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INTRODUCTION

Man's primary method of communication is speech. He is

unique in his ability to transmit information with his voice.

Of the myriad varieties life sharing our world, only man has

developed the vocal means for coding and conveying

informa-tion beyond a rudimentary stage. It is more of his

credit that he has developed the facility from apparatus

designed to subserve others, more vital purposes.

As early as the eighteenth century, attempts were made

to model the human speech mechanism. Without the aid of

electricity these were physical analogues of the apparatus -

the lungs, vocal cards, vocal tract, tongue, teeth and lips -

but were accurate enough to yield sounds recognisable as

human utterances.

In 1939 a device called the 'voder' (voice operation

demonstrator) was produced at the Bell Telephone Labs in New

Jersey which could be operated by trained operators to emit

speech sound.

Following the second world war, much more advanced

speech synthesizers were produced using developments of the

same technique. Algorithms which were suitable for digital

implementation were then produced in Laboratories and

Universities around the world war as soon as mini-computers

became readily available in 1960's.



Recognition task:

Even the simplest attempt at speech recognition requires

electronic equipment, in order to capture utterances with a

microphone and to analyse them. In 1947 this process was

demonstrated by an important device known as the spectrogram

which produced a graphical representation of the continuous

spectrum of the speech.

From 1950 onwards many experiments began in which the

parameter extracted from speech utterances by some form of

electronic filtering were used to make automatic 'decisions'

about the speech itself.

In 1952 a team at Bell Labs developed the first device

that could be properly called an automatic speech recognizer.

Since 1952, many techniques have been developed to enhance

the performance of speech recognizers. However, the basic

principle of stored information representing various options

for comparison is always used, together with some form of

parameter extraction and pre processing that takes place

before the decision - making process.

The first requirement in the design of a speech

recognition system, then, is to define clearly what

particular aspects of speech are to be recognized. Some of

the best used categories in this respect, in order of

increasing complexity and expenses are; recognition of

isolated words, recognition of discrete words in connected

speech recognition of strings of words in connected speech.
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Automatic recognition of speech, with its promise of

voice -operated type writers and other machine marvels, has

been one of the more glamorous technological dreams for

several decades. With the emergence of over faster computers

the voice - operated millennium seemed at hand.

Automatic speech recognition and speaker verification

are among the most challenging problems of modern man-machine

interaction.

Among their numerous useful applications are a future

"checkless" society in which all financial transactions are

executed over the telephone and "signed' by voice. Access to

confidential data can be made secure by speaker

certification. Other applications include voice information

and reservation systems covering a wide spectrum of human

activities from travel and study to purchasing and partner

matching. In these applications, spoken requests (over the

telephone, say) are understood by machines and answered by

synthesized voice. Voice control of computers and spacecraft

(and machines in general whose operators have limited use of

their hands) is an aspiration of long standing.

Activation by voice cold be particularly beneficial for

the severely handicapped who have lost one or several limbs.

Application of speech recognition in the field of speech

therapy has been recognized as useful. But it has not been

3



worked upon particularly in India. Before using these

programmes for clinical use it was felt necessary to know the

efficiency of minimum prediction residual method, cash

measure and linear prediction coefficients (euclidean

distance measure); which were available.

The review of literature has shown that duration of

utterance and fundamental frequency as important variables

among other variables in the process of speech recognition.

A program of speech recognition written using basic

language based on description provided by Gray and Markel

(1976); was available to investigator. This program provides

measurement of distances between the stored group data and

test data using minimum prediction Residual method, cash

measure and Linear Predication Coefficient (Euclidean

distance measurements)

The present study was limited to find out the effect of

variations in fundamental frequency on speech recognition

with the program available to the investigator.

It was decided to use digits to start with, to make the

problem simpler and also as others had used digits for

recognition

HYPOTHESIS:

1. There is no difference in terms of recognition of digits

when the pitch is varied from the habitual pitch, i.e.,

4



l(a) There is no difference in terms of recognition of

digits when the digits are uttered at high pitch

with respect to habitual pitch.

l(b) There is no difference in terms of recognition of

digits when the digits are uttered at low pitch

with respect to habitual pitch

l(c) There is no difference in terms of recognition of

digits when the digits are uttered at low pitch

with respect to high pitch.

2. There is no difference between the three methods of

speech recognition in terms of recognition of digits as used

in present study.

2(a) There is no difference between the methods Cosh

Measures and Linear Prediction coefficient in

recognizing the digits as used in this study.

2(b) There is no difference between the methods Minimum

prediction residual and Cosh Measure in recognizing

the digits as used in this study.

2(c) There is no difference between the methods Minimum

Prediction Residual and Linear Prediction

Coefficient in recognizing the digits as used in

this study.
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Limitations of this study:

1. Only five subjects were used.

2. The Speech Recognition Program that was available to the

investigator was limited.

3. Only digits have been considered as speech sample

4. Only frequency has been considered as a variable here.

Implication of this Study:

1. The study has indicted that this particular program

available to the Investigator had limited use.

2. It has shown that the fundamental frequency can be a

variable in speech recognition.

3. The duration of the stimuli must be constant for the use

of this particular program.

4. Attempts can be made to use this for consonant

recognition in Articulation Testing and therapy.



REVIEW OF LITERATURE

Speech Communication is the transfer of information form

one person to another via speech, which consists of

variations in pressure coming from the mouth of a speaker.

Such pressure variations propagate as waves through the air

and reach the ears of listeners, who decipher the waves into

a received message. The chain of events from conception of a

message in the speaker's brain to their arrival of the

message in the listener's brain is called speech chain. The

chain consists of a speech production mechanisms located in

the speaker, transmission through a medium such as air, and a

speech perception process in the ears and brain of a

listener.

In many applications of speech processing, a part of the

chain is implemented by a simulation device. Automatic

synthesis or generation of speech by algorithm (as in a

computer) can take the speaker's role, except for generation

of the original message, which is usually in the form of a

text. In automatic speech of speaker recognition, an

algorithm takes the listener's role in deciphering speech

waves into either the underlying textual message or a

hypothesis concerning the speaker's identity.

Speech coders allow replacing the analog transmission

medium (such as air or telephone lines) with a digital

7
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version, modifying the representation of the signal; in this

way, speech can be efficiently stored and transmitted, often

without noise problems and with enhanced security.

Vocal communication between people and computers

includes the synthesis of speech from text and automatic

speech recognition (ASR), or speech-to-text conversion. The

design of automatic computer algorithms to perform these two

tasks has been more successful for synthesis than for

recognition because of a symmetries in producing and

interpreting speech.

(The main difficulty of Automatic speech recognition, are

the problems of segmentation and adaptation. For both

synthesis and recognition, the input is often divided up for

efficient processing, typically into segments of some

linguistic relevance. In text-to-speech synthesis, the input

text is easily divided into words and letters. Whereas the

speech signal that serves as input to automatic speech

recognition provides (at best) only indications of phonetic

segment boundaries. Sudden large changes in speech spectrum

or amplitude are often used to estimate segment boundaries,

which are nevertheless unreliable due to coarticulation.

Boundaries corresponding to words are very difficult to

locate except when the speaker pauses. Most commercial

recognizers require speakers to pause briefly after each word

to facilitate segmentation.



According to Stark (1981); the segmentation problem can

be partially overcome through compensation in speaking style.

Three styles of speech (in order of increasing recognition

difficulty) can be distinguished: Isolated-word or discrete

utterance speech, connected-word speech, and continuous

speech. Continuous speech recognition (CSR) allows natural

conversational speech, with little or no adaptation of

speaking style imposed on system users. Continuous speech

allows the most rapid input (e.g., 150-250 words/min.), but

it is the most difficult class to recognize. Requiring the

speaker to pause for at least 100-250 ms after each word in

isolated word recognition (IWR) is unnatural for speakers and

slows the rate at which speech can be processed (e.g., to

about 20-100 words/min.), but it alleviates the problem of

isolating words in the input speech signal. Connected-word

speech represents a compromise between the two extremes, the

speaker need not pause but most pronounce and stress each

word clearly.

The other major difference between synthesis and

recognition concerns adaptation. Human listeners modify

their expectations when hearing synthetic speech and usually

accept it as they do speech from a strange dialect or with a

foreign accent. In automatic speech recognition, however, it

is the computer that roust adopt to the different voices used

as input. It is much easier to produce one synthetic voice

9
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to which human listeners adapt than to design a recognition

algorithm that can cope with the myriad ways different

speakers pronounce the same sentence or indeed to interpret

the variations that a single speaker uses in pronouncing the

same sentence at different times - Human listeners are more

flexible in adapting to a machine's accent than a computer is

in deciphering human accents.

Current systems require speaker to modify their speech

e.g., by pausing after each word or by speaking clearly and

slowly. No commercial systems have yet been developed that

accept truly natural, continuous speech. Most systems are

speaker dependent, demonstrating good performance only for

speakers who have previously trained the system. These

system "adapt" to new users by requiring them to enter their

speech patterns into recognizer memory. Since memory and

training time in such systems grow linearly with the number

of speakers, less accurate speaker - independent recognizers

are useful if a large population must be served. These

systems are trained by many speakers, not necessarily by

those who later use the systems. Some systems of both types

truly adapt in time via learning procedures as speaker enter

speech. Correctly recognized speech modifies the patterns

stored in memory, keeping up-to-date on new speakers and on

evolutions in speaking style)



Components and Continuum:

An intonation 'contour' implies a continuous functions

running through an utterance. Although, at an abstract

level, description may be in terms of discrete components

such as a 'fall' or a 'level' or a 'fall-rise' which are then

concatenated, perceptual impression suggests, that pitch

movement in an utterance is continuous. This is essentially

a correct impression - the fundamental frequency of the

speech signal, except for unavoidable breaks caused by

voiceless segments, rises and falls throughout utterance.

The most basic problem of speech recognition is how to

reconstruct the discrete linguistic component from the

overlapping and interwoven cues in the acoustic signal.

Variation:-

In considering the variation encountered in speech it is

useful to separate out kinds of variation which can be

described in terms of the linguistic system from those kinds

which stem from personal characteristics of the speaker.

Under both headings there are aspects which remains

relatively constant for a given speaker, and aspects which

varies across utterances made by the same individual.

Linguistic Variation:-

As yet it is not well understood how far informality,

rate, and redundancy interact in their control of phonetic

11



processes. In designing speech recognizers there should be

pay off between the difficulty of incorporating increasingly

sophisticated knowledge of different styles of speaking, and

the advantage of reducing the constraint on speakers to

adhere closely (and perhaps unnaturally) to a single speaking

style.

Personal variation:

According, to Bristow (1986) The physique of the vocal

apparatus determines the range within which acoustic

parameters can vary, rather than fixed values. For instances

the smaller size and mass of female vocal cards compared to

male determines (other things being equal) a higher

fundamental frequency range; but there is usually some

overlap between the normal ranges of a man and a woman, and a

man can override his natural range by producing falsetto.

Unfortunately (from the point of view of speech

recognizers aiming to cope with different speakers) the

relation between the acoustic o/p of different vocal tracts

is not straight forward. It is possible to say, for

instance, that female formant frequencies are an average

about 20% higher than those of male speakers, a mean value

such as that disguises considerable non-uniformity in the

effects - resulting partly from the fact that vocal tracts

differ more in pharynx length than in the length of the mouth

12
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cavity. A procedure to equate male and female formant

frequencies has to be specific to different types of vocoid

and to each formant.

