., 2011).

The hearing loss pattern is variable in individuals with acoustic neuroma (Van Abel et al., 2013). Kim et al. (2016) reported that sudden or progressive hearing loss is the key symptom in individuals with acoustic neuroma. Patel et al. (2015) found that progressive hearing loss could be present in the ear with acoustic neuroma, even if the tumor is not growing. Dunn et al. (2014) reported that progressive hearing loss (88%) was the most common initial symptom in patients with medial acoustic neuroma. By analyzing the 825 cases with vestibular schwannoma throughout the 25 years, Bento et al. (2012) found that progressive hearing loss was the chief complaint in 656 patients (79.5%). Some studies in this review found the highest prevalence of high frequency sloping hearing loss or descending type, followed by flat hearing loss in acoustic neuroma patients (Lee et al., 2015; Tutar et al., 2013), which was supported by various literature (Johnson, 1977; Moffat et al., 1993; Pensak et al., 1985). In up to 95% of their patients with acoustic neuromas, the majority of authors have described unilateral hearing loss or bilateral asymmetric hearing loss, and in 4-5% of these individuals, normal hearing function (Beck et al., 1986; Johnson, 1977; Kanzaki et al., 1991; Musiek et al., 1986; Roland et al., 1987; Selesnick & Jackler, 1993). In accordance with the previous statement, one article in this systematic review has found that 4.2% of the patients with acoustic neuroma showed normal hearing sensitivity (Salem et al., 2019).

The Speech Discrimination Score is a test usually done at a suprathreshold level, about 40 dB above the Speech Recognition Threshold of the patient. It tests the patient's ability to identify monosyllabic words or phonemes (Kung & Willcox, 2007). It was reported that speech discrimination scores were mostly affected in the ear with acoustic neuroma, which decreased with an increase in tumor size (Johnson, 1977; Selesnick & Jackler, 1993). The results of the studies included in this review also supported the previous statement (Ahsan et al., 2015; Bento et al., 2012; Dunn et al., 2014; Lee et al., 2015; Patel et al., 2015; Tutar et al., 2013).

Recent studies like Koors et al. (2013) reported that auditory brainstem response (ABR) has a sensitivity of 93.4% in detecting vestibular schwannomas of any size, with a relatively higher sensitivity of 95.6% for larger tumors and a slightly lower sensitivity of 85.8% for smaller tumors, which was also supported by various other authors (Barrs et al., 1985; Glasscock et al., 1979; Guyot et al., 1992; Pensak et al., 1985; Pfaltz et al., 1991; Telian et al., 1989). Five out of thirteen articles selected for this systematic review focused on the diagnostic results of ABR. Kim et al. (2016) found that ABR waves were abnormal in 104 patients out of 116. Salem et al. (2019) reported that ABR testing yielded a sensitivity of 73.6%). The sensitivity of ABR for small tumors (64.5%) was lesser than for larger tumors (97.2%), which was disagreed by Berrettini et al. (1996). They concluded that there is no significant difference in the presence or absence of ABR waves based on the tumor size. Prolonged or absent wave I, III, and V were observed in patients with acoustic neuroma by Bento et al. (2012) and Lee et al. (2015). Bento et al. (2012) observed abnormal ABR waves as a sign of retro cochlear dysfunction in 352 patients out of 825. Valame and Gore, (2017) have analysed the cervical VEMP of 15 patients with vestibular schwannoma along with the ABR. They reported that ABR was absent in the ear with large tumors, and 33% of patients with small tumors. Cervical

VEMP waves are abnormal in all patients with vestibular schwannoma, except one with a small tumor.

Tinnitogram evaluated the frequency and loudness of the tinnitus in the ear with acoustic neuroma. Out of 13 articles reviewed, only 2 evaluated the tinnitogram in patients with acoustic neuroma. Kim et al. (2016) found that 7.6% of patients with vestibular schwannoma (116 patients) reported tinnitus as the chief complaint in the ear with the tumor. As well as, 59 out of 116 patients, who complained of hearing disturbance, also reported tinnitus as an accompanying symptom in them. The mean pitch was 5012.5 ± 3504.9 Hz, and loudness matchings were at 62.5 ± 27.4 dB. Lee et al. (2015) showed tinnitogram findings according to the tumor size. Out of 114, 8 patients reported the symptom of tinnitus. The mean pitch was 5012 ± 3379 Hz, and loudness matched at 62.5 ± 27.4 dB.

4.2 Non- audiological findings in individuals with Acoustic neuroma.

The advancements in imaging techniques made it possible to identify the small and asymptomatic neuromas. As a result, the incidence of acoustic neuroma increased in the past 30 years (Fortnum et al., 2009; Patel et al., 2015; Tutar et al., 2013). The nonaudiological techniques reviewed in this study are Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). All the studies included in this review have reported the findings of the MRI, and two studies have evaluated CT along with the MRI (Dunn et al., 2014; Salem et al., 2019).

