"AUDITORY BRAINSTEM EVOKED RESPONSE AUDIOMETRY" A REVIEW 1991-1995

REG NO. M 9628

AN INDEPENDENT PROJECT SUBMITTED AS PART FULFILMENT OF FIRST YEAR M.Sc., (SPEECH AND HEARING) TO THE UNIVERSITY OF MYSORE,

> ALL INDIA INSTITUTE OF SPEECH AND HEARING MYSORE - 578 886 MAY 1997

DEDICATED TO MAMMI AND PAPA

CERTIFICATE

This is to certify that the Independent Project entitled "AUDITORY BRAINSTEM EVOKED RESPONSE AUDIOMETRY A REVIEW 1991 - 1995" is a bonafide work in part fulfillment for the First Year M.Sc., in Speech and Hearing of the student with Reg.No.M-9620.

Mysore May 1997

All India Institute of Speech and Hearing Mysore - 6

CERTIFICATE

This is to certify that the Independent Project entitled "AUDITORY BRAINSTEM EVOKED RESPONSE AUDIOMETRY A REVIEW 1991 - 1995" has been prepared under my supervision and guidance.

Mysore May 1997

Guide

Dr. (Miss) S. Nikam

DECLARATION

I hereby declare that this Independent project entitled "AUDITORY BRAINSTEM EVOKED RESPONSE AUDIOMETRY A REVIEW 1991 - 1995" is the result of my *own*. study under the guidance of **Dr. (Miss) S. Nikam**, Director, All India Institute of Speech and Hearing, Mysore, has not been submitted earlier to any University for any other Diploma or Degree.

Mysore May 1997

Rag.No.M-9620

ACKNOWLEDGEMENT

I sincerely thank **Dr. (Miss) S. Nikam,** Director, All India Institute of Speech and Hearing, Mysore, for her valuable guidance and for helping me in this project.

My special thanks to :

- Vanaja Ma'm and Manjula Ma'm without whose help, this project would not have been possible.

- The staff of **AIISH Library** for helping me search for the references.

To my Parents:

My feelings can't be expressed in words. I am feeling at the top of the world by having such parents. What I am today is just because of them. I never found myself alone in any trouble. Mummy and Papa I really love you, even more than my life.

To my Brother, Bhabi:

Sometimes I really do wonder if you know how special persons you are to me and how many times a day I think of you.

To my Seema Didi and Jijaji:

Sometimes I really do wonder if you can read my mind or look into my heart and see how much it means to have you in my life. To my Rajni Didi and Ashok Jijaji:

Some times I really do wonder how to let you know, how important place you have in my life.

To my Cute and Lovely Sister Poonam,

That in all the world there is not a Sister as nice as you. Thanks for being there for me, when I needed you.

To my Chintoo, Mintoo, Palki, Anusha and Aseem,

I Love You..... I Hiss You....

Thanks to all my Classmates

Thanks to my seniors especially Prabha, Yasmin and Jayanthi for their help and guidance and support.

Thanks to the people of Maruthi Computers for their excellent, efficient and expenditious typing and all help.

TABLE OF CONTENTS

INTRODUCTION	1-3
METHODOLOGY	4-5
CHAPTER - I	6-30
Factors Affecting ABR	
CHAPTER - II	31-37
ABR in Pediatric Group	
CHAPTER - III	38-43
Clinical Application of ABR	
SUMMARY	44-48
REFERENCES	49-55

INTRODUCTION

INTRODUCTION

The term ABR was formally introduced by Davis (1979) in a report of a United States Japan Seminar on "Auditory Response From The Brain Stem". But other terms are also in vogue. The most common two alternative terms for the ABR are Brain Stem Auditory Evoked Response (BAER) which is used consistently in neurology, and Brain Stem Auditory Evoked Potential (BAEP). The term Brain Stem Evoked Response (BSER) popular in the late 1970s, is inappropriate because it does not specify the auditory system.

Since 1970, the brainstem auditory evoked response audiometry has emerged as a vital adjunct to the clinical armamentarium of the audiologist, otologist, neurologist and pediatrician who jointly determine hearing sensitivity, lesion site, and central nervous system disorders (CNS).

ABR applications in audiologic - otologic disorders and site of lesion testing have shown that the responses are well suited for the detection of hearing abnormalities (Shea and Albright, 1980). They became popular in clinical audiology and otology because of reproducibility, ease of administration, low inter and intra subject variability, and accuracy in estimating hearing sensitivity (Shulman and Galambos, 1977; Sohmer and Feinmesser, 1970, 1973, 1974).

An interest in the hearing of children led investigators to discover that norms applied to adults were not appropriate

for various developmental stages in children. This led to a series of systematic studies in premature infants, full term infants and preadolescent children (Galambos and Hecox, 1974; Jewett and Romano, 1972).

application Another is an attempt to discover electrophysiologic correlates underlying demyelinating diseases such as multiple sclerosis (Brookes, et al., 1980). The majority of these investigators subscribe to the well known relationship that, as the peripheral and central nervous systems mature (Eq. as additional myelinization takes place, and perhaps as axon diameter increases) latency of BAERs tend to decrease until an adult norm is achieved. In addition, the magnitude of the potentials is observed to increase with age.

A series of articles are published in the otolaryngologic and audiologic literature by Setters and by Brackmann, Clemis and Thonson, that confirmed remarkable power of ABR in diagnosis of acoustic tumors in particular, and posterior fossa lesions in general. Other applications of ABR reported but not enjoying much clinical acceptance, included estimation of outcome in severe traumatic head injury and confirmation of brain death (Starr, 1976).

Since 1980, the effect of virtually every possible measurement parameter on ABR has been evaluated and described in the literature. Early studies on pediatric auditory assessment with ABR provided the foundation for the current

emphasis on new born auditory screening and other studies are still on.

Need of the Study:

ABR is now widely applied and research is still going on to find different applications and aspects of ABR audiometry. These are scattered throughout the literature, literally thousands of articles describing some aspects of one or more of ABR.

So the aim of the study is to collect within a single volume, the more important findings emonating from these diverse sources to enable the reader to get a comprehensive and varied knowledge about ABR.

The information provided in the project will be of great help to researchers, teachers and future students in the field of Audiology.

METHODOLOGY

METHODOLOGY

The journal articles dealing with auditory brainstem responses in human beings and other lower animals were selected for the study. The articles were collected from various journals. The journals in which the articles were found are:

- 1. Journal of Acoustical Society of America
- 2. Scandavian Audiology
- 3. Ear and Hearing
- 4. Acta Otolaryngologica
- 5. Annals of Otology, Rhinology and Laryngology
- 6. Journal of Speech and Hearing Research
- 7. British Journal of Audiology
- 8. Audiology
- 9. Archieves of Otolaryngology
- 10. Laryngoscope
- 11. Hearing Journal
- 12. Indian Journal of Otolaryngology and Head and Neck.

All the journals related to ENT and Audiology including the above mentioned journals were scanned and articles related to ABR were included in the review. The information from these articles were classified under various columns and were tabulated chronologically under different chapters, viz.,

Chapter I - Factors Affecting ABR

Chapter II - ABR in Pediatric Group

Chapter III - Clinical Applications of ABR

After compiling the data in tabular form, it was analyzed to determine the trend in various aspects.

The various columns under which the articles are tabulated are:

Column 1 : Sl.No.

Column 2 : Author/Year

Column 3 : Purpose of the Study

Column 4 : Subject variables: no/age/normal/abnormal

Column 5 : Stimulus variables: Type/Number (No.)/Intensity (Int.)/Polarity (Pol.)/Filter setting (F.S)/Masking

Column 6 : Electrode montage: Type/inverting/non-

inverting/ground

Column 7 : Results

Column 8 : Remarks

CHAPTER - I Factors Affecting ABR

CHAPTER -	·I
-----------	----

FACTORS AFFECTING ABR

	. Author/ . Year	Purpose of the stud; No	-			e Stimulus n Variables	Electrode lontage Type/Inverting/ Ion-inverting/ Ground	Results	Reiarks
1.	2.	3.		4.		5.	б.	7.	8.
1.	Aoyagi, M. et. al., (1997)	The Cross correlation function was applied to the analysis of ABB in patients with Spinocerebellar degeneration and its clinical usefulness in detecting abnormalitie contributes to of All.	30F 33		I	Type Clicks No.1024 Int.90dBnHL Pol.alternatir F.s. S0-3000Hz Masking. No.	5	the evaluation of ABS wavefort characteristics by leans of cross correlation function using normative ABR for the sale gender contributes to the precise detection of functional changes in the brainsten auditory pathway in patients with SCD.	be evaluated by this procedure.
2		ted in terns of wave	11) 8M 8F	20-30 Trs.	F - - - - - - 	Type Clicks Rate 19.9- S9.9/sec Int.40-80dB nHL/ Pol./Alternat- ing, So Masking	b) Hairline to Cont	 zontal derivative consistantly occurs earlier than wave ion IIb (vertical 	reported here bear further coroberatic by other types of studies and the results s don't permi identificat ion of actual generator sites.