Most of the work in this area has concentrated on male

female scaling of vocoids; but similar scaling problems exist

between any two speakers even of the same sex, and across the

whole range of sounds. Considerable progress needs to be

made before an automatic speech recognition system can be

achieved which will adopt to any new speaker without a

lengthy "training" phase - that is, one which will replicate

what human listeners do without difficulty on encountering a

new voice.

In such a recognizer adaptation may well have to be a

continuing process, since the personal characteristics of a

person's voice change even in the short term. Even assuming

a constant linguistic style, some of the properties of a

voice will change as the speaker become tired, stressed and

irritable, louder (perhaps as a result of increased

background noise) and so on.

In the longer term, changes correlate diurnal rhythm,

health (such as colds and ailments of the larynx) and

(probably of least consequence to speech recognition) the

ageing process.
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ELEMENT OF SPEECH RECOGNITION

"Thirty years of history of speech recognition is

speckled with limited successes and repetitive rediscoveries

of old ideas, and yet with a growing ability to successfully

handle small vocabularies of words spoken in isolation.

Recent trends have added successes in recognition of

continuous speech such as strings of digits and spoken

sentences related to a restricted task domain, and the

technology is currently expanding rapidly. Some important

gaps still remain and future work will have to overcome some

challenging problems" (Lea; 1980).

(Speech signals convey information about who spoke what

message in what manner and in what environment. The task of

a speech recognizer is to automatically determine the message

(i.e., what was said), regardless of (or perhaps with some

help from knowledge of) the variabilities introduced by

speaker identity, manner of speaking, and environment

conditions.

Speech recognition can be generally defined as the

process of transforming the continuous acoustic speech signal

into discrete representations which may be assigned proper

meanings, and which, when comprehended, may be used to affect

responsive behavior.
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The ultimate goal is to understand the input

sufficiently to select and produce an appropriate response.)

In actual fact, the effectiveness of every recongnizer

(even small devices for in dated word recognition) is

determined by the appropriateness of its response. Input

utterances may be considered equivalent if they have the same

intended response, or different if they should yield

different responses. This produces "equivalence classes" of

spoken inputs, regardless of any irrelevant signal changes

due to changes in talker, the speaking rate, the recording

environment or variabilities in details of pronunciation.

A recognizer's decision is correct if the input assigned

to the right equivalence class and incorrect if the wrong

response would be produced (regardless of how many

"phonemes', words, phrases, or aspects of signal are properly

classified). The recongnizer must recover the original

intended message.

Performance evaluation of a recognizer is concerned in

part with establishing what percentage of the spoken

utterances produce a correct machine response. There is, of

course, some uncertainty associated with the selection of

correct responses, so decisions are made with the hope of

minimizing the number of errors, or equivalently, reducing

the probability of an error. However, the ultimate
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evaluation of the recognizer is concerned with the

correctness of its final responses, not its intermediate

results.

According to Lea (1980); Another related aspect of

system performance concerns how severely a system is affected

by deficiencies of usual information, or deprivation such as

the removal or malfunction of a system component. It is

useful to know how much of the action of the recognizer is

attributable to each knowledge source or system component,

and to design systems so as to permit leeway or errors in one

aspect, by permitting another component (such as syntactic

analysis) to recover from errors in an earlier part of the

system (such as the component that identifies small units).

"Gradual degradation" is desired so that minor changes in

either the input channel conditions or the system structure

will have catastrophic effects on system accuracy.

Other aspects of the evaluation of speech recognizers

are concerned with generality and enhanceability of the

system. Systems are obviously of more general utility, if

they permit a large number of speakers (of both sexes and

various dialects) to speak in a natural manner (usually,

involving large vocabularies, continuous, uninterrupted

speech and loosely contained message structures), even in the

environment of some noise and signal distortions such as a

telephone channel might introduce.
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The speed with which machines make recognition

decisions, the required memory size and processing power, and

the cost are other factors that must be considered. Also of

some importance is the ease with which an available limited

recognition capability can be enhanced to handle somewhat

more difficult tasks such as new vocabularies, new structures

in the spoken commands, new talkers, etc.

"According to Lea (1980) One of the primary reasons

given for the use of more complex linguistically oriented

recognition schemes instead of simpler mathematical

techniques is the expected ease of enhancement and ultimate

generality of linguistic approaches. However, for immediate

success on limited problems, the more mathematically oriented

approaches have repeatedly proven to give better results in

shorter times"

Some designers of recognizers focus only (or primarily)

on mathematical representations of the recognizers i/p - o/p

characteristics, assorting that each i/p must merely be

composed with previously stored representatives or templates

of each equivalence class of inputs, and the nearest higher

or minimally different representative must be selected as the

identity (or equivalence class) of the current i/p signals

(or, if no template is near enough, an error message might be

given). This is the basis of generalized i/p - o/p functions

(Newell, 1975), linear discriminant analysis, other



statistical models, and general pattern recognition and

signal processing schemes. Such recognition models could

apply as well to signals other than speech, and indeed their

technology is highly developed because of such other

applications. They do not consider how the signal was

produced by the speaker, nor how it is normally perceived by

the human listener. They of course, do not require that the

recognizer operate internally in any way similar to the

human's perception processes.

According to Lea, (1980) This generalized i/p - o/p or

signal processing approach represents the first of the

following four basic viewpoints about how to be guided

towards the design of successful speech recognizers:

1. The Acoustical signal viewpoint:

It assets that since the speech signal is just another

waveform (or vector of numbers), simple general signal

analysis techniques (Fourier Frequency spectrum analysis,

principal component analysis, statistical decision procedures

and other mathematical schemes), can be applied, to establish

the identity (or representative "nearest neighbour") of the

input.

2. The Speech Production Viewpoint:

It suggests that the communicative "source" of the

speech signal is understood by individual and also individual

18



can capture essential aspects of the way in which speech was

produced by the human vocal system (e.g., vocal tract

resonances, rate of vibration of vocal cords, manner and

place of articulation; coarticulatory movements etc.)

3. The Sensory Reception Viewpoint:

It suggests that duplicating the human auditory

reception process, by extracting parameters and classifying

patterns as is done in the ear, auditory nerves, and sensory

feature detectors.

4. The Speech Perception Viewpoint:

It suggests that features are extracted and

categorically distinguished that are experimentally

established as being important to human perception of speech

(e.g., voice onset times and formant transitions as cues to

sate of consonant voicing, "single equivalent formants" as

vowel distinguishers, perceptual "feature detractors" etc.).

Combination of these viewpoints can also be devised.

The four viewpoints reflect different ways in which the

linguistic message being communicated is encoded at various

stages in the production and reception of speech. The

sensory reception and speech perception viewpoints have had

much less effect pn actual recognition systems than the

speech production and acoustic signal viewpoints.

19
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The speech production, sensory reception and speech

perception viewpoints may be characterized as what Newell

(1975) called "knowledge - source driven representation",

which assume that recognition can be based on available

knowledge of processes and speech encoding or decoding.

These three viewpoints assert that knowledge of the

acoustic speech signal alone is not enough to fully determine

the message (or intended machine response); other sources of

knowledge must be brought to bear on the recognition problem.

These viewpoints also acknowledge that, while a machine need

not operate internally in the same manner as the human. The

human speech processing abilities can serve as a successful

prototype system" for guiding the development of machine

algorithms for speech recognition. The conversion from

acoustic signal to machine response, without the intervention

of help of the human, involves the machine functionally

duplicating the overall. (i/p - o/p) function of a human

perceiver. It need not structurally duplicate the human ear

brain system but the knowledge - source - driven viewpoints

would suggest that recognizers may glean guidelines for

effective recognition from study of human speech processing

techniques.

Computers can currently do some analyses better than

humans, and some others less adequately; so a controversy

continues between mathematical (statistical, information-



theoretic, signal processing, or pattern-classifying) methods

and human-oriented (phonetic, linguistic, perceptual or

neurological) approaches.

Distance Measures and Template Matching:

A critical task in speech recognition is to extract all

(and only) those parts tat convey the message. No matter how

many parts or times. The speech signal is divided into, to

study minutely of all its timing data, an even finer analysis

is always possible. Similarly, no matter how exactly the

pressure ( or voltage) of a speech wave is measured at an

instant, a finer grain analyses is conceivable. Thus, speech

is a two dimensional non - denumerable continuum. It is

possible to analyse it without arbitrary or linguistically

dictated divisions into time segments and no quantizations

into significant changes in signal levels. Point by point

differences in incoming and stored signals can be calculated,

without regard to the possibly that some signal differences

are more important than others.

To determine the identity of the incoming speech and

effect the correct machine response, a recognizer can

determine the difference between the incoming signal and the

expected signal for each message. 'Expected' signals, or

templates, can be actual stored training samples that were

previously declared by the human to be associated with each

appropriate machine response, or they can be averages or

21
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other composite signals obtained from many such training

samples. For each equivalence class of utterances

(associated with a specific correct response), a template (or

perhaps several templates representing allowable variations

within the equivalence class) must be specified, and a

distance measure determined such as calculation of a

'Euclidean distance' formed from the squares of the point-by-

point differences in signals. The selection of an

appropriate distance measure is thus one of the important

concerns in this signal matching approach to recognition.

According to Lea (1980) ; this (in its simplest form) is

basically an ignorance model of the significant aspect of the

incoming signal. Each deviation from previously stored

signals is assigned equal significance, and no particular

features of the speech are considered more important than

others. This ignores or disregards whatever is learnt about

the important physiological and linguistic regularities of

both the source of the speech and the intended intelligent

receiver of spoken messages. It requires accumulation of

representative training signals for each possible message.

For large message sets (large vocabularies of isolated words,

or large number of alternative sentences that might be

continuously spoken), obtaining training templates is a time

consuming and costly, process and results in extensive

storage requirements in the machine.
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Users are required to invest the time in training the

machine to their voices or speaker - independent templates

must be devised by the developers, based on averages or

alternative variant of word pronunciations.

In addition, it is difficult to obtain truly

'representative' training signals, that are quite distinct

from message to message, and that are likely to be closely

approximated by all repetitions by all speakers in all

environments. To account for speaker differences, variations

due to environmental noise and channel distortions, several

alternative templates usually have to be stored for each

message and each set of conditions.

This further increases the storage requirements and

makes recognition costly and unwieldy. However, with rapidly

advancing speeds and storage capacities in low cast

computers, this storage need is less of a problem than it

might have seemed in earlier years.

The template approach also avoids the danger of

inadvertently 'throwing away' important information while

focussing on only certain parameters that are expected to be

important.

The variety of template matching procedures is

extensive, since a slightly different technique can appear to

emerge from each new set of possible parameter patterns to
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extract, each new method of data alignment, each new distance

ensure and each decision or word matching method. Vector

quantization (cf.Burton and Shore, 1986; Tsab and Gray, 1986)

is an example of a template matching process that at the same

time may seem very different from, and yet essentially a

terminological equivalent of, previous methods. Advantage is

the ability to define automatically the set of alternative

spectral templates for categorizing portions of speech.

Traditional phonetic Recognition Procedure:

Here, the justifications of discrete representation of

speech and the traditional view of segmentation of speech

into phonological units of various sizes and kinds are

considered.

