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Abstract 

Speaking environment is always associated with one or more types of noise. For 

example, the forensic speech sample considered for analysis may be accompanied with some 

noise. Thus, for the listeners/forensic investigator the speech will not be heard clearly. 

Therefore background noise plays a major role in forensic speaker identification. Most of the 

speech recognition instrument will have difficulty in identifying speech signal when it is 

accompanied by background noise. Therefore to improve the intelligibility of speech signal, 

noise should be reduced. Hence the process of noise reduction technique plays a major role in 

current scenario and is available in different forms of software. From the existing software 

the aim of the present study was to examine the effect of noise and noise reduction technique 

on speaker identification using Mel-Frequency Cepstral Co-Efficients (MFCCs) on the long 

vowels in Kannada language. A total of 60 Kannada speaking neuro-typical adults in the age 

range of 20-40 years (30 males and 30 females) participated in the study. Commonly 

occurring Kannada meaningful sentences with long vowels /a: /, /i: /, /u: / was used for 

reading task. The same was recorded in two different conditions: Laboratory condition and 

Traffic Field condition. These recorded samples were analyzed under two phases: Before 

noise reduction and after noise reduction, using Sound Cleaner- Universal Noise Cancellation 

Software. Speech Science Lab Work bench, a Semi-Automatic vocabulary dependent speaker 

recognition software was used to extract Mel-Frequency Cepstral Coefficients for the 

truncated (PRAAT software) vowels. Results of the study revealed that in Lab condition, 

Traffic condition, Traffic condition compared across traffic condition, Lab condition 

compared across traffic and in Lab condition compared across traffic condition, the vowel 

/a:/ is found to be better followed by /i:/ and /u:/ in the average percentage of correct speaker 

identification of the vowels. Overall results revealed that vowel /a:/ is better for speaker 

identification. With reference to 95% Confidence Interval for Mean, vowel /a:/ followed by 

vowel /i:/ indicated the percent correct speaker identification score to be more consistent 

compared to vowel /u:/. The contributing factors would be the considered speech segments 

being vowels and their exceptional acoustical characteristics when compared to consonants, 

parameter MFCC, difference between any recording conditions, individual variability of 

speaker in relation to the speech being complex, use of noise reduction technique and the 

possible parameters like overloading, signal-to-noise ratio, reverberation, nonlinearity of 

frequency response, sampling frequency and bit rate which might influence instrumental 

identification analysis. However, the above mentioned factors and the use of ‘sound cleaner’ 

has a significant effect on percent speaker identification by reducing the influence of noise 

without majorly affecting the acoustical parameters of certain vowels considered for the 

present study. 

Key Words:  Sound cleaner, Semi-automatic, distortion, truncate 
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CHAPTER 1 

 

INTRODUCTION 

 

 

The telephone conversation has increased in recent years. Due to the increased usage 

of mobile phones for conversational purposes, the crime rate is increasing drastically by 

misusing the same for many crime-related activities like bomb threats, ransom demand, 

sexual abuse, and hoax emergency call. The different criminal offenses, such as making 

genuine or hoax emergency service calls to the police, fire brigade, or ambulance, harassing 

telephone calls or making threatening, extortion demands or blackmail, taking part in 

criminal conspiracies such as those involved in conspiring to traffic in people or trafficking or 

manufacture of illegal drugs or importation or, arms, cultural artifacts, and currency speaker 

identification may be supportive. In civil cases or for the media speaker identification may 

also be required. These cases include calls to local or other government authorities, radio 

stations, rallies or meetings, insurance companies, or recorded conversations. Among the 

biometric identifiers such as speech or handwriting, verification of individuals' identity based 

on the voice has significant advantages and practical utilizations because speech is a product 

of an underlying anatomical source, namely, the vocal tract and a result of natural production. 

Thus, comprising inherent constrained biometric feature where it does not require a 

specialized input device, therefore the user acceptance of the system would be high.  

Voice is one of the mediums through which humans communicate with the outside 

world. The human voice is a carrier of personality and identity. In history, all over the globe, 

great personalities were identified and dominated through their invisible strength called the 

voice. We can also recognize our family members, media personalities, friends, and enemies 

through voice. As, how no two faces are similar, neither two voices are. Every mature voice 

has unquestionably a unique character dependent upon the structure of the head, neck, and 

face of the individual. The speech signal conveys several types of information. For example, 

speech signal conveys linguistic information (language and message) and speaker 

information (physiological characteristics, emotional and regional status). With reference to 

speaker information, different individuals sound different concerning their voice, which is a 

known fact. This can be illustrated with an example of how an individual is identified through 

his voice in any telephone conversation. This is due to the property of individuals’ speech 

being speaker-specific. The same principle is considered in one type of speaker identification 

method. The method in which a person is recognized exclusively (perceptually) from his 

voice and is known as speaker recognition is known for long period (Atal, 1972).  

To improve flexibility in the performance of speaker recognition, recent 

advancements have developed new tools in speech technologies. While using iris or 

fingerprint identification techniques there are alternative methods and only some degrees of 

freedom. However, in speaker recognition speech offers much more flexibility and also 

different levels to perform. For example, users speaking in a particular manner by force and 
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enter each attempt differently by using the system. Along with this, the user can also use 

codes or semantical/dialectical traits which are complex to counterfeit. Thus, apart from 

speaker identification, these methods can also be employed in forensic scenarios. 

The most natural and common way used to communicate information by humans is 

through speech. As mentioned earlier the speech signal conveys several types of information 

like linguistic and speaker-dependent information. The voices of different individuals do not 

sound alike and this is the fact which is known to many individuals. Like how a friend over a 

telephone is recognized, it is due to the important property of speech of being speaker-

dependent. The ability to recognize a person exclusively from his voice (perceptually) is 

known as speaker recognition. 

Speaker recognition is the process of automatically recognizing the speaker based on 

the information included in the speakers’ voice. “The voice is the very emblem of the 

speaker, indelibly woven into the fabric of speech. In this sense, each of our utterances of 

spoken languages carries not only its message, but through accent, tone of voice, and habitual 

voice quality it is at the same time an audible declaration of our membership of particular 

social regional groups, of our individual physical and psychological identity, and our 

momentary mood” (Lavner, 1994). Thus, the above-mentioned cues of spoken utterance can 

be used in any forensic speaker identification task. Here the main goal is to identify the 

speaker by characterization, extraction, and recognition of the speaker-specific information 

included in the speech signal according to Hecker (1971). 

Apart from the text-independent and text-dependent speaker recognition system 

(Hollien, 2002), a key problem in attempting to characterize a speaker is that each 

individual’s voice can vary greatly. Our voice will be changed according to with whom we 

are talking to, the emotion we wish to express, how formal or informal the situation is and 

whether there is poor quality recordings, background noise, vocal disguise, different text, 

various language, non-contemporary recording and also electronic scrambling like Text to 

Speech Converter, Voice synthesizers and the Voice Over Internet Protocol (VOIP) with 

nearly unlimited potential applications of speech processing in modern communication 

systems and networking. Speaker’s voice also changes if they are, drunk, tired, or have a cold 

or sore throat and speakers can disguise their voices. Hence a voice is very complex to 

capture than a fingerprint, which is an unchanging, fixed feature of a person.  

Therefore several factors affect speaker identification task as follows: The uniqueness 

involves an open set of trails in the identification task.  From within a large to very large 

population of ‘possibilities’ the unknown must be detected. But this could be overcome to 

some extent so that we can reduce the number of possibilities by taking into consideration, 

the gender, dialect, language, some common phrases used, and style of speaking by the 

speaker. Conversely, it is difficult to identify the speaker by his/her voice, in particular when 

there is channel distortions (individuals speaking in an environment which masks or distorts 

their utterances) or speech distortions. 
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Distortion can be a system distortion and speaker distortion. System distortion 

includes several kinds of signal degradation. One is the reduced frequency response, i.e., the 

signal passband can be limited when someone talks over a telephone line or mobile phone, 

poor quality tape recorders are used to ‘store’ the utterances and/ microphones of limited 

capability are employed. In these cases, the important information about the talker is lost and 

these elements are not usually retrievable. Such a limited signal passband can reduce the 

number of helpful speaker-specific acoustic factors. Second, the noise can create a 

particularly debilitating type of system distortion as it tends to make the talker’s voice and, 

therefore can obscure elements needed for identification. Examples of noise are those created 

by wind, motors, fans, automobile movement, and clothing friction. The noise itself may be 

intermittent or steady-state saw tooth or thermal and so on. Third, any kind of frequency or 

harmonic distortion can also make the task of identification more difficult. Examples include 

intermittent short circuits, variable frequency response, and harmonic distortion, and so on. 

In certain conditions speaker themselves be the source of many types of distortions 

which are termed as Speaker distortion. When the perpetrator is speaking during the 

commission of crime fear, anxiety or stress can occur. They often will degrade identification 

as the speech shifts triggered by these emotions can markedly change one or more of the 

parameters within the speech signal. The effects of ingested drugs or alcohol; and even a 

temporary health state such as a cold can affect the speech. The suspect may sometimes 

attempt to disguise their voice. All these affect the speaker identification process dreadfully. 

Voice variations can be due to background noise, extreme emotions, different transmission 

channels, illnesses, etc and this will degrade to identify the normal voices correctly. Along 

with these aspects if the voice is disguised intentionally then identification would become 

harder and sometimes impossible. Hence there is a need to study the effect of these voice 

variations on forensic speaker identification. 

 The speaker-specific information is generally a result of the excitation source of the 

human vocal system. The excitation is produced by the airflow from the lungs, which thereby 

passes through the trachea and then through the vocal folds. The excitation is categorized as 

phonation, frication, whispering, vibration, compression, or a combination of these. The 

acoustic features pertaining to frequency and intensity are studied in different voice 

recognition methods on consideration of vowels, nasals, and fricatives (in decreasing order) 

sound in common. This is because they are comparatively easy to identify in speech signals 

and their spectra contain features that reliably distinguish speakers. The present study is 

focused on the category of long vowels (/a:/, /i:/, /u:/) of the Kannada script. Kannada is a 

Dravidian language spoken mainly by people in South India in the state of Karnataka (40 

million native speakers).  According to the study conducted by Sreedevi (2012), the mean 

percentage and standard deviation of frequency of long vowels /a:/, /i:/, /u:/ are 5.7 % (0.44), 

1.9 %, (0.21) and 0.55 % (0.08) respectively in Mysuru dialect of conversational Kannada. 

Vowels are the speech sounds produced by the open vocal tract and all vowels are voiced in 

nature. During the production of a vowel, the vocal tract generally sustains a relatively steady 

shape and provides minimal obstruction of the airflow. The energy created can be emitted 
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through the nasal or mouth cavity without stoppage or audible friction. Vowels are described 

in terms of the tongue in the oral cavity (front, central, and back), the relative height of the 

tongue (high, mid, and low), the relative position of the lips (spread, rounded and 

unrounded), the position of the soft palate (closed and open), the phonemic length of the 

vowel (short and long), the tenseness of the articulator (lax and tense), and the relative pitch 

of the vowel (high, mid and low). Acoustically vowels are differentiated by fundamental 

frequency, duration, spectrum, and the important, formant pattern.   

However, based on these acoustic features of vowels identifying a speaker from his 

speech signal consisting of vowels is difficult since speech is a complex and confounding one 

that includes many aspects, levels, and parameters to be considered during analysis (Bolt et 

al, 1979; Nolan, 1997). There have been various studies on the choice of acoustic features in 

speech recognition tasks. The present study is concerned with semi-automatic or fully 

automatic manner (objective) of speaker identification where machines can be used (Hecker, 

1971). In Semi-automatic Speaker Identification (SAUSI), the known and the unknown 

samples from the speaker are selected by the examiner and are processed by the computer 

program for exact parameters such as first and second formants (Stevens, 1971; Atal, 1972; 

Nolan, 1983; Hollien, 1990; Kuwabara & Sagisaka, 1995; Lakshmi & Savithri, 2009), higher 

formants (Wolf, 1972), fundamental frequency (Atkinson, 1976), fundamental frequency 

contours (Atal, 1972), Linear prediction coefficients (Markel & Davis, 1979; Soong, 

Rosenberg, Rabiner & Juang, 1985), Cepstral coefficients and Mel Frequency Cepstral 

coefficients (Atal, 1974; Fakotakis, Anastasios & Kokkinakis, 1993; Reyond & Rose, 1995; 

Rabiner & Juang, 1993), Long term average spectrum (Kiukaanniemi, Siponen & Matilla, 

1982) and interpretations are made by the examiner. 

In the fully automatic method of speaker identification, the majority of the work is 

done by the computer, and the examiners’ role is minimal. For automatic identification, 

specially designed algorithms are used which differ based on phonetic context. This method 

is used very often in forensic science and can be easily affected by factors such as noise and 

distortions, the present study is also planned to study these factors affecting speaker 

identification. The above-mentioned methods have their advantages and disadvantages and 

studies have shown varying efficiencies (Thompson, 1985). However, the Cepstral 

Coefficients and the Mel Frequency Cepstral Coefficients are more effective in speaker 

identification compared to other features. Hence, the present study is focused on the 

usefulness of Mel frequency cepstral coefficients (MFCC) on speaker recognition.  

With reference to the different methods of speaker identification, the variables 

affecting speaker recognition in the different contexts of the conversational speech sample 

would be the background noise. Since the speaking environment is always associated with 

one or more types of noise, the considered speech sample may be accompanied by some 

noise. Thus, for the listeners, the speech will not be heard clearly. Thus, background noise 

plays a major role in forensic speaker identification. Most of the speech recognition 

instrument will have difficulty in identifying speech signal when it is accompanied by 
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background noise. To overcome this problem, the noise has to be filtered so that the required 

speech signals will be free from noise and the same will be used for further analysis. 

When the speaker is talking in the environment, most of the time, speech is not heard 

clearly by the listener due to the surrounded noise. Background noise also plays a major role 

in forensic speaker identification. Most of the software will have difficulty in identifying 

speech signal when it is accompanied by background noise. To overcome this problem, the 

noise has to be filtered so that the wanted speech signals will be heard clearly. Hence there 

are various researches conducted to reduce the background noise during forensic speaker 

identification. In the current scenario various software and hardware products consist of noise 

reduction technology which reduces the noises and compensates for distortions, thus 

facilitates improving the intelligibility of speech signal. Over 20 years, SpeechPro Inc. as a 

global leader in speech technologies has been advancing specialized tools for text 

transcription and efficient noise reduction of low-quality recordings. Numerous research on 

the perception of poor audio recordings and noisy speech signals performed by SpeechPro 

have resulted in the creation of the unique sound filtering algorithms that are now presented 

in the software and hardware products like Sound Cleaner, ANF II, and The Denoiser Box. In 

the present study Sound, Cleaner Signal Enhancement Program Model 5142 (Noise 

Cancellation Software) is used in reducing the background noise and also to see its effect 

after the noise reduction method.  

Among the different software and hardware products, the sound cleaner is a 

distinctive software solution for filtering noise-corrupted sound recordings and enhancement 

of speech intelligibility. The signal is processed by a series of modules. There are 14 typical 

schemes of processing existing which can also be tailored to filter noise. Each module is 

characterized by a separate window with several basic and professional controls. While 

listening to the output of the signal; the options in the modules can be adjustable based on the 

user’s requirements. It consists of 19 different processing modules including equalizer, 

adaptive frequency compensation filter, adaptive broadband noise filter, adaptive inverse 

filter, adaptive stereo filters in time and frequency domain, dynamic processing automatic 

gain control, and so on. For tonal noise, the signal-to-noise ratio is improved by 50dB and for 

broadband noise up to 20dB. It is efficient for both restoration and enhancement of poor 

quality recordings, real-time sound loaded from external sources, and also recordings made in 

noisy environments. 

Several studies have been conducted where various traditional techniques have been 

used for noise removal or noise compensation. It is evident from the review that MFCCs are, 

perhaps, the best parameter for speaker identification and less susceptible to variation of the 

speaker’s voice and surrounding environment (noise). Also, the vowels may be the most 

suitable, among speech sounds, for speaker identification. However, to date, there are limited 

studies on vowels as strong phonemes for speaker identification using semi-automatic 

methods in the presence and absence of noisy situations (conditions). Scientific testimony 

impresses any court of law in whichever country that might be. For any result to be called 
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scientific, it has to be measured, quantified, and reproducible if and when the need arises. 