Jeong et al. (2016) found that 13 out of 291 patients with sudden sensorineural hearing loss showed MRI abnormality. In that 13, 9 patients had vestibular schwannoma. Three patients had only intrameatal tumors, and six patients had intrameatal tumors with

extension out of porous medially. Kim et al. (2016) evaluated 171 patients with CPA tumors and found that 116 patients were those with vestibular schwannoma. And most often, vestibular schwannoma was located in the internal auditory canal and CP angle, followed by IAC plus CPA plus brainstem compression. Vestibular schwannoma in IAC alone is less prevalent compared to others. By analyzing 115 patients with tumors in CP angle with or without IAC extension, Tutar et al. (2013) reported that the average size of the tumors is 18.58 mm.

Salem et al. (2019) classified the tumor grade according to size in 162 patients with vestibular schwannoma who had normal hearing. Grade 0 (64 out of 162) was the most frequent tumor grade, followed by grade 1 (48 out of 162). Ahsan et al. (2015) showed CPA or IAC mass was the common cause of MRI abnormality in patients with asymmetrical hearing loss. The tumor dimension ranged from 0. 3 cm to 3.6×2.7 cm, which presents as intracochlear mass to CPA tumor. Patel et al. (2015) classified 15 patients with non-growing acoustic neuroma into two categories. All the patients had tumors involving the IAC, and five patients had additional CPA involvement. The extent of the tumor in IAC ranges from 3 to 14 mm, and in CPA ranges from 3 to 15 mm.

Medial acoustic neuroma, a variant of acoustic neuroma, was thoroughly examined in 52 patients retrospectively by Dunn et al. (2014). It has been reported that the size of the tumor in medial acoustic neuroma ranged from 1.3 cm to 5.3 cm. This medial acoustic neuroma occupies only the cisternal compartment and has no lateral extension into the IAC. Lee et al. (2015) reported that tumor in patients with acoustic neuroma was located mostly in the internal auditory canal plus CP angle than the IAC plus CPA plus brainstem compression. Most patients had tumor sizes ranged from 10mm to 2 cm.

After retrospectively reviewing the 825 cases with acoustic neuroma, Bento et al. (2012) classified the tumors into four grades based on their size. The most common grade was Grade II (48.6%) which was nothing but the tumor extending into the posterior fossa, with or without an intracanalicular component, without touching the brainstem. Valame and Gore, (2017) reported that larger tumors (> 2.5 cm) have more severity than smaller tumors (< 2.5 cm). The tumor size in this study ranges from 5.4 mm to 5 cm. Kim et al. (2014) have investigated the clinical significance of increased cochlear signal on 3D FLAIR in patients with acoustic neuroma. The study reported that on 3D FLAIR images, cochlear signal intensity was significantly higher in patients with acoustic neuroma confined to CP angle and IAC than in the patients with acoustic neuroma confined to IAC alone. Eliezer et al. (2019) attempted to correlate the presence of utricular hydrops in patients with vestibular schwannoma using the T2 weighted MRI. FIESTA-C, a refocused steady state gradient echo sequence, was used in this study. The average tumor volume was 1.74 ± 2.5 cubic cm. Lee et al. (2011) reported that all 12 patients out of 295, who had vestibular schwannoma, have intrameatal or small to medium-sized tumors.

4.3 Correlation between the audiological and non- audiological findings of individuals with Acoustic neuroma

Acoustic neuromas arise at the junction of the peripheral and central myelin of the vestibular nerve. Based on the position of the junction or the site of the tumor development, the severity of the dysfunction also varies (Moffat et al., 1993; Nager, 1969; Neely, 1981; Thomsen & Tos, 1993). Berrettini et al. (1996) found the most

significant differences between the lateral and medial tumors, in that lateral tumors are smaller than the medial tumors. Lateral tumors are associated with early audiovestibular symptoms, while medial tumors show insidious or atypical symptoms. In accordance with previous literature (Berrettini et al., 1996; Moffat et al., 1994), the articles reviewed in this study also showed no significant differences in subjective hearing loss between the size of tumors (Bento et al., 2012; Dunn et al., 2014; Eliezer et al., 2019; Jeong et al., 2016; Kim et al., 2016; Lee et al., 2015; Patel et al., 2015; Tutar et al., 2013).

In agreement with Moffat et al., (1993), Dunn et al. (2014) concluded that hearing function preservation could be achieved even with large-sized tumors in patients with medial acoustic neuroma. The comparison between the vestibular schwannoma and non-vestibular schwannoma tumors showed that patients with vestibular schwannoma reported high-frequency sloping hearing loss. In contrast, the patient with non-VS has been reported with a flat type of hearing loss pattern. Hearing thresholds were worse in a patient with VS than a patient with non- VS tumors, supported by the review article on non-vestibular schwannoma (Springborg et al., 2008). Kim et al. (2016) concluded that it might be due to the origin of the tumors. Most often, non-VS tumors are present in the CP angle alone, but vestibular schwannoma is often located in the internal auditory canal and the CP angle.