The Discrete Representation of Speech:

There is extensive justification for characterizing

speech by discrete units in time and as a finite set of

simultaneous features.

Engineering and information - theoretic considerations

suggest discrete representations. Speech must be converted

into discrete voltages and switching states in digital

computers, so that a discrete representation will be required

for speech recognition using practical digital computers.

Also, the sampling theorem (Pierce, 1961; Rabiner and Gold,

1975) asserts that only any limited signal (such as speech
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may be considered to be) can be completely represented by 2

Fu samples per unit time, where Fu is the upper bound on the

frequency content of the signal (which can certainly be taken

to be at most 10 KHz for speech).

The fidelity criterion of communication theory (Chomsky

and Miller; 1963) acknowledges that certain sound changes

(e.g., those due to emotion, fatigue, speaker idiosyncrasies,

et.) are irrelevant to the receiver, while others are

significant, so that the infinity of possible speech waves of

a limited length can be partitioned into a finite set of

discrete, mutually exclusive 'equivalence classes', which are

basic to speech recognition.

Halle (1954) has also noted that "if a discrete view be

adopted, correction of errors begin upon receipt of each

discrete unit (quantum)", so there is no need to wait until

the entire continuous signal is completed to correct errors.

This may prove significant in the real time recognition of

spoken sentences. Finally, most messages for machine i/p

would have identical intended responses if they had been

written (or typewritten), rather than spoken, so the fact

that the written code is discrete suggests the sufficiency of

a discrete representation of speech.

No representation could be fully discrete unless it

breaks up each of the two acoustic continua (continuum of
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time and continuum of pressure levels into a countable in

practice, finite) number of discrete parts. A non-

denumerable infinity of possible speech wave forms of a fixed

length must be identified in the same discretely

representable class. Likewise, an infinity of possible

lengths must be classified as 'equivalent'. Thus, a discrete

representation of the time domain requires a segmentation of

the continuous speech waveform into some sort of units or

'segments'. While the segments or units need not be

separated with strict 'boundaries' between them, and could

actually overlap each other or be spaced apart from each

other, the usual method is to segment speech into juxtapose

units of non-aero length, which classify as equivalent any of

an infinity of 'insignificantly different' wave shapes

spanning about the same stretch of time.

According to Bristow (1986) speech is segmented at fixed

intervals. Commonly, such segments are selected to be

shortenough to allow to proper features extractions, such as

proper spectral averaging or detections of periodicities in

the wave form. This smallest unit of time ( such as a short

10 ms unit) can be sensibly categorized into one of a finite

number of sound categories, such as the most similar of a set

of stored training templates obtained from previous

processing of training data ( Baler, 1975; Klatt, 1980)

Alternatively, the segment may be assigned to a phonetic



category based on the spectral content and other

distinguishing feature of the wave form within that unit.

On the other hand, the total utterance (which may be a

word, for isolated word recognizers, or a sentence or

discourse for conmtinuous speech recognizers) can be

interpreted as an undivided entity which determines the

appropriate machine response.

Segmentation of speech into phonological units:

The most controversial aspect of segmentation has

concerned the relative values of intermediate size units,

such as 'phones'; phoneme-to-phoneme transitions or

'diphones'; syllabic subunits like 'syllabic onsets',

'syllabic nuclei', and 'coda' 'syllables'; 'words'; and

'phrases'. There is a vast literature on the 'psychological

reality' and the linguistic utility of segments like phonemes

and syllables (Sapir, 1938; Bloomfield, 1933; Pike, 1945;

Wells, 1947; Trager and smith, 1951; Chomsky, 1957; Chomsky

and Miller, 1963; Chomsky and Halle, 1968 Hockett, 1972).

A. typical speech Recognition system:

The speech signals of representative training samples

are processed to detect utterance boundaries. Points where

energy rises above a threshold level are declared beginnings

of words, unless the energy peak is so short in duration that

it is clearly not speech, but rather a noise impulse.
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Endings occur where energy drops below the threshold and

stays down for atleast some reasonable time. Short noise

bursts have to be excluded from the regions called words, by

using their short durations and perhaps their spectral

character to distinguish them from speech sounds. Breath

noise, lip smacks, stop bursts, weak fricative and lack of

clear gaps between words within connected speech make word

boundary location a difficult problem, and a primary reason

for errors in recognisers. Changes of sound structure due to

the sound structure of adjacent words also create word

boundary-induced problems for connected speech recognizers.

Between utterance boundaries, various features are

extracted, in each short time frame, to yield a matrix of

FiNi numbers where Fi is the number of features monitored,

and Ni is the number of time segments in which such features

are extracted. Each word is that is spoken during training

is accompanied by a user-specified (possibly computer-

prompted) identification of what that utterance meaning was

(i.e.what word sequence was spoken, or what response is

expected). A lexicon of expected pronunciation for all the

words is thus obtained.

Later, when an unknown utterance is spoken, its matrix

of numbers is compared with all the stored matrices, and the

one lexical entry that is 'closest' to i/p pattern is the

selected identity of the word. Hypothesized words may have



to be 'warped', or normalised, in time and other parameters,

to match the i/p. Other normalisations may adjust signal

amplitudes or other data values to aid proper alignment,

comparison and scoring of closeness of fit.

After words have been hypothesized they may be subjected

to syntactic, semantic and pragmatic constraints to select

the most likely actual word utterance. Prosodic cues can aid

syntactic analyses, by locating phrase boundaries, stresses,

regions of phonetic reliability that yield highly reliable

word hypotheses, other structural cues.

Acoustic Parameterization and Normalisations:

The parameters can be mainly divided into time-domain

parameters and spectral parameters.

Time-domain parameters include peak amplitudes and peak-

to-peak measures. One can monitor maximum within the whole

utterances, or within moderate size regions like syllables,

or within short segments, such as the maximum within each

single cycle of the periodic voiced speech regions. Large

waveform peaks are produced by the periodic excitations of

the human vocal tract by puffs of air from the vocal cards,

and the time internal between successive excitation peaks

provides the pitch period. The pitch period is thus

detectable from the time interval between large waveform

peaks, or the time interval before the waveform basically
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repeats itself. A common method for deriving pitch is

autocorrelation method (Sondhi, 1968), which assumes that a

signal will clearly correlate with itself at displacements of

one (or any integer multiple of one) pitch period. The

reciprocal of the pitch period is the fundamental frequency

of the voice, which is useful in prosodic analysis. Within

each pitch period, there are successions of progressively

smaller peaks, indicating the resonance characteristic of the

human vocal tract as a resonating tube. The number of peaks

per pitch period can be a crude indicator of whether the

signal is rapidly varying, as in fricatives, or slowly

varying, as in vowel-like sounds. For vowel-like sounds, the

peak count in each pitch cycle can be a cue to the frequency

of the dominant formant or perceptually prominent spectral

resonance of the speaker's vocal tract. Crude 'Single-

equivalent formant' tracking, which estimates the

perceptually prominent formant, has been done by simply

extracting the duration of the first half-cycle of the

waveform after the glottal excitation (Focht, 1967).

Counting the number of times the signal goes through any

specific signal level (in either the positive or negative

direction; or both) can be a measure of repetitiveness. For

example, many research efforts and a few commercial products

have explored, the use of the number of zero crossings per

unit time. The reciprocal of the time interval between two

successive zero crossings has been called the instantaneous



frequency (Baker, 1975). Zero crossing counts and

instantaneous frequencies are high for noise like sounds like

fricative low for vowel-like periodic sounds.

Another measure of the speech signal, frequently used in

recognisers, is the intensity, or energy of the wave, which

can be computed as the sum of the squares of the values of

the wave at each point in time, within some window of time.

Most speech analyses has been done in the frequency

domain, with techniques such as filter banks, further

analysis (especially the Fast Fourier Transform), linear

predictive coefficient (LPC) analyses, and cepstrum analysis.

In the frequency domain, voice fundamental frequency can be

found from the spacing between harmonics, or from cepstral

analysis, which separates the harmonic activity from the more

gradual changes in spectra due to vocal tract resonances.

Among the other possible spectral parameters, band

limited energy contours, such as the 'sonorant energy' in the

frequencies from 60 to 3000 Hz, or the 'voicing energy' in

the low frequencies from 60 to 450 Hz, or the high frequency

'sibilant' energy from 3000 to 5000 Hz, can be useful.

Tracking natural resonances of the vocal tract, or formants,

is difficult to do reliably from the complex FFT spectrum or

the output levels from a bank of narrowband filters

distributed across the spectrum. However, the smoothed

frequency spectrum that results from LPC analysis permits

31



32

formant tracking to be done with some reliability, using

simple peak picking on the LPC spectrum, or pole tracking on

the actual LPC model. It is generally acknowledged that if

one can derive accurate formant frequency tracks vs. time,

they can be valuable for the phonetic content of speech.

A few studies (e.g., Davis and Mermelstein, 1978)

suggest that 'mel scale cepstral coefficients' can be atleast

as effective as LPC coefficients or other spectral parameters

in determining the phonetic content of speech. Experiments

have shown fairly comparable performance in word matching

with either LPC coefficients, filter bank outputs, or FFT

outputs (c.f.White and Neely, 1976; Wholford, Smith, and

Sambur, 1980; Doutrich et al., 1983). Less effective were

zero crossings counts, formant amplitudes and formant

bandwidths.

A survey of experts with an average of ten years

experience in speech recognition (Lea and Shoup, 1979, 1980)

indicated that among the most preferred acoustic parameters

were the formants (derived from LPC spectra, for example),

fundamental frequency, LPC coefficients, energy measures, and

poles of the LPC spectrum. This author favours LPC -derived

formants, fundamental frequency (usually derived from auto-

correlation analysis), sonorant (60-3000 Hz) energy contour,

very low frequency (60-450 Hz) energy, high frequency (3000-

5000 Hz) energy, a two-pole (Primary spectral peak) analyser,



a spectral derivative (monitoring how much the spectrum

changes from one 10 ms frame to the next), detection of wide

band nasal resenances, and mel scale cepstral coefficients.

To answer the question regarding which acoustic

parameters to use in a speech recognition system is to try

out all conceivable parameters, and mathematically determine

which parameters account for the largest portions of the

variance in large samples of speech. Several studies of

principal component analysis, or eigenvector analysis, have

demonstrated that the energy in the signal, the balance of

energy between high vs. low frequencies, and the energies and

resenances in the second, first and third formant regions are

among the consistently important parameters.

Developers of new recognition systems will need good

microphones, tape recorders, audio cables, earphone, speakers

audio amplifiers, and other acoustic signal processing and

computer equipment. An excellent way to get started quickly

on parameter extraction is to purchase standard data

acquisition equipment (such as the Digital sound cooperation

A/D conversion system or the Data Translation or Analog

Devices A/D boards), and standard software packages, such as

the interactive Laboratory system (ILS) from signal

Technology incorporated, which includes previously programmed

procedures for deriving many of the parameters and which also

permits principal component analyses and easy experimental

comparisons of alternative parameters for specific tasks.
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Robust Categorical features:

Voicing can be detected either by (1) observing that the

very low frequency energy exceeds a threshold; (2) noting a

high value of ratio LF/HF between the low frequency (60-900

Hz) energy and the high frequency (3000-5000 Hz) energy; (3)

detecting small numbers of zero crossings per unit time; or

(4) noting whether an Fo value is detected for the local-

region.

