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Chapter I – Introduction 

 

Laryngeal videostroboscopy (LVS) is widely used in clinical practice for its ability to 

efficiently capture many salient vocal fold vibratory characteristics (Mehta, & Hillman, 

2012). Even with emerging technologies such as high speed videoendoscopy (HSV), 

videokymygraphy (VKG); LVS maintains its predominant clinical role in laryngeal imaging 

due to its cost effectiveness, and ease of use. Lately, LVS is being widely used to monitor the 

changes in vocal fold status as response to treatment, which in turn results in generation of 

large amounts of uninterpreted imaging data. The current clinical practice involves the use of 

subjective (visual perceptual) observation methods, and standardized rating systems (Bless, 

Hirano, & Feder, 1987; Poburka, 1999; Stemple, Gerdemann, & Kelchner, 1998) to 

judge/assess LVS recordings. The use of subjective methods to judge LVS recordings 

becomes challenging and time consuming, while handling large amounts of imaging data. 

Further, the validity of such perceptual rating systems has been questioned due to reports of 

poor reliability (Nawka, & Konerding, 2012).  

  

 The advent of deep learning methods, and robust image processing strategies has 

made it possible to automate several image analyses tasks, and one such application is the 

quantification and automation of LVS image analysis. By using robust and automatic 

methods it is possible to reduce the workload on clinicians and provide them with more 

objective information than currently available in the clinical routine. However, such a task is 

challenging, as quantification and automation methods require accurate identification 

(localization) and segmentation of glottis from LVS recordings. Also, the localization and 

segmentation of glottis serve as essential first step towards developing methods to quantify 

several vocal fold vibration parameters, such as, periodicity and amplitude, mucosal wave, 

glottal closure, and symmetry of vibration, etc.  



 

 

 

In literature, different image processing strategies for glottis segmentation have been 

reported. These strategies (techniques) are mainly categorized into two, namely, the semi-

automatic, and automatic approaches. In semi-automatic methods, there is a certain level of 

clinician (user) involvement to achieve the desired segmentation. It usually involves a 

clinician (user) selecting a set of images (usually the ones with maximum and/or minimum 

glottal opening) from a video sequence, which act as representative frames. Following the 

frame selection, multiple seed points (vocal fold landmarks such as, the anterior and posterior 

commissure) are identified and selected to which certain techniques are applied to compute 

the glottis segmentation. On the other hand, fully automatic methods function without any 

clinician (user) involvement. Algorithms designed for fully automatic glottal segmentation 

are very few, and only some are specifically designed for LVS image analysis. A fully 

automatic glottis segmentation followed by quantification of glottal area would reduce the 

clinician workload, and provide objective information, which can be used for accurate 

diagnosis and prognostic monitoring.  

 

 

Aim of the study 

In the current project, we aimed to investigate the performance of two neural 

networks (NN), the deep neural network (DNN), and the U – Net based architecture in 

automatic localization and segmentation of glottis from LVS images.  

 

 

Objectives of the study  



 
 

1. To identify the best performing NN architecture by comparing the performance of 

DDN and the U – Net based architecture in automatic localization and segmentation 

of glottis from LVS recordings. 

2. To investigate the efficacy of best performing NN architecture identified in objective 

1 in automatic glottal localization and segmentation in some pathological (voice) 

conditions.  

 

  



 

 

  



 
 

Chapter II – Method 

 

All the stroboscopic video recordings used in this study were recorded as a part of the 

voice evaluations at two centers. It consists of stroboscopic recordings from patients visiting 

the All India Institute of Speech and Hearing, Mysore, and the Department of Audiology and 

SLP, Kasturba Medical College, Mangalore, India. A standard recording protocol was used at 

both the centers. 

  

Data set 

LVS recordings of 55 patients (one video per patient having multiple phonations) with 

vocal nodules (N = 34), Cysts (N = 10), and Polyps (N = 11) were used in this study. Each 

video recording had a 3 – 15 phonations, and the duration of a video varied from 11 – 84 

seconds with an average duration of 44 (± 20) seconds. Each video was chosen to ensure that 

it consisted audible recording events with adequate view of the laryngeal inlet and glottis. 

These videos (resolution = 720× 576; frame rate = 25 frames per second) were spliced into 

images using a custom software. The data set used in this study consisted of 24970 individual 

images from 55 LVS recordings.  