Kanzaki et al. (1991) found that there was no relationship between the speech discrimination scores and tumor size, and the above statement is supported by some articles reviewed in this study (Bento et al., 2012; Dunn et al., 2014; Kim et al., 2016; Lee et al., 2015; Patel et al., 2015; Tutar et al., 2013). Specifically, Patel et al. (2015) reported that speech discrimination scores would decrease in the ear with a tumor, even if

it is not growing. Along with hearing loss, tinnitus occurs in the first stage of tumor development (Selesnick & Jackler, 1993). The other audiological symptoms represent the involvement of the vestibular and cochlear nerves with gradual impairment of function. Berrettini et al. (1996) reported tinnitus in 51% of the patients with acoustic neuroma. Ogawa et al. (1991) concluded that tinnitus accompanied by subjective hearing loss was one of the major symptoms in patients with acoustic neuroma. It was supported by Curati et al., (1986). Two articles reviewed in the current study have evaluated tinnitogram, and its results are discussed previously. Kim et al. (2016) concluded that the presence of hearing loss and tinnitus was the symptom present mostly in the patients with vestibular schwannoma, and hearing loss with dizziness was present mostly in the patients with non- vestibular schwannoma type of CP angle tumor. Lee et al. (2015) reported tinnitogram findings are not associated with the site of lesion or tumor site.

Magnetic resonance imaging (MRI) is the diagnostic tool of choice for all CPA tumors (Wilms et al., 1992; Zamani, 2000). Along with MRI, auditory brainstem response (ABR) also showed higher sensitivity in detecting vestibular schwannomas (Barrs et al., 1985; Glasscock et al., 1979; Koors et al., 2013; Moffat et al., 1989; Pensak et al., 1985). In the current study, 5 articles have evaluated and reported the ABR findings of patients with acoustic neuroma. Kim et al. (2016) found ABR abnormality in 89.7% of patients with vestibular schwannoma and 81.8% in the non- VS group. Salem et al. (2019) reported ABR findings in 162 normal hearing patients with acoustic neuroma. The incidence is 4.2%. ABR in normal hearing patients with acoustic neuroma could be because of desynchronization of firings in the auditory nerve due to the pressure of the tumor against it (Eggermont et al., 1980; Selters & Brackmann, 1977). At last, they

concluded that abnormal ABR in normal hearing patients strongly indicates the presence of the acoustic neuroma. This study found a significant relationship between the size of the tumor and ABR abnormality. That is ABR abnormality increases as the tumor grade increases. Large-sized tumors could alter the contralateral recordings of ABR (Salem et al., 2019).

In contrast to the findings of the previous studies, Lee et al. (2015) observed no correlation between the ABR results and the size of the tumor or site of the tumor. Though the ABR is cost-effective compared to MRI, it is less sensitive for small-sized tumors. It has also been reported that dizziness was one of the major symptoms observed in patients with small tumors. Small acoustic tumors may compress the vestibular nerve in the internal auditory canal, impairing its function or the labyrinth and causing vertigo. A compensatory mechanism is engaged when these tumors grow, resulting in less vestibular nerve compression and more brainstem and cerebellum compression (Park et al., 2004). The only article reviewed in the current study, which has ABR findings along with the cervical VEMP, was done by Valame and Gore, (2017). They have reported that, except for one patient with a small tumor, all patients with tumors, irrespective of size. As the cervical VEMP descends into the lower brainstem, large tumours that have compressed or shifted the brainstem to the opposite side may show abnormalities in the response in the contralateral ear. Four out of five patients with large tumors showed absent cervical VEMP on the contralateral recording. The mass impact of the lesion on the contralateral inferior vestibular nuclei or the descending medial vestibulospinal tract (MVST) in the brainstem may cause the high percentage of large tumors exhibiting inappropriate response when the other ear was examined (Valame & Gore, 2017).

Finally, they concluded that, along with ABR, cervical VEMP findings could be crucial in identifying the retro cochlear pathology. Through the retrospective analysis of 825 cases, Bento et al. (2012) observed signs of retro cochlear dysfunction in 42.7% of patients.

When a cerebellopontine angle tumor is suspected, MRI is undoubtedly the imaging modality of choice. The reliability of gadolinium contrast-enhanced MRI is approximately 100 % (Bento et al., 2012). The high cost of MRI is a major limiting factor in screening protocol (Robinette et al., 2000). On the other hand, ABR testing is less expensive, takes less time, and is more accessible. Patients who cannot have an MRI because of ferromagnetic implants, obesity, or claustrophobia can have an ABR instead (Cheng & Wareing, 2012). ABR testing also aids in deciding on approaches to hearing preservation during surgery of vestibular schwannomas (Stucken et al., 2012). Because of these considerations, the ABR can be used as a first screening test for VS. Still, there would be a definitive exclusion of acoustic neuroma in individuals with normal audiological parameters that can be accomplished only with advanced radiographic imaging techniques, such as MRI. So, audiological and non-audiological test batteries should be administered for the early diagnosis of tumors, even if they are smaller in size.