Syllabic nuclei:

Syllabic nuclei are detectable from peaks in the

sonorant energy from bounded by significant dips (such as 4

or 5 dB dips) (Lea, 1974, 1976,1980,1986 d). The boundaries

of each nucleus may be fairly reliably to be at the points

where energy drops down to half of the total amount of dip at

that syllable boundary. A slight refinement could involve

replacing the sonorant energy function by a "perceived

loudness function", which is spectrally, weighted to be large

in vowels and other parts of the syllabic nucleus.

Algorithms exist for accurate detections of syllabic

luclei (Lea, 1974; Mermelstein, 1975), and their performances

indicate that this is one of the most reliable decisions that

can be made in recognition. When syllables are bounded by

sonorant consonants, not obstruents, the energy dips are not

sufficient to be always reliably detected, but Lea (1976)

still obtained over 90% correct syllable nucleus detection in

the difficult case of all sonorant sentences.
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Sibilant detection is possible with either the high

frequency (3000 to 5000 Hz), energy function, or preferably,

the ratio of the low frequency (60-900 Hz) to the high

frequency (3000-5000 Hz) energy. If this ratio is below a

threshold value, the spectrum is dominated by high

frequencies, so that a nosy, intense fricative (specifically,

sibilant) is present. (Many axis crossings per unit time is

also a cue to sibilants).

Sibilants are another one of the most reliably detected

categories of speech sounds, with well over 90% usually

correctly detected (Medress, 1980).

Retroflexive detection is another reliable analysis

procedure. Retroflexive (/r/ & /3^/) are detectable from a

low value of the third formant F3 (below a threshold of about

1750 Hz, and possible as low as 1600 Hz), plus a pattern of

F2 and F3 being very close (i.e. F3 - F2 is small).

Nasal stops are associated with broad form out

bandwidths, very low (250Hz) formant F1 and dominant very low

frequency energy, and abrupt spectral changes in formant

patterns, as new formantpositions occur due to the nasal

tract resonances. Nasals are weaker than vowels, and they

show antiresonances, or spectral dips. F2 is weak or absent.

The low energy around 800 Hz (due to an antiresonance) and

weaken high frequencies help distinguish nasals from /1/s.
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Vowel detection is also reliably accomplished, based on

the high (sonorant) energy region of each syllabic nucleus

and the presence of voicing, and procedures for stripping

away the non-vowel parts of the nucleus. Other primary cues

to vowels are the prominent formant structures and the major

energy concentration at low frequencies.

Algorithms can be designed to search directly for a

match to the specific vowel sound patterns, such as the

formant structures for /i/, /a/, /u/, etc. Throughout the

history of speech recognition, vowel identification has been

generally successful, particularly for simple syllable

structures.

Stop consonants are another general class of sounds

which have often been included in preliminary classification

procedures, with considerable success. Stops are evidenced

by gaps, or clear steady states of low energy (either

silences or low energy voicing bars); large values of the

spectral derivative, or extensive frequencies spectrum change

from one time frame to the next, at the opening of closure;

bursts of noisy, broadband energy of short duration and

aspiration, or frictional sound following the gap and burst,

of moderate duration ( 50 ms), for unvoiced steps.

These general categorical decisions leave one or more

'left over categories' to account for weak fricatives

/f,,v,á/, /l/,glides /w,y/,and possible flaps latter parts



of diphthongs, transitional areas, and other areas that

cannot be readily classified as sibilants, retroflexives,

nasals, vowels or stops.

Detailed Phonetic Decisions:

Given preliminary decisions, a recogniser can attempt to

narrow down the alternatives by attempting vowel

identification, specific determination of diphthongs,

detection of laterals, glides, affricates, weak fricatives,

stop identification, and nasal identification. Effects of

context can be taken into account, and phonological rules

applied to compile a pronunciation that can be matched to

expected pronunciations of words in the vocabulary.

Vowel identification is a rather well developed aspect

of recognition. Vowels can be identified by their formant

positions. A simple identifier could match incoming formant

values stored expectations about formant values for various

vowels, where stored templates were obtained from standard

values.

A few other parameters help establish vowel identities.

The 'spectral balance' is a general shape variable,

indicating whether more energy is at low frequencies (under

1000 Hz), which is true for back vowels, or if higher

frequencies (above 1200 Hz or more, as for front vowels) have

a higher energy than for neutral vowels. 'Roundedness' of
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vowels (as for /u, o, / ) , is characterized by lower than

usual values of the sum Fl + F2 + F3 (overall effect is lower

frequency concentration).

The prosodic features of vowel energy and duration (and

even fundamental frequency, Fo) also provide confirming cues

to vowel identity. High vowels have low energy, short

duration and high Fo; low vowels are the opposite.

Dipthong detection represent another refined categorical

decision that might be attempted. Diphthongs are

characterized by long durations, and may be confused with

vowel plus glide, or vowel plus liquid, combinations. A

prominent characteristic is the smooth changing formant

pattern which is strictly dictated by the diphthong identity,

laterals are fairly difficult to detect. They have Fl and F2

low (Fl lower than for vowels, usually) and are /o/ -like in

spectrographic appearance, but they are weaker than /o/

usually and they appear on the edges of detected syllable

nuclei. They have an extra formant at high frequencies, and

they show discontinuity with neighbouring vowels.

Glides are also difficult to detect. The glide /y/ is

/i/ - like, but shows more rapid transitions. A little dip

in F3 often is evident in F3 contours during /y/s. The glide

/w/ is characterised by a low F2, and major transitions into

or out of low F2 condition.
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Affricates are combinations of step characteristics

followed by fricative characteristics. They can be confused

either with stop plus fricative combinations or with

aspirated stops.

Fricatives, in general, have a broad band spectrum for

which the high frequency energy is as much as more than the

low frequency energy. They are noisy, and can be detected by

from many zero crossings, also. In general, it is the

overall spectrum of noise for a fricative that suggest its

identity.

Stop identification involves voicing detection and a

decision about place of articulation. In addition to usual

energy based voicing decisions throughout the stop, other

stop voicing cues include whether there is aspiration, and

whether there is a delay after opening of the consonant

closure before the formant structure becomes apparent (voice

onset time).

The alveolar flap [r] is like a [t] or [d], but reduced

in intensity, short in duration and without aspiration.

Nasals [m]; [n] and [ ] are distinguishable by their

spectral peaks during closure, with [m]'s peak at about 1300

Hz, while the peak for [n] is at about 1800 Hz, and that for

[ ] about 2000 Hz. Transitions into and out of nasals also

show the spectral characteristics of the corresponding

labial, alveolar and velar oral stops.
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Phpnological Analysis:

The various acoustic parameter extractors and phonetic

category detectors provide the information needed to specify

the sound structures of utterances, but procedures are needed

for combining all these decisions into a specification of the

phonetic sequence of the utterance. A strategy is needed for

combining all the information so it la auitable for comparing

with expected pronunciations, to decide what message was

said.

Following are a few distinctive strategies for

phonologic sequence matching;

1) Centisecond Labelling:- Phonetically classify each 10 ms

time frame of the speech, based on its own internal features

and how they match those expected for each phoneme, then use

that long sequence of classifications to match to expected

pronunciations.

2) Separate segmentation and- labelling: Segment at major

acoustic boundaries, defined by major variations in robust

important features, and then select the best phonetic label

for each of those acoustic segments.

3. Phonetic detection without boundaries: Detach the

presence of phonetic categories and specific phone identities

based on the previously discussed manner and place

characteristics, and thus specify central positions of those
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apparent occurrences as detected phonetic units, but do not

specify segment boundaries (and then attempt to match the

order of detected units with the expected order of phonetic

units for various words).

4) Phonetic Lattice: Detect, and find the beginning and

ending (boundaries) of phonetic units, based on the manner

and place characteristics, and allow alternative choices as

to the identify of various regions as well as alternatives as

to where units begin and end, to yield a phonetic 'lattice'

of overlapping alternative sound sequences which can be

matched to expected sequences.

5) Strict phonetic segmentation and labelling: Find (i.e.,

detect and specify boundaries of) a strict sequence of

phonetic units (either sub-phonemic segments, or phonemes, or

transemes, etc.) that completely cover the utterance without

overlapping.

The usual goal sought in recognition has been either

strict phonetic segmentation and labelling or else separate

acoustic segmentation and subsequent first choice phonetic

labelling. Studies, as in the ARPA SUR project, have allowed

several alternative choices for labelling each segment, where

Labels have been based on the most likely or 'closest'

phonetic categories. Thus, probability vectors or preferance

Lists are composed for each segment, indicating the first
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choice label for the segment, the second choice label, the

third etc. order of choices is based on the closeness to the

acoustic characteristics of the analyzed segment.

Segmentation and labelling must included scoring

procedures, for assessing how sure the analysis is about the

various claimed segments and their identities. A measure of

likelihood of correctness or error might be used for scoring.

Recognizers must consider whether to retain knowledge of

only the best scoring phonetic unit for each positions of

speech, or whether to retain a vector of scores of various

phonetic labels, and thus to give a priority list of most

likely labels for each of the segments. The same issue

arises at the word level; only the most likely (highest

scoring) word should be chosen or a list of possible words

and their relative scores should be retained for each region

of the incoming speech. These are typical problems in the

search mechanisms of AI system, regarding the merit of 'best-

first' analysis, vs. 'breadth-first' analysis, vs a

compromise like the 'best-few-first' analysis and Lowerence,

1980; Wolf and Woods, 1980).

One other type of phonological information might help in

identifying words in speech. That is the so-called

'phonotactic information' or language dictated constraints on

allowable sound sequences of the language.
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Lexical Constraints:

Zue and his colleagues (1982), showed that recognition

with a large (20000 word) vocabulary can be reduced to a

selection among just a few confusable words, once the major

phonetic categories are established.

Waibel (1982), showed that prosodic features could also

drastically reduce the set of condidate words from a large

vocabulary. The stress pattern of the word, the duration of

the syllables, and the portions of each syllable that is

voiced can cut the set of candidate words down to about 1.6%

of the vocabulary. Coupling such prosodic information with

crude phonetic decisions can leave only a few words as

candidates, on the average.

Prosodic Aids:

Prosodic information provides acoustic cues to more than

just the wording of an utterance. Indeed, the primary

contributions from prosodies may prove to be in aiding

syntactic passing and guiding phonetic analyses.

Based on linguistic and psychological arguments that

syntax is used in the early stages of speech perception, Lea

(1973, 1974, 1980 C, 1986d) has suggested novel theory of

speech recognition, in which early use is made of prosodic

cues to syntactic structures, and within that structure,

analysis is focused on important (stressed) words and islands

of phonetic reliability.



An extensive series of experiments showed other benefits

offered by prosodic features. Lea showed that interstress

intervals were the best indicator of rate of speaking, and

could be used to select suitable (e.g., fast speech is slow

speech) phonological rules. Unusually long interstress

intervals were cues to major phonological phrase boundaries.

Intonation contours and stress patterns could indicate

sentence type, subordination of phrases under other, and

special grammatical structures, like conjuncts with word

repetition. Detailed acoustic phonetic analyses could be

more efficiently and accurately done when guided by prosodic

cues such as syllabic nucleus locations and stress

determinations (Lea and Clermont, 1984).