1. 2.	3.	4.		5.	б.	7.	8.
						different views of the sale generator in the wave II tip frame.	<u>.</u>
3. David, R. et. al. (1991)	S The study describes 3' the comparative saturation of the ipsilaterally and 6 contralaterlly recorded ABRs recorded from a cross sectional group of infants.	Weeks		Monaural click 2000 19.1/sec 29-89dB nHL Rerefaction 39-3990Hz No. Masking.	Two channel gold cup electrodes/at each mastoid/vertex/ www. forehead	Kith increasing age contralateral aves and ipsila- teral, decreased in latency, with the contralateral morphology closely resembling the ipsilateral Morphology as age increase especially after the age of 9 Months. The smaller contra- lateral responses make their use for threshold estimat- ion problematic especially before the age of 9 Months	the sca distribu of infa Alls, a: as iavestig f of thos factors, as neurolog disease which 1: affect
JJ. et al.	this study focuses on 11 , the frequency speci- ic, development that 2- closely follows the development of the cochlear Morphology 40 15 79 22 17	 4 35-37Wk 3 5 38-42Wk 3 3 3Wk-3Mon. 3-6Mon. 6Monlye 1-2 years 	Late Preterm Terms	1000	Single channel/ vertex/ipsilateral mastoid/forehead	dependent electro-	Only rel neurolog

1.	2.	3.		1.	5.	б.	7.	8.
	Gereling, (1991)	I.J As investigation of the effects of repetatien rate on audioietric brain stea response (unaided, aided conditions).	1(F) Adu	lt N	Click late 11/sec. 33/sec. 4 71/iec. Pol. single Pol. Int. 20dB nHL to 604B nHL No tasking	forehead/ipsilateral earlobe/contralatera earlobe.	-	taken, so god generalizatio is not possible. Large sample size other pathological
	Gerul1, et.al., (1991).	&The phase and intensity dependence of sasking a click by a loud low freque- nce tone was exanined white brain sten potentials.	6 25-45Yrs 2	SNhg	Click alternating polarity 10-60dB nHL Masking Los frequency ipsilaterally		Wave V latency is practically uneffected - its amplitude is maximally suppressed at a phase of 270degr In the phase of maximus suppression, wave V c be cancelled by 36Hz tone of 115dB SPL up click intensities of 40dB nHL. Vith cochlear damage, total suppression can achieved at even high click int.	should be taken. ee In the stu al age range an subjects h not been to mentioned. It should done in every age be range.
	et.al.,		8F	II		Single channel gold disk electrodes/ ipsilateral earlobe/ vertex/controlateral earlobe	equivalent to those obtained using as automated conven- tional, ABR mathod. The data for a seven point latency intensity function using the chained stimuli technique were obtained in a meantime of only 8min per year.	stiiuli technique ha a no. of applications in electro physiologic testing. Routine

1.	2.	3.	4.	5.	б.	7.	8.
							in hearing impaired populations.
8.	Jiang, Z.(et. al., (1991)) Change in the ampl- 80 itude in ABRs with change in click rate 21	<pre>lmon- N Syr. 22-36 N Years.</pre>	Click 1024 Kate:10, 30, SO, 70 & 90/sec Int:70, 40, 20dB nHL F.S:100-2000 No tasking	Middle of forehead/ contralateral earlobe	increased from 10-90Bz at 70dB nBI the aiplitude in	latched with os children group with respect to no. of an subjects. Such factors can affect ar. ABE results so it should tion be taken red care of. was
	et.al., w (1991) i b r b	intensity effect on 178 ave latency and Chi 1- nterval (IPI) in dern rainstem auditor; responses 18 wirth to adult adults wood was investigated.	6yrs 22-32 N	Clicks Ho:1024 Sate:10/sec Int.varled between 0-99dB nHL Pol: rare- faction Masking: Whil noise contralateral er	Silver-silver- w chloride electrode/ : Ipsilateral earlobe/ : Forehead/Contrala- w teral earlobe. w e	The L-I functions ere slightly steeper in younger groups that in older groups, with which was associated ith age related resp difference in the of absolute latencies. As click intensity decreased, the I-III IPI tended to decrease slightly while the III-V IPI tended to increase slightly in most age groups.	as homogenous n other evoked group with from ect to No. subjects.
10	. Roger, R. M et al., (1991).	Notch filters are 6 underivably effe- ctive in elimina- ting the artifacts	Adult -	Click No:2000 Rate:23.3/sec and 20.3/sec	lot mentioned. Late unet fil:	ncy was virtually Th ffected with any of ter or stimulus is and distortion di	sharp filter that it is

1.	2.	3.		4.	5		б.	7.	8.
		due to line frequ- ency interference In this study concerns have beer expressed as to their effect on AH	1		Int.20, 4 60 4 80dB Polarity alternatin No. maskin	nHL 1g		was minisal when a sharply tuned filt was used in conjur tion with a stimul rate of 23.3Hz who nearest hormonic to 68 is 69.9Hz	er notch and that c- very slight us changes in se cotponents will
									very stall.
11.	Sohmer, et. al. (1991).		4group - of animals	N		ed	es/Pinna/	 In each group, t were stall decre in the interpeak latency. Prolongation of latency of wave to a greater ext than wave I? (In group). 	conditions to the human clinical I situation, these ent stall decrease
									Simulated conditions do not give the true picture of results.
12.		ificity of the Ail	(S3) 11-88 38M Tears 15F			Single channel chloride cup el odes/tastoid of ulated ear/vert forehead.	Lectr- E stim cex/	that the ABE thre- shold elicited by this stimulus is	
13.	E.A.J.G et al.,	Freq. specificity 26 of the ABR threshold to a click masked with 1S90Hz high pass tasking noise 8 is compared with the freq. specificity		-	Click Masking White noise (Ipsi).	Rot mentione	th ta fr 10 th	e ABE thershold to he high pass noise sked click is low req. specific vith 00Hz pure tone hreshold. The ABB reshold to the	High frequency part of the click although not able to elicit a response in case of severe hg. loss in a high frequency area, can

1.	2.	3.		4.	5.	б.	7.	8.
		of the unmasked click evoked ABE threshold 4	-	N		co: 30 th: sp mu that	rresponds with the freq.	hamper the lo part of the r meabrace.
14.	Fausti, S.A. et. al., (1992).	The purpose of this 5 study was to evalu- 4F, ate ABRs obtained 1M with a portable high frequency tone burst 30 system as compared 13M to the laboratory 17F system.		N N	Type:High freq. tone burst of 8 10 12 14kHz Portable 8&14kHz tone burst Int. 60dB SL Rise fall time 0.2 msec Bate: 11.1/sec No:1000 Masking band pass. Contra, at 30dB less than tone burst signal	Single channel/Mastoid prominence of testear vertex/forehead For portable Two channel/right t left mastoic/vertez/ forehead.	<pre>/ no significant lean latency differences between systems.</pre>	Study should include pathological subjects for good generalization
15	Fower, G.C et al (1992)	The purpose of this 10 investigator was to (F) determine the effects of stimulus 5 phase on the (F) latencies and morphology of ABRs of normal hearing subjects	24-32 yrs 25-37 yrs	N	R&C Cliks Rate:25/3 Int:100dB Tone pips (500, 1khz 2 khz, 4 khz) with linear rise fall time of 1msec (same for all frequencies) at 65 dB SPL Masking Broad Band Noise	Single channel gold cup electrodes/ nape of the neck/ vertex/fore head	Latency of click-evoked ABR is dominated by high frequency responses with equivalent latencies regardless of stimulus phase, low frequency components contribute overall lorphology of ABR that yields the phasic difference potential - Tone pip stimuli produced polarity differences that were inversely related stimulus frequency	Ions based upon responses from normal hearing subjects may be inappropriate through the ABR of clients with high frequency hearing losses because they can not account for latency differences attributable to stimulus phase. Sample size i small

1.	2.	3.		4.	5.	б.	7.	8.
16	Kanner, S.J. et al (1992)	The feasibility of recording bone conducted ABRs investigated in normal hearing adults	15F 21-35 ухэ	N		Single channel silver z disc electrodes/ vertex/ipsilateral mastoid/forehead	Results support the use of bone conducted tone burst ABRs for demonstrating frequency specific normal cochlear sensitivity	Sample size should be large. Distortions of bone conducted stimuli at high frequencies would affect the results. Study should test subjects with different hearing loss.
17	Light Foot,G.Rt et al (1992)	The utility of ABR rate induced latency shift measurements was investigated	(189) M.A 95M 48yrs 94F (31) 52yrs 15M 16F (16) 51yrs 94 7F	A.I	Int: SOdB nHL No tasking	Single channel Ag/AgCl electrodes/ipsilateral mastoid/forehead/ contra lateral mastoid	ABR rate induced latency intensity	more studies on repetition rate and nerve VIII lesions are required for more definitive evidence for its use. In all group, No. of subjects taken is tot same which can affect results.

1.	2.	3.			4.	5.	б.	7.	8.
18	Morre,E et al (1992)	J Recording of a positive ware which preceeds wave I, and is called I' is described. Qualitative and quantitative aspects of the I' potential has been described	19M		I	Clicks Eate:11.1/sec Ist: 59-80 dB nH Polarity rarefaction and condensation No tasking	ipsilateral ear lobe/	It is postulated that V represents initial neural activity of the auditory nerve which presusably has its origin from auditory nerve dendrites. Thus I' may represent a summed farfield dendritic potential from currents of excitatory post- synaptic potential	of I' ny be
19	Shoon- hoven,R et al (1992)	Effect of click polarity on the ABRs in cases of simulated high frequency hearing loss	8M 4F	20-25 yrs	Ν	R&C clicks No.2000 Bate: 13/sec Int: 70dB SL Filter setting 48 dB/octave (Two high pass) Basking High pass filtered noise (Ipsi)	lateral mastoid	There does not exist a general systematic trend within a population of subjects concerning All clicks polarity dependence inspite of sometimes drastic R-C differences observed within individual subjects	cochlear high frequency hearing loss
20	. Soucek.S et al (1992)	To study effects of adaptation on electro cochleography and auditory brainstem responses in the elderly(By increased stimulus rates	(7M 5F	65-88 yrs 15-27 yrs	and sev. Eg. Loss	Click No:2048 Rate:randoi Int. 80, 90, 100dB nHL No tasking	Rot mentioned	Amplitude of the AP and wave III component were reduced with increased stiiulus rate. It was similar in both elderly and young adults. So results suggested that synaptic connection to nerve fibres from surviving hair cells in elderly are functioning so that disturbance of this part of the acoust nerve is not a feature presbyacusis CM and SP were not affected by	not specified in the study. No. of patients should be more. ons

were not affected by adaptation at any age.

1.	2.	3.		4.	5.	б.	7.	8.
21.	Suzuki, et al (1992)	T Binaural interaction 14F in Auditory brain stes response (ABRs) and MLR was measured in awake and asleep states.	26-44 ; yrs	N	Clicks No.1024 Int: 45 dB nHL Polarity alternative filter setting 30-1200 bx No Masking	Single channel Ag cup electrodes/7th cervical vertebra/aid point of frontal hair line/ nasion	l binoral interaction was smallest in ABR	Sample size is mil. Other pathological group should be studied for good generalization.