 

Ground truth segmentation 

Supervised training and evaluation of different neural architectures require 

corresponding reference segmentations serving as Ground Truth (GT). For this purpose, a 

graphical user interface was developed using MATLAB to manually mark the boundaries of 

the glottis region. Three SLPs (annotators: a1, a2, a3) experienced in analysing stroboscopic 

recordings, manually annotated 2723 glottal images spliced from LVS recordings. These 

manual annotations served as reference (ground truth) to train, and evaluate neural 

architectures reported in the current study.  



 

Neural network architecture 

In the present study, we carried out experiments to investigate the performance of two 

neural network architectures, namely, 1) the Deep Neural Network (DNN), and 2) the U – 

Net based architecture in automatic localization and segmentation of glottis from LVS 

images. The technical details of the two neural network architectures have been purposefully 

omitted to declutter the technical intricacies for the readers.  However, a brief overview of 

both the architectures in non-technical terms has been provided below. 

 

Deep Neural Network (DNN) based architecture 

 The DNN based architecture (Figure 1) used in the present study was developed by 

Rao et al (2018) and has two main steps.  

 

 

 

 

 

 

 

 

Figure 1: Block diagram of the proposed DNN approach 

 

In the first step, each pixel in the image was classified to predict whether it belongs 

inside or outside the glottis region. In the second step, these pixels were clustered, classified 

as inside glottis regions, and filtered based on eccentricity and its orientation to find the final 

glottis segment. A much-detailed technical explanation on the development of this DNN 

based neural network architecture could be found elsewhere (See: Rao et al, 2018).  



 
 

U – Net with and without Segnet based architecture  

 The U – Net based architecture used in the present study was developed by Degala et 

al., (2020). Even in this architecture, the glottis segmentation was posed as a classification 

problem and was approached using the following two steps. The first step was the Glottis 

Detection Network (GDN), which was used to detect the frames with glottis, when a 

sequence of frames was given. The architecture of the glottis detection network (GDN) is 

shown below in Figure - 2.  

 

 

 

 

 

 

 

 

Figure 2: Block diagram summarizing the architecture of glottis detection network 

(GDN) 

 

The second step involved the Glottis Segmentation Network (GSN), which was used 

to segment the glottis from those frames selected from step 1. The architecture of the 

segmentation network is shown in Figure 3. A much-detailed technical explanation on the 

development of this U – Net based neural network architecture could be found elsewhere 

(See: Degala et al., 2020).  

 

 

 



 

 

 

 

 

 

 

 

Figure 3: Block diagram of the proposed U – Net based glottis segmentation network (GSN) 

 

Training, testing, and evaluation of neural network architectures 

Training and testing 

From 55 LVS recordings, a set of 24970 frames were used for training the neural 

network architectures for glottis detection. For glottis segmentation, a subset of 2723 images 

[1696 (nodules), 477 (cysts), and 550 (polyps)] were randomly extracted and categorized into 

four folds. Out of these four folds, two folds were used for the initial training, one-fold for 

validation and, the remaining one for testing, in a round-robin fashion to form a four-fold 

cross validation setup. For each type, the fold structure is described in table 1 below. 

 

Condition (N) Fold Number of subjects Number of images 

Nodules (N=34) 

Fold 1 9  450 

Fold 2 8 400 

Fold 3 8 400 

Fold 4 9 446 

Cysts (N=10) Fold 1 3  150 

Fold 2 2 100 

Fold 3 2 100 



 
 

Fold 4 3 127 

Polyps (N=11) Fold 1 3  150 

Fold 2 3 151 

Fold 3 2 100 

Fold 4 3 149 

 

Table 1: Showing four fold cross validation setup used for training, and testing the neural 

network architectures. 

  

 

Identifying the best performing neural network architecture 

The best performing neural network architecture was identified based on the 

following evaluation metrics, which quantify the overall quality and precision of the obtained 

segmentation results.  1) Localization accuracy (L%): was calculated by the percentage of 

the test glottal images where the centroid of predicted segment falls inside ground truth 

glottis boundary. 2) Dice score (D): originally introduced by Dice (1945) has been widely 

used to measure the segmentation of quality for medical images (Crum, Camara, & Hill, 

2006), and was used to evaluate the segmentation quality of the architectures in the present 

study. 

  



 

Chapter III – Review of Literature 

 

A primary challenge with stroboscopy is that it yields only uninterpreted images. 