SYNTACTIC CONSTRAINTS:

Most recognition systems have focused entirely on using

the grammaticality constraints to 'weed out' alternative word

sequences, without offering any abilities in phrasal

grouping, labelling and definition of grammatical relations.

This filtering of word sequences to establish which ones

satisfy grammatical rules can be a major factor in assuring

correct sentence understanding and reducing computations for

alternative word sequence.

There are many types of grammars, of varying powers to

generate complex languages (Lea, 1966; Chomsky and Miller,
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1963) but perhaps the most important to speech recognition

are finite state, context free, context sensitive and

augmented transition network grammars.

Finite state grammars are at the forefront of current

capabilities in highly reliable speech recognition. Harpy

(Reddy and Lawrence, 1980), the IBM system (Jelnek, 1982),

all commercial recognizers and dynamic programming systems

have endeavoured to recognise with this restrictive form of

grammar, and systems like the BBN HWIN system (Wolf and

Woods, 1980) that have tried to go beyond the limitations of

finite state grammars have had comparatively limited success.

A finite state grammar is equivalent to a 'finite state

automation' or 'Markov model'. in which generation (or

recognition) of the next word in a sentence is determined by

a fixed memory of the previous n words (where n is frequently

only one, so the immediately previous word restricts the

allowable next word).

Linguists (e.g., Chomsky, 1957) have shown that finite

state grammars cannot properly characterise major subsets of

English sentences if no fixed limit is placed on the

complexity of sentences. Thus, finite state grammars cannot

generate (or recognise) all such English sentences and only

the acceptable sentences. Context free grammars have been

devised to permit more generative power, in which sentences
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need not be generated a single word at a time, but large

units can be divided into phrasal sub-units, which in turn

get expanded until the smallest units are represented by

words of the acceptable vocabulary.

However, even such context free grammars cannot capture

some of the contextual constraints that seem to be involved

in aspects of the English language, again assuming no fixed

limit an sentence complexity. Transformational grammars

(Chomsky, 1957, 1965) were devised to account systematically

for complex contextual effects and total derivational

histories of sentences type (such as passive vs. active

sentences, etc.).

However, transformational grammars have proven difficult

to use in recognition procedures, so the 'augmented

transition network' (or ATN) grammar has been devised as a

practical substitute, of equally general power.

Thus, there is a hierarchy of ever more powerful

grammars, ranging from finite-state grammars to upto ATN

grammars. The more powerful the grammar, the versatile the

language that can be characterised. More importantly,

however, for the current uses of syntax in recognition, the

more restrictive the grammar the better it is for strictly

limiting the acceptable word sequence.
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As important issue in syntactic analysis for speech

recognition concerns the assessment of the complexity of a

language for speech interaction with machines. Goodman

(1976) developed the idea of an average 'branching factor',

which indicates the average number of words that can appear

next in a sentence of the voice i/p language. The higher the

branching factor, the more difficult the recognition task,

though this is hardly a fully adequate measure.

Semantic and Pragmatic Constraints:

Semantic networks can be used to show semantic relations

between words, objects that can be 'contained in' other

objects may be connected in a semantic network. In early

works on speech understanding system, semantic networks were

expected to play an important independent role in determining

the correct word sequences to hypothesize in a system, and

which hypothesisable word sequence should be ruled out due to

their semantic anomalies (Nash-Webber, 1975).

Pragmatic information may be used in speech recognisers

to verify or rule out hypothesized word combinations by

extablishing their agreement with prior discourse or their

applicability to the task being undertaken during the human-
?

machine interaction. Knowledge of previous discourse can

help and can permit the full expansion of elliptical

(truncated) utterances that follow similar utterances.
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COMPUTATIONAL TECHNIQUES

The Principles of Speech Pattern Matching:

According to Moore (1985) It is widely acknowledged that

it may be many years before the techniques of automatic

speech recognition (ASR) are able to challenge the accuracy

and reliability of normal human speech perception; the

development of a machine with the ability to transcribe

accurately any spoken message from a wide range of talkers

under less than optimal environmental conditions.

However, since the early 1970's an approach to ASR has

been evolving which, although rather superficial in

appearance, is nevertheless achieving a modest amount of

success, both from a scientific and from a commercial point

of view. This approach has become known as speech pattern

matching(SPM).

Like most other approaches to automatic speech

recognition, SPM is based on the premise that for a machine

to be able to recognise speech, it must have access to

knowledge about speech and about how words and sounds

manifest themselves in acoustic signals. It also requires

that this knowledge should be structured and manipulated in

appropriate ways. However, SPM differs from other approaches

in that it attempts to minimise the amount of heuristic a



prior information about these structures and manipulations by

capitalising on the fact that a prime source of potentiality

reliable speech knowledge is the information contained in

actual speech patterns.

In SPM, first a speech signal undergoes some kind of

pre-processing which transforms the acoustic waveform into a

sequence of analysis vectors. Then, during an initial

training phase, example patterns are used to generate

suitable models which are subsequently stored in the model

store. The complexity of these models varies; in the

simplest case a model might just be an example of a

particular word, on the other hand more advanced schemes use

relatively sophisticated statistical models. Finally, in the

recognition phase, an unknown utterance is compared with the

models in the model store and is assigned to the class of the

model with which it is (in same sense) most similar.

Pre-Processing:

There are two main reasons why it is necessary to pre-

process speech signals in advance of the pattern matching

sages. First, it is desirable to transform the audio

waveform into a domain where the patterning of speech is more

explicit. Second, the data-rate in the transformed signal

may be too high for the subsequent stages. Hence a large

range of signal processing techniques are applicable to

speech signals, both for achieving a suitable signal

representation and for reducing the data-rate.
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A. SIGNAL REPRESENTATION:

1. Fourier Analysis:

The most common and perhaps most informative way to

analyse a speech signal is to estimate its short-time power

spectrum using the Fourier transform. With a suitable choice

of analysis window, the harmonic structure of the excitation

function (voice pitch) may be ignored and the resulting wide-

band envolope spectrum contains information which derives

mainly from the shape of the vocal tract.

This process may be done using discrete Fourier

transform (DFT) or, more easily, using a bank of analogue

band-pass filters. The latter has the advantage that the

distribution of frequency bands (channels) may be readily

modelled on the critical bands of the human ear.

2. Cepstral Analysis:

Direct Fourier analysis requires a short data window in

order to ignore the harmonic structure of speech signals.

However, and alternative approach which is can use a wider

time window is homomorphic or ceptstral processing.

Essentially, a narrow band spectrum (which contains the

harmonic structure) is further transformed, using Fourier

analysis, into the cepstral domain (the spectrum of the

spectrum) where the components due to the pitch of the value

may be filtered out, and then transformed back to obtain a

smooth envelope spectrum.

50
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3. Linear Predictive Analysis (LPC):

Linear predictive coding is a speech analysis technique

which is particularly attractive from the computational point

of view. In this scheme the autocorrelation characteristics

of the speech waveform are exploited by estimating the value

of the current sample using a linear combination of the

previous n samples. The result is an analysis which is based

on an all-pole model of the vocal tract. This means that LPC

is particularly good at estimating the positions of spectral

peaks during vowel sounds. However, during speech sounds

which do not confirm to an all - pole model (nasals and many

consonants) LPC tends to over estimate the bandwidths of the

peaks.

B. DATA REDUCTION:

The result of the initial transformation of a speech

waveform is thus typically a regular sequence of analysis

vectors, where each vector describes the distribution of

energy at different frequencies (or the configuration of the

vocal tract) at different times during an utterance. Further

processing is then able to reduce the dat-rate by

capitalising on the redundancy in the transformed signal.

1. Vector Quantisation:

It is possible to reduce the data-rate of a speech

signal by vector quantisation (VQ). VQ is a technique whereby
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each frame of spectral data is coded by comparing it with a

pre-stored set of reference frames, each of which is

associated with a different output symbol.

The set of references frames (or codebook) is normally

generated by a clustering procedure which minimises the

average distortion resulting from coding a suitably long

sequence of vectors. however, case is necessary in the use

of VQ in automatic speech recognition, since the set of

reference frames must be large enough to preserve the

smallest distinction required by the subsequent pattern

matching algorithms.

Data adaptive Coding:

As VQ reduces the amount of information associated with

a single frame of speech data, variable rate coding

techniques may be used to exploit sequential properties.

Such- schemes are based on the observation that the changing

pattern of sound in a speech signal gives rise to analysis

vector (e.g. spectra) which are often fairly similar over

several frames. In these circumstances it is possible to re-

sample the analysis vectors at a rate dictated by the amount

of change in the signal, thereby reducing the overall frame-

rate.

For a continuous signal, the simple scheme is to set a

threshold such that an analysis vector is produced only if
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the similarity between it and the previous vector exceeds the

threshold; the higher the threshold, the fewer samples will

be taken in the more stationary regions of the signal. In

the special case where the first and last frames of data are

known, it is possible to set the threshold such that a fixed

number of frames are retained; this particular method is

known as trace segmentations.

Modelling Speech Patterns:

The principle of speech pattern matching is that a prior

knowledge (i.e., in sight and assumptions) about the

structure of speech (e.g., words) is supplemented with

analytical knowledge (examples of actual speech patterns) in

order to construct models against which unknown patterns may

be compared for recognition.

The quality of both a prior and analytical knowledge is

obviously of paramount importance; assumptions about suitable

'model structures must not be too far from reality, and the

example speech patterns must be reasonably representative.

The key to successful modelling is to maximise the use of the

actual measured data by sharing information (pooling) where

possible, whilst at the same time minimising the loss of

information by inappropriate pooling. However, by far the

most important concept is that, no matter how well the

derived data structures model the example patterns, it must

be possible to generalise that information in appropriate
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ways in order to accomodate the inherent variability of

speech and to be able to correctly recognise speech patterns

that have not been observed previously. This means that the

models can be regarded as having the capability of generating

(synthesizing) a range of patterns conditioned by the

structure of the model and by the examples that have actually

been observed.

Models:

Different types of models are used for speech

recognition. They are; simple whole-word models; Stochastic

models; markov models; Hidden markov models; Semi-Markov

models; Sub-word models.

Other types of recognition procedures based on distance

measures for speech processing are: The root mean square

(rms) log spectral distance, cepstral distance, likelihood

ratio (minimum residual principle or delta coding (DELCO)

algorithm and a cash measure (based upon two nonsymmetrical

likelihood ratios).

The properties and interrelationships among four

measures of distance in speech processing are theoretically

and experimentally studied by Gray and Markel (1976). It has

been shown that the cepstral measures bounds the rms log

spectral measures from below, while the Cosh measures bounds

it from above. A simple non-linear transformation of the

likelihood ration has been shown to be highly correlated with

rms log spectral measures over expected ranges.
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According to Gray and Markel (1976); for the purpose of

knowing their interrelationships the rms log spectral

distance was taken as a reference. It has been found that

Cosh measure satisfy all of a specified set of distance

measure criteria. Based upon the heavier weighting of large

differences, it has been seen that Cosh measure is a better

choice where large differences are expected.

Recently time-domain speech analyses based on linear

predictability of signal waveform has been successfully

adopted for efficient coding of a redundant speech signal.