1.	2.	3.			4.	5.	б.	7.	8.
22	Thomas,E et al (1992)	In the present study ABRs were measured in a group of normal hearing subjects with systemic lupus erythematosus as well as in a group of subject controls.	10 SF 2M 10 SF 2M	28-52 yrs 33-80 yrs	5	Clicks Rate:9.3/sec and 55.3/sec Int:75 dB nHL No tasking	Single channel/vertex	study did not reveal significant mean differences at any IPL between group of patients with and without (systamic lupus erythematosis)	Lack of agreement between results of this study and earlier studies. Lack of agreement lay be because of measurement procedures, the experimental design or individual subject differences. So diagnostic conclusion from this study are still controversial.
23.	Barth, C.D et al (1993)	The purpose of this article is to examine the effects of noise burst rise tine and level on the human BAER.	10	adults	1	Noise burst list time 0,0.5,1.25, 2.25ms Int: 15,30, 45 and (0 dB nHL Masking white noise Ips)	Single channel/masteid ipsilateral to acoustic stimulation/vertex/ forehead	a decrease in wave T	small Age range is not lentioned in the study Study should include
24	Boettcher F.A. et al (1993)	The aim of this stud; is to find out mechanism of resistance to noise induced hearing loss. Subjects were tested for a preexposure base	6 anim als	6-12 - mths	N	Tone pips No.2000 Rate: 10/sec Rise fall time 0.5ms Int: variable Masking at SO dB SPL Centered at	Single channel needle electrodes/vertex/ behind the pinna.	ABR latencies of waves II and IV were prolonged at low stimulus levels on days one and sixth of exposure, but recovered to base line levels by 12th day of exposure.	groups should also be studied. The neurophysiology of gerbil

1.	2.	3.		4.	5.	б.	7.	8.
		line, then on days 1,6 and 12th of noise exposure.			4 khz. (Ipsi)		Because resistance to noise exposure vas observed in all subjects and resitance was United in specterm. The results suggest that the gerbil is an excellent model for examining mechanism of resistance to noise induced hearing loss.	before generalizing
25.	Burkard, 8., et al (1993)	The present study seeks to provide empherical support for the assumption that wave I of the gerbil BAER corresponds to the NI of the whole nerve action potential by comparing the latency and amplitude of the BAER wave I and VAMP.	14 3 mths 8M &F	. N	Clicks and tone bursts Rise fall time las Fq: 1,2,4,8 and 16 khz. Int: 30,50, 70 and 90 dB SHL No tasking	For BAEs grass needle electrodes placed subdermally. For MAP silver lire placed in the round window niche.	Latency/intensity slope functions for N1 and wave I were very similar with both dependent variables shoving an increase in LI functions slope with decrease tone burst frequency. The amplitude ratio of N1/wave I appears to increase with increase in stimulus level. The similarity of N1 and wave I peak latencies supports the assumption that wave I of the BAES is a far field reflection of It of the HAP.	Sample size is small, various groups with othre age ranges and pathologies should be included.
	Cashman M.Z., et al (1993)	The aim of this study is to focus on the effect of a correction factor on the latency of wave V. To look at the frequency of occurance of absent wave V in tutor and non-tumor patients.	1500 - 97 1403	Ng loss with tum- ar with at	Click So. 1000 and 2000 late: 10.3 ar 21.3/sec int: 83 dB rHL Polarity alternating Masking Contro lateral masking at 45 and 50 dB rHL	Single channel/vertex or high forehead/ ipsilateral mastoid nd process/contra lateral mastoid	The false +ve and false -ve rates are ABR are presented as a function of hearing less at 4000 hz, both before and after using Setters and Brackmann's correction factor for hearing loss. A correction factor is helpful with reservations of hearing and that ABR is not a useful test when 4000 hz hearing	for in present study, their interactions with hearing toss was not studied.

1. 2.	3.			4.	5.		б.	7.	8.
								loss is greater than 90 dB nHL and 2000 hz is greater than 75 dB nHL. Delay in latency V is greater for males than females.	
27 Don,M. et al (1993)	This study reports on amplitude and latency measurements of derived narrow bands ABR is tales and females	17F	24.8 yrs 26.2 yrs	N	Click Polarity Rarefaction Int: 93,83,73 63,53,43,and 38 dB SPL Masking Pink noise (contra)	ipsilateral ns contra lateral	toid/	Derived narrow bands ABRs in nortal hearing subjects reveal a significant difference between genders in the response tite between various frequency regions of the cochlear. Females showed shorter delays than tales between derived bands. The faster response tite is a consequence of a steeper stiffness gradient in the female cochlear.	to be seen. An understanding of these cochlear
28 Fausti, S.A., et al (1993)	High frequency tone burst stimuli have been developed and demonstrated to provide reliable and valid ABRs in normal subjects	9M	16-32 yrs	N		e		Significant shifts in response latency occured as a function of stimulus intensity for all tone burst frequencies. For each 10 dB shift in intensity, latency shifts for waves I and V. LIFs for high frequency tone burst evoked ABRs suggest the degree of response latency change that light be expected frot the hearing loss	understand the effects of

_

1. 2.	3.	4.	5.	б.	7.	8.
					due to ototoxic insult.	
28 Foxe, J.J., et al (1993)	The purpose of 1 the present study WAS to investigate 2 the normal effects on the ABE to BC tones of subjects.	YIS	Tone bursts of 500 and 2000 hz Rate:39.1/sec Rise fall time (500 hz) 4-2-4 msec 2000 hz 1-0.5-1 Int: 45 dB rH (500hz) 60 dB nHL (2000 hz) No masking	Single channel/ ipsilateral mastoid/ vertex/forehead	Infant ABR thresholds for 500 hz BC tones are significantly lower than their threshold to 2000hz BC tones. Infant wave V latencis to 500 hz BC tones are significantly shorter than those of adults, whereas infant and adult responses to 2000 hz BC tones are similar in latency, suggesting that the effective intensity of the BC tones tay be 9 to 17 dB greater for infants than for adults.	Such studies should include investigations of the effects of bone oscillator placement and stimulus frequency on the amplitude and temporal characteristics of BC stimuli in infants and adults heads, and their effects on ABR threshold and the ipsilateral and contralateral asymetries.
29 Hall, I.J., et al (1993)	The study investigated the tasking level difference (MLB) and ABEs in a group of children with a history of otitis media with effusion	13 5.7-8.3 N 8M yrs 5F 14 5.2-9.2 OHL 9m yrs 5F	Int: 80 dB HL	Single channel/ ipsilateral ear lobe lidline forehead/ contralateral lobe	Results indicated that the group of children having a history of OKI had significantly reduced HLDs and had significantly prolonged waves III an V, III and I-V interwave latency. The reduction in MLS found in children having a history of ONE may be related to abnormal brain stet processing.	Other age groups should be included for good generalization. d
30 Katbamna B., et al (1993)	The study documented 6 the effects of hyper (thermia on the A1B evoked in response to past and slow stimulation rates in lice, to evaluate its effectiveness in		Click Not No.1024 for slow rate and 2041 for fast rate Rate: 21.1 and 61.1/sec No Masking	mentioned	The latencies and amplitudes of waves I - 7 were measured temperature elevation between and 37 and 41° C shortened the latencies of all the ABRs the effects	Sample size is small This study is done on lice so generalization of these results to human

1. 2.	3.		4.	5.		6.	7.	8.
	Monitoring, brain stem and CIS status.						being linear and accumulative across the time window. At 41 and 42°C latencies of ail the waves stabilised or showed minimal prolongation	population will not be very good.
31 Kidd,G et al (1993)	The purpose of this study us to determine whether the BAER could be detected auditorily rather than through ususal or automatic techniques, and it so, to enhance the auditory detection performance.	10 Adu 19- yrs		Clicks			BAER when extended in duration and used to frequency modulate a 1000 hz pure tone, was highly detecable in a yes-no paradigm for BAERs elicted with high level acoustic clicks. Performance declined to near chance as the level of the BAER eliciting stimulus was lowered to 10 dB. Detection performance for stimuli presented visually was slightly, but consistently superior to that which occurred for stimuli presented auditorily comments.	subjects taken are very less. Other ages ranges should also be
32 Light Foot,G.S: (1993)	To investigate the effect of age, sex hearing loss and stimulus intensity on ABR V latency	189 13- 95M yr 9¶F		R&C clicks No.2000 Rate: 11.1 /se Int: 80 and 105 dB nHL Masking White noise (contra)	Single channel mastoid/vertex c forehead		All four factors exert a significant influence on latency and hearing loss and intensity were most effectively represented when combined to form a sensation level valuable together with a audiogram slope.	Diagnosis should be made carefully taking all these aspects into consideration to make ABR as a reliable diagnostic tool. It requires a control group also.

1. 2.	3.			4.	5.	б.	7.	8.
33 Lauter, J.L, et al (1993)	The study examines the stability of auditory brain stem responses peak amplitude of children with adults	7	5-7 yrs 10-12 yrs	N	Clicks No. 2000 Bate:11.4-23/ sec Int: SOdB nHL Filter setting 150-3000 hz No tasking	Two channel/A ₁ A ₂ / vertex/forehead	Data from both groups reveal differences in both amplitude and latency stability for diffrent peaks and for ear conditions that provide additional evidence for developmental changes in brainstem.	This study does not tell upto which age these changes eas be observed. Should examine the degree to which ABE peak aiplitude stability can reveal additional evidence of iuaturity in ABR.
34 Ponton, C.W., et al (1993)	head size light (contribute to	95 inf) 10	29-42 yzs Adults	F.T ard Pre N		Single channel/ vertex/mastoid/ forehead	Data from this study indicate that clinical accuracy of ABR data will not be improved by "correcting" infant latencies for differences in bead size. Inaccurate estimation of gestational age at the time of birth may contribute significantly more than head size to interpeak latency, variability, particularly in preterit populations. However the change in the relationship between head circuaference and ABE interpeak measurements eay be explained by differential patterns of myelination and synaptic development in the auditory nerve and brainstea auditory pathway.	should be saae as far good generalization is repired. Adult sample is very stall. Pathological sample should also be included.