Therefore, a method to carry out these analyses becomes a must. In this context, the present 

study was aimed to investigate the effect of noise and noise reduction techniques on speaker 

identification using MFCCs on the long vowels in the Kannada language. The objectives of 

the study were to 1) evaluate the percent correct Speaker Identification using MFCCs on the 

long vowels in the Kannada language for lab recording separately and field recording 

separately (with noise) before the application of noise reduction technique conditions. 2) To 

evaluate the percent correct Speaker Identification using MFCCs on the long vowels in the 

Kannada language for field recording separately after the application of noise reduction 

technique (without noise). 3) To compare speaker identification using MFCCs on long 

vowels in the Kannada language in lab recording conditions versus field recording (with 

noise) before the application of noise reduction technique. 4) To compare the percent correct 

Speaker Identification using MFCCs on the long vowels in the Kannada language for lab 

recording versus field recording after the application of noise reduction technique (without 

noise). 5) To compare the percent correct Speaker Identification using MFCCs on the vowels 

in the Kannada language for field recording (with noise) before the application of noise 

reduction technique versus field recording after the application of noise reduction technique 

(without noise). 
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CHAPTER II 

REVIEW OF LITERATURE 

   

2.2 Factors contributing to speaker recognition 

 The important concern in speaker recognition is to carry out a speaker identification 

task with the variable called (A) Uniqueness and distortion. In uniqueness, the speaker 

identification task might involve an open set of trails, where the unknown must be detected 

from a large to a very large population of ‘possibilities’. But this can be overcome to some 

extent that we can reduce the number of possibilities by taking into consideration such as 

gender, dialect, language, some common phrases used, and style of speaking by the speaker 

as unique concern. The other is distortion, speaker identification task becomes difficult when 

the speaker is talking in such an environment where there is more distortion or masking 

present (channel distortion) or when they are excited or stressed (speech distortions).  Thus, 

distortions are broadly classified into two types: (i) Speaker Distortion and (ii) System 

Distortion. 

In Speaker Distortion, here the distortions are due to the speaker himself. During the 

commission of a crime, the perpetrator can exhibit fear, anxiety, or stress like emotions. 

These will degrade identification, as the speech is directly triggered by these emotions which 

consequently alter one or more parameters of the speech signal. Factors such as temporary 

health conditions like the common cold; or intake of alcohol or drugs; or disguise of voice 

can affect speaker identification in a troublesome way.  

On the other hand, System Distortion is due to several kinds of signal degradation. 

Some of the limitations in the system related issues are; (a) reduced frequency response 

through a telephone line or mobile phone, (b) poor quality tape recorders, and (c) reduced 

dynamic range and/or frequency response of microphones. In such cases, important 

information about the speaker is lost and these elements are not usually retrievable. Due to 

this, essential speaker-specific acoustic parameters can be reduced. In addition to this, noise 

can cause a particularly debilitating type of system distortion as it tends to make the talker’s 

voice and, therefore can obscure elements needed for identification. Examples of possible 

noise are wind, motors, fans, automobile movement, and clothing friction. The noise itself 

may be intermittent or steady-state saw tooth or thermal and so on. Another type of noise is 

the frequency or harmonic distortions which make the task of speaker identification more 

complex. Examples include intermittent short circuits, variable frequency response and 

harmonic distortion, and so on. 

The issues related to speaker recognition are prevailed by the use of (B). Noise 

reduction techniques with the software/hardware-based technology. When there is clean 

speech, the speech recognizers gives acceptable recognition accuracy. Whereas in actual 

circumstances mainly in noisy environments, the performance level of speech recognizers 

degrades because mismatch takes place between training (reference) and operating 

(recognition) environments (Gong, 1995). Das et al., in 1993 found a 1% error rate when the 
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system trained under quiet conditions and the error rate increased to more than 50% in a 

cafeteria environment. While processing the speech signal, due to various sources of 

interference or distortions, the quality of speech will be at risk. Hence it is necessary to adapt 

techniques of noise cancellation and speech quality improvement while designing the system 

for speech signal processing. Sounds produced in the vocal tract have an efficient frequency 

range of 300 Hz to 3000 Hz which is sufficient for understanding speech, though speech has 

a wider frequency range. For example, all noises below 300 Hz and above 3400 Hz may be 

suppressed by filtering out the speech signal through the filter band. When filtering takes 

place for narrowband signals, the understandability of speech won’t be affected. But in most 

of the situations, for example, any engine noise, music, environmental noise, etc where the 

noise occurs in a wide-frequency band with random distribution. In these situations, the noise 

is much difficult to segregate and suppress from the signal, because it falls in a similar 

frequency range as speech. Hence environmental noise has turned as one of the foremost 

obstacles to commercial use of speech recognition techniques.  

The intelligibility of a speech signal will be improved by reducing the noise 

component. Various software and hardware products have incorporated noise reduction 

technology where noises are reduced and compensated for distortions. Meanwhile, however, 

the global leader in Speech Technologies Center is a leading developer of voice and 

multimodal biometric systems, as well as the solutions for audio and video recording, 

processing, and analysis. For over 20 years, the SpeechPro under STC has been developing 

specialized tools for efficient noise reduction and text transcription of low-quality recordings. 

Various studies on the perception of poor audio recordings and noisy speech signals carried 

out by SpeechPro have resulted in the formation of the unique sound filtering algorithms that 

are now presented in the software and hardware products like Sound Cleaner, ANF II, and 

The Denoiser Box. In the present study, the Sound Cleaner Signal Enhancement Program 

Model 5142 (Noise Cancellation Software) was used to reduce the background noise and an 

attempt has been made to see its effect on speaker identification score for the samples which 

was subjected to noise reduction. 

Audio hindrances consist of two main categories: noises and distortions. In the 

recordings of original human speech, if the recording is considered as a useful signal then the 

entire extra information which reduces the quality of this functional signal is considered as 

noises. The entire thing which alters the original useful signal is considered as distortions. 

The echo effects and reverberation are the typical distortions at the acoustical level. When the 

speech signal in the form of an acoustic signal is converted into an electrical signal and if it 

undergoes numerous technical limitations, the distortions will also emerge.  

The noises are characterized based on time and frequency domains. With reference to 

the time domain, the noises are characterized as continuous, discontinuous, and pulse-like. 

Continuous is the gradually changing noises resembling the sound of street noise, the sound 

of the wind, office, industrial equipment, a bad phone line or the hiss of an old record and 

traffic noise. The discontinuous is the repetitive especially tonal noises like beeps, bells, or 

honks. The pulse-like is the sudden especially unharmonious and occasionally loud noises 



9 

 

like bangs, taps of the steps, thumps, clicks, and gunshots. With reference to frequency 

domains, the noises are characterized as broadband noise and narrow-band noise. The 

broadband noises appear at numerous frequencies like fizzing sounds or background hiss. 

The narrowband noises stand for a set of certain frequencies, comparatively stable tonal sine 

waves (sinusoid) like in sirens, power-supply, drones, whistle, equipment hindrances 

(chainsaws & drills), machinery engine noises, and hums. 

Therefore, over time, the noise characteristics generally vary. It is essential to employ 

a special processing scheme that adjusts automatically to noise characteristics. To name one 

is the adaptive filtration algorithms. Here the digital filtration algorithms will alter to a 

definite type of audio hindrance. The various types of adaptive filtration algorithms listed by 

Andrey (2010) are: 

1. Adaptive broadband filtration:  It works on the principle of an adaptive frequency 

algorithm. It is developed to suppress periodic and broadband noises due to mechanic 

vibrations or electric pick-ups, communication channel or recording equipment interferences, 

room and street noise. An example is shown in Figure 2.1. a recorded conversation between 

two people in a noisy street.  

 

Figure 2.1. A recorded conversation between two people in a noisy street 

 

2. Adaptive inverse filtration: In this process, the adaptive spectral correction algorithm 

is used. Adaptive inverse filtration efficiently suppresses strong periodic noises from 

mechanical vibrations or electrical pick-ups thus improve speech and balance the signal. It 

suppresses the stronger ones and boosts poor signal components at the same time.  

3. Frequency compensation: The Widrow–Hoff adaptive filtering algorithm of one-

channel adaptive compensation is used in this process. For narrow-band stationary 

interferences, this is the most successful one. The filter alters itself effortlessly preserving the 

high-quality of the speech. It eliminates narrowband stationary interferences as well as 

regular ones (vibrations, power-line pickups, electrical device noises, steady music, room, 

 

 

 

 

 

  

Before reduction After reduction 
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reverberation, traffic, water noises, etc.) together. It maintains the speech signal much better 

than other filters. An example is shown in Figure 2.2 of a Power-line buzz masking the 

conversation between two people. 

 

 

Before reduction After reduction 

 

Figure 2.2. Power-line buzz masking the conversation between two people 

 

4. Adaptive impulse filter: Pulse interferences such as radio noises, clicks, gunshots, 

knocks, etc distorts and mask speech or musical fragments which can be automatically 

restored by an adaptive impulse filtering. This filtering algorithm improves the quality of the 

signal by suppressing dominant signal impulses and thus unmasking the necessary audio 

signal and increases its intelligibility. An example of a Tapped Phone conversation interfered 

by another line’s beeping is shown in Figure 2.3.  

 

 

Before reduction After reduction 

 

Figure 2.3. A Tapped phone conversation interfered by another line’s beeping 

 

5. Dynamic signal processing: It increases the intelligibility of the speech if the signal 

fragments widely vary in level, in the case of resonant knocks (i.e. long impulses) and room 
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noises. This progress and unmask the audio signal by suppressing the dominant clicks and 

impulses and diminishing the listener’s fatigue in case of lengthy audio recordings. 

6. Stereo filtration: This is the most recent advancement in the field of noise reduction 

technologies. The difficulty in eliminating the noises could be determined with the assistance 

of dual-channel audio information monitoring and further dual-channel adaptive filtration. 

Here the process successfully diminishes crowd noises and background music by increasing 

the valuable speech signal and is ideal for recordings in big-sized rooms like restaurants, 

halls, theaters, etc. In general, it is important to be aware of these adaptive filtration 

algorithms in forensic speaker verification and there is a need to study the influence of these 

in speaker identification processes.  

2.3 Review related to background noise 

Due to the presence of background noise, speech recognition becomes very difficult. 

This is because the noise influence on speaker’s acoustic features of their recorded signal and 

makes them different from those seen during testing versus training. Various approaches have 

been implemented to improve the noise robustness of speaker recognition. The study was 

done by Berouti, Schwartz, and Makhoul (1979) to enhance the speech signals. For the same, 

the spectral noise subtraction method was used to enhance speech which was corrupted by 

broadband noise. Results showed that there was no loss of intelligibility corresponding with 

the enhancement technique. 

Techniques like Kalman filtering (Fingscheidt, Suhadi, & Stan, 2003) or spectral 

subtraction (Garcia & Rodriguez, 1996) can also be used to filter noise from speech, based on 

the prior knowledge of the noise characteristics. It is also possible to extract noise-robust 

features, e.g. relative spectral (RASTA) features (Hermansky & Morgan, 1994) from speech 

signals instead of removing the background noise.  

Kalman filtering is done with reference to estimation of the time delay of arrival 

(TDOA) of sound signals through a pair of spatially separated microphones. Following this, 

the estimated TDOAs of different microphone pairs will be used in combination with the 

microphone array geometry to localize the sound source. But, due to the one-sample-

precision of the TDOA estimation algorithm and due to noise and reverberation influences, 

the TDOA estimates only the real TDOA values, which are not identical and leads to 

relatively high variances in consecutive position estimates. This is the method to smoothen 

the speaker trajectory and assure the robustness of the signal (Bechler, Grimm & Kroschel, 

2003).  

It is also possible to ignore some parts of speech which are corrupted by background 

noise using the missing feature theory (Bonastre, Besacier & Fredouille, 2000). For example, 

consider a spectrum that has been passed through a high-pass filter.  If we assume that the 

first eight spectral magnitude features are below the threshold and are labeled as “missing.” 

Once each spectral magnitude feature in a frame is labeled as present or missing, a 
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computationally simple modification of probability models discards missing features and 

forms densities that would have been obtained by training without missing features.   

Based on the same principle of Missing Feature theory, in some instances, the relative 

spectral features (Hermansky & Morgan, 1994) from speech signal might be removed instead 

of removing the background noise. It is also possible to ignore the parts of speech corrupted 

by background noise.  Few approaches are used in statistical speakers’ models (e.g. Gaussian 

Mixture Models (GMMs). Gaussian Mixture Model (GMM) is defined as a function of the 

parametric probability density, a weighted sum of Gaussian component densities is its 

representation. This is commonly used in biometric systems, like vocal-tract related spectral 

features in speaker recognition systems thus it has the competency of symbolizing a large 

class of sample distributions. 

Researchers found that noise separation properties would become much easier in 

vowels because frequency properties of vowels are known, whereas, in the case of 

consonants, they have a wide frequency range which is difficult to separate them from noise 

using filtering techniques (Davis, 2002). 

Barinov, Koval, and Ignatov (2010) conducted a study to check the effect of channel 

compensation for forensic speaker identification using inverse filtering. The speaker was 

made to call from a cell phone to a landline phone, and the speech was recorded in two 

different manners simultaneously. The first recording (original) was recorded using a high-

quality digital recorder, and the second recording (signal from GSM channel) was recorded 

from a landline phone using a high-quality recording station. Inverse processing was used to 

compensate for the influence of the transmission channel which improves the formants 

representation accuracy. The results turned up positively, the signal which was corrupted by 

the transmission through the low-quality communication channels (GSM lines) using the 

inverse process was able to restore the original formants structure. Hence the study concluded 

that channel compensation is more transparent, convenient, and effective than cepstral mean 

subtraction, relative spectral (RASTA), etc. 

Md Imdad, Akhtar, & Md Imran (2012) conducted a study to investigate the difficulty 

of speaker verification and identification in noisy conditions. Here they described a method 

that merges missing-feature theory and multi-condition model training to model noise with 

unidentified temporal-spectral characteristics. The introduction of such a technique is very 

useful since it removes noise and avoids the problem of recognizing the voice. 

2.4 Review related to speaker identification  

There are several methods of speaker identification and it is classified as i). Speaker 

Identification by listening, ii). Speaker Identification by visual method and iii). Speaker 

identification by a machine which has two subtypes a). Semi-automatic speaker identification 

and b). Automatic speaker identification according to Hecker (1971) and Bricker and 

Pruzansky (1976).   
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2.4.1 Speaker Identification by Listening (Subjective method) 

The listening method is also known as Aural-Perceptual Speaker Identification (AP-

SPID). It is one of the oldest methods used in speaker identification. In this method, the 

examiner will be given reference samples (unknown samples) and a test sample (known 

sample) aurally. The reference samples consist of a line-up of the suspect’s speech (obtained 

from the recorded message, threat call, etc.) along with the foil samples. The test sample is 

the suspect’s speech sample, obtained at the time of interrogation (usually of the same text as 

the reference). Trained voice experts will be asked to match the test sample with one of the 

references. 

 However, several factors are affecting Aural-perceptual speaker identification with 

reference to (1). Listener- the familiarity with the suspect’s voice, training in the area of voice 

identification, hearing sensitivity, Memory, or the ability to remember the voice/speech 

characteristics of a reference sample and accurately match it with the test sample. 

In a study conducted by Mc Gehee (1937), listeners were asked to match the target 

voice from a set of five male voices. The procedure was repeated after a couple of days, 2 

weeks, 3 months, and 5 months. Results revealed 83% of correct speaker identification after 1 

day, which was sustained for a week. The percentage dropped to 68% after 2 weeks, 35% 

after 3 months, and 13% after 5 months. A similar trend of decline in percentage was found 

by Bricker and Pruzansky (1996). 

Hollien, Majewski, and Doherty (1982) conducted studies on the effect of familiarity 

with a suspect’s voice on speaker identification and found that the participants were able to 

identify a familiar voice even under difficult conditions. 

(2). The speaker related- Here the unique speech characteristics that are the voices 

that have unique characteristics are easier to identify. Apart from this, the disguise that is 

depending on the type of disguise used by the perpetrator; his voice may or may not be easily 

identifiable. The last is the stress resulting in different emotions and accents which is a 

resultant of dialects. 

According to the study done by Reich and Duke (1979), the effect of disguise on 

speech recognition was studied where they concluded that the most damaging disguises of 

various disguises are free disguise and disguise in the form of a strong nasalized speech. 