Several efforts have been made toward application of the

linear predictor coefficients (LPC) for speech recognition.

(Itakura and Saito; 1968, 1970). Here, in this procedure, a

reference pattern for each word to be recognized is stored as

a time pattern of linear prediction Coefficients (LPC). The

total log prediction residual of an input signal is minimized

by optimally registering the reference onto the input auto

correlation coefficients using the dynamic programming

algorithm (DP). The input signal is recognized as the

reference word which produces the minimum prediction

residual. Sequential decision procedure is used to reduce

the amount of computation in DP. A frequency normalization

with respect to the log-time spectral distribution is used to

reduce effects of variations in the frequency response of

telephone connection.
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The system has been implemented on a DDP-516 computer

for the word recognition - experiment. The recognition rate

for a designated male talker is 97.3 percent for telephone

input, and the recognition time is about 22 times real time

(Itakura; 1975).

STUDIES ON AUTOMATIC SPEECH RECOGNITION

Earlier Studies:

The first truly successful recognizer was reported in

1952 by Davis, Biddulph, and Balashek of Bell Laboratories.

This device could recognize ten digits, spoken over telephone

by a single talker, with an accuracy of 100%. On the speech

of a different talker, however, the accuracy could be as low

as 50%. The talker was expected to speak clearly and to

pause between digits. The recognition method used was to

assign the spoken word to the most probable digit category on

the basis of appropriate F1/F2 measurements during vowel

sounds.

Wiren and Stubbs (1956 ) produced a device which

partially implemented the distinctive feature binary

oppositions. Phoneme classification was based on

voice/unvoiced, turbulent/nonturbulent, stop/fricative, and

acute/grave determinations. This gave 94% correct

recognition of the vowels in short words by 21 talkers. Also

in 1956, Olsen and Belar of RCA reported a machine with a

vocabulary of ten monosyllabic words with which a syllable
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recognition accuracy of 98% could be obtained in complete

sentences by a single talker. "Careful" pronunciation was

required with a pause between each syllable. Eight frequency

bands and fire time intervals per syllable were used to

define an eight-cell by five-cell matrix. In each cell a "1"

or a "0" was stored depending on whether the signal energy

appropriate to that cell was above or below a threshold

. level. The decoded matrix pattern was used to operate a

typewriter key and so a typed transcript of the sentence was

obtained.

A later version of the Olson and Belar syllable

recognizer was reported in 1961. Again this made use of

eight frequency bands and five time samples, but these time

samples were only taken when a significant change occurred in

the spectral power distribution. The machine's vocabulary

was increased from 10 to 100 syllables, but no recognition

performance figures were given.

Following suggestion by Fry, Denes (1959) produced a

speech recognizer. This consisted of a spectrum analyzer, a

spectral pattern -matching system and stored probabilistic

information concerning the probability of any phoneme

recognized by the machine following another in spoken

English. The phoneme-recognition set comprised four vowels

and nine consonants. The overall performance was not
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particularly good, but use of the linguistic data (phoneme

pair probabilities) improved the word recognition accuracy

from 24 to 44%.

Forgie and Forgies (1959), used a 35 - channel filter

bank whose outputs were envelope-detected, sampled, and fed

to a computer. The computer program made use mainly of the

frequency positions of F1 and F2 and of fundamental voice.

frequency measurements. It could recognize ten English

vowels in isolated words of the form /b/ -vowel/t/. For 21

male and female talkers, with no adjustment for the talker,

the vowel recognition accuracy was 93%.

This work demonstrated the value of the digital computer

in recognition studies.

The availability of powerful, high-speed computers in

recent years has brought about a significant change in

research in this field.

One common use for a computer has been in place of the

hardware concerned with classifying the utterance on the

basis of output signals from a hardware spectrum analyzer.

The spectrum analyzer is typically of the vocoder type,

having a bank of filters followed by rectifying and smoothing

circuits. Spectral analyses of speech in this manner is well

established and many such analysers exists in speech -

research centers.
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Where the spectral analysts section is also subject to

investigation there are considerable advantages in simulating

the whole system by computer. However, where real-time

operation is required, or where large amount of speech

material are to be processed, it has been common to fix the

design during an initial period of complete simulation and

then to build hardware units for those sections requiring

long computer time. Now even this restriction has been

greatly released with the development of the 'fat Fourier

Transform' algorithm of Cooley and Tukey (1972). Thus in

many present day laboratory investigations valuable research

can be conducted with no further equipment than a tape

recorder, an analog-to-digital converter, and a generai-

purpose computer.

The most interesting use to which computers have been

put in some recently reported investigations has been in on-

line computer studies using man-machine communication

peripherals. These highly flexible systems allow for rapid

manipulation of the speech signal in intensive experimental

sessions, which permit progress at a high speed.

Hardware studies:

Suzuki and Nakata (1961) studied vowel recognition using

a 26 channel spectrum analyzer and separate wideband, formant

- related channels. The channel outputs were separately

grouped and connected to individual vowel - decision
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circuits. The speech was segmented into voiced and unvoiced

segments, and envelope-intensity and fundamental voice-

frequency measurements were also used. To reduce the errors

due to formant movement during vowel sounds, separate

recognition decisions were made at intervals throughout

voiced segments. The final classification was then made by

observing the phoneme most frequently recognized. Sakai and

Doshita (1962) reported a most comprehensive recognizer.

This used a separate circuits for segmenting the speech into

vowels and consonants and for classifying the segmented

phonemes. Zero-crossing analysis was combined with

measurements of variation of energy in various frequency

regions. The segmentation operation made use of measures of

the "stability" of, and the "distance" between the digital

patterns generated. 90% correct recognition was obtained on

vowels and 70% on consonants.

A hardware study of massive proportions has been the

subject of periodic - reports by Martin et al (74). This

system makes use of Analog Threshold Logic (ATL) elements

which are based on a model of the biological neuron. The ATL

element is a transistor circuit having excitory and

inhibitory inputs which provides an output only when the

linear sum of input currents (inhibitory inputs are

subtracted) exceeds a Pre-set threshold. This output is then

proportional to the sum of inputs until saturation is
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reached. When reported in 1964 the system contained well

over 500 of these circuits. The recognizer employed a 19 -

channel spectrum analyzer, ATL elements, AND gates, and

monostable multivibrators. Various features of the speech

signal were used for recognition of individual phoneme

pattern, such as steady-rate and transitory spectral-energy

patterns and intensity ratios.

Falter (1965), measured machine's performance on CVC

utterances by six male talkers. Recognition accuracies

ranging from 82 to 99 percent were obtained for 22 different

phonemes including vowels, stops, and vowel-like consonants.

Gazdag (1966), used a 12 channel spectrum analyzer

(highest frequency 3 KHz), and the measurement space defined

by its outputs was partitioned by six hyperplanes,

implemented by summing amplifiers and trigger circuits, each

trigger circuit changing state as its amplifier 's output

passed through zero. The output pattern was thus in the form

of six binary quantities whose time variation was

characteristic of the spoken word. The outputs were recorded

on a multichannel pen recorder and transcribed by human

operators in sequences of six-digit binary numbers.

The machine was tested on 10 digits spoken by four

talkers. Detailed results were not given but the performance

was described as "promising". It was also claimed that the

system was invariant for time variations but no proof of this

was given.
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Gilli and Meo (1967) described a system for recognizing

italian numbers - A 17 - channel spectrum analyzer was used

which was followed by threshold detectors which reduced the

range of outputs from each channel to binary statements.

There signals were sampled and connected to separate circuits

for the recognition of each digit. The decisions were mainly

based on the sequential occurances of vowel and consonant

patterns and patterns due to certain transitions.

For the 10 numerals spoken by 10 talkers, which were

used to provide data on which the machine was designed, no

errors occurred. For new utterances by the same talkers,

correct recognition was obtained for 90% of the utterances.

The authors claimed that the results proved that the crude

patterns obtained were sufficient for recognition of the

digits by a simple machine and that a redesign could have

eliminated most of the errors.

Ross (1970) used a four-channel spectrum analyzer and a

digital disk storage system. A 20-bit binary pattern was

generated for each word by sampling five two-state signals

derived from four frequency channels. Four of these signals

were obtained by calculating the ratio of the mean energy

level in each frequency channel to the mean energy in the

overall signal. The fifth signal resulted from a comparison

of the energy in the highest frequency channel with that in

the two lowest. Each of these signals were compared with a
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threshold level to produce five binary outputs. The

resulting patterns were classified by means of a "nearest

neighbor" comparison with patterns stored in the machine.

The permissible "distance" between patterns giving the same

output response was under the control of the experiments.

The training procedure was to present a number of utterances

representing a single word in sequence. If the incoming

pattern was not sufficiently close to any of the patterns

already stored, the new pattern was added to the stored

patterns. Thus a set of different patterns were retained for

each word in the machine's vocabulary.

After training a new input pattern was given the same

label as that of the nearest stored pattern if it was within

the specified distance of one of these. Otherwise it was

rejected. The machine was tested on spoken digits.

When the permitted distance was set to one bit (i.e.,

two patterns were considered the same if they differed by

only one bit out of the 20 pattern bits) 86 stores patterns

were required to correctly identify the members of the

training set. For ten new samples of each spoken digit, 56

gave the correct response, 8 gave incorrect responses, and 36

gave no response. When the permitted distance was zero

(requiring an exact match), with 218 patterns stored, 46 out

of 100 new digits gave the correct response, 2 gave incorrect

responses and 52 gave no response.
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COMPUTER STUDIES

Denes and Mathews (1960) reported as system for

recognizing the 10 digits from complete word patterns. This

used a 17-channel spectrum analyzer, the outputs of which

were sampled and recorded on magnetic tape. This signal then

formed the input to a computer. Time-frequency patterns for

a number of utterances of each word were averaged and stored

as reference patterns. patterns from unknown utterances to

be classified were compared, by a cross-correlation process,

with each stored pattern in turn. The classification of the

reference pattern giving the best match was chosen as that of

the unknown utterance. A comparison was made of the results

with and without time normalization of the patterns.

One female and six male talkers were used and the only

restriction imposed on their pronunciation of the digits was

that they should pause between each. The error rate averaged

over all talkers was 6% with time normalization and 12%

without formation of reference patterns by averaging over

several talkers and the use of time normalization were both

valuable techniques.

Sebestyen (1960) devised a digit recognizer which had an

18 channel vocoder analyser and computer. The computer

implemented linear transformations of the analyzer output

signals to obtain maximal clustering of the data in the 361-
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dimensional space formed by time -sampling the channel

outputs. Time normalization was used and the normalization

factor was included as one of the space dimensions.

Four hundred utterances of the 10 numerals, by 10

talkers were used. it was claimed that, if atleast seven

examples of each numerals were used to optimize the

clustering transformations, no recognition errors were made.

When the talkers used in testing the recognizer were

different from those used in training it.

Gold (1966); reported a word - recognition system. This

used a 16-channel spectrum analyzer (maximum frequency 3 KHz

), a pitch extractor, and a voicing detector. The computer

program segmented the words into approximate phonemic units

on the basis of voicing, magnitude, and spectral information.