F.T. = Full Term Pre. = Premature

1. 2.	3.			4.	S.	б.	7.	8.
35 Pratt,H et al (1993)	Two computational procedures that don't rely on Manual evaluation are discussed i) for peak identification on and measurement ii) for clustering evoked potentials according to thier wave form	120 M	21-68 yrs	N	Clicks No.2000 Rate:10/sec Int:75dB nHL Polarity alternating No tasking	Single channel/ vertex/ipsilateral mastoid/contra- lateral nstoid	The results of computerized peak identification and measurement without uses intervention, were correlated with manual measurements of the sue peaks in a large number of wave forms. The wave form analysis and classification procedure differentiated wave foris to Monaural left, monoaural right and binaural stimulation as well as according to recording montage. The automated alogrithm for evaluation of ABEP by wave form hold the promise of a more comprehensive consistent evaluation and hence improved sensitivity.	Pathological group should also be studied for better generalization
33 Rupa,V et al (1993) Cob. = Coch	Study the combined effects of age, sex and cochlear heairng loss on ABRs lear Hearing Loss		20-78 yrs -	Coh	.Click No:1024 or 2048 Rate:11.1/sec Int: 90dB nH1 Polarity ratefaction No masking	Single channel/ ear lobe/vertex/ high forehead	Among normals, wave V latency increases with age. Latencies in females shorter than males. In patients with hearing loss, wave V latency increases was determined largely by the degree of heairng loss and the effect of age was moderate. Influence of sex was minimal.	
	-	77	<u></u>	N		Thurse sharpels/	The component latencies	
34 Thodic,0 et al (1993)	Binaural interaction (BI) wave forms were derived from tultichannel		22-33 улз	N		Three channels/ (Fz-Nl-II-I) (Ipsilateral) 5 Contralateral	The component latencies of all the BI responses derived from contra lateral channel were	s small. Various path

1. 2.	3.			4.	5.		6.	7.	8.
	recordings of ABRs obtained at moperate and high intensity levels.				dB nHL No tasking	(Fz-Mc) (Fz as g		significantly prolonged as compared with ipsilateral aad non-cephalic channels. Differences identified only at moderate intensity levels. Amplitudes are sot significantly different for different recordings. The findings indicate that ipsilateral, contralateral or non-cephalic recoridngs can be used to study BI. But channel differences on simultaneous multichannel recordings lay facilitate seggregation of true neural inter- action from stimalus interaction.	also be studied for good validation of results.
35 Thorton, A.R., at al (1993)	The effects on ABRs amplitude and latency of using MLSs and conventional ABR	10	_	I	Clicks Sate:9.1/sec and MLS 67-1000/sec Int: 80dB nHL and 40dB SL Polarity rarefaction Masking White noise at 40dB SL (contra)	forehead	astoid/	Results show that the optimum stimulation rate appears to be order of 200 clicks and thus can give a speed improvement by a factor of approx. 2.8 over conventional recording at 9 or 10 clicks/sec. Adaption is less.	Sample size is small. Pathological group should also be studied.
MLSs = Maxim	um Length Sequences								
36 Beattie, R.C., et al (1994)	This study investigated the effects of signal to noise ratio (S/N) on the latency and amplitude of the auditory brain stem		18-25 yrs	I	Tone bursts of 0.5 and 2 Mz No:3000 -band 7000 preferred Eate:25.6/sec Int: 80dB nHL	neck/vei d		At moderate and high intensities high pass/ notch noise or broad band noise is preferred to the quite condition because of the	Validation of these recommendations is required by testiig hearing impaired subjects having

1. 2.	3.		4.	5.	6.	•	7.	8.
	response (wave f) using 0.5 and 2 khz tone bursts in high pass/notch noise broad band noise. Normal listeners were presented with 40 & SO dB nHL tone burst is quite and in noise at SN/s of 10,15,20 and 25 dB.	t		Polarity freq rarefaction a condensation Masking Broad band noise at 106 dB SPL for 0.5khz (Ipsilateral) 100 dB nSPL for 2khz (ipsi) Rise fall time 1-1-1	-		improved frequency specificity provided by the tasking, And because the,former provided larger wave V amplitude to 0.5 and 2 khz tone burst at 80 dB nHL. Wave V amplitudes to the 40 dB nHL tone bursts suggest that testing in quite may be preferred to testing in noise when 0.5 and 2 khz tone bursts are presented at low levels.	
37 Brown, C.J., et al (1994)	EABEs were measured in patients with the nucleus cochlear plant. Difference between intra and postoperative EABR threshold was examined.		deaf Pr.I	RF bursts Elate: 20hz biphasic current pulses at 250/sec duration 500as Int:varying No Basking	Single channel/ vertex/contra- lateral mastoid/ forehead	/	EABR thresholds were strongly correlated with both T and C levels. In subjects where both intra- operative and post- implant EABE measures were obtained, intra- operative EABR were higher than post implant thresholds (consistent). So it is useful in very young, developmentally delayed and disabled. T - Threshold level C - Comfortable level	Sample size should be large for good generalization. Various age groups should be included.
38 Burkard,R et al (1994)	This study evaluated the feasibility of obtaining constant quality BAERs in less time than is possible with conventional averaging technique with MLS technique	10F 3 gerb-mths. ils	-	with HPIs 1, 2, 4 4 6 msec Int. 50, 60,	Single channel grass needle ele rodes/left ear/ line of the skul midline of the b	lid 11/	With increasing click level there were decrease in peak latencies and increases in peak amplitudes. Kith increasing rate, there were increases in peak latencies, increases in the I-IV internal, aad decreases in peak amplitudes.	More research is required for good generalization. Studies on human subjects are required. Saiple size of animals taken in this study is very stall.

1. 2.	3.	4.	5,	б.	7.	«.
					It has been demonstrated that BAERs can be obtained to MLS MPIs as short as las which represents an average rate of stitulation roughly 500/sec. This is appreciably faster rate than is possible with conventional averaging. Thus this technique nay prove useful in characterizing adaptation in the auditory systems approaching the absolute refractory period of auditory neurons. This lay prove useful in improving the sensitivity of the BAER in identification of denyelination in the auditory brain stem.	

1. 2.	3.		4,		5.	б.	7.	8.
39 Lina Granade,8 et al (1994)	ABfis were recorded 8 using pseudo-random pulse trains called Max. length sequences and were compared to ABES obtained by conventional averaging	29 10N 10F 3 17 13M 4F	and 22 yrs	Uni. Deaf	Psaedo random Pulsetrains 32 pulses per train 5120 clicks Rate:20/sec for convent- ional ABR Binaural HLS- ABS at 98 clicks/sec Int80-100dB rH no tasking	Single channel cup electrodes/ipsilateral earlobe/forehead/cont- ralateral lobe For MLS - ABRs fourth electrode was placed on the nape as ground	waves as conventiional ABRs although wave latencies increased and amplitude decreased. In SH ears, MLS-ABRs threshold were similar to common ABRs and correlated with high frequency audiometric	More time saving, but wave characteristics across stimulus levels and threshold evaluation would have to be studied as these rates, if it is to be used in clinical practise.
40 Sand,T et al (1994)	ABR amplitude behaviour to condensation (c) and rerefaction (r) clicks was investigated in normal ears, ears with meinere's disease and ears with HF hearing loss	9 8 8	45yrs 55yrs 57yrs	1 M*	C&R clicks No:1500, Rate:10/sec Int.67dB DHL (C) & 75dB nHL (R) No masking	Single channel NI: vertex	<pre>lean ABE amplitude were highest in the normally hearing group. The wave IV-V amplitude intensity function was steeper in ABRs evoked by E than by C clicks. So two different cochlear generator components, one intensity dependent and other polarity dependent, contribute to click evoked ARBs. Rave IV-V amplitude was significantly hiher in Meniere's ears compared to the HF ears. Hence, audio metric steepness seems to predict the wave IV-V amplitude decline more precisely. Wave IV-V dispersion variables was close to normal in</pre>	So it would not be possible to predict an individual audioietric pattern from

1. 2.	3.		4.	S.	б.	7.	i.
						Heniere ears, while wave IV-7 was in dispersed is EF ears. C-click ABRs were less affected than R click ABIt by 'peripheral' factors.	
		N	1* Menie	ere's disease			
<pre>41 Bankactis A.E., et al (1995)</pre>	s, Study investigated effects of click rate on the latencies of the ABRs is subjects with varying degrees of HIV infection	13 13-4 yrs 9	5 Aids HIV with	Broad Band clicks No:1000 & 2000 Rate:21.1/sec and 61.1/sec Int. 85dB nHL No Basking	Single channel/Al, A2/ FZ/right shoulder	Statistically significant delays in wave V latency utilizing both click rates occured for the aids groups only. A comparison of wave V latency group leans as a function of click rate showed an apparent trend for faster click rate to induce a more exaggerated prolongation in the laency of wave V for HIV infected group that may be indicative of easy neurological involvement in asymptomatic patients.	the study should include
<pre>42 Deltenre, P., et al (1995)</pre>	, The rare faction condensation differential potential obtained by subtracting brain stet auditory evoked potentials to clicks (C) from those of t clicks is studied	32 10-3 12M yrs 20F 31 2-(UN yrs 20F	8 Coch	R&C clicks Rate:21.7/sec Int.O-100dB nH1 in 5dB * steps. masking white noise at 40dB (Contra).	/forehead	In normals no RCDP was recorded along the lower 30-55 d8 of the latency-intensity function, thus defining pre RCDP range. The pre RCDP range was always abolished in losses masking BAEPs from lower (< 1khz) tono- topic regions. When the BAEP origniated from higher (> 1khs) tonotopic regions, the pre RCDP range was either reduced or abolished. These results led to a	promising diagnostic information.