Chapter 5

SUMMARY AND CONCLUSION

The present systematic review was taken to document the recent audiological findings and the correlation of audiological and non- audiological findings such as computed tomography and Magnetic Resonance Imaging in individuals with acoustic neuroma during the past ten years. Of 38 articles selected for the full-length article screening, 13 articles were selected for this systematic review. Almost all the articles have concluded that patients who have unilateral or asymmetrical hearing loss, tinnitus, low speech discrimination scores, and abnormal peaks in auditory brainstem response (ABR) should undergo Magnetic resonance imaging (MRI), in suspicion of acoustic neuroma. Some populations are diagnosed with normal hearing in the audiological evaluations and excluded from the differential diagnosis of retro cochlear pathology, though they might have an acoustic neuroma. In these situations, diagnosing acoustic neuroma or vestibular schwannoma at an early stage might be hindered. Hence, there is a need to include imaging protocols such as CT, and MRI should be demanded the correct diagnosis of acoustic neuroma. This systematic review did not find any correlation between the tumor size or site of lesion and hearing loss. Also, from the combination of symptoms, the type of tumor in the cerebellopontine angle could be suspected. In patients with vestibular schwannoma, the most common symptom was unilateral hearing loss with tinnitus, and hearing loss with dizziness. In individuals reporting a sudden sensorineural hearing loss and asymmetrical sensorineural hearing loss, the most common MRI abnormality was small or medium-sized vestibular schwannoma. Hearing loss could deteriorate even in the ear with static vestibular schwannoma.

Along with the ABR results, the abnormal findings in the contralateral cervical VEMP have also been reported as a strong indicator of a large tumor (>2.5 cm). Finally, this systematic review study concludes that MRI and other imaging tests should be considered as the modality of choice for the definitive diagnosis of vestibular schwannoma or acoustic neuroma. All individuals suspected of acoustic neuroma in the audiological evaluation should be administered non-audiological evaluations such as CT and MRI for the correct diagnosis, increasing the diagnosis of acoustic neuroma even at the earlier stage.

5.1 Clinical implication:

- The study can provide valuable information on the various audiological and non-audiological findings and their co-relation in individuals with acoustic neuroma.
- It can also help to get more information about the recent updates in the findings and the test used for diagnosing acoustic neuroma.

REFERENCES

- Ahsan, S. F., Standring, R., Osborn, D. A., Peterson, E., Seidman, M., & Jain, R. (2015).
 Clinical predictors of abnormal magnetic resonance imaging findings in patients
 with asymmetric sensorineural hearing loss. *JAMA Otolaryngology-- Head & Neck Surgery*, *141*(5), 451–456. https://doi.org/10.1001/jamaoto.2015.142
- Barrs, D. M., Brackmann, D. E., Olson, J. E., & House, W. F. (1985). Changing Concepts of Acoustic Neuroma Diagnosis. Archives of Otolaryngology, 111(1), 17–21. https://doi.org/10.1001/archotol.1985.00800030051004
- Beck, H. J., Beatty, C. W., Harner, S. G., & Ilstrup, D. M. (1986). Acoustic neuromas with normal pure tone hearing levels. *Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery*, 94(1), 96–103. https://doi.org/10.1177/019459988609400116
- Bento, R. F., Pinna, M. H., & De Brito Neto, R. V. (2012). Vestibular schwannoma: 825 cases from a 25-year experience. *International Archives of Otorhinolaryngology*, *16*(4), 466–475. https://doi.org/10.7162/S1809-97772012000400007
- Berrettini, S., Ravecca, F., Sellari-Franceschini, S., Bruschini, P., Casani, A., &
 Padolecchia, R. (1996). Acoustic neuroma: correlations between morphology and otoneurological manifestations. *Journal of the Neurological Sciences*, *144*(1–2), 24–33. https://doi.org/10.1016/s0022-510x(96)00174-8
- Black, P. M. (1983). Book Review. *New England Journal of Medicine*, 308(11), 664. https://doi.org/10.1056/NEJM198303173081126

Bonneville, F., Savatovsky, J., & Chiras, J. (2007). Imaging of cerebellopontine angle lesions: an update. Part 2: intra-axial lesions, skull base lesions that may invade the CPA region, and non-enhancing extra-axial lesions. *European Radiology*, 17(11), 2908–2920. https://doi.org/10.1007/s00330-007-0680-4

Butowski, N. A. (2015). Epidemiology and diagnosis of brain tumors. *Continuum (Minneapolis, Minn.)*, 21(2 Neuro-oncology), 301–313. https://doi.org/10.1212/01.CON.0000464171.50638.fa

- Chandrasekhar, S. S., Brackmann, D. E., & Devgan, K. K. (1995). Utility of auditory brainstem response audiometry in diagnosis of acoustic neuromas. *The American Journal of Otology*, 16(1), 63–67.
- Cheng, T. C., & Wareing, M. J. (2012). Three-year ear, nose, and throat cross-sectional analysis of audiometric protocols for magnetic resonance imaging screening of acoustic tumors. *Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery*, 146(3), 438–447. https://doi.org/10.1177/0194599811427384
- Clemis, J. D., Ballad, W. J., Baggot, P. J., & Lyon, S. T. (1986). Relative frequency of inferior vestibular schwannoma. *Archives of Otolaryngology--Head & Neck Surgery*, 112(2), 190–194. https://doi.org/10.1001/archotol.1986.03780020070016

Consensus Developmental Panel. (1994). National Institutes of Health Consensus Development Conference Statement on Acoustic Neuroma, December 11-13, 1991. *Archives of Neurology*, *51*(2), 201–207.