A further 15 spectral, duration, and intensity measurements

were then made on a group of five segments centered on one

segment which was defined as stressed. A scoring method

based on the similarity with previous measurements on known

words was used to classify the word. For 50 isolated words

by 10 talkers, 86% were correctly identified and 96% received

either the highest or second-highest score.

A word recogniser using a low-data-rate spectral-

matching process has been developed by Shearme and Heach.

The output of a 20-channel vocoder analyzer is sampled and



66

fed to a computer. Each time sample is considered to define

a point in 20 dimensional space. The variation of this point

traces out a path in the space which is characteristic of the

word and of the talker. Twenty different "proto type

spectra" are chosen which represent certain fixed points in

the space. The path taken by the signal during an utterance

is specified by noting the nearest prototype point at each

sampling instant. The result is a series of numbers in the

range 1 to 20. It is this sequence which forms the pattern

to be recognized in the matching process. Separate number

sequences due to the utterance of words of known

classification are first stored in the computer as "template

patterns". Unknown-word patterns are then compared with each

prototype pattern and the classification of that giving the

highest score is chosen.

For 32 isolated words by 10 talkers and using nine

template patterns for each vocabulary word, an accuracy of

90% correct identification was obtained. Purton (1970) has

produced system which makes use of an autocorrelation

technique. The signal is first split into two bands

approximating the ranges of Fl and F2. The two waveforms are

then infinitely clipped to produce zero-crossing signals.

These signals are separately auto correlated and time

smapled to produce a 36 X 30 matrix for each utterance. This

patern is compared with master patterns and the best match
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determined by a scoring method. One master patterns once

formed from several utterances of known classification by one

or by several talkers.

In single-talker experiments using a machine vocabulary

of 10 words, 696 utterances gave individual accuracies

ranging from 78 to 99%. The average accuracy was 89%.

Louis (1971); proposed a new real time word recognition

system that uses only a small computer (8K memory) and a few

analog peripherals. The essentials of the procedure are as

follows. During the pronunciation of a word, a spectral

analysis is carried out by a bank of 17 1/3 - octave bandpass

filters. The outputs of the filters are logarithmically

amplified and the maximal amplitude of the envelope is

determined and sampled every 15 ms. In this way a word is

characterized by a sequence of sample points in a 17

dimensional space. Then a principal components analysis is

performed, reducing the original 17 dimensions of the space

to 3. After a linear time normalization, the 3 - dimensional

trace of the spoken word is compared with 20 reference

traces, representing the 20 possible utterances (the digits,

plus 10 computer commands). The machine responds by naming

the best fitting trace. With the 20 speakers of the design

set, the machine is correct 98.8% of the time.
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Fumitada Itakura (1975); devised a computer system in which

isolated words, spoken by a designated talker, are recognized

through calculation of a minimum prediction residual. A

reference pattern for each word to be recognized is stored as

a time pattern of linear prediction coefficients (LPC). The

total log prediction residual of an input signal is minimized

by optimally registering the reference LPC onto the input

autocorrelation coefficients using the dynamic programming

algorithm (DP). The input signal is recognized as the

reference word which produces the minimum prediction

residual. A sequential decision procedure is used to reduce

the amount of computation in DP. A frequency normalization

with reference to the long-time spectral distribution is used

to reduce the effects of variations in the frequency response

of telephone connections.

The system has been implemented on a DDP - 516 computes

for the 200 word recognition expect. The recognition rate

for a designated male talker is 97.3% for telephone i/p and

the recognition time is about 22 times real time.

Sambur and Rabiner (1974); studied speaker independent

digit recognition the digit classification scheme was based

on segmenting the unknown word into three region and then

categetorical judgements were made as to which of six broad

acoustic classes each segment belong to. The measurement

made on speech wave form include energy, zero crossings.
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two -pole linear predictive coding analyses and normalized

error of the linear predictive coding analyses. A formal

evaluation of the systems showed an error rate of 2.7% for a

carefully controlled recording environment and a 5.6% error

rate for on line recordings in a noisy computer room.

The experimental test of the digit recognizer was

conducted in two parts. The first part connected of 10

speakers (5 female and 5 male) each of whom made 10 complete

recordings of the 10 digits. The recording sessions were

spaced over a five - week period to include the effect of

time variation in the testing . The recordings were made in a

quiet room with a high - quality microphone. The decision

algorithm was not designed for the characteristics of each

particular speaker, so as to give a true test of the speakers

- independent nature of the scheme.

A confusion matrix for each of the 100 tests of each

digit 100 was presented. The confusion matrix indicated that

all occurrence of initial friction were correctly defected by

the decision algorithm. In only 6 out of 200 examples of the

digits 1 and 9 was the initial nasal like consonant

incorrectly determined. The confusion matrix also showed that

most errors were made in the final detailed decision.

Rabiner and Sambur (1976); have done some experiment in

the recognition of connected digits. The overall recognition

system consists of two separate but interrelated parts. The
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function of the first part of the system is to segment the

digit string into the individual digits which comprise the

string , the second part of the system then recognizer the

individual digits based on the resutls of the segmentation.

The segmentation of the digits is based on a voiced or

unvoiced analysis of the digit string, as well as information

about the location and amplitude of minima in the energy

contour of the utterance. The digit recognition strategy is

similar to the algorithm used by Sambur and Rabiner (1974) :

for isolated digits, but with several important modifications

due to the impreciseness with which the exact digit

boundaries can be located. To evaluate, the accuracy of the

system in segmenting and recognizing digit strings a series

of experiments was conducted. Using high -quality recordings

form a sound proof both the segmentation accuracy was found

to be about 99% and the recognition accuracy was bout 91%

across 10 speakers (5 male and 5 female) with recordings made

in a noisy computer room the segmentation accuracy was about

87% across another group of ten speakers (5 males and 5

females).

Zuicker and Paulus (1979) ; studied speech recognition

using psychoacoustic models. In which it follows the concept

of 1) preprocessing in term of auditory parameters. 2)

subsequent classification and recognition. The preprocessing

system has been realized in analog hardware, while
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recognition is carried out on a digital computer. In the

processing system, the essential psychoacoustic principles of

the perception of loudness, pitch, roughness and subjective

duration were implemented with some approximation. The system

essentially consist of 24 bandpass fitters, non linear

transformation of each filter output into specific loudness,

and specific roughness and final transformation of these

parameters into total loudness, total roughness and three

spectral momenta. As a means to further reduce the

information flow, continuous selection of dominant parameters

was also considered the basis of psychoacoustic data. The

subsequent recognition process is mainly characterized by 1)

discrimination between speech and silent periods. 2)

detection of syllable peaks and classification of syllable

nuclei, and 3) assumption of syllable boundaries and

classification of consonant clusters. Result of the study

indicated the concept provided a systematic and promising way

towards automatic speech recognition of continuous speech.

Significant advances in speech recognition are likely to

come not from researches into signal analysis, adaptive

pattern matching, or computer implementation (although these

fields have valuble techniques to offer the speech

researches), but from the studies of speech perception and

generation, phonetics and linguistics a much greater

understanding of the whole speech process is required before
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an automatic recognizer can be built whose performance will

approach human ability.

As the review of literature shows that several attempts

have been made to use computer for speech recognition several

methods have been proposed and tried with varying success.

Most commonly found methods are: Markov models; Hidden

Markov models; Semi-Markov models; Cosh Measure; Minimum

Prediction Residual Method and Linear Prediction Coefficients

(Euclidean Distance Measures).

Thus it can be concluded that computer can be used for

speech recognition at least to a limited extent. To the

present investigator a program based on distance measure

(Cosh Measure, Minimum Prediction Residual Method and Linear

Prediction Coefficients) developed on the lines suggested by

Gray and Markel (1976) was available. Since speech

recognition has several applications in the field of speech

diagnosis and therapy; it was felt necessary to explore

program and to identify the variables related to speech

recognition with the program available.

Due to several limitations this study was restricted to

only Fundamental frequency as a variable.



METHODOLOGY

Speech recognition has been considered as important from

various points of views. Several methods and models have been

proposed and used for this purpose, for example: Simple whole

word models ; Markov models ; Hidden Markov models and

several distance measures are ; Cosh Measures ; minimum

prediction residual principle ; linear predictive

coefficient, Euclidean distance measures etc.

According to Gray and Marcel (1976) :- Minimum

prediction residual method, Cosh measure and euclidean

distance (LPC coefficient) measurement have been considered

useful methods for speech recognition.

Application of speech recognition in the field of speech

therapy has been recognizes as useful. But it has not been

worked upon particularly in India. Before using these program

for clinical use it was felt necessary to know the efficiency

of minimum prediction residual method, Cosh measure and

linear -prediction coefficients (Euclidean distance measure);

which were available with this program.

The review of literature has shown that duration of

utterance and fundamental frequency as important variables

among the variable in the process of speech recognition.
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A program* of speech recognition written, using basic

language based an description provided by Gray and Markel

(1976) was available to investigator. This program provided

distances between the stored group data and test data using

minimum prediction residual method, Cosh measure and LPC

(Euclidean distance) measure.

The present study was limited to findout the effect of

variations in fundamental frequency on speech recognition

with the program that was available to the investigator.

A preliminary investigation had shown that the program

("speech recognition") was not capable of recognizing either

digits words when the duration of utterance varied.

In order to find the effect of variation in fundamental

frequency on speech recognition with the present program, it

was decided to make the subject to utter the digits, (which

were already recorded analyzed) at habitual pitch** and

pitches higher and lower than habitual pitch of the subjects.

Therefore the present study was undertaken.

*The program that was used was a commercially available
one. No modification or changes in the program were made by
the investigator. It is beyond the limits of the present
investigation to consider any of the aspects of the program
except for its possible usefulness in speech recognition for
clinical usefulness in purposes .

**Habitual pitch is the pitch which is most frequently
used by the subject. Usually for adult males it is around
125 Hz
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Subjects :- Five subjects (all males) in the age range of 17

to 25 Years with a mean age of 20 Years took part in this

study. The selection of subjects was done on a random basis

and also on the basis of following criteria :- No history of

hearing loss or vocal pathology at the time of recording.

The experiment was conducted in two phases. In the first

phase the subjects were asked to utter ten digits (0 to 9)

using their habitual pitch. Loudness was normal with the

microphone at a distance of approximately five cms., from the

mouth. The loudness of the counting was monitored so that the

amplifier indicator of high voltage (about +5 volts)

was not on.

Phase I Procedure

Step (i) (a) Instruments Used :- for recording of the

digits from 0 to 9 for each subjects ; an external mic was

used, which was connected to speech interface unit (voice and

speech system) and finally the input was given to the

computer (PC-XT).

Step (i) (b) Recording Material :- The digits from 0 to 9,

written on flash cards (one digit written on each flash card)

were used as recording material. The cards were presented

randomly to the subjects and were asked to repeat them as

soon as it was flashed.
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Step (i) (c) Recording Environment :- The recording was

carried out in a sound treated room. The ambient noise level,

present in the test room was become the maximum permissible

(ISO - 1964) level.

Step (iii) Instruction :- The subjects were instructed to

utter the digit as soon as the cards were presented. For each

subject each digit was recorded five times. the data out -put

for each digit was heard through speaker connected to speech

interface unit .

The instruments were arranged as shown in fig-1.

The data acquisition for each of these digits (five

times each) at a sampling frequency of 8000 Hz was done. Then

each digit was segmented using the program DSEGF and the

segmented digital data were stored on the floppy - disk.