1. 2.	3.		4.	5.		б.	7.	8.
			Coch* Cochl	ear hearing los	S		working hypothesis based on single unit. (RCDP rarefaction - condensation differential potential).	
43 Fausti, S.A., et al (1995)	The latency 2 intensity functions IF of ABRs elicited 1 by high frequency (8,16,12,14 khz) TB* stimuli were evaluated in cases with SI hearing loss TB* Tone Burst		Hg.	Tone burst 8, 10, 12, 14kHz Rise fall time 25-58msec Int:70dB nHL - 120dB nHL no tasking	Not menti	oned	demonstrates that tone bursts at 8,10,12 khz evoked ABEs which decreases in latency	age and sex differences. Sample taken in stall and male and female
44 Lasky,R, et al (1995)	binaural interaction 3	1 M.A* M 21.9 8F yrs.	N I	100 usec pul- ses, Rate:99/sec and 10/sec Int. 90dB SPL no tasking		annel/tast- ex/forehead	MLS BI kernels ean be recorded in normal hearing subjecta. The MLS BI paradigi offers 3 potential advantages in recording binaural effects: avoidance of some of the methodol- ogical problems associated with tradition BI paradigi. Faster stimulus rates permitting a lore complete characterization of binural rate effects. More rapid data collection.	are needed in this area for good

1.2.	3.		4.	5.	6.	7.	8.
45 Mark,S et al (1995)	This study was conducted to investigate morphologic changes in the ABR as a result of reversing the stimulus polarity of frequency limited single cycle stimuli in normal hearing subjects	19-29 yrs	N 3, digitally synthesized single cycle sinusoids with peak energy at 300, kHz an 3kHz Sate:33/sec rise times 1.000msee, 0.605msec, and 0.158mse No.1024 Int.60& nHL no taski	lateral line of contrala mastoid d c 40dB	ateral	The results clearly demonstrate that large latency differences occur between condensation and rarefaction stimuli for low frequency stiiuli. It is believed that polairty specific latencies are the result of the highly phase sensitive neural elements tuned to low frequency stimuli. C-R latency difference were found lore at 80 dB as compared to 100 dB. Intersubject variability for R-C at 80 dB produce tore differences. Considering the large C-R differences expected in high frequency SI hearing loss or under any circuastances When using low frequency stiiuli, summation of alternating polarity stiiuli in clinical application is not recommended. Accumulation of alternating stiiuli under these circuistances loved degrade the response as latency shifted responses are averaged together. The use of single polarity stiiuli or separate averages for each polarity conditio is warranted.	Sample size should be large for good generalization. Cases with various tyupes of hearing losses should be included.

1.	2.	3.			4.	5.	6.	7.	8.
et	al 995)	The present study was designed: (1) to describe clinical observation regarding the characteristics of BC-ABR in normals (2) to study how conductive HL due to ME* affects AC and BC ABB in children. NRE* Middle Ear Effusion	75 10 11 11	20-37 yrs 5.S-8 yrs 5-18	I MEE Sus pec ted NEE	Rate:31/sec	Single channerl/vert- ex/ipsilateral ear- lobe/contralateral ear lobe	In AC-ABR, the lean latency of wave ¥ was significantly prolonged, as compaed to that of BC-ABR in children with confirmed NEE and infants with suspected NEE. By combining AC and BCABB lore information concerning cochlear reserve status can be confined in infants and young children.	by way of the bone oscillator.
et	al 995)	The study examined the influence of increasing stimulus repetition rate on the ipsi/contra latency difference	20 18F 10M	23-61 yrs	N	Click Rate:10/sec 40/sec Int.90dB nHL Pol.alternat- ing, masking white noise at 60dB nHl (Contra)	Two channel/vertex & contralateral mastoid /ipsilateral mastoid/ forehead	There is a progressive increase in latency from wave I to wave V ipsilateraly with an increase in stimulus rate. However contralaterally there is no further increase in latency after wave III.	small which haapers in the process of good generalization Validation of these results required other pathological

III. various types With a 90 hz stimulus of hearing

1. 2.	3.		4.	5.	6.	7.	3.
						rate, the ipsi/contra difference in the latency of wave V disappears, suggesting that there is a differential effect of peripheral and adaptation on the central ipsi and contralateral auditor; pathways.	losses.
	Estimation of the residual noise in the auditory brain stem waveform is studied	14 33-52 mis	iate Pol. tion Int.	:24.4/sec Rarifac-	Double channel/mast- oids/vertex/back of the neck.	LOW frequency noise components which contribute to the observed auto correlation could be reduced by using a high pass filter to the data before averaging. Correlated lean sum of spares estimate SRC and the block average estimate RNBM both have significantly less bias than the usual estimate RHnss. Since termination of the test is dependent on the signal detection alogrithm, increased time is a consequence.	Sample size i small. Only infants are studied which hampers generalizatio to other age groups. Various pathological groups with various heari losses should be included f good generalizatio

CHAPTER - II ABR in Pediatric Group

CHAPTER - II

All II PEDIATRIC GROUP

	. Author/ . year	Purpose of the stud;	-	Variable ge N/abn	Stimulus Variables	Electrode montage Type/Inverting/ Ion-inverting/ Ground	Results	Reiarks
1.	2.	3.		4.	5.	6.	7.	8.
1	Durieux, S.P., et al (1991)	Comparison of ABR in infants to those obtained on the same children with pure tone and comentery at 3 years of age (Longitudinal study)	333 -	-		mastoid.	BERA is a powerful tool in the evaluation of auditory function in high risk membranes elemated BERA thresholds in infancy need to be interpreted with respect totype of hearing loss. Frequency specific BERA lay become important In 89% BERA results accurately predicted the heairng status at the age of 3. BERA results in infancy predict normal heairng in the 2000-1000 frequency area. Since adventitious conductine or SN hearing losses lay occur after BERA testing results in infantry don't guarantee normal heairng later in life.	Conductive hearing losses are a particular problem for taking comparisens across different ages, since they fluctuate a great deal. So predictive value of ABE can decrease.
2	Edward, Y.Y., et al (i»91)	The effect of vibrator of head coupling force on the auditory brain sem response (ABB) to bone conducted clicks in new born infants were tested	20 38-4 yrs	2 N	Click 56.7/sec alternating Pol. Filter Setting 30-3000Hz Int.15&30dE rHL no tasking	Single channel/left post auricular area/ high forehead/post auricular area	ABRs to bone conducted clicks were obtained with vibrator to head coupling forces at 225,325,425 and 525g. The results of this study indicated that ABR wave V latencies to bone conducted clicks in new born	Clinical implication of bone conducted clicks in new born infants is very The vibrator is often displaced from underneath the flauid

1.	2.	3.		4.	5.	8.	7.	8.
							infants were affected significantly when the vibrator to head coupling force shift exceeded 280g, It is recommended that the coupling force controlled and retain consistent when implementing ABR to bone conducted stimuli in new born infants.	when the baby move his/her and the
3	Hyde,N.L et al (1991)	Click ABE wave V threshold in the first year sere compared with follow up behavioural pure tone audiometry under earphones at age 3 to 6 years in 713 infants (Longitudinal study)	713 Infants and follow up at 3-Syrs	risk for HG	Clicks 21/sec Int.75-95dB nHL	Electrode darivation forehead to ipsila- teral mastoid	The click ABE provides an accurate test, with both false posture and false negatives rates of less than 10% using an ABB threshold criteria of 3D dB nBL. The false posttime error rate can be at- least halved by using a simple rule for wave V latency that descriminates conductive and sensorineural ABE threshold abnormalities. False negative errors nay be explicable in terns of the frequency specificity of the click stiiulus.	Still there is no clear consensus regarding exactly what should be the target disorder for clinical programs for early identifi- cation of hearing loss.

1.	2.	3.			4.	5.	б.	7.	8.
Į	Johnson, E.S., et al (1991)	This study investigated spectral differences for auditor; brain stem response. Click measured ABRs in infants and adult ear canals. (differences is ABB for adults and infan	:	3no-6m 20-40 ухз	N	Click Not 21.3/sec alternating polarity Int.30&60dB nH	mentioned	Results indicate that click stimuli such as those used for ABR testing resonate in infants and adult ar differently, and that the resonance in infants is much tore valuable than the resonance of adults. So there is no ned to use infant norms when screening infant hearing using ABR.	study into the causes of the difference and its implications is warranted. Knowledge of these differences is essential for
S	Bowe,S.J et al (1991)	Effectiveness of ABI as a tool to detect hearing loss in infants	r 243	48wee	ks -	Click No.2048 Rate:20/sec alternating Pol. filtersetting 3-3000HZ Int.50,60, 70dB nHL			testing should be repeated after 3 or 4
5	Bansal,R et al (1992)	Too high risk neonates and infants were subjected to BOA and BE8A. Importance of BERA in screening is highlighted	25 300	1-12 mths. 0-12 mths.	N high risk		Two channel/mastoids /vertex/forehead	BERA shoved 20% mild, 4% Moderate and 2% severe hearing loss on screening and 13.9% mild, 2.7% moderate, 1,34* severe hearing loss on follow up, results on screening and follow up respectively. False negative results of BOA - It was 26% in screening and 16% on follow up. ABR hearing threshold - determined using T wave criteria and was decreasing with	

decreasing with increasing age.

								,	_	
1.	2.	3.			4.	5.		б.	7.	8.
7	Bergman, B.M., et al (1992)	An examination of factors affecting the use of ABR in identifying and quantifying hearing loss and in selecting hearing aid characteristics	1	Child	-	Clicks and tone burst 250 and SOS Hz. Int.70dB for Clicks and 75dB nHL for tone burst	<u>.</u>		provide frequency specific estimates of hearing loss. ABE threshold estitates can be entered into a hearing and selection program	
8	Lauter, J.L., et al (1992)	To study latency stability of ABRs	9 M	10-12 yrs	Η	Clicks So:2000 Rate: 11/s & 23/s Int: 80dB rHL Pol:Conden- sation No tasking	masto	hannel/ ids/vertex/ wead	Children show the expected similarities with adults in terms of ABR peak latencies Individual differences Within subject distinction according to ear of stimulation Instances of good	

	_						_	
1.	2.	3.		4.	5.	б.	7.	8.
							replicability of latency profiles.	
9	L.G., et al (1993)	Primary objective of this study is (1) to exmine the spectral composition of Alls recorded from normal full term neonates (2) compare the new born ABR spectrum with the adult ABR spectrum	days	N	Clicks Rate:22.1/s Int: 70 S 35dBnHL F.S: 30 - 3000 Hz no Nasking	Single channel/ ipsilateral mastoid/ high forehead/ cheek or contralateral mastoid	Results indicated that significant amounts of low frequency information are concentrated below 150 hz in both the neonate and the adult ABRs although the neonate ABR has a slightly greater percentage of low frequency information than that of adults. This has implications for filtering duirng ABR recordings. Use of a 30-3000 hz band pass is feasible in the neonatal intensive care unit which allow enhanced detectibility of wave V in infant ABRs recorded at low stimulus intensity.	
10	Katbamna, B., et al (1995)	This stud; compares ipsi, contra, horizontal and non- cephalic ABRs obtained from normal infants to assess their utility in neurodiagnosis. Wave latencies aaplitudes and waveform Morphology were evaluated at slow and fast repetition rates	16 39-42 8M weeks 8F (post concep- tional age)	N	& 61.6/s Int:70dBnHL Pol: Rare- faction	Single channel/ Ipsilateral (z-Az) NI-I Contralateral (Fz-Ac) Norimontal (Ac-A1) Noncephalic Fz, nape of the neck F _{1z} : serving as ground electrode	Ipsilateral and horizontal recordings obtained with a fast repetition rate provide best waveform characteristics for neuro diagnostic interpretation. Enhancement of wave V amplitude and separation of IV-V wave complex may be achieved by using the non-cephalic recording montage. Compromised or low amplitude components on contralateral measurement may confound neurological interpretation.	for proper generalization sample size should be large. Infants with othre types of hearing loss should also be included in the study for good