(3). Speech sample related- This includes the length and quality of the sample, the 

environment in which samples have been recorded, and contemporary versus non-

contemporary samples. Speaker identification scores dropped to 42% when the samples are 

non-contemporary (Rothman, 1977). Various authors like Kunzel (1995) and Pollack, Pickett, 

and Sumbey (1954) states that for speaker identification tasks, speech samples should be 

present for a minimum of 30 seconds.   
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2.4.2 Speaker Identification by Visual Examination of Spectrograms 

The second method of speaker identification is based upon visual examination by 

comparison of spectrograms. During the mid-1940s, the first sound spectrograph (Sonagraph) 

was invented by the scientists of Bell Telephone Laboratories, U.S.A. A spectrograph is a 

three-dimensional representation of speech sounds where the X-axis represents time, Y-axis 

represents frequency and Z-axis represents intensity. In the case of speaker identification, 

trained experts were given the spectrograms of different utterances of word/phrase and 

determined whether the utterances are from the same speaker or not. Kersta (1962) published 

a paper on ‘Voiceprint identification’ in which he claimed that speaker identification using 

spectrograms yields an error rate less than 1% hence conclude speaker identification using 

spectrogram is an efficient method in speaker identification.  

A large-scale study done by Tosi et al. (1972) used spectrogram matching. Results 

revealed 86% to 96% of correct speaker identification. They also focused on issues such as 

the number of cue words required for speaker recognition, the effect of recording conditions, 

the effect of context of cue words on speaker identification, contemporary v/s non-

contemporary samples, and so on. 

Reich et al., (1976) investigated the effect of vocal disguise upon spectrographic 

speaker identification. The speakers were made to produce two sets of the sentence in normal 

speaking mode, hoarse disguise, old-age disguise, hypernasal disguise, free disguise, and 

slow rate disguise. Results revealed certain vocal disguises markedly interfere with 

spectrographic speaker identification. Performance in speaker identification ranged from 

14.17% (slow-rate) to 35% (free-disguise) and 56.67% when there was no disguise in the 

utterance. 

A study done by Pamela (2002) attempted at benchmarking using spectrograms. The 

reliability of voiceprints was investigated by extracting the acoustic parameters in the speech 

samples using wideband spectrograms. A total of six Hindi-speaking males participated in the 

study, and the target words were 29 bi-syllabic words which consisted of 16 plosives, 5 

nasals, 4 affricates, and 4 fricatives in the word medial position. Acoustic parameters such as 

formant transition duration, VOT, closure duration, duration of phonemes were measured. 

The results indicated that 67% of the measures varied across speakers and 61% of the 

measures varied within speakers. 

Ranganathan (2003) investigated speaker identification using spectrograph in disguise 

speech. Results revealed no significant difference between accuracy speaker identification in 

normal and disguised conditions. 

Arjun & Hema (2014) conducted a preliminary study on ‘Speaker identification using 

spectrographic analysis on fricatives in Kannada speaking individuals. Acoustic parameters 

such as fricative duration, fricative amplitude, and center frequency of frication were 

measured. Results showed relatively positive results on a few specific combinations of 

acoustic parameters. 
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2.4.3 Speaker Identification by Machine Method (Objective Method) 

Speaker identification by machines became popular in the 1970s. In the semi-

automatic method, the examiner interprets the results provided by the system. In the 

automatic method, the contribution of the examiner is minimal and the system makes use of 

several algorithms to assume who the speaker is, or whether the speaker is actually who he 

claims to be. The automatic speaker recognition process involves two phases namely, the 

training phase and the testing phase. In the training phases, each speaker’s samples are 

collected and stored as a database. While in the testing phase, the speaker’s utterance is fed 

into the system. The speaker recognition system compares it with the stored database to 

determine the identity of the speaker or verify the speaker’s identity. To arrive at a decision, 

the automatic speaker identification goes through the following steps. They are: i) Feature 

extraction; ii) Pattern matching and iii) Classification. 

Features are certain acoustic parameters that characterize an individual’s speech. Few 

desirable characteristics for the features are: i) They must be highly discriminable across 

speakers ii) Should vary minimally from session to session and iii) Must be difficult to 

impersonate. 

During the 1970s speakers were compared based on certain parameter sets such as 

fundamental frequency, vowel, and nasal consonant spectra, global source spectrum slope, 

and word duration. Over the years, several feature vectors such as formant frequencies, 

Linear Prediction Coefficient (LPC) (Atal, 1974), Cepstral Coefficients (Jakkar, 2009; 

Medha, 2010 & Sreevidhya, 2010) and Mel-Frequency Cepstral Coefficients (Chandrika, 

2010; Hassan, Jamil, Rabbani & Rahman, 2004; Plumpe, Quateri & Reynolds, 1999; Tiwari 

et al., 2010) have been employed for speaker identification. 

Noll (1964) was the first to implement cepstrum (an anagram of frequency) as a tool 

for automatic pitch detection. That is taking the Inverse Fourier Transform (IFT) of the 

logarithm of the estimated spectrum of a signal result in Cepstrum. The voiced speech sounds 

are produced from the vocal source and vocal tract. The periodic puffs of air emitted by the 

vocal cords constitute the source signal s(t). The effect of the vocal tract is entirely precised 

by its impulse response h(t) such that the output speech signal f(t) equals the convolution of 

s(t) and h(t) (Figure 2.4). The output of the vocal source and vocal tract are almost 

independent or simply identifiable and separable. The effects of vocal source and vocal tract 

are segregated by the Fourier transform (decomposing the signal into sine or cosine 

component) of the logarithm of the power spectrum. 

 

Figure 2.4: A basic system for the production of voiced speech sounds. 
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The effect of the vocal tract is to produce a “low-frequency” ripple in the logarithm 

spectrum, though the periodicity of the vocal source exhibits itself as a “high-frequency” 

ripple in the logarithm spectrum. Hence, the spectrum of the logarithm power spectrum has a 

sharp peak equivalent to the high-frequency source ripples in the logarithm spectrum and a 

broader peak corresponding to the low-frequency format structure in the logarithm spectrum 

(Figure 2.5). The peak corresponding to the source periodicity can be made more distinct by 

squaring the second spectrum. This function, the square of the Fourier transform of the 

logarithm power spectrum, is called the "cepstrum" (Noll, 1967). 

 
Figure 2.5: Schematic representation of the extraction of Cepstrum 

Various studies were done on automatic speaker identification using cepstral 

measurements. Luck (1969) used cepstral measurements for speaker identification. The 

standard test phrase used was “My code is______”, where several feature vectors were 

extracted for comparison. The verification decision was treated as a two-class problem were, 

the speaker being either the authorized speaker or an imposter. Authorized speaker’s samples 

were considered as reference data. The distance between the test samples and the reference 

sample was checked. Based on the nearest reference distance with that of the test sample’s 

distance, judgment is made. Results revealed there were 6% to 13% error rates when 4 

authorized speakers and 30 imposters were examined.  

Atal (1974) investigated the effectiveness of automatic speaker recognition by several 

parameters using a linear prediction model. A total of 10 speakers participated in the study 

where, the speech data considered were a total of 60 utterances, where there were 6 

repetitions of the same sentence. For every 50 msec from the speech sample at 10 kHz, 

twelve predictor coefficients were determined. Impulse response function, the autocorrelation 

function, the area function, and the cepstrum function were the predictor coefficients and 

other speech parameters that were derived and were used as input to an automatic speaker 

recognition system. The identification decision was done based on the distance between the 
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test sample vector and the reference sample vector. The speaker matching with the smallest 

distance of the reference vector was identified as an unknown speaker. Whereas in 

verification, the speaker was verified if the distance between the test sample vector and the 

reference vector for the claimed speaker is less than a set threshold. Among all the parameters 

examined, cepstrum was seemed to be the most successful in providing identification 

accuracy of 70% for speech having a duration of 50 msec. it was also found that when the 

duration of the sample was increased to 0.5 sec, identification accuracy was 98%. 

Meanwhile, verification accuracy was calculated where for 50 msec duration of speech 

sample it was 83% and when the duration increased to 1-sec verification accuracy increased 

to 98%. 

2.4.3.1 Mel-Frequency Cepstral Coefficients (MFCCs) 

Numerous techniques are available for parametrically exhibiting the speech signal for 

speaker recognition tasks, such as Mel-frequency Cepstral Coefficients (MFCCs), Linear 

Prediction Coding (LPC), and so on. The MFCCs are provoked by studies of the human 

peripheral auditory system. Among them, MFCCs are most accepted and best recognized. 

MFCCs are derived from the known variation of the human ear’s critical bandwidths with 

frequency (Hansen & Proakis, 2000). The two main filters used in MFCCs have linearly 

spaced filters and logarithmically spaced filters. To incorporate the phonetically essential 

characteristics of speech, MFCCs will be used in the speech signal. A series of calculations 

will take place which uses cepstrum with a nonlinear frequency axis following mel scale. To 

get mel cepstrum, the speech signal will be windowed first using the analysis window and 

then Discrete Fourier Transform will be computed. The main rationale behind MFCC is to 

mimic human ears behavior (Figure 2.6). 

 

Figure 2.6: Block diagram of the MFCC processor 

When a continuous speech is passed into frame blocking, it blocks the continuous 

speech signal into frames of N samples. The adjacent frames will be segregated by M (M<N). 

Therefore the first frame compresses of first N samples; meanwhile, the succeeding frame 

begins with M samples following the first frame and overlaps it with N-M samples and so on. 

To minimize the signal discontinuity at the beginning and end of each frame, windowing will 
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take place. This is done to minimize the spectral distortion. Then the signal will be passed 

into Fast Fourier Transform, which alters each frame of N samples from the time domain into 

frequency domain which implements Discrete Fourier Transform (Linde, Buzo & Gray, 

1980).  As we know that the speech signal consists of tones with different frequencies. Using 

the ‘Mel’ scale a subjective pitch is calculated, for every tone with an actual frequency. The 

mel-frequency scale is linear frequency spacing below 1000Hz and logarithmic spacing 

above 1000Hz. As a reference point, the pitch of a 1kHz tone, 40dB above the perceptual 

hearing threshold, is defined as 1000 mels (Seddik, Rahmouni, & Sayadi, 2004). Hence Mels 

for a given frequency f in Hz can be calculated using the formula “Mel(f) = 

2595*log10(1+f/700)”. 

 

The filter bank is used to stimulate the subjective spectrum which is spaced evenly on 

the mel-scale (Figure 2.7). Filter bank has a triangular bandpass frequency response and the 

spacing as well as the bandwidth is decided by a constant mel frequency interval.  

 

 
 

Figure 2.7: Example of Mel-spaced filterbank 

 

In the final step, the log mel spectrum will be converted back to the time domain 

using the Discrete Cosine Transform (DCT) because the mel spectrum coefficients are real 

numbers (and so are their logarithms). Therefore the result is called the Mel frequency 

cepstrum coefficients (MFCCs). The MFCCs may be calculated using the following equation. 

 

For the calculation ‘K’ the coefficient length is typically chosen as 20.   constitute 

cepstrum. A set of mel-frequency cepstrum coefficients is calculated by applying this for 

every speech frame. This set of coefficients is called an acoustic vector. These acoustic 

vectors are used to symbolize and recognize the voice characteristic of the speaker. As a 

result, every input utterance is altered into a sequence of acoustic vectors.  

Numerous studies have been conducted on speaker identification using MFCCs. 

Hasan, Jamil, Rabbani, and Rahman (2004) have used Mel-Frequency Cepstral Coefficients 

for feature extraction and vector quantization in a security system based on speaker 
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identification. A total of 21 speakers participated in the study. During framing in linear 

frequency scale different types of windows were used such as triangular, rectangular, and 

hamming windows. The hamming window yielded a better result when compared to the 

triangular and rectangular windows. Hamming window is the sum of rectangle and hanning 

window and it is amplitude weighting of the time signal which is used with gated continuous 

signals which give a slow onset and cut-off in turn to decrease the ability to generate side 

lobes in their frequency spectrum. This window has similar properties to the Hanning 

window with the supplementary feature which suppresses the first sidelobe, which gives the 

best results for a large signal. The study revealed that when the codebook size is 1 speaker 

identification score was 57.14% as the codebook size increased to 16, the speaker 

identification increased to 100%. Hence it was concluded that the combination of Mel-

Frequency and Hamming windows gives the best results.  

Mao, Cao, Murat, and Tong (2006) used linear predictive coding (LPC) parameter 

and Mel Frequency Cepstrum Coefficient (MFCC) for speaker identification. The text-

dependent recognition rate of 50 speakers improved from 42% to 80% and the text-

independent recognition rate of 50 speakers improved from 60% to 72%.  

Pruthi and Epsy-Wilson (2007) extracted acoustic parameters from nasalized vowels 

for automatic detection and reported accuracies of 96.28%, 77.9%, and 69.58% using Story 

databases. 

According to the study conducted by Wang, Ohtsuka, and Nakagawa (2009), 

integrated new feature called phase information in MFCCs on speaker identification task. The 

speech database consists of normal, fast, and slow speaking modes. 35 Japanese speakers 

participated in the study NTT database was used in the study. NTT database consists of 

sentences uttered by the speakers (on five sessions over ten months). Results revealed that in 

all speaking there was robustly seen in phase information than the original information. Using 

the phase information, the speaker identification error rate was reduced by 78% for clean 

speech.  Also, the error rate reduced remarkably when new phase information was integrated 

with MFCCs by 20%~70% in comparison with using only MFCC in a noisy environment. 

The study also evaluated speaker verification experiments using phase information and found 

very effective results.   

A study was conducted by Singh and Rajan (2011) to evaluate the accuracy affecting 

factors of MFCCs and Vector Quantization based speaker recognition system. The results 

revealed background noise was the most dominating factor which degrades the accuracy of 

the speaker recognition system whereas; speech-related factors and sample length were less 

critical. However, Gill, Kaur, and Kaur (2010) has used Vector Quantization (VQ) 

successfully in speaker identification task. This process involves the extraction of a small 

number of representative feature vectors that characterize the speaker. Following this, a 

specific speaker codebook is formed based on the cluster (small representative feature 

vectors). This is based on the principle of block coding under the lossy data compression 
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method fixed to the fixed-length algorithm (Md Rashidul Hasan, 2004). The following Figure 

2.8 shows the 2-dimensional representation of Vector Quantization.  

 

Figure 2.8: Depicting 2-dimensional Vector Quantization. 

Each pair of numbers falling in a particular region is approximated by a star 

associated with the region. The stars are called as codevectors and the region shown by the 

borders are called encoding regions. The codebook is a set of all codevectors and the set of all 

encoding regions is called the partition of space. The following Figure 2.9 illustrates the 

recognition processes.  

 

Figure 2.9. Illustration of the recognition process 

Apart from the above review specifically related to the parameter MFCC, Tiwari 

(2010) used MFCCs to extract, characterize, and recognize the information about speaker 

identity. During Mel-frequency wrapping the subjective spectrum was stimulated using a 

filter bank. The author used a different number of filter settings (12, 22, 32, and 42) to check 
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its effectiveness. Out of these, the results showed 85% effectiveness using MFCCs with 32 

filters in the speaker recognition task. 

MFCCs were also used to study the influence of the nasal co-articulation in 

Malayalam language samples and an attempt was made to obtain a benchmark for the same. 

Jyotsna (2011) studied speaker identification using cepstral coefficients and MFCCs in 

Malayalam nasal coarticulation. Results showed using cepstral coefficients, the benchmark 

for speaker identification was 80%, and using MFCCs it was 90% for nasal co-articulation in 

Malayalam.  

Sukor and Syafiq (2012) conducted a study on speaker identification using MFCCs 

procedure and noise reduction method. The study is an implementation of speech recognition 

as medium security access control to restricted services such as phone banking system, voice 

mail, or access to database services. The background noise was removed by passing the 

signal to the pre-treatment process. Then the MFCCs method was used to extract the features 

from the speech signal. Then features will be matched in the database using vector 

quantization. The main goal of the study was speaker identification, where a speech signal 

from an unknown speaker was compared with the database of the known speaker using text-

dependent utterances. From the experimental results, this method has explained that it was 

able to recognize the correct voice pattern.   

Ridha (2014) studied the benchmark for speaker identification using nasal continuants 

in Hindi speakers. Nasals /m/, /n/ and /ŋ/ were chosen which were embedded in words in all 

positions. Results revealed 100%, 90% and 100% of correct identification obtained for /m/, 

/n/ and /ŋ/ respectively when live recording was compared with live recording. Meanwhile, 

when samples were compared within the same recording conditions (mobile network 

recording was compared with mobile network recording) the percent correct identification 

was 50%, 80%, and 90% respectively. Among /m/, /n/ and /ŋ/, /ŋ/ had best percent correct 

speaker identification except under telephone equalized/ not equalized conditions. Under 

these conditions, /m/ had the best percent correct speaker identification. Similar findings were 

reported by Ayesha (2016), where the percent correct speaker identification score for /m/, /n/, 

and /ŋ/ was 70%, 80%, and 100%, respectively when samples from the same recording 

conditions were compared within the same recording conditions (direct recording were 

compared with direct recording) using MFCCs. The percent correct speaker identification 

score for /m/, /n/, and /ŋ/ was 60%, 70%, and 60%, respectively when samples from the same 

recording conditions were compared within the same recording conditions (network 

recording were compared with network recording) using MFCC. The percent correct speaker 

identification scores decreased drastically when network recording was compared with 

network recording. Overall, the results revealed that the velar nasal continuant /n͘͘͘͘/ had the 

best percent correct speaker identification in this study. 