However, for clinical diagnostics and, even more so, for clinical research, adequately 

quantified parameters with a clear meaning are required. To overcome this several authors 

(Bless, Hirano, & Feder, 1987; Poburka, 1999; Stemple, Gerdemann, & Kelchner, 1998) have 

developed subjective rating methods to quantify the stroboscopic images. These efforts have 

not been well received by both the practicing as well as the research community. Further, in 

day to day clinical practice stroboscopy is being widely used to monitor the vocal fold status 

as an effect of treatment procedures being used. This requires a much more quantitative 

measure of the changes that are induced as a result of ongoing treatment which has 

necessitated clinician – researchers to adopt newer methods of quantifying these changes. 

There are a fewer attempts made towards quantifying stroboscopic images using techniques 

of visual image processing (Osma et al., 2008) which have used machine learning to make 

better clinical decisions, but these studies are dwarfed by several inherent methodological 

concerns reviewed below. Gloger, Lehnert, Schrade and Volzke (2015) attempted to use 

machine learning to automatically segment glottal images from endoscopic recording of 

phonation.  

 

Marendic, Galatsanos, Bless (2001) proposed a new active contour algorithm working 

based on minimization of the energy which was later inculcated in vocal fold tracking from 

the videostroboscopic videos, in a slower rate. The proposed algorithm introduces two new 

terms in internal energy function and the external energy (energy forced by the structure 

itself) manipulations were also done to improve the accuracy of tracing the Vocal folds. The 

stretching energy was familiarized to compensate for uneven distribution of external and 



 
 

internal energies down the glottal opening, and for channelizing the snaxels to the regions 

having high external or internal energies. They also verified the efficiency of this algorithm 

by tracing 39 complete Vocal fold cycles using snakes. They found that the stretching energy 

used enhanced the tracing capability of snakes. The modified energy terms and the Canny 

edge detector they used reduced the snaxels holding onto incorrect edges mostly at the 

bottom during closing phase. They concluded that the active contours with modified energies 

outperformed the classical approaches that have been used in the literature. Allin, Galeotti & 

Stetten (2004) assessed a system using the videos from videostroboscopy of three individuals 

wherein, an attempt was made to augment the existing segmentation methods by focussing on 

the external energy of the snake based segmentation rather than on the internal image energy. 

This was done by component of the system using colour transformation which discriminates 

the pixels of the trachea from those of the vocal fold pixels which fabricates a crude 

segmentation of vocal fold boundaries. The second component of the system discriminated 

between the surface of vocal folds and pixels around them. This assessment system extracted 

contours from manually completed points identified as vocal fold edges. This showed that the 

segmentation can be simply obtained by focusing on building of image energy. And this 

segmentation can be used in cases of gross laryngeal movement disorders.  

 

Mendez, Garcia, Ruiz, Iturricha (2008) proposed a method to obtain the glottal space 

segmentation without the user interfering. The authors used Gabor filter segmentation and the 

261 images obtained from 6 videos including the normal and pathological cases (vocal polyps 

and vocal nodules) were used for examining the developed algorithm and the Glottal area 

segmentation was done and the Glottal area waveform was drawn in which they found that 

this algorithm had some incorrect segmentations though, it still would serve as a good 

objective measure to diagnose vocal pathologies. Videostroboscopy and Videokymography 



 

(VKG) with the new 2-point laser projection device was used to obtain dynamic images 

which used simulated vocal folds phonating on a laboratory bench for verifying if complete 

width of glottis could be measured and the stability, vibratory periodicity and the reliability. 

The results revealed that the VKG with the even with its extensive time consumption, showed 

an average variation of 3.10% in maximum glottal width measurements compared to 

stroboscopic data. It was concluded that the simulated-cyclic illustration of vocal fold 

vibrations obtained with videostroboscopy was equivalent to the full-cycle information 

obtained with VKG to within 7%, for stability, periodicity. So, the stroboscope which is more 

regularly available and less expensive can be used for Vocal measurements. 