1.	2.	3.			4.	5.	б.	7.	8.
11	Sininger, T.S., et al (1995)	Filtering at electrode recorded activity before averaging is used in evoked potential measurements to reduce back ground noise	24 10 14F	35-42 weeks	Ν	Broad band clicks Pol: Rare- faction Int: 15 & 30dBnHL Tone burst at 500 Hz Int: 40 & 60dBnHL Masking 707 Hz High pass filtered noise		Results indicate that 1) energy in the infant ABB is concentrated below 100hz and 2) a high pass recording filter of 30hz reveals a large amplitude ABE and enhances the overall signal to noise ratio as measured by FSP as compared to a 100hz high pass.	The infants in this study were sleeping. Changes in sleep state or arousal level would produce changes in the spectrum of background noise. So the results of this study lay not generalize to infants evaluated in states of higher arousal.
12	Stapells, R.D., et al (1995)	To assess the accuracy of threshold estimation, determined using the ABrs to brief tones presented in notched noise in a group of infants and young children with normal hearing and SNHL	34 54	lwk- 8 yrs			Single channel/ ipsilateral mastoid/ vertex/forehead	ABSs can be a good diagnostic tool if diagnosis is made carefully keeping in mind all other variables which can affect ABR results.	92-100%, infants with normal hearing showed ABRs to 30dBnHL tones. High correla- tion between ABRs and Behavioural responses for both groups.

CHAPTER - III Clinical Application of ABR

CHAPTER - III

CLIIICAL APPLICATION OF ABR

	. Author/ . Year	Purpose of the study	Sul lo	-		le Stimulus m Variables	Electrode aontage Type/Inverting/ Ion-inverting/ Ground	Results	Reaarks
1.	2.	3.			4.	5.	б.	7.	8.
1		ABR changes in two cases with braiastem ischemia are reported. In order to clarify the corre- lation between ABE changes and cochlear blood flow, experi- mental studies on guinea pigs with brain ischemia were performed	14M 14		Int*		Single channel/ Left pinna/vertex/ roof of tail.	Changes of ABB in human brain stem ischeaic condition consisted of a decrease of the aaplitudes of all waves and a delay in wave latencies. Even if ABR showed no response, it turned to normal when the blood flow was recovered. In experimental condition sue pattern was observed which suggest that ABR change reflect the degree of schemia in the auditory pathway, and that non- response ABE does not imply irreversible ischemic condition.	More cases should be studied for good generalization.
V*	= Vertigo	and right vertebral a	artry	injury	In	t* = Intra cl	assial verteberal artry	stenosis, Imd* = Induc	ced condition
2		auditory brainstem			Imp air (ed	500, t,2i4kHz	Single channel/vertex /ipsilateral ear lobe /contralateral ear lobe.		-

1.	2.	3.		4.	5	. 6	•	7.	8.
									could be a drawback of this study. In addition, it retains to be sen whether modifications of stimulus parameters, recording technique threshold determination procedures affect the result or not.
	Prosser,S et al (1993)	The aim of this study was to investigate whether or not the Alls of acoustic neuron (AH) cases could reflect the cotbinated effects of cochlear and neural impairement	20 280 153M 11-74 127F yrs 85 21-72 yrs IS 8F 22-26 3M yrs	I Coc* AN* CP*	Click No:2000 Int:90-100dB nHL (N) 90dB nHL (AN, Ch) Pol.alternat- ing masking white noise at SOdB SPL (Contra).	/vertex/forehead	1	Cochlear and letro- cochlear lesions lay be differentiated by a diagnotic index (D5) which is derived froa the patients auditory brainstem wave ? latency and pure tune hearing loss at 2-4 khz. Results indicating a lesser prolongation of wave V latency in cases with pronounced hearing loss. Assuaing this finding	As mentioned, cases could reflect the combined effects of cochlear aad neuro impairment, so while interpreting ABr results, proper care should be taken.
			Coc* Cochle AV* Acousti CP* CP ang	ic nev	-	AN		is indicative of some degree of cochlear impaireient conconitant to the neural dysfunction.	
1	et al	To see the accuracy and role of ABR in the diaposis of acoustic neuromas	-		Clicks Sate:13.3/sec		vertex/ lobe/ arlobe.	- 85% had abnorul ABRs. Tuaor size and nerve	reliability AB testisg should be repeated after a few months interval.

1.	2.	3.			4.	5.	б.	7.	8.
5	Janssen, E.A. et. al., (1993)	The purpose of the study was to assess the conductive loss component (CLC) by braiastem electric response to a conventional air conducted click stimulus	21 Ac	dults		Click Rate:20/sec Int.34dB pe SPL. Pol.alternat- ing. masking white noise al 23dB SPL (contra).	Two channel/vertex/ mastoid (ipsi)/fore- head.	The increase in NTNR compared to normmative value is a measure of the CLC Increase in MTER is in good agreement with results of	is limited to detect CLCs in ears with cochlear loss components upto
6			19F y 11M 50 20	3-37 yrs 0-42 yrs			Two channel/both mast- oids/vertex/frontal c location midway betw- een the nasion and the vetex.	if the interpeak latency and significant increase of the I-III inter- peak latency in the patients as compared	For proper validation of results, tore studies are required, Degree of hearing loss has not been mentioned (presence).
7	Aubert, L.R., et al (1994)	The study investigated EAB8 test reliability in relation to pulse		YIS	ted with	Tone pulse at 10-500 Hz No.1200 F.S:10-2000Hz		Very high correlation between EABR threshold and psychophysical threshold for the same	be used as a tool for

1.	2.	3.	4.	5.	б.	7.	8.
		rate and evaluated the relationship between the low public rate EABR threshold and the high pulse rate thresholds used in mapping of Multi- channel cochlear implants	imp- lant			pulse rate. Poorer correlation between the low pulse rate EABR. Threshold and the high pulse rate psychophysice threshold.	electrodes of an implant patient. caution, should be excused and the appropriate correlation formula appropriately.
8	Yamada,K et al (1994)	ABRs recorded in 10 low rates with total spinal anesthesia induced by injection into the subarachnoid space through skull.	ed F ii I m w a	lick No:1024 ate:10/sec Pol:alterna- g Int.110dB SPL asking white noise t 70dB SPL (contra)	Single channel/vertex/ right mastoid/neck	The disappearance started with the later waves of ABR with injection. After cessation of the injection the ABR reappeared and recovered progressively from wave I to IV. The effect of lidocains on ABR was reversible and extended in the acoustic nerve to aid brain.	Number of rats should be lore to make a good sample.
9	Kaga,K et al (199\$)	The pathological 6 changes in red blood cells in and around the blood vessels, basic structure of the cochlear, and brainstem in patients with brain stem death determined by ABR	32, 56, Bra- 3i, 17, ins- 59, 70 tea years, death	Int.85dB nHL	t mentioned.	Results showed that the cochlear, the visceral organs and the spinal cord below a certain level of the cervical segments continued to line after brain stem death. RBCs in the vessels of brainstem and cerebellum exhibited severe autolysis, where as most RBCs in the cochlea were preversed. Findings of autolytis changes in RBCs in the brain stea, and the presentation of RBCs in the cochlea, imply initial loss of brian stem function and delayed loss of	Good generalization needs more cases to be studied.

L. 2.	3.		4. 5.	6.	7.	8.
					cochlear function after prolonged absence of Alls.	
0 Lemaire, N.C., et al (1995)	with unilateral or bilateral tinnitus were recorded in order to evaluate the effect of tinnitus on the central auditory	129 20 to 331 56yrs 96F 18-55 yrs. 355 13-85 yrs 133 87 135 Bc	N Clicks No.2000 Rate:11.1/sec Pol.alternat- Tinni ing tus Int.90dB nHL L ear masking i ear White noise oth ear at 50dB nHL (contra)		The results have revealed significant medifications of latencies and amplitudes of BSARs related to side of subjective tinnitus. The disturbances recorded, localized principally in waves I and III, suggest involvement of the efferent systems (lengethned latencies)	In this study cases with tinnitus suffered from hearing loss also. So this factor is able to lengthen th latency of the first wave. Se each factor which is responsible for latencies should be take care of.
1 Musiek,E et al (1995)	Purpose of this study was to determine the value, based on true positive and false positive rates of various ABRs indices in discriminating patients with brain stea lesions from patients with cochlear lesions.	65 Mean Avg. 31 52yrs 21F 11M 33 54yrs 17F 16M		Single channel/ ear lobe of the stimulated ear/ z high forehead/ contralateral ear lobe or aid forehead	ROC curves were constructed to analyse the absolute latency of wave ¥ the I-III, III-V, and I-V inter wave internals. The interaural latency difference and the V/I amplitudes ratio. Based on ROC curves, the clinically aost valuable index was the I-V internal but over all the individual indices showed only moderate sensitivity to brain stea pathology. By coabining all indices, brainstem involvement improved but false positive rate also increased.	

1. 2.	3.		4.	5.		6.	7.	8.
12 Rosen- hall,U et al (1995)	Two groups of patients with anaoying tinnitus were studied with brainstea response audiometry.	26M 4.Syrs 57	rs with s Tn. rs mod.	Rate:20/sec Int:80dB nHL Polarity . rarefaction	Not mentioned		<pre>! accompanied by a prolongation of waves III and V, findings which are consistent with a lesion in the peripheral auditory system. Lengthening of III-V</pre>	The results o this study can be used as a useful diagnostic tool. Position of electrodes ha not been mentioned.

SUMMARY

SUMMARY

In this project an attempt has been made to provide a concise report about the literature available on ABR in the recent journal articles (1991-1995). All the information available has been divided into three chapters i.e.,

a) Factors affecting ABR

b) ABR in pediatric group

c) Clinical applications of ABR.