Nithya (2015) reported a benchmark for speaker identification using three Tamil nasal 

continuants in live recording and mobile network recording conditions. Results of the study 

showed that the percentage of correct identification in live recording condition for /m/, /n/ 
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and /n˳/ was 97.6%, 85.6% and 76.5% and in mobile network conditions the scores were 

83.5%, 65.8% and 68.3% respectively.  

Chandrika (2015) reported a benchmark for speaker identification using three 

Kannada nasal continuants in live recording and mobile network recording conditions. The 

author had also compared the MFCCs across three age groups of 20≤30 years, 30≤40 years, 

and 40≤50 years. Results of the study revealed that the nasal continuant /n./ had the highest 

percentage of correct speaker identification score in case of direct recording and /m/ and /n/ 

had the highest score in case of network recorded samples. 

 

2.4.3.1 Speaker Identification studies on vowels 

Generally, in most forensic analysis, the significant phonemic cues of certain 

phonemes only will be considered. Among these, speech sounds, vowels, nasals, and 

fricatives (in decreasing order) provide better speaker recognition compared to plosives. This 

is because they are comparatively easy to be identified in speech signals and their spectra 

contain features that reliably distinguish speakers (Shaughnessy, 1987; Sigmund, 2008). 

Vowels have proven to be effective for characterizing individual speakers and have been 

widely used for speaker recognition and forensic analysis. 

To list out other few Indian reviews, for example, Jakhar (2009) studied the 

benchmark for text-dependent speaker identification in the Hindi language using cepstrum. 

Live and telephonic recordings were done. For five speakers, the results in terms of highest 

speaker identification scores were 83.33%, 81.67% and 78.33% for vowel /a:/, /i:/ and /u:/ 

respectively. For ten speakers, the results in terms of highest speaker identification scores 

were 81.67%, 68.33% and 68.33% for vowel a:/, /i:/ and /u:/ respectively. Whereas for twenty 

speakers the results in terms of highest speaker identification scores were 60%, 50%, and 

43.33% for vowel a:/, /i:/ and /u:/ respectively for the conditions such as live v/s live, mobile 

v/s mobile, and live v/s mobile respectively. The results indicated that as the number of 

speakers increase, the percentage of correct speaker identification decreases, and also scores 

are better when conditions are similar. Among /a:/, /i:/ and /u:/, /a:/ yielded better results in 

live recording and vowel /i:/ in mobile recording condition. 

With reference to the previous study on speaker identification using cepstrum, 

Sreevidya (2010) conducted a study to check the benchmark in the Kannada language by 

text-independent speaker identification method using cepstrum in both direct and mobile 

recording conditions. The results of the study showed indirect speech and reading, vowel /u:/ 

had the highest score (70 and 80%), and vowel /i:/ had the highest score (70 and 67%). Also, 

the study quoted that for both the direct verse mobile recordings, for all vowels, and groups 

of speakers, the results were below chance level. 

Medha (2010) studied the benchmarks for speaker identification of three long vowels 

/a:/, /i:/, and /u:/ using cepstral coefficients on text-independent data in the Hindi language. 

Among 20 Hindi speakers who participated in the study, 10 were males and 10 were females. 
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For females, the percent correct speaker identification scores were 40%, 40% and 20% for 

/a:/, /i:/ and /u:/ respectively. Whereas for males, it was 80%, 80% and 20% for /a:/, /i:/ and 

/u:/ respectively. Therefore, the benchmarking for female speakers was below chance level 

whereas for male speakers it was 80% for the vowels /a:/ and /i:/. Hence the study concluded 

that in text-independent conditions, the extraction of cepstral coefficient quefrency and 

amplitude is useful in speaker identification for vowels /a:/ and /i:/ only in males.   

Chandrika (2010) compared the efficacy of a speaker verification system using 

MFCCs in the Kannada language. Ten Speakers participated in the study and the material 

consisted of long vowels (/a:/, /i:/, and /u:/) in medial position occurring in five targets 

Kannada words embedded in sentences (text-dependent). Speech recording was carried out in 

two conditions: mobile network and digital recording. MFCCs values were extracted for all 

the long vowels and the results indicated an overall verification of 80%. The overall 

performance of speaker recognition was 90% to 95% for the vowel /i:/ whereas, the accuracy 

of performance of vowel /i:/ was marginally better than /a:/ and /u:/. 

Ramya (2011) used electronic vocal disguise and checked speaker identification using 

MFCCs. The percent correct identification was beyond chance level for electronic vocal 

disguise for females. Interestingly vowel /u: / had higher percent identification (96.66%) than 

vowel /a: / 93.33 %, and /i: / 93.33%. 

Suman and Hema (2015) aimed at establishing the benchmark for speaker 

identification using MFCCs on vowels following nasal continuants in Kannada language. 

Total of twenty males participated in the study. Sentences consists of /a:/ /i:/ and /u:/ vowels 

following the nasal continuants /m/ and /n/. Recordings were done in live and mobile network 

recording. Results revealed in live recording, on comparison among the three vowels 

following the nasal continuant /m/, /i: / was better followed by /a: / and /u:/. Whereas for the 

nasal continuant /n/ the vowel /a: / was better followed by /i: / and /u: /. In mobile recording, 

on comparison among the three vowels following the nasal continuant /m/, /a: / was better 

followed by /i: / and /u: /. Similarly, for the nasal continuant /n/ the vowel /a: / and /u: / were 

better followed by /i: /. In live verses mobile recording, on comparison among the three 

vowels following the nasal continuant /m/, /i: / was better followed by /a: / and /u: /. Whereas, 

for the nasal continuant /n/ the vowel /i: / and /u: / were better followed by /a: /. 

Arjun (2015) studied the benchmark for speaker identification using Kannada vowels 

preceding nasal continuants. Twenty males participated in the study. The sentences consisted 

of words with three basic vowels /a:/, /i:/ and /u:/ preceding nasal consonants /m/ and /n/. 

Recording was done under two conditions live and mobile network recording. Results for 

vowel /a:/ showed 93% of correct speaker identification than vowel /i:/ and /u:/ across nasals 

/m/ and /n/, both (/i:/ & /u:/) showed similar results with 84% when live recording was 

compared with live recording when 20 speakers were considered. When mobile network 

compared with mobile network vowel /a:/ with 74% of correct speaker identification than 

vowel /i:/ and /u:/ and across nasals, /m/ with 61% for 20 speakers. Vowel /a:/ with 94% and 

both the nasals /m/ and /n/ with 88% had the highest correct identification scores when the 
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live recording was compared with live recording considering 10 speakers. Vowel /a:/ with 

83% and the nasal /n/ with 71% had the highest correct identification scores when the mobile 

network was compared with mobile network recording for 10 speakers. Hence the study 

concluded that vowel /a:/ preceding both nasals /m/ and /n/ are best for speaker identification 

compared to other vowels. 

Aswathy (2016) studied the effect of native versus non-native languages in speaker 

identification in the lab recording condition. Ten male participants were taken for the study in 

the age range of 20 to 25 years with Kannada as their mother tongue. The material consists of 

10 hypothetical Malayalam sentences and 15 Kannada sentences containing vowels /a:/, /i:/, 

and /u:/ in the word medial position. The samples were recorded and analyzed using PRAAT 

Software and SSL Workbench. Results revealed average percent correct speaker 

identification for vowels /a:/, /i:/ and /u:/ to be 95% for condition I (Kannada language v/s 

Kannada language). For condition II (Malayalam language verses Malayalam language) 

average percent correct speaker identification for vowels /a:/, /i:/ and /u:/ were 94%, 87% and 

75% where vowel /a:/ was found to be the better on comparison with /i:/ and /u:/ for speaker 

identification through MFCCs. For the Condition III (Kannada Verses Malayalam) average 

percent correct speaker identification for vowels /a:/, /i:/ and /u:/ were 92%, 79% and 73% 

where vowel /a:/ was found to be the better followed by /i:/ and then /u:/ for speaker 

identification through MFCC. Therefore the study concluded that vowel /a:/ acts as a better 

cue for speaker identification irrespective of the language used when compared to /i:/ and 

/u:/. 

To summarize, most of studies reports that vowel /i:/ was  better compared to /a:/ and 

/u:/ for speaker identification. Chandrika (2010) and Jakhar (2009) found vowel /a:/ to be 

better in live conditions and vowel /i:/ in mobile network conditions. Arjun (2015) and 

Aswathy (2016) found vowel /a:/ was better compared to /i:/ and /u:/.  Medha (2010) found 

vowel /a:/ and /i:/ were better. Interestingly Sreevidya (2010) and Ramya (2011) found a high 

percent speaker identification for /u:/. However, Suman (2015) found mixed results across 

vowels. Thus, the review provides the significance of MFCCs, noise reduction methods, and 

vowels to be considered or essential for speaker identification.  

It is evident from these reviews that MFCCs are perhaps the best parameter for 

speaker identification and less susceptible to variation of the speaker’s voice and surrounding 

environment (noise). Also, the vowels may be the most suitable among speech sounds for 

speaker identification. However, to date, there are limited studies on vowels as strong 

phonemes for speaker identification using semi-automatic methods in the presence and 

absence of noisy situations and after the application of speech signal to any noise reduction 

techniques. In the present study, the Sound Cleaner software (speaker recognition instrument) 

is used to reduce the noise and study the effect of the same on speaker identification. In 

forensic sciences, the scientific testimony has to be provided to impress any court of law and 

from whichever country the research would have been executed. However, for any result to 

be called scientific, it has to be measured, quantified, and reproducible if and when the need 
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arises. Therefore, a method to carry out these analyses becomes a must. In this context, the 

present study was conducted. Hence, the present study aimed to investigate the effect of noise 

and noise reduction techniques on speaker identification with reference to the parameter 

MFCC on the long vowels in the Kannada language.  

Thus, the objectives of the study were initially (1), (2), and (3)  to evaluate the percent 

correct Speaker Identification using MFCCs on the long vowels in the Kannada language for 

lab recording conditions and field recording (embedded with noise)) before and after the 

application of the noise reduction technique. Next (4) to compare speaker identification using 

MFCCs on long vowels in the Kannada language in lab recording conditions versus field 

recording (embedded with noise) before the application of noise reduction technique. Later 

(5) to evaluate the percent correct Speaker Identification using MFCCs on the long vowels in 

the Kannada language for lab condition versus field recording after the application of noise 

reduction technique (probably embedded without noise). Finally (6) to compare the percent 

correct Speaker Identification using MFCCs on the vowels in the Kannada language for field 

recording (embedded with noise) before the application of noise reduction technique versus 

field recording after the application of noise reduction technique (probably embedded without 

noise).  

1. Lab condition.  

2. Traffic condition before noise reduction technique  

3. Traffic condition after noise reduction technique  

4. Lab recording versus traffic recording before noise reduction technique. (2) 

5. Lab recording versus traffic recording after noise reduction technique. (5) 

6. Traffic condition before noise reduction technique versus Traffic condition after noise 

reduction technique (4) 
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CHAPTER III 

METHOD 

 

3.1 Participants 

Native Kannada language-speaking neuro-typical adult male and female from in and 

around Mysuru was considered as participants. They had a minimum of ten years of formal 

education with the Kannada language as one of the subjects and all the participants belonged 

to the Mysuru dialect of Kannada language and were drawn from the work/residential place 

in and around Mysuru, Karnataka, India. A total of 60 participants with 30 males and 30 

females in the age range of 20-40 years were considered for the study and the demographic 

details are listed in Table 3.1. The inclusion criteria for the participants were no history of 

speech, language, hearing problems, no associated psychological or neurological problems, 

and no reasonable cold or respiratory conditions at the time of recording, and normal oral 

structure. The hearing was screened using the Ling sound test (Ling, 1978) or 

(Administration of Screening checklist from POCD, AIISH, Mysuru). Kannada Diagnostic 

Picture Articulation Test (KDPAT- Appendix A) (Deepa & Savithri, 2010) was administered 

by a Speech-Language Pathologist to rule out any misarticulations present in the speech. All 

were native speakers of the Kannada language and used English and Hindi as their second 

language and very few were aware of the third language and it was reported to be Tamil and 

Telegu. All the participants had varied professions. The profession, education, and language 

use were not controlled, however, the major inclusionary criteria were the participants 

speaking Kannada as their first language and only this was focused to consider any 

individuals as the participants for the present study.  

 

Table 3.1 Demographic details of the participants 

Participant No.  Name Age/gender Education 

1.  Bhanumathi. S. N. 29years/Female UG 

2.  Shobha 30 years/Female UG 

3.  Bhagya  30 years/Female PG 

4.  Shrilekha. B. 23 years/Female PG 

5.  Padmashree. B 24 years/Female UG 

6.  Bhuvana. S. 24 years/Female PG 

7.  Navya. B. N. 24 years/Female PG 

8.  Anitha. K. B. 28 years/Female UG 

9.  Rajeshwari  28 years/Female UG 

10.  Meenakshi Ghasti 32 years/Female UG 

11.  Shruthi. M. S 32 years/Female UG 

12.  Poornima. N. 32 years/Female PG 

13.  Renu Raju Neelgar 32 years/Female PG 

14.  Nagarathna. M. N. 23 years/Female UG 

15.  Latha 33 years/Female UG 
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16.  Shashirekha 36 years/Female UG 

17.  Radhamma 37years/Female UG 

18.  Bhagyalakshmi 37years/ Female UG 

19.  Anitha. S. 38years/Female PG 

20.  Ashwini. A 38years/Female PG 

21.  Meenakshi. K. C. 40 years/Female PG 

22.  Nagalakshmi . S. L. 42 years/Female PG 

23.  Sreenidhi. K.A 34 years/Female UG 

24.  Manasa 28 years/Female PG 

25.  Megha. J 32years/Female PG 

26.  Akshatha 30 years/Female UG 

27.  Bhagya. R 32 years/Female UG 

28.  Madhu 29 years/Female PG 

29.  Jyothi. K 30 years/Female UG 

30.  Preethi. G 25 years/Female PG 

31.  Manjesh 28 years/Male PG 

32.  Veeresh. K. V. 32 years/Male UG 

33.  Ramu. K. 27 years/Male UG 

34.  Sandeep 30 years/Male UG 

35.  Puneet Kumar.T  29 years/Male UG 

36.  Raghavendra. R 28 years/Male UG 

37.  Vinod. P 28 years/Male UG 

38.  Raghavendra 

Nalatawad 

28 years/Male PG 

39.  Shivakumar 28 years/Male PG 

40.  Raghava Kumar 27 years/Male PG 

41.  Umaprasad 27 years/Male UG 

42.  Manjunath. S. R. 27 years/Male UG 

43.  Pradeep Kumar 24 years/Male PG 

44.  Deepak. P 23 years/Male PG 

45.  Naveen Kumar. R 30 years/Male PG 

46.  Raghavendra. G. N 31 years/Male UG 

47.  Manjegowda 32 years/Male PG 

48.  Ranachandra 32 years/Male UG 

49.  C. Chethan 32 years/Male PG 

50.  K. M. Yogananda 34 years/Male UG 

51.  Shridhar. R 34 years/Male PG 

52.  Mallikarjuna 35 years/Male PG 

53.  Jagadeesha 35 years/Male PG 

54.  Vinay Nag 35 years/Male UG 

55.  Mahesh. E 38 years/Male UG 

56.  Devaraje Gowda 38 years/Male UG 

57.  Shreepathi 38 years/Male PG 

58.  Shivappa. S. 39 years/Male PG 

59.  Dharshan Hiremath 20 years/Male PG 

60.  Harisha 23 years/Male PG 

Note: * UG- Undergraduate and PG-Post Graduate  
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3.2 Procedure 

3.2.1 Material 

Hypothetical Kannada meaningful sentences (forensic speech sample) with commonly 

occurring long vowels /a:/, /i:/, /u:/ embedded in the medial position of the twenty-one words 

of nineteen sentences. Among which fifteen words were only considered for the study and 

these target words formed the material for the recording task which is listed in Table 1 of 

Appendix B. 