 

Wang, Yu, Zhang & Xu (2010) used high-speed digital imaging, voice signal 

processing and quantified the voice productions by extracting the periodic and aperiodic 

vocal fold vibrations and tried to provide an automatic image processing technique. They 

found that the images of vocal fold vibrations with lower resolution were effectively 

extracted. This study provided a new way of combining both digital imaging and voice signal 

processing. The new algorithm was said made the diagnosis more accessible by analyzing 

thousands of high speed images. Feng Jeffrey Kuo, Hsiang Chu, Chun Wang, Yu Lai, Lin 

Chu, ShingLeu & Won Wang (2013) intended to design an automatic vocal cord image 

selection system. The study used a rigid videolaryngoscopy for recording (RLS 9100B, Kay 

elemetrics, NJ). Initial part of the study consisted of the automatic selection of the vocal cord 

opening to its largest extent by applying the color space conversion and image processing, it 

included enrichment of the glottis region, removal of object boundaries, conversion of image 

obtained into a binary image, area filling and region deletion, intending to emphasize the 

features of the vocal area image. Next part of the study included selecting the automatic 

image of the vocal cord opening to the largest extent wherein, a screening happens in which 

the three images with larger glottal gap will automatically selected and are to be  arranged in 



 
 

descending order. The final part of the study again used the image processing by calculating 

the statistics of the pixels of the obtained binary images and automatically 15 images with the 

smallest vocal cord closing were selected.  This system automatised the image choice for 

vocal cord opening to the largest extent and vocal cord closing to the smallest extent. This 

study enhanced the technique of image selection and facilitated efficient diagnosis. 

Pinheiro, Dajer, Hachiya, Montagnoli, & Tsuji (2014) developed a method for 

computing the glottal area using the images obtained by high-speed videolaryngoscopy. Eight 

clinically normal participants were asked to sustain vowel /a/ when subjected to 

videolaryngoscopy. They found that the developed algorithm was advantageously able to 

process the low contrast images in-vivo. The use of such computational methods for 

segmentation of Glottal area and the edge of the vocal fold on the basis fixed, numerical 

criterion improve the rising by increasing the objectivity of the analysis which would help in 

reducing the practical issues of segmentation.  

 

Kopczynski, Strumillo, and Bogusz (2015)’s objective was to apply computer image 

processing and analysis methods for quantification of vocal folds' phonatory movement using 

the frames obtained by Videostroboscopy of the larynx. Thirty individuals with no voice 

problems and 15 individuals diagnosed as having Vocal nodules’ samples were considered 

for the study. During the phonatory task, the glottal area estimation/computation was done 

using Image pre-processing and image segmentation algorithms. For visualising the spatio-

temporal aspect of vocal vibrations, the glottovibrograms were constructed. Few indices were 

introduced for quantifying which include the closed index and speed index. In the results, 

they found that the closed index could help in differentiating the individuals with no 

pathology from the individuals having vocal nodules. And the speed index had negative 



 

values for most of the individuals with pathology which indicates that the opening time of the 

vocal folds is slower than the closing time.  

 

Kuo, Joseph Kuo, Hsiao, Lee, Lee & Ke (2016) developed a glottis appreciation laser 

projection marking module system for converting the physiological parameters of glottis and 

for providing scale conversion reference parameters for glottal imaging. The vital regions of 

the larynx were separated using image processing obtained by videostroboscopy. Image pre-

processing procedure used the histogram equalization to increase the contrast of glottal 

image. Center weighted median filter helped in preserving the texture features and 

eliminating noise. Statistical threshold selection determines the threshold for image 

segmentation automatically and dilation and erosion, opening and closing for eliminating the 

noise post segmentation enhance the precision in interpretation. Region filling was done to 

fill-up the region formed by a group of adjacent points in the image with characteristic 

values. They also used image processing to automatically identify an image of vocal fold 

region in order to quantify information from the glottal image, such as glottal area, vocal fold 

perimeter, vocal fold length, glottal width, and vocal fold angle.  

 

 

 

 

 

 

 

 

 



 
 

Chapter IV - Results 

 

Ground truth segmentation 

 

In the present study, three SLPs independently identified (annotated) glottis on a set 

of 2723 images. Dice score (D) was used to quantify the agreement of the glottis boundary 

annotation of three SLPs, a Dice score of 1 would indicate a perfect agreement between the 

annotations. We computed the DICE score across each pair of annotations for every image 

and a mean DICE score was computed by taking average across all pairs.  

 

The first row of the image 1 shows target image (to be annotated) by the three SLPs. 

Second row to last row of image 1 shows the three images on which annotations were 

performed by the three SLPs. The mean DICE score for three illustrative examples in image 

1(a) are given at end of respective columns. We observed that the annotations often vary 

across SLPs, particularly when the glottal opening is small as shown in the first and second 

columns of image 1. We also observed poor inter SLP agreement when there were variations 

in terms of illumination, glottis shape, and orientation of LVS recordings, as shown in image 

2.  