The review of above articles revealed the following trends.

The subjects used in the studies belonged to following categories.

- a) Normal Adults
- b) Normal Infants
- c) Pathological Adults
- d) Pathological Infants

e) Normal Animals

f) Pathological Animals.

It is apparent from the articles that ABR is affected by many variables such as age, sex, hearing, stimulus intensity, stimulus rate, temperature, electrode placement, head size and brain maturation.

Stimulus polarity and type of stimulus (click, tone burst) also has considerable effects on ABR results. So while interpreting the results these all factors should be taken into consideration.

Studies have shown that bone conducted tone bursts are useful in defining frequency specific cochlear sensitivity and also good in defining conductive loss component. Studies have revealed that thresholds for 500 hz BC tones are better as compared to 2000 hz (Fox and Stapells, 1993).

High frequency latency-intensity functions have been studied, (Paust et al., 1993), which revealed that as a function of increase in intensity, there is a considerable decrease in latency (Liu and Ziang, 1991).

Studies have revealed better results with computerized analysis over user intervention (Pratt, et al., 1993).

Absolute and interpeak latency maturation with age has been studied and the studies have clearly reported that there is a considerable decrease in latency, with increasing age. Contralateral morphology is also closely resembling the ipsilateral morphology, especially after the age of 9 months (David and Mosseri, 1991; Eggermont, et al., 1991).

Fast methods using maximum length sequence has been suggested in the studies to calculate ABR. This method has a high reliability. Studies have revealed that, using this method adaption is quite less and can be a good screening tool (Burkard, 1994; Thorton, et al., 1993; Lina Granade, et al., 1994; Hamil et al., 1991). On the whole studies show that ABR can be effectively used for screening procedure and high reliability of ABR results have been found in studies.

In children, studies have revealed that ABR can be used along with high risk register in a pediatric set-up. However, its usefulness or specificity depends on repeated testing and follow-up.

ABR findings in children until normal hearing starting from pre-term babies (age at which different waves make their first appearance) till the age level when different waves are stabilized have been reviewed. Different response parameters like latency, amplitude and thresholds have been considered and the ages at which these different parameters attain adult values are given.

Apart from response parameters, signal parameters have also been studied. ABR findings in children with bone conducted click stimulation and real ear measures with click stimulation i children have been studied. It has been suggested that, there is a need to use infant norms when screening infant hearing using ABR because of variation of infant and adult canal resonances (Johnson, et al, 1991; Foxe, 1993).

Electrode settings, best for neurodiagnostic interpretation have been given. Filtering settings and spectral characteristics have been given for good

interpretation of results in children (Spinak, 1993; Katbamna et al., 1995; Sininger, et al., 1995).

Studies under the heading "Clinical Applications of ABR" have shown the importance of ABR in brain death cases and found ABR as a very useful tool in telling the extent of brain stem death (Kaga, et al, 1975).

Importance of wave V latency, in differentiating Cochlear Pathology and Retero Cochlear Pathology cases has been reported (Prosser et al., 1992). It was suggested that ABR is less sensitive in detecting intracanalicular tumors than in detecting extra canalicular tumors.

A few studies (Janssen, Brocaar and Van Zanten, 1993) have tried to assess conductive component of hearing loss by auditory brain stem electric response audiometry. A bone conducted noise was used to mask out the response to a conventional air conducted click. The results of the study reported that conventional pure tone and ABR to find out conductive hearing loss are in good agreement to each other. So ABR can be used successfully to find out conductive hearing loss on difficult to test cases.

Changes of ABR in vertebrobasilar ischaemia cases and cases with vitiligo has also been studied (Fuse, 1991; Nikiforidis, et al., 1993). A significant difference has been found in the wave latencies and amplitude of waves as compared to normal group. Patterns of waveform in tinnitus patients in terms of latency changes and morphology of wave form have been studied. Several studies (Lemoire and Beutter, 1995; Rosenhall and Axelsson, 1991) have suggested that a great deal of knowledge about the site of lesion can be inferred from the results.

Overall findings suggest that ABR has gripped the area of audiology, maximally, starting from the studies on generation of nerve potentials to the clinical application such as threshold estimation and hearing aid evaluation etc. ABR results go deep into the neurologic implications.

REFERENCES

REFERENCES

Albright, P.W., (1983). An evaluation of BERA for hearing screening in high-risk neonates. <u>Laryngoscope</u>, 93, 1115-1121.

Ananthanarayan, A.K., Durrant, J.D., (1991). On the origin of wave II of the auditory brainstem evoked response. Ear and Hearing, 12(3), 174-179.

Aoyagi, M., Suzuki, T., Yokoyama, J., Sakai, M., Kiren, T., Koike, Y., (1991). Cross correlation function in the analysis of auditory brainstem responses in spinocerebellar degeneration. Audiology, 30(5), 266-274.

Aubert, L.R., Clark, G.P., (1994). Reliability and predictive value of the electrically evoked auditory brainstem response. BJA, 28(3), 121-124.

Bankaitis, A.E., (1995). The effects of click rate on the auditory brainstem response (ABR) in patients with varying degrees of HIV-Infection : A pilot study. <u>Ear and Hearing</u>, 16(3), 321-324.

Bansal, R., Agarwal, A.K., Kakar, P.K., (1992). BERA in high risk neonates and infants : Hearing Assessment. Indian ^ Journal of Otolaryngology and Head and Neck, 1(4), 169-172.

Barth, CD., Burkard, R., (1993). Effects of noise burst rise time and level on the human brainstem auditory evoked response. Audiology, 32(3), 225-233.

Beattie, R.L., Alehs, L.A., Abbott, C.L., (1994). Effects of signal to noise ratio on the auditory brainstem response to 0.5 and 2 khz tone bursts in broad band noise and high pass noise or notch noise. Scandavian Audiology, 23(4), 211-224.

Bergman, B.M., Beauchaine, K.L., (1992). Application of the auditory brainstem response in pediatric audiology. <u>Hearing</u> Journal, 45(9), 19-25.

Boettcher, F.A., (1993). Auditory brainstem response correlates of resistance to noise induced hearing loss in Mongolian gerbils. JASA, 94(6), 3207-3214.

Brackman, D.E., (1980). Rare tumors of the cerebello pentine angle. Otolaryngology, Head and Neck Surgery, 88, 555-559.

Brown, C.J., Abbas, P.J., Bertschy, H.F., Kelsay, D., Oantz, J.B., (1994). Intraoperative and postoperative electrically auditory brainstem responses in nucleus cochlear implant users : Implications for the fitting process. <u>Ear</u> and Hearing, 15(2), 168-176. Burkard, R., Veigt, H.F., Smith, L.R., (1993). A comparison of N1 of the whole nerve action potential and wave I of the brainstem auditory evoked responses in Mongolian gerbil. JASA, 93(4), 2069-2076.

Burkard, R., (1994). Gerbil brainstem auditory evoked responses to maximum length sequences. <u>JASA</u>, 95(4), 2126-2135.

Caahman, M.Z., Stanton, S.O., Sagle, C, Barber, H.O., (1993). The effect of hearing loss on ABR interpretation : Use of a correction factor. <u>Scandavian Audiology</u>, 22(3), 153-158.

Clemis, J.D., (1984). Hearing conservation in acoustic tumor surgery : Pros and Cons. <u>Otolaryngology Head and Heck</u> Surgery, 92, 152-161.

Conijn, E.A.J.G., Brocal, M.P., Van Zanten, O.A., (1992). Low frequency specificity of the auditory brainstem response threshold elicited by clicks masked with 1590 hz high pass noise in subjects with sloping cochlear hearing losses. Audiology, 30, 272-283.

Conijn, E.A.J.G., Brocaar, M.P., Van Zanten, O.A., (1992). Comparison between the frequency specifities of auditory brainstem response thresholds to clicks with and without high pass masking noise. Audiology, 31, 284-292.

David, R.S., Mosseri, M., (1991). Maturation of the contralaterally recorded auditory brainstem response. Ear and Hearing, 12(3), 167-173.

Deltenre, P., Mansbach, A.L., (1995). Effects of click polarity on brainstem auditory evoked potentials in cochlear hearing loss : A working hypothesis. <u>Audiology</u>, 34(1), 17-35.

Don, M., Ponton, C.N., (1993). Gender differences in cochlear response time : An explanation for gender amplitude differences in the unmasked auditory brainstem response. JASA, 94(4), 2135-2148.

Dusieux-Smith, A., Picton, T.W., Bernard, P., MacMurray, B., Goodman, J.T., (1991). Prognostic validity of brainstem electric response audiometry in infants of a neonatal intensive care unit. <u>Audiology</u>, 30, 249-265.

Edward, Y.T., Staurt, A., Stenstorm, R., Hollett, S., (1991). Effect of vibrator to head coupling force on the auditory brainstem to bone conducted clicks in new born infants. <u>Ear</u> and Hearing, 12(1), 55-60. Eggermont, J.J., Ponton, C.W., Coupland, S.G., (1991). Frequency dependent maturation of the cochlear and brainstem evoked potentials. Acta otolaryngologica, 111(2), 220-224.

Fausti, S.A., Olson, D.J., Frey, R.H., Henry, J.A., Shaffer, H.I., (1995). High frequency tone burst - evoked ABR latency - intensity functions in sensorineural hearing - impaired humans. Scandavian Audiology, 24(1), 19-25.

Fausti, S.A., Olson, D.J., Frey, R.H., Schaffer, H.I., (1993). High-frequency tone burst - evoked ABR latency - intensity functions. Scandavian Audiology, 22(1), 25-33.

Fausti, S.A., Frey, R.H., Henry, J.A., Olson, D.J., (1992). Comparing laboratory and portable tone burst auditory brain stem response systems for monitoring high frequency (> 8 khz) auditory dysfunction. Scandanian Audiology, 21(4), 211-218.

Fower, G.C., (1991). Effects of stimulus phase on the normal auditory brainstem response. JSHR, 35(1), 167-174.

Foxe, J.J., Stapells, D.R., (1993). Normal infant and adult auditory brainstem response to bone conducted tones. Audiology, 32(2), 95-109.