https://doi.org/10.1001/archneur.1994.00540140115021

- Crabtree, J. A., & House, F. (1964). X-Ray Diagnosis of Acoustic Neuromas. Archives of Otolaryngology, 80(6), 695–697. https://doi.org/10.1001/archotol.1964.00750040711011
- Curati, W. L., Graif, M., Kingsley, D. P. E., King, T., Scholtz, C. L., & Steiner, R. E.
 (1986). MRI in acoustic neuroma: a review of 35 patients. *Neuroradiology 1986* 28:3, 28(3), 208–214. https://doi.org/10.1007/BF00548194
- Dhingra, P. L., & Dhingra, S. (2021). *Diseases of Ear, Nose & Throat and Head & Neck Surgery-E-Book*. Elsevier Health Sciences.
- Dunn, I. F., Bi, W. L., Erkmen, K., Kadri, P. A. S., Hasan, D., Tang, C.-T., Pravdenkova, S., & Al-Mefty, O. (2014). Medial acoustic neuromas: clinical and surgical implications. *Journal of Neurosurgery*, *120*(5), 1095–1104. https://doi.org/10.3171/2014.1.JNS131701
- Eggermont, J. J., Don, M., & Brackmann, D. E. (1980). Electrocochleography and auditory brainstem electric responses in patients with pontine angle tumors. *The Annals of Otology, Rhinology & Laryngology. Supplement*, 89(6 Pt 2), 1–19. https://doi.org/10.1177/00034894800890s601
- Eliezer, M., Poillon, G., Maquet, C., Gillibert, A., Horion, J., Marie, J.-P., Guichard, J.-P., Magne, N., & Attyé, A. (2019). Sensorineural hearing loss in patients with vestibular schwannoma correlates with the presence of utricular hydrops as diagnosed on heavily T2-weighted MRI. *Diagnostic and Interventional Imaging*, *100*(5), 259–268. https://doi.org/10.1016/j.diii.2019.01.006

Fortnum, H., O'Neill, C., Taylor, R., Lenthall, R., Nikolopoulos, T., Lightfoot, G.,

O'Donoghue, G., Mason, S., Baguley, D., Jones, H., & Mulvaney, C. (2009). The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost effectiveness and natural history. *Health Technology Assessment (Winchester, England), 13*(18), iii–iv, ix–xi, 1–154. https://doi.org/10.3310/hta13180

- Gelfand, S. A. (2015). Essentials of audiology: Vol. Fourth edi (Fourth edition). Thieme.
- Glasscock, M. E. 3rd, Jackson, C. G., Josey, A. F., Dickins, J. R., & Wiet, R. J. (1979). Brain stem evoked response audiometry in a clinical practice. *The Laryngoscope*, 89(7 Pt 1), 1021–1035.
- Gupta, G., Gupta, N., & Pandey, D. (2015). An evidence-based case of acoustic/vestibular schwannoma. *Indian Journal of Research in Homoeopathy*, 9(1), 49. https://doi.org/10.4103/0974-7168.154349
- Gupta, V. K., Thakker, A., & Gupta, K. K. (2020). Vestibular Schwannoma: What We Know and Where We are Heading. *Head and Neck Pathology*, 14(4), 1058–1066. https://doi.org/10.1007/S12105-020-01155-X/FIGURES/2
- Guyot, J. P., Hausler, R., Reverdin, A., Berney, J., & Montandon, P. B. (1992). Proceedings of the First International Conference on Acoustic Neuroma.
- Haapaniemi, J. J., Laurikainen, E. T., Johansson, R., Rinne, T., & Varpula, M. (2000).
 Audiovestibular findings and location of an acoustic neuroma. *European Archives of Oto-Rhino-Laryngology : Official Journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : Affiliated with the German Society for*

Oto-Rhino-Laryngology - Head and Neck Surgery, 257(5), 237–241. https://doi.org/10.1007/s004050050230

- Hoffman, S., Propp, J. M., & McCarthy, B. J. (2006). Temporal trends in incidence of primary brain tumors in the United States, 1985-1999. *Neuro-Oncology*, 8(1), 27– 37. https://doi.org/10.1215/S1522851705000323
- Howitz, M. F., Johansen, C., Tos, M., Charabi, S., & Olsen, J. H. (2000). Incidence of Vestibular Schwannoma in Denmark, 1977–1995. *Otology & Neurotology*, 21(5). https://journals.lww.com/otologyneurotology/Fulltext/2000/09000/Incidence_of_Vestibular_Schwannoma_in_Denma rk,.18.aspx
- Jeong, K.-H., Choi, J. W., Shin, J. E., & Kim, C.-H. (2016). Abnormal Magnetic
 Resonance Imaging Findings in Patients With Sudden Sensorineural Hearing Loss:
 Vestibular Schwannoma as the Most Common Cause of MRI Abnormality. *Medicine*, 95(17), e3557. https://doi.org/10.1097/MD.00000000003557
- Johnson, E. W. (1977). Auditory test results in 500 cases of acoustic neuroma. Archives of Otolaryngology (Chicago, Ill. : 1960), 103(3), 152–158. https://doi.org/10.1001/archotol.1977.00780200078008
- Kabashi, S., Ugurel, M. S., Dedushi, K., & Mucaj, S. (2020). The Role of Magnetic
 Resonance Imaging (MRI) in Diagnostics of Acoustic Schwannoma. In *Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia* & *Herzegovina : casopis Drustva za medicinsku informatiku BiH* (Vol. 28, Issue 4, pp. 287–291). https://doi.org/10.5455/aim.2020.28.287-291