 

 

 

 

 

 

 

 



 

Image – 1: Illustration of three sample annotated images by three SLPs (a1 , a2, a3) to show 

the inter SLP agreement.  

 

 

 

 

 

 

 

 

 

 

Image - 2: Sample images randomly selected from 22 subjects to show variations in terms of 

illumination, glottis shape, and orientation of LVS recordings. 

 

Objective 1: Identifying the best performing NN architecture 

 

 Table 2 shows fold-wise localization accuracy (%) across three SLPs for DNN and U 

– Net based approaches. Table 3 shows corresponding fold-wise Dice score (D) calculated 

only on the correctly localized images. The three values in each cell shows the Localization 

accuracy (or Dice score) calculated with respect to corresponding SLPs’ annotations (a1, a2, 

and a3). Average Dice score / Localization accuracy of all folds has been shown in the last 

row of Tables 2, and 3. Figure 4 shows mean Dice score, and localization accuracy of 

correctly localized images achieved by DNN and the U-Net based architecture across three 

SLPs’ annotations (a1,a2,a3). 

 



 
 

Table 2: Fold-wise Localization accuracy (%) of correctly localized images achieved by 

DNN and the U-Net approaches across three SLPs’ annotations (a1,a2,a3).  

Fold 

Localization accuracy 

DNN U - Net 

SLP 1 

(a1) 

SLP 2 

(a2) 

SLP 3 

(a3) 

SLP 1 

(a1) 

SLP 2 

(a2) 

SLP 3 

(a3) 

Fold 1 89.9 78.7 98.5 90.6 91.2 90.6 

Fold 2 38.0 69.0 40.0 61.4 63.6 62.3 

Fold 3 72.2 68.6 72.8 85.9 87.1 65.3 

Fold 4 39.9 76.2 41.4 93.9 91.2 91.7 

Mean 

(SD) 

60 

(25.36) 

73.1 

(5.01) 

63.2 

(27.99) 

83 

(14.73) 

83.3 

(13.25) 

77.5 

(15.85) 

 

 

 

 

 

 

 

 

 

 
 

Figure - 4: Mean Dice score (SD as error bar), and Localization accuracy (SD as error 

bar) of correctly localized images achieved by DNN and the U-Net based architecture across 

three SLPs’ annotations (a1,a2,a3). 

 



 

As seen from the tables 2, and 3, the U- Net based architecture performs better than 

the DNN architecture. When a fold wise interpretation of results was carried out, we observed 

that both localization accuracy, and Dice score for fold – 1 was high, and may be due to the 

clear visibility of glottis in subjects, as illustrated in examples (S1, S2, S3, S4, and S5) as 

shown in image 2. For fold 2, we observed that the localization accuracy was low, but the 

corresponding Dice score was high. This difference may be due to the poor illumination in 

recordings as illustrated in examples S6, S7, and S9 of image 2, and the corresponding Dice 

score was high because of the skip connection used in the U – Net based architecture enables 

exact detection of glottis boundary. In conditions, where the supraglottic structures obstructed 

the view of glottal opening; we observed high localization accuracy but low Dice score, as 

shown in the results of fold 4.  

 

Table 3: Fold-wise Dice score of correctly localized images achieved by DNN and the U-Net 

approaches across three SLPs’ annotations (a1,a2,a3). 

Fold 

Dice score 

DNN U - Net 

SLP 1 (a1) SLP 2 (a2) SLP 3 (a3) SLP 1 (a1) SLP 2 (a2) SLP 3 (a3) 

Fold 1 0.76 0.76 0.81 0.78 0.77 0.76 

Fold 2 0.67 0.69 0.64 0.74 0.76 0.74 

Fold 3 0.62 0.63 0.52 0.72 0.75 0.72 

Fold 4 0.56 0.66 0.55 0.73 0.73 0.72 

Mean (SD) 0.66 (0.08) 0.69 (0.05) 0.63 (0.13) 0.73 (0.05) 0.73 (0.06) 0.72 (0.04) 

 

 

 



 
 

Objective 2: Performance of U – Net based architecture in localization of glottis in some 

pathological conditions 

  

The data set used in experiment 2 consisted a fresh set of images (those not used in 

experiment 1) from three pathological conditions (vocal nodules: N = 34, Cysts: N = 10, 

Polyps: N = 11). The three values in each cell shows the Localization accuracy (or Dice 

score) calculated with respect to corresponding SLPs’ annotations (a1, a2, and a3). Figure 5 

shows mean Dice score, and localization accuracy of correctly localized images achieved by 

the U-Net based architecture across for nodules, polyps, and cysts, respectively. It can be 

observed from table 3, and figure 5 that both localization accuracy and Dice scores were 

poor.  