Fuse, T., (1991). ABR findings in vertebrobasilar ischemia. Acta otolaryngologica, 111(3), 485-490.

Gerull, G., Mrowinaki, D., Nubel, K., (1991). Low frequency masking of brainstem potentials. <u>Scandavian Audiology</u>, 20(4), 227-234.

Gerling, I.J., (1991). In search of a stringent methodology for using ABR audiometric results. <u>Hearing Journal</u>, 44(11), 26-30.

Hall, W.J., Orose, H.J., (1993). The effects of Otitis media with effusionk on the masking level difference and the auditory brainstem response. JSHR, 36(1), 210-217.

Hamil, T.A., Hussuing, R.A., Sammeth, A.C., (1991). Rapid threshold estimation using the "chanied stimuli" technique for auditory brainstem response measurement. <u>Ear and</u> Hearing, 12(4), 229-234.

Hecox, K., Galambos, R., (1974). Brainstem auditory evoked response in human infants and adults. <u>Archives of</u> otolaryngology, 99, 30-33.

Hyde, H.L., Malizia, K., Riko, K., (1991). Audiometric estimation error with the ABR in high risk infants. <u>Acta</u> otolaryngologica, 111(2), 212-219.

Janssen, E.A., Brocaar, M.P., Vanzausten, Z.A., (1993). The masked threshold to noise ratio in brainstem electric response audiometry : Assessment of conductive loss component by bone conducted masking. Audiology, 32(3), 153-163.

Jewelt, D.L., Romano, M.H., (1972). Human auditory evoked potentials : Possible brainstem components detected on the scalp. Science, 167, 1517-1518.

Jiang, Z.D., Wu, Y.Y., Zhang, L., (1991). Amplitude change with click rate in human brainstem auditory evoked responses. Audiology, 30(3), 173-182.

Johnson, E.S., Nelson, P.B., (1991). Real ear measures of auditory brain stem response click spectra in infants and adults. Ear and Hearing, 12(3), 180-183.

Katbamna, B., Bankartis, A.E., Metz, D.A., (1993). Effects of hyperthesmia on the auditory evoked brainstem in mice. Audiology, 32(6), 344-355.

Katbamna, B., Benett, S.L, Dokler, P.A., Metz, D.A., (1995). Effects of electrode montage on infant auditory brainstem response. Scandavian Audiology, 24(2), 133-136.

Kaga, K., Vebo, K., Satrata, H., (1995). Auditory brainstem response and temporal bone and brainstem pathology in brainstem death, with special reference to autolysis of red blood cells. Acta Otolaryngologica, 115(2), 183-186.

Kidd. 0., Burkard, F.R., Hanson, R.C., (1993). Auditory detection of the human brainstem evoked response. <u>JSHR</u>, 36(2), 442-447.

Kramer, S.J., (1992). Frequency specific auditory brainstem response to bone conducted stimuli. Audiology, 31, 61-71.

Lasky, R.E., Maier, M.M., Mexox, K., (1993). A comparison of binaural interactions using traditional and maximum length sequence evoked response paradigms. <u>Ear and Hearing</u>, 16(4), 354-360.

Lauter, J.L., Oyler, R.F., (1992). Latency stability of auditory brainstem responses in children aged 10-12 yrs compared with younger children and adults. <u>British Journal</u> of Audiology, 26(4), 245-253.

Lauter, J.L., Oyler, R.F., Iord Mars, J., (1993). Amplitude stability of auditory brainstem responses in two groups of children compared with adults. <u>British Journal</u> of <u>Audiology</u>, 27(4), 263-271.

Lemaire, M.C., Beutter, P., (1995). Responses in patients with tinnitus. Audiology, 34(6), 287-300.

Lightfoot, G.R., (1993). Correcting for factors affecting ABR wave V latency. <u>British Journal</u> of <u>Audiology</u>, 27(3), 211-200.

Lightfoot, G.R., (1992). ABR screening for acoustic neuromata : The role of rate induced latency shift measurements. British Journal of Audiology, 26(3), 317-227.

Lina-Oranade, G., Collet, L., Morgon, A., (1994). Auditory evoked brainstem responses elicited by maximum length sequences in normal and sensorineural ears. <u>Audiology</u>, 33(4), 218-236.

Liu, X.Y., Jiang, Z.D., (1991). Intensity effect on latency and internal of human BAER. <u>Acta Otolaryngologica</u>, 111(3), 477-484.

Mark, S., Richard, C., (1995). The effects of reversing the polarity of frequency limited single cycle stimuli on the human auditory brainstem response. <u>Ear and Hearing</u>, 16(3), 311-320.

Moore, E.J., Semela, J.J.M., Rakerd, B., Robb, R.C., Ananthanarayan, A.K., (1992). The I potential of the brainstem auditory evoked potential. <u>Scandavian Audiology</u>, 21(3), 153-156.

Muchnik, C., Neeman, R.K., Hildesheimer, M., (1995). Auditory brainstem response to bone conducted clicks in adults and infants with normal with normal hearing and conductive hearing loss. <u>Scandavian Audiology</u>, 24(3), 185-91.

Munnesley, O.M., Orewlle, K.A., Purdy, 8.C., Kerth, W.J., (1991). Frequency specific auditory brainsem responses relationship to behavioural thresholds in cochlear impaired adults. Audiology, 30(1), 25-32.

Musiek, E.F., Lee, W.W., (1995). The auditory brainstem response in patients with brainstem or cochlear pathology. Ear and Hearing, 16(6), 631-636.

Nikiforidis, G.C., Tsamboas, I.G., Karamitsos, D.S., (1993). Abnormalities of the auditory brainstem response in vitiligo. Scandavian Audioloty, 22(2), 97-100.

Panton, C.W., Eggerment, J.J., Compland, S.G., (1993). The relation between head size and auditory brainstem response interpeak latency maturation. JASA, 94(4), 2149-2158.

Pratt, H., Geva, A.B., Mittelman, N., (1993). Computational waveform analysis and classification of auditory brainstem evoked potential. Acta Otolaryngologica, 113(3), 279-284.

Prasher, D., (1995). Differential effects of adaptation on the ipsi and contralateral auditory brainstem pathway. Scandavian Audiology, 24(2), 101-106.

Prosses, S., Arslan, E., Turrini, M., (1992). Cochlear and neural dysfunction in acoustic neuroma, can they be separately revealed by auditory brainstern wave V latency. Scandavian Audiology, 23(3), 195-200.

Roger, R.M., (1991). The auditory brainstem response recorded with 60 hz notch filters. <u>Ear and Hearing</u>, 16(4), 155-158.

Rosenhall, U., Axelsson, A., (1995). Auditory brainstem response latencies in patients with tinnitus. <u>Scandavian</u> Audiology, 24(2), 97-100.

Rowe, S.J., (1991). An evaluation of ABR audiometry for the screening and detection of hearing loss in ex-SCBV infants. British Journal of Audiology, 25(5), 259-274.

Rupa, V., Dayal, A.K., (1993). Wave V latency shifts with age and sex in normals and patients with cochlear hearing loss : Development of a predictive model. <u>British Journal</u> of Audiology, 27(4), 273-279.

Sand, T., Saunte, C., (1994). ABR amplitude and dispersion variables. Relation to audiogram shape and click polarity. Ear and Hearing, 16(4), British Journal of Audiology, 26(3), Scandavian Audiology, 23(1), 7-2.

Schoonhoven, R., (1992). Dependence of auditory brainstem response on click polarity and high frequency sensorineural hearing loss. Audiology, 31, 72-86.

Setters, W.A., Brackmann, D.E., (1977). Acoustic tumour detection with brainstem electric response audiometry. Archieves of Otolaryngology, 301, 181-187.

Schulman, A.H., (1981). Central tinnitus diagnosis and treatment : Observations of simultaneous binaural auditory brain responses with monaural stimulation in the tinnitus patient. Laryngoscope, 92, 2025-2036.

Sininger, Y.S., (1995). Filtering and spectral characteristics of averaged auditory brainstem response and background noise in infants. JASA, 98(4), 2048-2055.

Schmer, H., Freemans, Friedman, I., (1991). Auditory Brainstem Response (ABR) latency shifts in animal models of various types of conductive and sensori-neural hearing losses. Acta Otolaryngologiea, 111(2), 206-211. Sohmer, H., Feinmesser, M., (1967). Cochlear action potentials recorded from the external ear in man. Annals of Otology, Rhinology and Laryngology, 76, 427-435.

Soucek, S., Mason, S.M., (1992). Effects of adaptation on electro cochleography and auditory brainstem responses in the elderly. Scandavian Audiology, 21(3), 149-152.

Spivak, L.G., (1993). Spectral composition of infant auditory brainstem responses : Implication for filtering. Audiology, 32(3), 185-193.

Starr, A., (1976). Auditory brainstem response in brain death. Brain, 99, 543-554.

Stapells, R.D., Gravel, J.S., Martin, A.B., (1995). Thresholds for auditory brain stem responses to tones in notched noise from infants and young children with normal hearing or sensorineural hearing loss. Ear and Hearing, 16(4), 361-371.

Sullivan, M., Neely, S.T., (1995). Estimating residual noise in the auditory brainstem response. JASA, 98(4), 2056-2061.

Suzuki, T., Kobayashi, K., Aoki, K., Umegabi, Y., (1992). Effect of sleep on binaural interaction in auditory brainstem response and middle latency response. Audiology, 31, 25-30.

Thodic, C, Katbamna, B., (1993). Binaural interaction in the auditory brainstem response multichannel recordings. Scandavian Audiology, 22(3), 205-208.

Thomas, E., Thomas, L., Eugene, V., (1992). Stimulus repetition rate effect on the auditory brainstem response in systemic lupus erythematosus. Laryngoscope, 102(3), 335-339.

Thorton, A.R.D., Slaven, A., (1993). Auditory brainstem responses recorded at fast stimulation rates using maximum length sequences. British Journal of Audiology, 27(3), 205-210.

Wilson, D., Hodgson, R., Gustafson, M.F., (1992). The sensitivity of auditory brainstem response testing in small acoustic neuromas. Laryngoscope, 102(9), 961-964.

Yamada, K., Kaga, K., (1994). Analysis of auditory brainstem response with lidocaine injection into the cerebrospinal fluids in rats. <u>Annals of Otology</u>, Rhinology and Laryngology, 103(10), 796-800.