Each data file was normalised. All the digitized data

was submitted for LPC analysis. the program ANALP was used

for LPC (linear prediction coefficient) analysis.

After LPC analysis for each digit - the program RECGN

(Recognition) was used. Parameter estimation of these LPC

files for each subject was done using the mean mode.

Parameter estimation of each subject was followed by

making group vocabulary for each subject. And this group

vocabulary was taken as the reference point for recognition.
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Phase II

The subjects who had participated in phase I were taken

this part of study also.

Step (i) (a) - same as in Phase I

Step (i) (b) - same as in Phase I

Step (i) (c) - same as in Phase I

The purpose of this phnne of experiment was to find out

variables which would affect the recognition of speech

uttered by different speakers.

step (ii) Instruction

The subjects were instructed to utter the digits shown

to them using the flash card at habitual pitch, and then at

pitchs higher and lower than the habitual pitch. The order of

presentation of the flash cards were randomized.

Each subject was made to utter each of the ten digits

five times each at three different pitch levels, as

previously determined. Thus for each subject 150 recordings

were made. Out of five recordings of each digit at each pitch

level one which had a duration similar to the one used for

group vocabulary ; for example the utterance of subject 1 -of

digit say one had 255, 250, 255, 245 and 255 msec duration at

habitual pitch. the utterance "two" which had 250 msec

duration was similar to the duration of the utterance "two"

in the group vocabulary of subject l(as recorded in phase I).
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Thus for each subject ten recordings out of 50

recordings at each pitch level were selected covering all the

ten digits. i.e., a total of 30 utterance of each subject

were selected.

Using this procedure 30 utterances, ten at habitual and

ten each at higher and lower pitchs for each of the five

subjects were selected. thus a total of 150 utterances were

used as test data to find out efficiency of the program to

recognize at different pitch levels.

After data acquisition each of these digits were

normalized using the program NORM. Again LPC analysis was

done using the program ANALP as described in phase -I.

In the final stage of the experiment each digit recorded

in phase II was compared (i.e., being recognized) with their

respective group vocabulary using the program (i) Cosh

measure (ii) minimum prediction residual method and (iii)

Linear prediction coefficient (euclidean distance measure).

Each of the methods used provided the distance values

for each digit with the respective group vocabulary. The

nearest distance was taken as the recognized digit.

The correctly recognized digits were tabulated and the

percentage of correct recognition (using each method, for

three different pitch levels) were tabulated.



RESULTS AND DISCUSSION

The purpose of the study was two folds, i.e.,

(1) To Review the literature concerned with speech

recognition and

(2) To find out the effect of change of fundamental

frequency on Speech (digit) recognition task.

An extensive review of literature has been made in

Chapter II.

As seen in the methodology adopted here; this study was

conducted in two phases. Parameter estimation was done and

group vocabulary was made for the data collected in the first

phase of experiment for each subject. Finally, each digit

recorded and analyzed in the second phase of the experiment

were compared (i.e., were fed to be recognized) with the data

obtained from the first phase of experiment.

Results obtained from the experiment have been tabulated

and percentage of correctly recognized digit from each method

have been calculated.

Table-I shows the number of correctly recognized digit

at different pitch levels using three different recognition

methods i.e., Cosh Measure, Minimum Prediction Residual

Method and Linear Prediction Coefficient.

The criteria for considering a digit being recognized

was that at least three out of five utterances of the

subjects were recognized correctly.



TABLE - I

CORRECTLY RECOGNISED DIGITS DENOTED BY 'R1''

METHODS USED

PITCH LEVEL
DIBITS

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

ZERO

COSH

N

R

R

-R

R

R

-R

-

-R

-R

-

MEASURE

H

-R

R

-R

-

-R

-R

R

-

-

-R

L

-R

R

-

R

-R

-

-

-

-

-

MINI HUH PREDICTION-RESIDUAL

N

-R

R

-

R

R

-R

-

-R

-

-

H

-

R

-

R

R

R

-

-

-

-R

METHOD

L

-R

R

-

R

-R

-

-

-

-

-

LINEAR

N

R

R

-

-R

R

-R

-R

-R

R

-R

PREDICTION

H

-R

-

-

R

R

-R

-R

-

-

R

COEFICIENTS!

L

R

R

-

-

R

-R

-

-



Table-II shows the percentage of correctly recognized

digits at three different pitches and percentage of correctly

recognized digits using each method of recognition used in -

this study.

As the Table II indicates, there is difference between

the three methods of speech recognition. Hence the

hypotheses (2) is rejected. Table III shows the difference

of percentage of correctly recognized digit using the methods

adopted in this study for speech recognition. As per Table

III there is slight difference, (about 10%) between the

methods; Cosh Measure and Linear Prediction Coefficient.

Hence the hypothesis-2a is rejected. Using the methods

Minimum Prediction Residual Method and Cosh Measure; the

difference is seen more (about 20% at Normal and High pitch)

that means there is difference between the two methods of

speech recognition. It rejects the hypothesis-2b.

Still more differences are obtained by using the method

Minimum Prediction Residual method and Linear Prediction

Coefficient, for digits recognized at habitual pitch - i.e.,

there is difference between the two methods. It rejects the

hypothesis-2c.

It is very clear from Table II that at habitual pitch

both Cosh Measure and Linear Prediction Coefficient yields

good results. The digits are rocognized 80% to 90% by these
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TABLE - 11

DIFFERENCE IN PERCENTAGE OF
CORRECTLY

RECOGNIZED DIGITS AT DIFFERENT
PITCH

USING DIFFERENT PROGRAM.

THREE DIFFERENT PITCH
LEVELS

DIFFERENCE OF
PERCENTAGE OF CORRECTLY

RECOGNIZED DIGIT USING
METHODS :-

1 COSH MEASURE AND LINEAR
PREDICITION COEFFICIENT

2 MINIMUM PREDICITION
RESIDUAL METHOD AND
COSH MEASURE

3 MINIMUM PREDICITION
RESIDUAL METHOD AND
LINEAR PREDICITION
COEFFICIENT

N

10%

20%

30%

H L

10% 0%

20% 0%

10% 0%
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two methods at habitual pitch. But as the pitch is varied

the percentage of recognized digit goes down. That means

recognition of digits is affected by varying the pitch. This

rejects the hypothesis-1.

Table IV shows the difference in percentage of

recognition of digits at different pitch Level. It is very

clear from Table IV that there is difference in terms of

recognition of digits when the digits are uttered at - a)

high pitch with respect to habitual pitch; b) low pitch with

respect to habitual pitch and c) low pitch with respect to

high pitch. This finding rejects the hypothesis-la, lb and

1c respectively.

At habitual pitch levels the digits are recognized

satisfactorily using the methods Cosh Measure and Linear

Prediction Coefficient (Euclidean Distance Measurement).

The finding that Cosh Measure is a reliable method of speech

recognition is also supported by Gray and Markel (1976).

And the finding that Linear Predictive Coding Analysis is a

reliable method of recognition of digits is supported by

Sambur and Rabiner (1974).

The methods Cosh Measure and Linear Prediction

Coefficient (Euclidean Distance Measurement) yields the same

percentage of results i.e., 63.33%. That means 63.33% of

digits are correctly recognized using these two methods. But

the method, Cosh Measure is more time consuming when compared



TABLE - IV

DIFFERENCE IN PERCENTAGE OF
RECOGNITON OF DIGITS AT DIFFERENT PITCH

LEVELS

THREE DIFFERENT PITCH
LEVELS

DIFFERENCE OF
PERCENTAGE OF CORRECTLY

J

RECOGNIZED DIGIT USING
METHODS :-

1 COSH MEASURE

2 MINIMUM PREDICITION
RESIDUAL METHOD

3LINEAR PREDICITION

COEFFICIENT

HABITUAL
& HIGH
PITCH

f_

L

10%

10%

30%

HABITUAL HIGH
& LOW & LOW
PITCH PITCH

40%

20%

50%

30%

10%

20%
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to Linear Prediction Coefficients (which is least time

consuming among all the three methods used).

The most atypical finding was that the digits uttered at

low pitch level when compared to habitual pitch yielded the

same percentage (40%) using all the three methods.

Studies done on speaker recognition have (Abberton,

1979; Lariviere, 1975, Atal, 1972) suggested that fundamental

frequency is an important cue in speaker recognition tests.

It is not all obvious what measures of fundamental frequency

are likely to be the most appropriate. But it can be

concluded that change in fundamental frequency may affects

speaker recognition.



Computer has invaded all walks of life of human beings.

Speech Pathology is no exception to this. Computer has been

used extensively for Speech analysis and synthesis for the

diagnosis and treatment of speech disorders. However, speech

recognition has not beenused well for the purpose of speech

and language therapy, eventhough it, has lot of potentials in

terms of providing reinforcement to the cases, motivation and

drill to the cases. Presently some of the attempts have been

made to use this for articulation testing and therapy. In

this context it was necessary to review the literature

regarding speech recognition and also study possible

variables affecting speech recognition. Therefore, this is

part of a proposed extensive study on application of speech

recognition in speech therapy and diagnosis.

The present study was aimed at reviewing the relevant

literature and answering the following questions:-

1. Is there any difference in terms of recognition of

digits when the pitch is varied from the habitual

pitch?

SUMMARY AND CONCLUSION
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2. Is there any difference in terms of three methods

of speech recognition (Cosh Measure,MPR & LPC i.e.,

Euclidean Distance Measure) in terms of recognition

of digits?

It was decided to use digits to start with, to make the

problem simpler and also as others had used digits for

recognition.

A sample comprising of five subjects (all males) with no

history of hearing loss and vocal pathology were taken for

this study.

The experiment was conducted in two phases. In the

first phase the subjects were asked to utter the digits (0 to

9) using their habitual pitch at normal loudness. In the

second phase of the experiment the subjects were asked to

utter the same digits (0 to 9), in three different pitches

i.e., habitual, high and low pitch

The recorded speech samples were analyzed with the help

of a computer (PC-XT). For recognition of digits the

methods, Cosh Measure, Minimum Prediction Residual and Linear

Prediction Coefficients were used.

The presented study has revealed that the percentage pf

correctly recognized digits is varied with respect to

habitual pitch. The digits utered at low pitch were very
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poorly recognized (about 40 % ) . Some what better result was

seen at higher pitch level with respect to low pitch level.

But when compared to habitual pitch the digits were less

recognized at high pitch.

A comparision was also made between the three methods of

speech recognition used in this study (Cosh Measure, MPR and

Linear Prediction Coefficient). On comparison, it was found

that there was difference between the three methods of

recognition.But the methods Cosh Measure and Linear Predi-

ction Coefficient (Euclidean Distance Measure), yielded

almost same result; where as the Minimum Prediction Residual

method yielded very poor result.

Above all it was found that Cosh Measure is reliable

method of speech recognition. Similar results have been

reported by Gray and Markel (1976).

Based on the above results it may be inferred that the

variation in pitch affects the recognition of digits.

This finding however, is restricted to small sample.

Further studies need to be carried out before generalizing

these results.

Recommendations for future research :

1. Similar experiments can be carried out by with different
speech samples.
2. This study can be done on larger population.
3. Other recognition programmes may be,used with similar
stimuli and conditions.
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