- Kanzaki, J., Ogawa, K., Ogawa, S., Yamamoto, M., Ikeda, S., & O-Uchi, T. (1991).
 Audiological findings in acoustic neuroma. *Acta Oto-Laryngologica. Supplementum*, 487, 125–132. https://doi.org/10.3109/00016489109130457
- Katz, Chasin, English, Hood, and T. (2015). Handbook of Clinical Audiology. In*Handbook of Clinical Audiology* (Seventh ed, pp. 49–59). Wolters Kluwer Health.
- Kim, D. Y., Lee, J. H., Goh, M. J., Sung, Y. S., Choi, Y. J., Yoon, R. G., Cho, S. H., Ahn, J. H., Park, H. J., & Baek, J. H. (2014). Clinical significance of an increased cochlear 3D fluid-attenuated inversion recovery signal intensity on an MR imaging examination in patients with acoustic neuroma. *AJNR. American Journal of Neuroradiology*, 35(9), 1825–1829. https://doi.org/10.3174/ajnr.A3936
- Kim, S. H., Lee, S. H., Choi, S. K., Lim, Y. J., Na, S. Y., & Yeo, S. G. (2016).
 Audiologic evaluation of vestibular schwannoma and other cerebellopontine angle tumors. *Acta Oto-Laryngologica*, *136*(2), 149–153.
 https://doi.org/10.3109/00016489.2015.1100326
- Koors, P. D., Thacker, L. R., & Coelho, D. H. (2013). ABR in the diagnosis of vestibular schwannomas: A meta-analysis. *American Journal of Otolaryngology*, *34*(3), 195–204. https://doi.org/https://doi.org/10.1016/j.amjoto.2012.11.011
- Kung, B., & Willcox, T. (2007). Examination of Hearing and Balance. *Neurology and Clinical Neuroscience*, 318–327. https://doi.org/10.1016/B978-0-323-03354-1.50029-8
- Lanser, M. J., Sussman, S. A., & Frazer, K. (1992). Epidemiology, pathogenesis, and genetics of acoustic tumors. *Otolaryngologic Clinics of North America*, 25(3), 499–

- Lee, J. D., Lee, B. D., & Hwang, S. C. (2011). Vestibular schwannoma in patients with sudden sensorineural hearing loss. *Skull Base : Official Journal of North American Skull Base Society ... [et Al.]*, 21(2), 75–78. https://doi.org/10.1055/s-0030-1261257
- Lee, S. H., Choi, S. K., Lim, Y. J., Chung, H. Y., Yeo, J. H., Na, S. Y., Kim, S. H., & Yeo, S. G. (2015). Otologic manifestations of acoustic neuroma. *Acta Oto-Laryngologica*, 135(2), 140–146. https://doi.org/10.3109/00016489.2014.952334
- Lhuillier, F. M., Doyon, D. L., Halimi, P. M., Sigal, R. C., & Sterkers, J. M. (1992).
 Magnetic resonance imaging of acoustic neuromas: pitfalls and differential diagnosis. *Neuroradiology*, *34*(2), 144–149. https://doi.org/10.1007/BF00588162
- Mahmud, M., Khan, A., & Nadol, J. (2003). Histopathology of the Inner Ear in Unoperated Acoustic Neuroma. *The Annals of Otology, Rhinology, and Laryngology, 112*, 979–986. https://doi.org/10.1177/000348940311201111
- Marinelli, J. P., Lohse, C. M., & Carlson, M. L. (2018). Incidence of Vestibular
 Schwannoma over the Past Half-Century: A Population-Based Study of Olmsted
 County, Minnesota. *Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery*, 159(4), 717–723.
 https://doi.org/10.1177/0194599818770629
- Mark, A. S., Seltzer, S., & Harnsberger, H. R. (1993). Sensorineural hearing loss: more than meets the eye? *AJNR*. *American Journal of Neuroradiology*, *14*(1), 37–45.

Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S.

(2014). PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. *BMC Health Services Research*, *14*, 579. https://doi.org/10.1186/s12913-014-0579-0

- Moffat, D. A., Baguley, D. M., von Blumenthal, H., Irving, R. M., & Hardy, D. G. (1994). Sudden deafness in vestibular schwannoma. *The Journal of Laryngology and Otology*, *108*(2), 116–119. https://doi.org/10.1017/s0022215100126052
- Moffat, D. A., Golledge, J., Baguley, D. M., & Hardy, D. G. (1993). Clinical correlates of acoustic neuroma morphology. *The Journal of Laryngology & Otology*, 107(4), 290–294. https://doi.org/DOI: 10.1017/S0022215100122856
- Moffat, D. A., Harries, M. L., Baguley, D. M., & Hardy, D. G. (1989). Unterberger's stepping test in acoustic neuroma. *The Journal of Laryngology and Otology*, 103(9), 839–841.
- Musiek, F. E., Kibbe-Michal, K., Geurkink, N. A., Josey, A. F., & Glasscock, M. 3rd. (1986). ABR results in patients with posterior fossa tumors and normal pure-tone hearing. *Otolaryngology--Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery*, 94(5), 568–573. https://doi.org/10.1177/019459988609400506