3.2.2 Recording Software  

Speech samples of participants were recorded individually. The sentences were 

presented visually and participants were instructed to read the sentences in a normal modal 

voice. The written material was provided to the participants and was made familiarized 

before recording begins. The recording was done for three trails (Trail I, II, and III). Vowels 

occurring consecutively five times in the sentences of Trial II and III only were selected for 

analysis out of three Trails. Where Trial I acted as a model setter for the following two trails. 

Participants were informed about the nature of the study. Written consent (Appendix C) was 

taken from all the participants. The recordings were done in two different conditions: 

Condition I- Laboratory recording and Condition II- Traffic Field recording. The time gap 

between these two conditions was two weeks. For lab recording condition, Computerized 

Speech Lab (CSL 4500 model; Kay PENTAX, New Jersey, USA) (St. Petersburg, Russia, 

Speech Technology Center) was used.  A desired 16 Bit (analog-digital) computer memory 

was used (i.e., sample frequency of 16 kHz) and later for analysis, it was converter at a 

required sampling frequency of 8 kHz using PRAAT software.  The distance between the 

mouth and the dynamic microphone (Shure) was kept constant at approximately 10 cm. 

These recordings were stored in .wav format. This would consist of the participant’s speech 

sample (target) recording for 4-5 minutes (19 sentences repeated for 3 trials). After two 

weeks of a gap, the field recording was carried out.  

In this two weeks gap, a pilot study for 10 speakers (5 males and 5 females) in two 

field conditions were carried out to decide on the better noisy condition. Under field 

conditions, recordings were done in traffic and canteen conditions. For these field conditions, 

Olympus digital voice recorder (LS100) with attached dynamic microphone (Shure) was 

used for recording the participants’ speech in the situations like traffic and canteen condition 

having background noise of around 80 dB (A) (Kalaiselvi  & Ramachandraiah, 2010). In the 

two field recordings, the digital voice recorder was turned ‘on’, and the dynamic microphone 

(Shure) was kept constant at approximately 10 cm. Before the target speech recordings of the 

participants, as an initial recording, the ambient noise was recorded for 5-10 seconds which 

ascertain the reference of ambient noise. This was followed by a participant’s speech sample 

(target) recording for 4-5 minutes (19 sentences repeated for 3 trials). The field recording 

samples were transferred from a digital voice recorder to a computer using a USB cable. The 

samples were stored in .wav files so that the analysis could be carried out efficiently. Among 

the two field conditions, there was constant background noise for the traffic condition and 
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very intermittent background noise for the canteen condition. For the present study, the 

constant background noise was very important, since it is easy to identify and process when 

the noise is continuous than intermittent and also for any noise reduction technique to be 

applied. Hence, the traffic condition was preferred as a field recording condition for all the 

participants. Thus, the recorded samples of Condition I and Condition II were uploaded to 

one common computer for further analysis.  

3.2.3 Analysis software 

3.2.3.1 Sound Cleaner Software 

The individually recorded samples were analyzed under three Steps: Step I, the audio 

files of condition I and condition II was not subjected to any noise reduction algorithm. In 

Step II all the audio samples were subjected to noise reduction algorithm using Sound 

Cleaner Signal Enhancement Program (Noise Cancellation Software, Model 5142) (Kay 

PENTAX- A Division of PENTAX Medical Company, Lincoln Park, New Jersey, USA & 

Speech Technology Center, St.Petersburg, Russia). Step III was the final analysis using 

WORKBENCH software. The Sound Cleaner Program consists of a number of inbuilt 

modules/scheme with a series of inbuilt sub-modules such as, ‘Input’, ‘Waveform-input’, 

‘Frequency Compensation’, ‘Equalizer’, ‘Inverse Filter’, ‘Broadband Filter’, ‘Dynamic 

Filter’, ‘Clipping’, ‘Amplifying’, ‘Mu-Transform’, ‘Waveform-output’, ‘Slowing’, 

‘Output/file’ and ‘Speaker’. Each of the windows belongs to a separate processing module 

and the entire signal processing scheme consists of a number of modules. Before processing 

the signal it was saved in a .wav file. Then ‘play’ button from the ‘Input’ process module was 

pressed where the data starts flowing from the starting ‘Input’ process module (.wav file) to 

the final one (.wav file) through intermediate/sub-modules. A pilot study was carried out to 

construct the necessary combination of modules for processing, thus supporting the flexibility 

of the process scheme by adjusting to the concrete noise parameters.  

Thus in a PILOT study, 5 participants’ speech samples were subjected to the different 

permutations (at least 2-3) of the processing scheme of Sound Cleaner software consisting of 

a single or a number of the processing modules mentioned above. The output of these 

processed speech samples (analysis after Step II) of 5 participants was subjected to the 

perceptual judgment of noise reduction on a 4 point perceptual rating scale. The rating was 0 

= 0-25% noise reduction, 1 = 25 to 50% noise reduction, 2 = 50-75% noise reduction, 3=75-

100% noise reduction. This rating was done for the speech samples which underwent various 

individual modules or a combination of modules with schemes in the Sound Cleaner 

software. To mention a few: broadband filter, street noise scheme, street noise scheme with 

equalizer, street noise scheme with inverse filtering, street noise scheme with frequency 

compensation, and street noise scheme with impulse filter. All these individual modules or 

combinations were experimented with and found that the ‘Street Noise Scheme’ was more 

appropriate for the present study based on the rating obtained from the perceptual judgment 

task. Hence the same was selected as the target module for processing and thus the same was 

used for the main study. After a pilot study, the inbuilt setting of noise reduction technique 

loaded in Sound Cleaner software called ‘Street Noise Scheme’ was used for the present 



30 

 

study. ‘Street noise’ scheme consists of modules such as, ‘Input’, ‘Waveform-input’, 

‘Broadband Filter’, ‘Dynamic Filter’, ‘Output/file’, and ‘Speaker’. ‘Broadband Filter’ was set 

at its default settings and for ‘Dynamic Filter’, which has options such as ‘strong signal’ and 

‘weak signal’, where ‘strong signal’ was remained as ‘strong’ and the weak signal was 

‘weakened’ and the threshold was kept at 4kHz since the speech frequency range till 4 kHz. 

Data flows from the starting ‘Input’ process module (.wav file) to the final one (.wav file) 

through intermediate modules such as ‘Broadband Filter’ and ‘Dynamic Filter’ and thus the 

sample was processed and saved as an output file. Figure 3.1, depicts the Sound Cleaner 

software windows and the following figures (3.2 to 3.7) represent the series of steps involved 

in the noise reduction technique. 

 

 

Figure 3.1- The main window in Sound Cleaner software to load typical schemes. 
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Figure 3.2- Selection of ‘Street Noise Scheme’ amongst the choice of other built-in schemes 

 

 

Figure 3.3- Window opened to load sound file & apply sound reduction technique   
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Figure 3.4- Sound file selected from the existing destination before the application of sound 

reduction technique  

 

 

Figure 3.5- Output file created before the initiation of the sound reduction technique. ‘Input’, 

‘Waveform-input’, ‘Broadband Filter’, ‘Dynamic Filter’, ‘Output/file’, and ‘Speaker’. 

‘Broadband Filter’ set as default settings (Red dot on all the modules)   
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Figure 3.6- Signal during the sound reduction processes 

 

 

 

               Figure 3.7- Window after completion of sound reduction processes 

To explain further, generally, in the dynamic processing module there would be 

alteration in the dynamic range of the signal. The common process of operations would be 

compression and expansion. In compression, the dynamic range of the signal will be reduced 

(minor difference in level among the soft and loud signal parts). Whereas in expansion the 

Before 

Noise 

Reduction 

After 

Noise 

Reduction 
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dynamic range of the signal will be enlarged, generally the soft parts of the signal will be 

enhanced. Thus, it is useful in equalizing the loudness of the sound (compressor), enlarging 

the dynamic range of the sound (expander), attenuating or enhancing selected frequency 

ranges (dynamic processing in frequency bands), removal of signal parts which is at the level 

below the given threshold (noise gate) and limiting the maximum signal level value (limiter). 

Thus, the pilot study facilitated in construction of the necessary combination of 

modules for processing and supports the flexibility of the process scheme by adjusting to the 

concrete noise parameters of the target speech signal of the participants. The same analysis 

procedure was carried out for the entire sample of all the participants. The samples of traffic 

recording condition were only subjected to this noise reduction technique of ‘Street Noise 

Scheme’ of sound cleaner software and were saved in a separate folder. This was the sample 

that had undergone Step II analysis.   

3.2.3.2 PRAAT Software 

The samples of Step I (before the application of noise reduction technique to the 

traffic condition of recording) and Step II (after the application of noise reduction technique 

to the traffic conditions of recording) stored in a separate folder in the CSL 4500 (original 

sampling frequency of 16 kHz) were opened in PRAAT software (Boersma & Weenink, 

2009) and downsampled to 8 kHz. Since further analysis using WORKBENCH software 

could be done from 4 kHz (frequency distribution of an individual’s speech frequency ranges 

till 4 kHz) up to 8 kHz. Of the three trails of recording, the first recording was not analyzed 

as the material was novel to the participant and the second and third recordings were only 

used for analysis and comparison. From the downsampled speech material, the long vowels 

/a:/, /i:/, and /u:/ in the medial position of the target words were truncated from the wideband 

bar type of spectrograms using the PRAAT software program and was stored in different 

folders for each participant for the convenience of further analysis. Three complete cycles 

(approximately 300 ms) of the long vowels were segmented and pasted onto a particular file 

name convenient to the investigator. For Ex: Condition (Lab), speaker (No. 1), first 

occurrence (target word), vowel (target vowel), and first session (Trail II) was given the file 

name as “LB_ SPM1_ (thupaaki)_(a)_2.wav” and saved in a folder with the name SPM1 

(Speaker No. 1). Figure 3.8, depicts the segmentation of samples from the vowel /a:/, /i:/ and 

/u:/. 
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Figure 3.8: Segmentation of samples from the vowel /a:/, /i:/ and /u:/ 

 

A total of 15 long vowels consisting of five vowel /a:/, five vowel /i:/ and five vowel 

/u:/ (from 15 target words) occurring in 19 sentences, in two different conditions (Lab and 

traffic conditions) and two different phases (phase I lab condition and traffic condition before 

noise reduction and phase II traffic condition after noise reduction). Thus, the total number of 

samples for each speaker for phase I was 3 X 5 X 2 X 2 = 60 [3-vowels /a:/. /i:/ and /u:/) X 5 

(target words) X 2 (trials-II and III) X 2 (Lab and traffic before noise reduction] and phase II- 

3 X 5 X 2 = 30 [3 (vowels /a:/. /i:/ and /u:/) X 5 (target words) X 2 (Trials-II and III)] and the 

total number of samples for 60 speakers was 5400 (phase I- 60 x 60= 3600 plus phase II- 30x 

60 = 1800). 

3.2.3.3 Speech Science Lab (SSL) WORKBENCH software 

The final analysis which was carried out under Step III was using WORKBENCH 

software. Speech Science Lab (SSL) WORKBENCH, (Voice and Speech Systems, 

Bangalore, India) is a Semi-Automatic vocabulary dependent speaker recognition software. 
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This was used to extract Mel-Frequency Cepstral Coefficients (MFCC) for the truncated 

(PRAAT software) long vowels. 

The foremost thing was to create a notepad file and .dbs file, the extension of the 

notepad file was created by specifying the phoneme, speaker, number of sessions, and 

occurrences and was then segmented. The same can be explained in detail under four 

headings. 1). Label- Here the phoneme or sound being analyzed had to be typed; for example: 

(/a:/, /i:/, /u:/). 2). The number of speakers- This is the number of participants in the study; for 

example 60. 3). The number of occurrences of the label- This is the frequency of occurrence 

of a sound in a particular stimulus; for example: /a:/ is 5, /i:/ is 5, and /u:/ is 5. 4). The number 

of sessions- This is the number of repetitions of the stimulus; for example: (Trail II and Trail 

III). Thus, with all these details initially, the file was specified using a notepad and the 

extension of the same was the .dbs file as shown in Figure 3.9.    

 

 

Figure 3.9: Notepad file created for a pilot study. 

 

After creating a notepad file, the next was followed by segmentation. Here, the 

truncated samples were segmented to the workbench software for further analysis. For this, 

the notepad file was opened in SSL Workbench. After this “label”, “number of occurrences”, 

and “number of sessions” would appear on the window as they are already fed into the 

software. This is represented in Figure 3.10. 
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Figure 3.10: SSL Workbench window for analysis. 

Following this window of segmentation (Figure 4), the investigator by clicking on the 

“segment” button which opens the location specified in the parent file path of the notepad file 

and selects the recording to be analyzed, and marks the segment according to the speaker 

number, session number, and occurrence number. These specifications facilitate averaging 

and comparing between the same samples at different sessions. Figure 3.11 represents the 

specification related to the number of speakers. Similarly, the number of sessions (Trails) and 

the number of occurrences were also selected. Figure 3.12 illustrates the same. 

 

Figure 3.11: Illustration of speaker number being selected for segmentation. 
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Figure 3.12: Illustration of selecting the session number and occurrence number. 

 

Once these selections were made, the “segment” button was clicked on to open the 

dialogue box for selecting the file from the parent path specified. Following this, the window 

would open for segmentation. Figure 3.13 illustrates a segmentation window showing one 

occurrence of /a/ for a speaker.  

 

 
 

Figure 3.13: Depiction of segmentation window showing one occurrence of /a/ for a speaker. 

 

Then press “Spgm” where the spectrogram window will open. The segment of the file 

required was selected, and the option of “assign highlighted” was selected from the “Edit” 

menu. Figure 3.14 illustrates a segmentation window using spectrogram for one occurrence 

of /a/ for a speaker. After the highlighted segment, a dialogue box will seek confirmation of 

the assigned segment.  
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Figure 3.14: Segmentation window using spectrogram for one occurrence of /a/ for a speaker. 

 

Then “save segmentation” option was selected from the “File” menu and the 

highlighted segment was saved onto the .dbs file created as the extension of the notepad file. 

Figure 3.15 illustrating the ‘save segmentation’ window and the .dbs file. 
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Figure 3.15: Illustrating saves the segmentation window and .dbs file. 

 

The same procedure was carried out for all the speakers, conditions, vowels, and 

trails, as mentioned earlier in total it was 5400 times of segmentation. Thus, all the files were 

segmented by selecting the next occurrence number (Example: 2, 3, 4, 5) of the same speaker 
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(Example: Spk1) and same session (Example: Trail II). When all the samples of all the five 

occurrences were segmented then the next session (Example: Trail III) of the same speaker 

was selected and segmented in a similar manner. Once all the samples of all two sessions 

(Example: Trail II & III) were segmented then speaker two (Example: Spk 2) was selected. 

Similarly, all the files were segmented in this manner for a total of 60 speakers (Spk 1- Spk 

60). Thus, the analysis across the conditions was also done in a similar manner. One example 

could be lab versus traffic (BNR), hereunder ‘session number’, the first session was the Trail 

II of Lab recording and the second session was the Trail III of Traffic recording. Thus, the 

segmentation was carried out for all the other conditions.      

As soon as all the files were segmented the software opens another window to train 

the samples randomly. The trail/repetitions and utterances of each recording were randomized 

by the software and were considered as the test set and training set on equal distribution. 

Thus, the SSL Pro.V4 software was used to test the performance of a distance-based, 

semiautomatic speaker recognition system, which is vocabulary dependent. After training, 13 

MFCC was selected and the sample for identification was tested. Figure 3.16 shows the 

analysis window of SSL Workbench. 

 

 
 

Figure 3.16: Testing window of SSL Workbench. 

 

The segmented material was analyzed to extract 13 MFCCs (In the SSL Workbench, 

the sampling frequency is 8 kHz and therefore the analysis can be done up to 4 kHz, within 4 

kHz only 13 Mel-frequency Cepstral Coefficients (MFCC) can be computed efficiently). The 

formula for the linear frequency to Mel frequency transformation used was constant times log 

(1+f/700). The frequency response of Mel filter bank for un-normalized and normalized 

conditions is shown in Figure 3.17 and 3.18, respectively. 
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Figure 3.17: Mel frequency filter bank without normalization. 

 

 

Figure 3.18: Mel frequency filter bank with normalization. 

 

After selecting 13 MFCC, “compute” was clicked as shown in Figure 3.19 (a). On 

clicking this option the system used to check all the samples and compare them grossly and 

give a qualitative analysis of each speaker. Following this, the “testing” button was clicked 

on. This will open a window in which “compute a score for identification” was clicked as 

shown in Figure 3.19 (b). This gave the diagonal matrix in the lower half of the window and a 

final percentage for correct speaker identification. 
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(a) 

 

 

(b) 

Figure 3.19 (a) and (b): Analysis window of SSL Workbench showing diagonal matrix and 

speaker identification score. 