 

 

 

 

  

 

 

 

 

 

 

Figure - 5: Mean Dice score (SD as error bar), and Localization accuracy (SD as error bar) of 

correctly localized images achieved by the U-Net based architecture for nodules, cysts, and 

polyps, respectively.  

 



 

 

  



 
 

Chapter V - Discussion 

  

Image segmentation and localization play a key role in medical imaging applications. 

Accurate localization and segmentation of glottis is the essential first step towards developing 

of a fully automatic quantification solution to analysis of LVS recording. In the current paper, 

we carried out experiments to identify and evaluate the performance of two deep learning 

methods (neural networks) in automatic localization and segmentation of glottis from LVS 

recordings.  

 

In our first experiment, we aimed at identifying the best performing neural network 

architecture by comparing two NNs, namely, the DDN and the U – Net based architecture in 

automatic localization and segmentation of glottis from LVS recordings. The results of our 

first experiment revealed that U – Net with and without Segnet based architecture performed 

better than the DNN based architecture The DNN based approach used in the current study 

relies on a 3x3 pixel neighborhood for glottis localization and segmentation, and the choice 

of 3x3 neighborhood context is ad-hoc. However, in the datasets used in the current study, the 

size and location of glottis keeps changing across images. In such conditions, a larger context 

may be required for efficient localization and segmentation.  For a DNN based architecture, 

determining the context window adaptively depending on the size and location of the glottis 

becomes challenging, and thus resulting in relatively poor performance.  

 

The superior performance of U-Net based architecture can be attributed to the fully 

convolutional nature of the architecture. The U-Net based architecture used in the current 

study is a type of fully convolutional network (FCN), which has been specially designed for 

the segmentation of biomedical images. It consists of a FCN consisting of convolution, relu 

activation followed by the max pooling. For glottis segmentation, we have used a U-Net 



 

consisting of a contracting path with two encoders and an expansive path with two decoders. 

U-Net with skip connection is an architecture where a concatenation layer is added after an 

up-sampling layer with corresponding cropped features from the encoder, which helps in 

combining high resolution features from the contracting path. A successive convolution layer 

can then learn to assemble a more precise segmentation based on this information, making 

the U-Net based architecture superior compared to DNN based architecture.  

 

 Our second experiment involved testing the performance of U-Net based architecture 

in localization and segmentation of glottis on an untrained data set. It was observed that the 

performance of U-Net based architecture was poor on untrained data set, and maybe due to 

the following reasons. 1) Limited number of images on which the training was performed, 

and 2) variations in LVS image frames in terms of illumination, glottis shape, and orientation 

of LVS recordings, as shown in image 2. It was also observed that for difficult frames (those 

with poor illumination, shape, and orientation) the inter SLP agreement was also poor. FCNs 

such as U-Net based architecture require training on a very large data set. Even though 

relatively large data set (24970 individual images) was used in the current study, it appears 

that a much larger data set may be necessary to achieve better performance. 3) The U-Net 

architecture used in the current study was trained using three different weight initialization 

schemes. Perhaps, the use of different loss functions can improve the performance of the 

algorithm.  

  

 

  



 
 

Chapter V1 – Summary and Conclusion 

 

Accurate localization and segmentation are an important first step towards developing 

a fully automatic quantification solution for the analysis of LVS recordings. The results of the 

current study are promising, the proposed methods allow a very stable, reliable, and high-

quality fully automatic localization and segmentation of glottis from LVS recordings. Upon 

training, the proposed NNs can localize and segment glottis from LVS recordings without 

any clinician (user) intervention, which is an essential prerequisite for clinical use. Even 

though parallelization of segmentation process was not performed in the current study, such a 

task is possible and is being considered in future developments. Other prospective 

developments include, testing the performance of our NNs on augmented data, further 

optimization, and generalization of current NNs on larger data sets. Further improvements to 

our NN algorithms itself can facilitate better segmentation performance. 
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