Nager, G. T. (1969). Acoustic Neurinomas: Pathology and Differential Diagnosis. Archives of Otolaryngology, 89(2), 252–279. https://doi.org/10.1001/archotol.1969.00770020254008

Neely, J. G. (1981). Gross and microscopic anatomy of the eighth cranial nerve in relationship to the solitary schwannoma. *The Laryngoscope*, *91*(9), 1512–1531.

https://doi.org/10.1288/00005537-198109000-00015

Ogawa, K., Kanzaki, J., Ogawa, S., Tsuchihashi, N., & Inoue, Y. (1991). Acoustic Neuromas Presenting as Sudden Hearing Loss. *Acta Oto-Laryngologica*, *111*(sup487), 138–143. https://doi.org/10.3109/00016489109130459

Ohaegbulam, S., Okwunodulu, O., Ndubuisi, C., Mezue, W., Chikani, M., Nkwerem, S., & Ekuma, M. (2017). Vestibular schwannoma appears to be very rare in a region of Sub-Saharan Africa. *Surgical Neurology International*, 8, 171. https://doi.org/10.4103/sni.sni_100_17

- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C.
 D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J.,
 Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson,
 E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: an updated
 guideline for reporting systematic reviews. *BMJ*, *372*, n71.
 https://doi.org/10.1136/bmj.n71
- Park, K. H., Choung, Y. H., Kim, C. H., & Lee, W. S. (2004). Clinical Evaluation of Small Vestibular Schwannoma. *Korean Journal of Otorhinolaryngology-Head and Neck Surgery*, 47(1), 22–26.
- Patel, N. B., Nieman, C. L., & Redleaf, M. (2015). Hearing in static unilateral vestibular schwannoma declines more than in the contralateral ear. *The Annals of Otology, Rhinology, and Laryngology*, *124*(6), 490–494. https://doi.org/10.1177/0003489414566181

Pensak, M. L., Glasscock, M. E. 3rd, Josey, A. F., Jackson, C. G., & Gulya, A. J. (1985).

Sudden hearing loss and cerebellopontine angle tumors. *The Laryngoscope*, 95(10), 1188–1193. https://doi.org/10.1288/00005537-198510000-00007

- Pfaltz, C. R., Ura, M., Allum, J. H. J., & Gratzl, O. (1991). Diagnosis and Surgery of Cerebellopontine-Angle Tumors. ORL, 53(3), 121–125. https://doi.org/10.1159/000276202
- Quaranta, A., Zini, C., Gandolfi, A., Piazza, F., De Thomasis, G., Frisina, A., Mercante, G., Quaranta, N., Scaringi, A., & Uccelli, M. (2001). [Acoustic neuroma: clinical-functional finding, results and surgical complication]. *Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale*, 21(5 Suppl 68), 1–20.
- Reznitsky, M., Petersen, M. M. B. S., West, N., Stangerup, S.-E., & Cayé-Thomasen, P. (2019). Epidemiology Of Vestibular Schwannomas Prospective 40-Year Data
 From An Unselected National Cohort. *Clinical Epidemiology*, *11*, 981–986. https://doi.org/10.2147/CLEP.S218670
- Robinette, M. S., Bauch, C. D., Olsen, W. O., & Cevette, M. J. (2000). Auditory brainstem response and magnetic resonance imaging for acoustic neuromas: costs by prevalence. *Archives of Otolaryngology--Head & Neck Surgery*, *126*(8), 963– 966. https://doi.org/10.1001/archotol.126.8.963
- Roland, P. S., Glasscock, M. E. 3rd, Bojrab, D. I., & Josey, A. F. (1987). Normal hearing in patients with acoustic neuroma. *Southern Medical Journal*, 80(2), 166–169. https://doi.org/10.1097/00007611-198702000-00006

Rosahl, S., Bohr, C., Lell, M., Hamm, K., & Iro, H. (2017). Diagnostics and therapy of

vestibular schwannomas - an interdisciplinary challenge. *GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 16*, Doc03. https://doi.org/10.3205/cto000142

- Sakamoto, T., Fukuda, S., & Inuyama, Y. (2001). Hearing loss and growth rate of acoustic neuromas in follow-up observation policy. *Auris, Nasus, Larynx, 28 Suppl*, S23-7. https://doi.org/10.1016/s0385-8146(01)00078-5
- Salem, N., Galal, A., Mastronardi, V., Talaat, M., Sobhy, O., & Sanna, M. (2019a).
 Audiological Evaluation of Vestibular Schwannoma Patients with Normal Hearing.
 Audiology & Neuro-Otology, 24(3), 117–126. https://doi.org/10.1159/000500660
- Salem, N., Galal, A., Mastronardi, V., Talaat, M., Sobhy, O., & Sanna, M. (2019b).
 Audiological Evaluation of Vestibular Schwannoma Patients with Normal Hearing.
 Audiology & Neuro-Otology, 24(3), 117–126. https://doi.org/10.1159/000500660
- Samii, M., & Gerganov, V. M. (2012). Tumors of the cerebellopontine angle. *Handbook* of Clinical Neurology, 105, 633–639. https://doi.org/10.1016/B978-0-444-53502-3.00013-6

Sanna, M., & Hamada, M. (2011). Atlas of acoustic neurinoma microsurgery. 310.