44 

 

 

This data was stored by pressing the “print” option and was saved as a .text file as 

illustrated in Figure 3.20. Thus the data was stored and the same procedure was repeated at 

least 30 times. Repetitions were done by randomizing the testing and training samples and the 

speaker identification thresholds were noted for the highest score and the lowest score.  

 

 
 

Figure 3.20: Results for pilot study depicted in .text file. 

Euclidian Distance for the lab and traffic conditions derived MFCC was extracted. 

The Euclidean distance between point’s p and q is the length of the line segment connecting 

them . In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two 

points in Euclidean n-space, then the distance from p to q, or from q to p is given by: 

 

The software uses the above-mentioned equation as one among many other equations 

to extract the Euclidian distance between 13 MFCCs for within and between participants. 

Participants having the least Euclidian distance were considered to be the same speakers. If 

the distance between the unknown and the corresponding known speaker is less, the 

identification was considered correct. If the distance between the unknown and the 
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corresponding known speaker is more, then the speaker is considered to be falsely identified 

as another speaker. The percent correct identification was calculated using the following 

formula: 

 

In this study, the speech samples were both contemporary (lab v/s lab, traffic v/s 

traffic-BNR and traffic v/s traffic-ANR) and non-contemporary [lab v/s traffic (BNR), lab v/s 

traffic (ANR) and traffic (BNR) v/s traffic (ANR)]. Closed set speaker identification tasks 

were performed, in which the examiner was aware that the ‘unknown speaker’ is one among 

the ‘known’ speakers. 
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CHAPTER IV 

RESULTS 

 

 

The present study aimed to investigate the effect of noise and noise reduction 

techniques on speaker identification using MFCC on the long vowels in the Kannada 

language. Percentages of correct speaker identification were calculated for all the five 

categories [Lab versus Lab, Traffic versus Traffic (before noise reduction), Traffic versus 

Traffic (after noise reduction), Lab versus Traffic (before noise reduction), Lab versus Traffic 

(after noise reduction) and Traffic (before noise reduction) versus Traffic (after noise 

reduction)]. The results of these comparisons are explained under the following conditions: 

 

1. Lab condition.  

2. Traffic condition before noise reduction technique 

3. Traffic condition after noise reduction technique 

4. Lab recording versus traffic recording before noise reduction technique. 

5. Lab recording versus traffic recording after noise reduction technique.  

6. Traffic condition before noise reduction technique versus Traffic condition after 

noise reduction technique 

 

The Euclidean distance of the samples for reference and test samples of each speaker 

were averaged separately by the workbench software. The test samples were taken along the 

column and the reference average was taken along the row. This was then tabulated as a 

distance matrix comparing all the speakers. The one with the minimum distance from the 

reference was identified as a test speaker. A distance matrix was computed by the software, 

for different combinations of test and reference speakers chosen. The green color in the table 

(distance matrix) indicates the correct identification of the speaker sample as belonging to the 

same speaker as the reference sample. The red color in the table (distance matrix) indicates 

the wrong identification of the test sample as belonging to a different speaker. Following this, 

the correct percentage of speaker identification scores was obtained and the same was 

randomized for 30 times to obtain the highest correct percentage of speaker identification 

(HPI).  

 

Following this, the descriptive statistical analysis was also carried out where mean 

and standard deviation (SD) was calculated and also 95% Confidence Interval for Mean was 

calculated which gave lower and upper bound for all thirty randomized trials.  
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Condition I: Comparison of MFCCs of speakers’ lab recording verses lab recording of 

vowel /a:/, /i:/ and /u:/ 

 

In this condition, contemporary speech samples were used where the lab recording 

(test sample) was compared with lab recording (reference sample). Here the results revealed 

that the highest percent correct identification (HPI) for vowel /a:/, /i:/ and /u:/ was noted to be 

100% respectively. The lowest percent correct identification (LPI) for vowel /a: /, /i: / and /u: 

/ was noted to be 70%, 68.33% and 45% respectively. On an average of 30 times of 

randomization, the percent correct speaker identification score for the vowel /a: /, /i: / and /u: 

/ was 88.38% (SD: 9.34), 87.61% (SD: 10.7) and 77.11% (SD: 14.89) respectively. This 

indicates /a: / to be better followed by /i: / and /u: /. Table 4.1 depicts descriptive data of 

speaker identification scores obtained for all 30 randomized trials for vowels. For example, 

the trail with the test sample (2, 4, 6, 8, 10) (2, 4, 6, 8, 10) (2, 4, 5, 8, 9) showing the highest 

percent speaker identification score with reference to distance matrix with Euclidian Distance 

for the vowel /a:/. /i:/ and /u:/ is shown in Table 1, 2, 3 of Appendix D respectively. The 

green color in the tables indicates the correct identification of the speaker sample as 

belonging to the same speaker as the reference sample whereas the red color indicates the 

wrong identification of the test sample as belonging to a different reference speaker. The 95% 

Confidence Interval for Mean was also calculated using descriptive statistics. The lower and 

upper bound for vowels /a:/, /i:/ and /u:/ are 85.11%-91.66%, 83.84%-91.37% and 71.54%-

82.67% respectively which is depicted in Figure 4.1. From the figure, it can be observed that 

for the vowel /a:/ and /i:/ the difference between the lower and upper bound is smaller (6.55 

& 7.53) in comparison with the vowel /u:/ which is wider (11.13). Thus, the interpretation for 

this condition with reference to the percent correct speaker identification score is more 

consistent when the difference between the lower and upper bound is minimal compared to 

the wider difference.  
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Table 4.1: Speaker identification of vowels in lab condition 

Lab Condition v/s Lab Condition 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 71.67 68.33 45 

2 2,3,6,7,10 80 78.33 45 

3 2,3,5,7,9 91.67 91.67 81.67 

4 2,4,6,8,10 100 100 73.33 

5 1,3,4,5,7 96.67 100 98.33 

6 2,4,5,8,9 86.67 85 100 

7 2,5,7,8,10 70 71.67 71.67 

8 1,3,6,9,10 93.33 90 73.33 

9 3,4,7,8,9 90 88.33 80 

10 1,2,5,6,8 81.67 81.67 78.33 

11 2,3,4,9,10 88.33 86.67 76.67 

12 2,3,4,7,8 93.33 86.67 76.67 

13 1,2,8,9,10 95 70 70 

14 2,6,7,8,9 98.33 100 68.33 

15 1,4,8,9,10 88.33 85 98.33 

16 2,3,4,6,10 73.33 76.67 85 

17 3,5,7,8,10 80 81.67 45 

18 3,4,5,8,10 91.67 100 81.67 

19 1,3,6,9,10 100 83.33 73.33 

20 2,3,5,7,9 96.67 98.33 98.33 

21 3,7,8,9,10 86.67 90 100 

22 4,6,7,8,9 70 76.67 71.67 

23 2,4,5,6,9 93.33 93.33 73.33 

24 2,6,7,8,10 90 100 80 

25 6,7,8,9,10 81.67 98.33 78.33 

26 2,3,5,7,9 88.33 75 76.67 

27 2,3,6,8,9 93.33 80 76.67 

28 3,6,7,8,9 95 93.33 70 

29 1,2,3,5,8 98.33 100 68.33 

30 1,3,6,7,9 88.33 98.33 98.33 

Average 88.34 87.61 77.11 

SD 9.34 10.07 14.89 

Note* SD= Standard deviation 
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Depiction of lower and upper boundary correct percent speaker identification for lab 

condition 

 

Figure 4.1: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for lab condition 
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Condition II: Comparison of MFCCs of speakers’ traffic recording (before noise 

reduction technique) verses traffic recording (before noise reduction technique) of 

vowel /a:/, /i:/ and /u:/ 

 

For traffic recording, contemporary speech samples were used where traffic (test 

sample) condition was compared with traffic (reference sample) condition before noise 

reduction (BNR). Here the results revealed that the highest percent correct identification 

(HPI) for vowel /a:/, /i:/ and /u:/ was noted to be 100%, 100% and 95% respectively. The 

lowest percent correct identification (LPI) for vowel /a:/, /i:/ and /u:/ was noted to be 75%, 

61.67% and 25% respectively. On an average of 30 times of randomization the percent 

correct speaker identification score for the vowel /a:/, /i:/ and /u:/ was 87.22% (SD: 8.28), 

81.99% (SD: 12.14) and 66.77% (SD: 15.14) respectively. This indicates /a:/ to be better 

followed by /i:/ and /u:/. Table 4.2 depicts descriptive data of speaker identification scores 

obtained for all 30 randomized trials for vowels. For example, the trail with the test sample 

(2, 6, 7, 8, 9) (1, 3, 4, 5, 7) (1, 3, 6, 9, 10) showing the highest percent speaker identification 

score with reference to distance matrix with Euclidian Distance for the vowel /a:/. /i:/ and /u:/ 

is shown in Table 4, 5, 6 of Appendix D respectively. The green color in the tables indicates 

the correct identification of the speaker sample as belonging to the same speaker as the 

reference sample whereas the red color indicates the wrong identification of the test sample 

as belonging to a different reference speaker. The 95% Confidence Interval for Mean was 

also calculated using descriptive statistics. The lower and upper bound for vowels /a:/, /i:/ and 

/u:/ are 84.12%-90.31%, 77.46%-86.53% and 61.12%-72.43% respectively which is depicted 

in Figure 4.2. From the figure, it can be observed that for the vowel /a:/ and /i:/ the difference 

between the lower and upper bound is smaller (6.19 & 9.07) in comparison with the vowel 

/u:/ which is wider (11.31). Thus, the interpretation for this condition with reference to the 

percent correct speaker identification score is more consistent when the difference between 

the lower and upper bound is minimal compared to the wider difference. 
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Table 4.2: Speaker identification of vowels in traffic condition (BNR) 

Traffic (BNR) Condition v/s Traffic (BNR) Condition 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 76.67 63.33 25 

2 2,3,6,7,10 93.33 70 71.67 

3 2,3,5,7,9 88.33 80 65 

4 2,4,6,8,10 98.33 98.33 85 

5 1,3,4,5,7 98.33 100 90 

6 2,4,5,8,9 76.67 83.33 58.33 

7 2,5,7,8,10 85 61.67 51.67 

8 1,3,6,9,10 91.67 85 70 

9 3,4,7,8,9 93.33 88.33 73.33 

10 1,2,5,6,8 83.33 81.67 73.33 

11 2,3,4,9,10 80 85 68.33 

12 2,3,4,7,8 75 81.67 53.33 

13 1,2,8,9,10 85 63.33 56.67 

14 2,6,7,8,9 100 68.33 86.67 

15 1,4,8,9,10 88.33 96.67 70 

16 2,3,4,6,10 78.33 83.33 68.33 

17 3,5,7,8,10 76.67 91.67 60 

18 3,4,5,8,10 93.33 100 61.67 

19 1,3,6,9,10 88.33 61.67 95 

20 2,3,5,7,9 98.33 95 53.33 

21 3,7,8,9,10 98.33 83.33 46.67 

22 4,6,7,8,9 76.67 88.33 73.33 

23 2,4,5,6,9 85 66.67 63.33 

24 2,6,7,8,10 91.67 96.67 63.33 

25 6,7,8,9,10 93.33 81.67 86.67 

26 2,3,5,7,9 83.33 98.33 48.33 

27 2,3,6,8,9 80 78.33 68.33 

28 3,6,7,8,9 75 70 91.67 

29 1,2,3,5,8 85 75 63.33 

30 1,3,6,7,9 100 83.33 61.67 

Average 87.22 81.99 66.77 

SD 8.28 12.14 15.14 

    Note* SD= Standard deviation, BNR= Before noise reduction  
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 Depiction of lower and upper boundary correct percent speaker identification 

for traffic condition (BNR) 

 

Figure 4.2: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for traffic condition 

(BNR) 

 

Comparison on observation among the average percent correct speaker identification 

score for lab versus traffic recording condition the differences was seen majorly for the vowel 

/u:/ when compared to /a:/ and /i:/. The same is represented graphically in Figure (4.3).    
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Figure 4.3: Percent correct speaker identification score for vowels of lab verse traffic 

condition (BNR) 
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Condition III: Comparison of MFCCs of speakers’ traffic recording (ANR) verses 

traffic recording (ANR) of vowel /a:/, /i:/ and /u:/ 

 

In this condition, contemporary speech samples were used where traffic recording 

(test sample) after the application of noise reduction technique was compared with traffic 

recording (reference sample) after the application of noise reduction technique. Where these 

samples had undergone a noise reduction scheme in sound cleaner software. Here the results 

revealed that the highest percent correct identification (HPI) for vowel /a:/, /i:/ and /u:/ was 

noted to be 98.33%, 100% and 85% respectively. The lowest percent correct identification 

(LPI) for vowel /a: /, /i: / and /u: / was noted to be 53.33%, 55% and 20% respectively. On an 

average of 30 times of randomization, the percent correct speaker identification score for the 

vowel /a:/, /i:/ and /u:/ was 79.38% (SD: 12.10), 76.72% (13.95) and 53.22% (14.50) 

respectively.  This indicates /a:/ to be better followed by /i:/ and /u:/. Table 4.3 depicts 

descriptive data for speaker identification scores obtained for all 30 randomized trials for 

vowels. For example, the trail with the test sample (3, 5, 7, 8, 10) (2, 4, 6, 8, 10) (1, 3, 4, 5, 7) 

showing the highest percent speaker identification score with reference to distance matrix 

with Euclidian Distance for the vowel /a:/. /i:/ and /u:/ is shown in Table 7, 8, 9 of Appendix 

D respectively. The green color in the tables indicates the correct identification of the speaker 

sample as belonging to the same speaker as the reference sample whereas the red color 

indicates the wrong identification of the test sample as belonging to a different reference 

speaker. The 95% Confidence Interval for Mean was also calculated using descriptive 

statistics. The lower and upper bound for vowels /a:/, /i:/ and /u:/ are 74.86%-83.90%, 

71.51%-81.93% and 47.80%-58.63% respectively which is depicted in Figure 4.4. From the 

figure, it can be observed that for the vowel /a:/ the difference between the lower and upper 

bound is smaller (9.04) in comparison with the vowel /i:/ and /u:/ which is wider (10.42 

&10.83). Thus, the interpretation for this condition with reference to the percent correct 

speaker identification score is more consistent when the difference between the lower and 

upper bound is minimal compared to the wider difference. 
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Table 4.3: Speaker identification of vowels in Traffic condition (ANR)  

Traffic (ANR) condition v/s Traffic (ANR) Condition 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 60 55 30 

2 2,3,6,7,10 75 63.33 53.33 

3 2,3,5,7,9 85 81.67 53.33 

4 2,4,6,8,10 96.67 100 76.67 

5 1,3,4,5,7 95 96.67 85 

6 2,4,5,8,9 73.33 71.67 50 

7 2,5,7,8,10 65 60 38.33 

8 1,3,6,9,10 80 78.33 58.33 

9 3,4,7,8,9 85 66.67 45 

10 1,2,5,6,8 80 81.67 48.33 

11 2,3,4,9,10 66.67 83.33 43.33 

12 2,3,4,7,8 70 85 40 

13 1,2,8,9,10 78.33 66.67 80 

14 2,6,7,8,9 95 100 55 

15 1,4,8,9,10 80 78.33 53.33 

16 2,3,4,6,10 76.67 71.67 45 

17 3,5,7,8,10 98.33 71.67 83.33 

18 3,4,5,8,10 78.33 100 43.33 

19 1,3,6,9,10 93.33 65 33.33 

20 2,3,5,7,9 78.33 71.67 53.33 

21 3,7,8,9,10 83.33 55 53.33 

22 4,6,7,8,9 71.67 63.33 56.67 

23 2,4,5,6,9 96.67 81.67 63.33 

24 2,6,7,8,10 81.67 100 36.67 

25 6,7,8,9,10 53.33 96.67 48.33 

26 2,3,5,7,9 53.33 71.67 75 

27 2,3,6,8,9 76.67 60 53.33 

28 3,6,7,8,9 80 78.33 48.33 

29 1,2,3,5,8 93.33 65 56.67 

30 1,3,6,7,9 81.67 81.67 36.67 

Average 79.38 76.72 53.22 

SD 12.10 13.95 14.50 

    Note* SD= Standard deviation, ANR= After noise reduction  
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 Depiction of lower and upper boundary correct percent speaker identification 

for traffic condition (ANR) 

 

 
 

Figure 4.4: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for traffic condition 

(ANR) 
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Condition IV:  Comparison of MFCCs of speakers’ lab recording verses traffic 

recording (BNR) of vowel /a:/, /i:/ and /u:/ 

 

In this condition, non-contemporary speech samples were used where lab (reference 

sample) recording was compared with traffic recording (test sample) before the application of 

the noise reduction technique. Here, the lab sample was absolutely speech and no noise, 

whereas the traffic samples contain some amount of traffic noise embedded in it during 

analysis. Here the results revealed that the highest percent correct identification (HPI) for 

vowel /a:/, /i:/ and /u:/ was noted to be 83.33%, 86.67 and 66.67 respectively. The lowest 

percent correct identification (LPI) for vowel /a: /, /i: / and /u: / was noted to be 36.67%, 

21.67% and 20% respectively. On an average of 30 times of randomization, the percent 

correct speaker identification score for the vowel /a:/, /i:/ and /u:/ was 65.77% (SD: 14.05), 

62.27% (SD: 16.37) and 42.61% (SD: 14.34) respectively. This indicates /a:/ to be better 

followed by /i:/ and /u:/. Table 4.4 depicts descriptive data of speaker identification scores 

obtained for all 30 randomized trials for vowels. For example the trail with the test sample (2, 

4, 6, 8, 10) (2, 6, 7, 8, 9) (3, 7, 8, 9, 10) with the highest percent speaker identification score 

with reference to distance matrix with Euclidian Distance for the vowel /a:/. /i:/ and /u:/ is 

shown in Table 10, 11, 12 of Appendix D respectively. The green color in the tables indicates 

the correct identification of the speaker sample as belonging to the same speaker as the 

reference sample whereas the red color indicates the wrong identification of the test sample 

as belonging to a different reference speaker. The 95% Confidence Interval for Mean was 

also calculated using descriptive statistics. The lower and upper bound for vowels /a:/, /i:/ and 

/u:/ are 60.52%-71.02%, 56.16%-68.39% and 37.25%-47.96% respectively which is depicted 

in Figure 4.5. From the figure, it can be observed that for the vowel /a:/ and /u:/ the difference 

between the lower and upper bound is smaller (10.5 & 10.71) in comparison with the vowel 

/i:/ which is wider (12.23). Thus, the interpretation for this condition with reference to the 

percent correct speaker identification score is more consistent when the difference between 

the lower and upper bound is minimal compared to the wider difference. 
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Table 4.4: Speaker identification of vowels in Lab condition v/s Traffic (BNR) condition 

Lab Condition v/s Traffic  (BNR) Condition 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 71.67 55 20 

2 2,3,6,7,10 55 66.67 53.33 

3 2,3,5,7,9 71.67 61.67 56.67 

4 2,4,6,8,10 83.33 81.67 63.33 

5 1,3,4,5,7 43.33 55 25 

6 2,4,5,8,9 63.33 78.33 53.33 

7 2,5,7,8,10 58.33 65 48.33 

8 1,3,6,9,10 73.33 65 53.33 

9 3,4,7,8,9 80 73.33 38.33 

10 1,2,5,6,8 68.33 71.67 50 

11 2,3,4,9,10 80 71.67 51.67 

12 2,3,4,7,8 66.67 78.33 48.33 

13 1,2,8,9,10 73.33 58.33 60 

14 2,6,7,8,9 76.67 86.67 55 

15 1,4,8,9,10 36.67 41.67 26.67 

16 2,3,4,6,10 68.33 43.33 13.33 

17 3,5,7,8,10 80 71.67 25 

18 3,4,5,8,10 66.67 86.67 46.67 

19 1,3,6,9,10 73.33 63.33 38.33 

20 2,3,5,7,9 76.67 78.33 21.67 

21 3,7,8,9,10 36.67 73.33 66.67 

22 4,6,7,8,9 68.33 61.67 38.33 

23 2,4,5,6,9 71.67 41.67 31.67 

24 2,6,7,8,10 81.67 33.33 31.67 

25 6,7,8,9,10 61.67 73.33 41.67 

26 2,3,5,7,9 53.33 38.33 31.67 

27 2,3,6,8,9 80 21.67 51.67 

28 3,6,7,8,9 71.67 61.67 55 

29 1,2,3,5,8 40 66.67 26.67 

30 1,3,6,7,9 41.67 43.33 55 

Average 65.77 62.27 42.61 

SD 14.05 16.37 14.34 

    Note* SD= Standard deviation, BNR= Before noise reduction  
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 Depiction of lower and upper boundary correct percent speaker identification 

for lab verses traffic condition (BNR) 

 

Figure 4.5: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for lab verses traffic 

condition (BNR) 
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Condition V: Comparison of MFCCs of speakers’ lab recording verses traffic recording 

(ANR) of vowel /a:/, /i:/ and /u:/ 

 

In this condition, non-contemporary speech samples were used where lab recording 

(reference sample) was compared with traffic recording (test sample) after the application of 

noise reduction technique. Here, the lab sample was absolutely speech and no noise, whereas 

the traffic samples containing some amount of traffic noise embedding in it was removed 

with the sound cleaner software during analysis. Here the results revealed that the highest 

percent correct identification (HPI) for vowel /a:/, /i:/ and /u:/ was noted to be 86.67%, 

83.33% and 63.33% respectively. The lowest percent correct identification (LPI) for vowel 

/a: /, /i: / and /u: / was noted to be 16.67%, 33.33% and 16.67% respectively. On an average 

of 30 times of randomization the percent correct speaker identification score for the vowel 

/a:/, /i:/ and /u:/ was 58.61% (SD: 17.11), 58.94% (SD: 15.11) and 38.11% (SD: 10.67) 

respectively. This indicates /a:/ to be better followed by /i:/ and /u:/. Table 4.5 depicts 

descriptive data for speaker identification scores obtained for all 30 randomized trials for 

vowels. For example the trail with the test sample (3, 4, 5, 8, 10) (1, 4, 8, 9, 10) (1, 2, 8, 9, 

10) with the highest percent speaker identification score with reference to distance matrix 

with Euclidian Distance for the vowel /a:/. /i:/ and /u:/ is shown in Table 13, 14, 15 of 

Appendix D respectively. The green color in the tables indicates the correct identification of 

the speaker sample as belonging to the same speaker as the reference sample whereas the red 

color indicates the wrong identification of the test sample as belonging to a different 

reference speaker. The 95% Confidence Interval for Mean was also calculated using 

descriptive statistics. The lower and upper bound for vowels /a:/, /i:/ and /u:/ are 52.22%-

65%, 53.30%-64.58% and 34.12%-42.09% respectively which is depicted in Figure 4.6. 

From the figure, it can be observed that for the vowel /i:/ and /u:/ the difference between the 

lower and upper bound is smaller (11.28 & 7.97) in comparison with the vowel /a:/ which is 

wider (12.78). Thus, the interpretation for this condition with reference to the percent correct 

speaker identification score is more consistent when the difference between the lower and 

upper bound is minimal compared to the wider difference. 
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Table 4.5: Speaker identification of vowels in lab condition v/s Traffic (ANR) 

condition 

Lab condition v/s Traffic Condition (ANR) 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 58.33 48.33 36.67 

2 2,3,6,7,10 68.33 53.33 25 

3 2,3,5,7,9 51.67 65 26.67 

4 2,4,6,8,10 75 33.33 23.33 

5 1,3,4,5,7 35 53.33 45 

6 2,4,5,8,9 56.67 68.33 36.67 

7 2,5,7,8,10 63.33 76.67 48.33 

8 1,3,6,9,10 75 78.33 38.33 

9 3,4,7,8,9 75 48.33 36.67 

10 1,2,5,6,8 66.67 50 36.67 

11 2,3,4,9,10 71.67 80 61.67 

12 2,3,4,7,8 50 46.67 35 

13 1,2,8,9,10 66.67 71.67 63.33 

14 2,6,7,8,9 80 66.67 36.67 

15 1,4,8,9,10 35 83.33 51.67 

16 2,3,4,6,10 75 73.33 43.33 

17 3,5,7,8,10 65 70 38.33 

18 3,4,5,8,10 86.67 68.33 36.67 

19 1,3,6,9,10 71.67 60 43.33 

20 2,3,5,7,9 55 61.67 30 

21 3,7,8,9,10 75 41.67 31.67 

22 4,6,7,8,9 51.67 56.67 36.67 

23 2,4,5,6,9 48.33 36.67 41.67 

24 2,6,7,8,10 30 33.33 16.67 

25 6,7,8,9,10 55 60 43.33 

26 2,3,5,7,9 36.67 61.67 46.67 

27 2,3,6,8,9 16.67 40 23.33 

28 3,6,7,8,9 51.67 35 23.33 

29 1,2,3,5,8 75 65 41.67 

30 1,3,6,7,9 36.67 81.67 45 

Average 58.61 58.94 38.11 

SD 17.11 15.11 10.67 

    Note* SD= Standard deviation, ANR= After noise reduction  
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Depiction of lower and upper boundary correct percent speaker identification 

for lab verses traffic condition (ANR) 

 

Figure 4.6: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for lab verses traffic 

condition (ANR) 

 

Comparison on observation among the percent correct speaker identification score for 

conditions IV and V, there is a decrement in the percent correct speaker identification scores 

for all the vowels after the application of noise reduction technique. The same is represented 

graphically in Figure (4.7). 
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Figure 4.7: Percent correct speaker identification score for vowels of lab verse traffic 

condition  
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Condition VI: Comparison of MFCCs of speakers’ traffic recording (BNR) verses 

traffic recording (ANR) of vowel /a:/, /i:/ and /u:/ 

 

In this condition, non-contemporary speech samples were used where traffic 

recording (reference sample) before the application of noise reduction technique was 

compared with traffic recording (test sample) after the application of noise reduction 

technique. Here, the traffic samples containing some amount of traffic noise embedding in it 

were compared with the traffic samples containing some amount of traffic noise embedding 

in it, and the same was removed with the sound cleaner software during analysis. Here the 

results revealed that the highest percent correct identification (HPI) for vowel /a:/, /i:/ and /u:/ 

was noted to be 96.67%, 95% and 68.33% respectively. The lowest percent correct 

identification (LPI) for vowel /a: /, /i: / and /u: / was noted to be 43.33%, 35% and 8.33% 

respectively. On an average of 30 times of randomization the percent correct speaker 

identification score for the vowel /a:/, /i:/ and /u:/ was 70.25% (SD: 13.78), 63.83% (SD: 

14.93) and 35.72% (SD: 14.28) respectively. This indicates /a:/ to be better followed by /i:/ 

and /u:/. Table 4.6 depicts descriptive data for speaker identification scores obtained for all 30 

randomized trials for vowels. For example the trail with the test sample (2, 4, 6, 8, 10) (2, 3, 

4, 9, 10) (2, 3, 4, 9, 10) with the highest percent speaker identification score with reference to 

distance matrix with Euclidian Distance for the vowel /a:/. /i:/ and /u:/ is shown in Table 16, 

17, 18 of Appendix D. The green color in the tables indicates the correct identification of 

speaker sample as belonging to the same speaker as the reference sample whereas red color 

indicates wrong identification of test sample as belonging to a different reference speaker. 

The 95% Confidence Interval for Mean was also calculated using descriptive statistics. The 

lower and upper bound for vowels /a:/, /i:/ and /u:/ are 64.90%-75.20%, 58.25%-69.40% and 

30.39%-41.05% respectively which is depicted in Figure 4.8. From the figure, it can be 

observed that for the vowel /a:/ and /u:/ the difference between the lower and upper bound is 

smaller (10.3 & 10.66) in comparison with the vowel /i:/ which is wider (11.15). Thus, the 

interpretation for this condition with reference to the percent correct speaker identification 

score is more consistent when the difference between the lower and upper bound is minimal 

compared to the wider difference. 
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Table 4.6: Speaker identification of vowels in Traffic (BNR) condition v/s Traffic (ANR) 

condition 

 

Traffic  (BNR) condition v/s Traffic (ANR) condition 

No. of 

Randomization 

Test samples 

from 

randomization 

Percentage of speaker identification 

score 

/a:/ /i:/ /u:/ 

1 2,4,5,7,1 56.67 53.33 26.67 

2 2,3,6,7,10 75 43.33 13.33 

3 2,3,5,7,9 73.33 68.33 26.67 

4 2,4,6,8,10 96.67 41.67 8.33 

5 1,3,4,5,7 48.33 70 41.67 

6 2,4,5,8,9 68.33 70 53.33 

7 2,5,7,8,10 76.67 70 40 

8 1,3,6,9,10 81.67 70 41.67 

9 3,4,7,8,9 85 53.33 26.67 

10 1,2,5,6,8 75 51.67 36.67 

11 2,3,4,9,10 71.67 95 68.33 

12 2,3,4,7,8 60 53.33 30 

13 1,2,8,9,10 71.67 75 60 

14 2,6,7,8,9 91.67 76.67 36.67 

15 1,4,8,9,10 50 88.33 45 

16 2,3,4,6,10 76.67 65 46.67 

17 3,5,7,8,10 71.67 68.33 31.67 

18 3,4,5,8,10 85 70 36.67 

19 1,3,6,9,10 78.33 56.67 33.33 

20 2,3,5,7,9 43.33 66.67 36.67 

21 3,7,8,9,10 85 68.33 26.67 

22 4,6,7,8,9 73.33 63.33 28.33 

23 2,4,5,6,9 75 51.67 10 

24 2,6,7,8,10 53.33 35 36.67 

25 6,7,8,9,10 71.67 56.67 43.33 

26 2,3,5,7,9 48.33 81.67 30 

27 2,3,6,8,9 51.67 55 10 

28 3,6,7,8,9 73.33 35 46.67 

29 1,2,3,5,8 78.33 75 53.33 

30 1,3,6,7,9 55 86.67 46.67 

Average 70.25 63.83 35.72 

SD 13.78 14.93 14.28 

                  Note* SD= Standard deviation, BNR= Before noise reduction, ANR= After noise reduction  
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 Depiction of lower and upper boundary correct percent speaker identification 

for traffic (BNR) verses traffic condition (ANR)  

 
Figure 4.8: 95% Confidence Interval for Mean of /a:/, /i:/ and /u:/ vowels for traffic (BNR) 

verses traffic condition (ANR) 

 

Summary of the results: 

Average in terms of mean and standard deviation (SD) of the percentage of speaker 

identification for a condition I, II, III, IV, V, and VI are represented in Table 4.7 as a 

summary.  

 

Table 4.7: Mean and standard deviation (SD) of the percent correct speaker identification for 

a condition I, II, III, IV, V & VI 

 

Conditions 

Percent correct speaker identification scores 

/a:/ /i:/ /u:/ 

Mean SD Mean SD Mean SD 

I.  Lab v/s Lab 88.34 9.34 87.61 10.07 77.11 14.89 

II. Traffic (BNR) v/s Traffic (BNR) 87.22 8.28 81.99 12.14 66.77 15.14 

III. Traffic (ANR) v/s Traffic (ANR) 79.38 12.10 76.72 13.95 53.22 14.50 

IV. Lab v/s Traffic (BNR) 65.77 14.05 62.27 16.37 42.61 14.34 

V. Lab v/s Traffic (ANR) 58.61 17.11 58.94 15.11 38.11 10.67 

VI. Traffic (BNR) v/s Traffic (ANR) 70.25 13.78 63.83 14.93 35.72 14.28 

    Note: SD= Standard deviation, BNR= Before noise reduction, ANR= After noise reduction  

 

The average percent correct speaker identification score for the vowel /a:/ was better 

in all conditions like I- Lab v/s Lab, II- Traffic (BNR) v/s Traffic (BNR), III- Traffic (ANR) 

v/s Traffic (ANR),  IV- Lab v/s Traffic (BNR), VI- Traffic (BNR) v/s Traffic (ANR) and 

except V- Lab v/s Traffic (ANR) with the vowel /i:/ being better with very minimal 

difference (at decimal value) in comparison with the vowel /a:/ and /u:/.  
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The 95% Confidence Interval for Mean was calculated which gave lower and upper 

bound for all thirty randomized trials. The summary of this finding is represented in Table 4.8 

for all the conditions (I, II, III, IV, V, and VI). With reference to the upper and lower bound 

value, the difference is minimal for the vowel /a:/ followed by /i:/ in conditions I, II, and III 

which indicates the percent correct speaker identification score is more consistent compared 

to vowel /u:/ which has a wider difference since these were all the contemporary samples. For 

conditions IV and VI, vowel /a:/ had minimal difference which indicates the percent correct 

speaker identification score is more consistent compared to /u:/ followed by /i:/. For condition 

V vowel /u:/ followed by /i:/  had minimal difference which indicates the percent correct 

speaker identification score is more consistent compared to /a:/. Therefore according to the 

statistical method also, the vowel /a:/ is better for speaker identification followed by /i:/ and 

then /u:/ for all the conditions except condition V, where the vowel /u:/ is better for speaker 

identification followed by /i:/ and /a:/. The details regarding these findings are discussed in 

the following section of the discussion.  