Schmidt, R. J., Sataloff, R. T., Newman, J., Spiegel, J. R., & Myers, D. L. (2001). The sensitivity of auditory brainstem response testing for the diagnosis of acoustic neuromas. *Archives of Otolaryngology--Head & Neck Surgery*, 127(1), 19–22. https://doi.org/10.1001/archotol.127.1.19

Sekhar, L. N., & Jannetta, P. J. (1984). Cerebellopontine angle meningiomas.

Microsurgical excision and follow-up results. *Journal of Neurosurgery*, *60*(3), 500–505. https://doi.org/10.3171/jns.1984.60.3.0500

- Sekiya, T., Hatayama, T., Shimamura, N., & Suzuki, S. (2000). A comprehensive classification system of vestibular schwannomas. *Journal of Clinical Neuroscience*, 7(2), 129–133. https://doi.org/10.1054/JOCN.1999.0179
- Selesnick, S. H., & Jackler, R. K. (1993). The changing clinical presentation of acoustic tumors in the MRI era. *The Laryngoscope*, 103(4), 431–436. https://doi.org/10.1002/LARY.5541030412
- Selters, W. A., & Brackmann, D. E. (1977). Acoustic tumor detection with brain stem electric response audiometry. *Archives of Otolaryngology (Chicago, Ill. : 1960)*, *103*(4), 181–187. https://doi.org/10.1001/archotol.1977.00780210037001
- Springborg, J. B., Poulsgaard, L., & Thomsen, J. (2008). Nonvestibular schwannoma tumors in the cerebellopontine angle: a structured approach and management guidelines. *Skull Base : Official Journal of North American Skull Base Society ... [et Al. J*, 18(4), 217–227. https://doi.org/10.1055/s-2007-1016959
- Stangerup, S.-E., & Caye-Thomasen, P. (2012). Epidemiology and natural history of vestibular schwannomas. *Otolaryngologic Clinics of North America*, 45(2), 257– 268, vii. https://doi.org/10.1016/j.otc.2011.12.008
- Stucken, E. Z., Brown, K., & Selesnick, S. H. (2012). Clinical and diagnostic evaluation of acoustic neuromas. *Otolaryngologic Clinics of North America*, 45(2), 269–284, vii. https://doi.org/10.1016/j.otc.2011.12.001

- Telian, S. A., Kileny, P. R., Niparko, J. K., Kemink, J. L., & Graham, M. D. (1989).
 Normal auditory brainstem response in patients with acoustic neuroma. *The Laryngoscope*, *99*(1), 10–14. https://doi.org/10.1288/00005537-198901000-00003
- Thomsen, J., & Tos, M. (1993). Management of acoustic neuromas. *Annales d'oto-Laryngologie et de Chirurgie Cervico Faciale : Bulletin de La Societe d'oto-Laryngologie Des Hopitaux de Paris, 110*(4), 179–191.
- Tos, M., Thomsen, J., & Charabi, S. (1992). Incidence of acoustic neuromas. *Ear, Nose,* & *Throat Journal*, *71*(9), 391–393.
- Tutar, H., Duzlu, M., Göksu, N., Üstün, S., & Bayazit, Y. (2013). Audiological correlates of tumor parameters in acoustic neuromas. *European Archives of Oto-Rhino-Laryngology*, 270(2), 437–441. https://doi.org/10.1007/s00405-012-1954-2
- Valame, D. A., & Gore, G. B. (2017). Role of cervical vestibular evoked myogenic potentials (cVEMP) and auditory brainstem response (ABR) in the evaluation of vestibular schwannoma. *Brazilian Journal of Otorhinolaryngology*, 83(3), 324–329. https://doi.org/10.1016/j.bjorl.2016.04.003
- Van Abel, K. M., Carlson, M. L., Link, M. J., Neff, B. A., Beatty, C. W., Lohse, C. M., Eckel, L. J., Lane, J. I., & Driscoll, C. L. (2013). Primary inner ear schwannomas: a case series and systematic review of the literature. *The Laryngoscope*, *123*(8), 1957–1966. https://doi.org/10.1002/lary.23928
- Wilms, G., Plets, C., Goossens, L., Goffin, J., & Vanwambeke, K. (1992). The radiological differentiation of acoustic neurinoma and meningioma occurring together in the cerebellopontine angle. *Neurosurgery*, 30(3), 443–446.

https://doi.org/10.1227/00006123-199203000-00026

- Wilson, D. F., Hodgson, R. S., Gustafson, M. F., Hogue, S., & Mills, L. (1992). The sensitivity of auditory brainstem response testing in small acoustic neuromas. *The Laryngoscope*, 102(9), 961–964. https://doi.org/10.1288/00005537-199209000-00001
- Zahnert, T. (2011). The differential diagnosis of hearing loss. *Deutsches Arzteblatt International*, 108(25), 433–443; quiz 444. https://doi.org/10.3238/arztebl.2011.0433
- Zamani, A. A. (2000). Cerebellopontine Angle Tumors: Role of Magnetic Resonance Imaging. *Topics in Magnetic Resonance Imaging*, 11(2). https://journals.lww.com/topicsinmri/Fulltext/2000/04000/Cerebellopontine_Angle_ Tumors__Role_of_Magnetic.5.aspx