 

Table 4.8: Difference value between the lower and upper boundary calculated for 

95% confidence interval of the mean 

Conditions The difference value between the 

upper and lower bound  

/a:/ /i:/ /u:/ 

I.  Lab v/s Lab 6.55 7.53 11.13 

II. Traffic (BNR) v/s Traffic (BNR) 6.19 9.07 11.31 

III. Traffic (ANR) v/s Traffic (ANR) 9.04 10.42 10.83 

IV. Lab v/s Traffic (BNR) 10.5 12.23 10.71 

V. Lab v/s Traffic (ANR) 12.78 11.28 7.97 

VI. Traffic (BNR) v/s Traffic (ANR) 10.3 11.15 10.66 

Note: SD= Standard deviation, BNR= Before noise reduction, ANR= After noise reduction 
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CHAPTER V 

 

DISCUSSION 

 

The present study aimed to investigate the effect of noise and noise reduction 

techniques on speaker identification using MFCCs on the long vowels in the Kannada 

language. Results of the study revealed that for Condition I (lab recording), on an average of 

30 randomized trails the percent correct speaker identification for vowel /a:/, /i:/ and /u:/ were 

88.34%, 87.61% and 77.11% respectively. For the Condition II (traffic recording - before 

noise reduction technique) on an average of 30 randomized trials the percent correct speaker 

identification for vowel /a:/, /i:/ and /u:/ were 87.22%, 81.99% and 66.77% respectively. 

Subsequent to this was Condition III (Traffic recording compared across traffic recording-

after noise reduction technique) on an average of 30 randomized trials the percent correct 

speaker identification for the vowel /a:/, /i:/ and /u:/ were 79.38 %, 76.72 %, and 53.22 % 

respectively. Then for Condition IV (lab recording versus traffic recording- before noise 

reduction technique) on an average of 30 randomized trials the percent correct speaker 

identification for vowel /a:/, /i:/ and /u:/ were 65.77%, 62.27 % and 42.61% respectively. 

Finally for Condition V (lab recording compared across traffic recording- after noise 

reduction technique) on an average of 30 randomized trials the percent correct speaker 

identification for vowel /a:/, /i:/ and /u:/ were 58.61%, 58.94% and 38.11% respectively. The 

last Condition VI (traffic recording- before noise reduction versus traffic recording- after 

noise reduction) on an average of 30 randomized trials the percent correct speaker 

identification for the vowel /a:/. /i:/ and /u:/ were 70.25%, 63.83% and 35.72% respectively. 

As a summary (Table 4.7) the average percent correct speaker identification score for 

the vowel /a:/ was better in Condition I, II, III, IV, and VI except for Condition V with the 

vowel /i:/ being better with very minimal difference (at decimal value) in comparison with 

the vowel /a:/ and /u:/. According to the statistical method also (Table 4.8), the vowel /a:/ is 

better for speaker identification followed by /i:/ and then /u:/ for all the conditions except 

Condition V, where the vowel /u:/ is better for speaker identification followed by /i:/ and /a:/. 

When the comparison was made between the same recording fields irrespective of the 

samples is not subjected and/or subjected to noise reduction vowel /a:/ had better speaker 

identification score followed by vowel /i:/ and /u:/.  

Any speech signal, for example, consists of various parameters. This can be broadly 

divided into three groups; the first is with reference to the quantity. For example, the duration 

of the voice sample. The second is with reference to the quality, which includes a signal to 

noise ratio, frequency range, clipping, etc and the third group is with reference to 

comparability, this includes the speaker being in the same emotional state, etc. These are the 

general variables that can be considered in studies related to speech signals.  
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With this background, therefore the foremost point to discuss with reference to the 

results of the present study could be the vowels contributing significantly in speaker 

identification with reference to their exceptional acoustical characteristics when compared 

to consonants. Several studies using automatic and semiautomatic methods of speaker 

identification have proved vowels to be effective speech sound for speaker identification 

compares to consonants. Since the vowels are the speech sounds produced by voiced 

excitation of the open vocal tract. In the production of a vowel, the vocal tract normally 

maintains a relatively stable shape and offers minimal obstruction to the airflow. The energy 

produced can be radiated through the mouth or nasal cavity without audible friction or 

stoppage. Thus, acoustically vowels are characterized by formant pattern, spectrum, duration, 

and fundamental frequency. However, in the present study, these factors have contributed 

differently amongst the three vowels, and therefore results being represented differently. The 

present study focused on long vowels such as /a:/, /i:/ and /u:/ in Kannada language and found 

vowel /a:/ to be better for speaker identification compared to /i:/ and /u:/. In conditions such 

as I -Lab v/s Lab, II- Traffic (BNR) v/s Traffic (BNR), III- Traffic (ANR) v/s Traffic (ANR), 

IV- Lab v/s Traffic (BNR), VI- Traffic (BNR) v/s Traffic (ANR) and V- Lab v/s Traffic 

(ANR) vowel /a:/ scored better compared to /i:/ and /u:/.  

Similar results were found in the study done by Arjun (2015), where the author 

attempted to obtain a benchmark for speaker identification using Kannada vowels preceding 

nasal continuants and found vowel /a:/ preceding both nasals /m/ and /n/ to be best for 

speaker identification compared to other vowels (/i:/ and /u:/). Aswathy (2016) studied the 

effect of native versus non-native languages in speaker identification using MFCCs. The 

study concluded that vowel /a:/ symbolized as a better cue for speaker identification 

irrespective of the language used when compared to /i:/ and /u:/ vowel. These studies used 

only a target word list with preceding and following specific consonants. Whereas in the 

present study, sentences were used and within a sentence, a target word was selected and the 

vowel in the medial position of the target words was only considered for analysis. The factor 

related to preceding and following any specific consonant is not considered in the present 

study and this could be considered as one of the contributing factors.        

The efficacy of a speaker verification system was studied using MFCCs by Chandrika 

(2010) and found vowel /i:/ to be the better cue for speaker identification. The correct speaker 

identification score obtained was 90-95% for vowel /i:/ and thus the overall performance of 

vowel /i:/ was better compared to /a:/ and /u:/. From these studies, it is observed that the 

vowel /a:/ and /i:/ resulting in a better cue for speaker identification in different conditions.   

When the text-independent data was used and speaker identification was checked in 

native Kannada speakers by Sreevidya (2010). The results obtained was high percent correct 

speaker identification for vowel /u:/ (70%) in comparison with vowel /i:/ and /a:/ (50% each). 

In addition to this, Ramya (2011) also reported higher percent speaker identification 

(96.66%) for vowel /u:/ in comparison with vowel /a: / 93.33 %, and /i: / 93.33%. Here, the 

speaker identification was checked using MFCCs under electronic vocal disguise condition in 

females. 
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Thus, with more specific to the automatic method of speaker identification the second 

contributing factor could be the parameter MFCC. Several authors have found MFCCs to 

be the best parameter for speaker identification (Pruthi & Epsy-Wilson, 2007; Singh & Rajan, 

2011; Sukor & Syafiq, 2012). However in the present study also, with the application of noise 

reduction technique to the field recording samples, it is found that the MFCC being an 

effective parameter for speaker identification. To list some supporting studies, a study by 

Hasan, Jamil, Rabbani, and Rahman (2004) used MFCCs for feature extraction and vector 

quantization and found 57.14% of speaker identification score when codebook size (number 

of co-efficient) was 1 and increased to 100% when codebook size (number of co-efficient) 

became 16. Hence conclude MFCCs to be best for speaker identification.  

In another study by Mao, Cao, Murat, and Tong (2006) considering LPC and MFCCs 

for speaker identification found speaker recognition rate for 50 speakers to be increased from 

42% to 80% for text-dependent and for text-independent recognition rate increased from 60% 

to 72%. With reference to the reason behind the decreased recognition rate, a study by Wang, 

Ohtsuka, & Nakagawa (2009) on consideration of new phase information integrated with 

MFCCs found a reduction in the error rate. The other variable of increasing the number of 

filters to 32 in MFCCs, Tiwari (2010) found 85% accuracy in speaker recognition task and 

Chandrika (2010) reported overall performance of speaker verification system using MFCCs 

was about 80%.  

MFCCs were used in comparison with cepstral coefficients for speaker identification 

in Malayalam nasal coarticulation by Jyotsna (2011) and as a result, the author obtained 80% 

speaker identification when cepstral coefficients were used and the percentage increased to 

90% when MFCCs was used. Following this, the electronic vocal disguise for females using 

MFCC for speaker identification was studied by Ramya (2011) and it was reported that the 

percent correct identification was above chance level. From all these reviews, it is observed 

that the speaker identification was better irrespective of various variables in accordance with 

the MFCC.   

As an advanced study Ridha (2014) and Ayesha (2016) studied the benchmark for 

speaker identification using MFCCs in nasal continuants in Hindi and Urdu speakers 

respectively. They found /ŋ/ to be the best for speaker identification among the nasals /m/, /n/ 

and /ŋ/. Nithya (2015) reported a benchmark for speaker identification using three Tamil 

nasal continuants in live recording and mobile network recording conditions and found /m/ to 

be reliable for speaker identification compared to /n/ and /n˳/. Chandrika (2015) reported a 

benchmark for speaker identification using three Kannada language nasal continuants in live 

recording and mobile network recording conditions. Results revealed nasal continuant /n. / 

having the highest percent of correct speaker identification for direct recording and /m/ and 

/n/ for network recording. Thus, the above-listed studies and the present findings with 

reference to the parameter MFCCs, the speaker identification percentage seems to be better 

and higher.  
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 However, when the samples were recorded in different conditions the accuracy of 

speaker identification scores was reduced due to various factors like speaker distortion, 

system distortion, the influence of background noise, and so on. The influence of these 

factors is varied with reference to the comparison made between two similar recording 

conditions and between two varied recording conditions in any speaker identification process. 

Thus, a comparison made between any recording conditions could be considered as the 

third contributing factor. Accordingly, in the present study, there was a decline in the speaker 

identification scores of field recording (traffic) conditions compared to the lab recording 

condition. The average of percent correct speaker identification scores were 88.34%, 87.61% 

and 77.11% for vowel /a:/, /i:/ and /u:/ respectively when lab condition was compared with 

lab condition. The average of percent correct speaker identification scores decreased to 

87.22%, 81.99% and 66.77% for vowels /a:/, /i:/ and /u:/ respectively when traffic (BNR) 

condition was compared with traffic (BNR) condition and in addition average of percent 

correct speaker identification scores declined to subsequent level as 79.38%, 76.72% and 

53.22% for vowels /a:/, /i:/ and /u:/ when traffic (ANR) condition was compared with traffic 

(ANR) condition and also the average of percent correct speaker identification scores later 

decreased to 70.25%, 63.83% and 35.72% for vowels /a:/, /i:/ and /u:/ when traffic (BNR) 

condition was compared with traffic (ANR) condition. 

These results of the present study correlate with the previous studies, where Jakhar 

(2009) obtained better results when similar recording conditions were compared that is when 

the live recording was compared with live recording and also when the mobile recording was 

compared with mobile recording and the poor result was obtained when the live recording 

was compared with mobile recording. A study on automatic speaker identification using 

Workbench software by Ridha (2014) reported 100%, 90%, and 100% for /m/, /n/, and /ŋ/ 

nasal sounds of Hindi language samples when the live recording was compared with live 

recording and 50%, 80% and 90% for the same nasal sounds /m/, /n/ and /ŋ/ when mobile 

network recordings were compared with mobile network recordings. Thus, it was concluded 

that live recording was better compared to mobile recording. Nithya (2015) conducted similar 

study in Tamil language samples and found 97.6%, 85.6% and 76.5% of speaker 

identification scores for /m/, /n/ and /n˳/ in live recording condition. For mobile network 

conditions, the scores were 83.5%, 65.8%, and 68.3% respectively. Proving that, the live 

recording consists of better samples for speaker identification compared to the samples from 

mobile network recording conditions. Similarly Suman (2015) conducted a study in Kannada 

language by considering vowel /a:/, /i:/ and /u:/ following the nasal consonant /m/ and /n/. It 

was reported that speaker identification scores were 71.16%, 73% and 65.66% for vowels 

following the nasal consonant /m/ and 77.83%, 81.33% and 68.83% for vowels following the 

nasal consonant /n/ in live condition. Whereas for the mobile network condition the scores 

reduced to 68%, 67% and 48.33% for /m/ and 75%, 63% and 67% for /n/. The contributing 

reasons for these changes could be with reference to the communication channels. For 

example, through any communication channels during the transmission of voice signals, the 

errors are associated with the signals which are reproduced due to the distortions caused by 

the microphone, channel, and noises, electromagnetic and acoustical interferences thereby 
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affecting the transmitting signal for example in the mobile network. The network used was 

Vodafone and Airtel (GSM 900/GSM 1800 MHz) and the GSM (Global System for Mobile 

Communications) was the pan-European cellular mobile standard. Here the speech signals 

were compressed before transmission because the speech coding algorithms are part of GSM. 

It also reduces the number of bits in digital representation at the same time however 

maintaining the acceptable quality of the signal. Thus, this process modifies the speech signal 

and can have an influence on speaker recognition performance along with perturbations 

introduced by the mobile cellular network (background noise, channel errors) (Barinov, 

Koval, Ignatov & Stolbov, 2010). This could be one of the possible contributing reasons 

when it is concerned with the different modes of speaking, however, the present study used a 

live mode of recording.  

These distortions modify the formant’s energy and position which are fundamental for 

speaker identification. Another study by Barinov, Koval, Ignatov, and Stolbov (2010) 

examined the characteristics of speech transmitted over a mobile network. The noticeable 

changes in the energy distribution were caused by the non-linearity of the GSM channel’s 

frequency response in the range 750-2000 Hz. Thus, affecting the 2nd and the 3rd formants (F2 

and F3) and also reported a shift in the fourth formant (F4) which was due to the fall-off in 

the channel’s frequency response at 3500 Hz. As a result, the parameter MFCC was affected.    

Similar study by considering vowel /a:/, /i:/ and /u:/ preceded by the nasal consonant 

/m/ and /n/ in Indian context was carried out by Arjun (2015) in Kannada language. It was 

reported that the correct percent speaker identification score was 92%, 80% and 80% for /m/ 

and 93%, 78% and 80% for /n/ in live condition and scores reduced to 75%, 58% and 51% 

for /m/ and 72%, 49% and 53% for /n/ in mobile network condition.  

Following this when the live recording was compared with the live recording by 

Ayesha (2016), it was reported that the percent correct speaker identification was 70%, 80%, 

and 100% for /m/, /n/, and /ŋ/ and when mobile network recordings were compared with 

mobile network recordings the scores were reduced to 60%, 70% and 60% for /m/, /n/ and 

/ŋ/. Therefore the speaker identification scores in live condition were better than in-network 

condition, this difference is contributed by the differences in the recording characteristics of 

mobile network versus live voice. From the above discussion, it was clear that speaker 

identification scores were poor in field conditions compared to lab conditions. When lab 

condition was compared with field condition the performance reduced to a greater extent 

compared to lab and field condition.  

From the above-supporting studies, it was clear that speaker identification scores 

reduced in-network condition which can be due to the transmission of speech signal through 

communication channels, the signals which are reproduced with errors caused by distortions 

from the microphone and channel, acoustical, electromagnetic interferences, and noises 

affecting the transmitting signal. These distortions affect the acoustical parameters/properties 

of speech sounds (Examples: formant energy and position) which are crucial for speaker 

identification.  
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Apart from the above-mentioned factors, the fourth contributing factor for the results 

of the present study is the individual variability of the speakers considered for the study. 

The speech/linguistic aspects of any individuals are influenced to change with reference to 

varied personality, emotional status, educational level, world knowledge, speaking situations, 

and interview method, etc. In the present study, there was a decrease in the score of speaker 

identification in field conditions compared to lab conditions. The above-mentioned variables 

could have contributed to this difference in the results even though the recording procedure 

was counterbalanced. Scores were poorer in field conditions compared to lab conditions. This 

could be due to the speaker variability factor, the unnoticed variations in the speaker’s 

emotional state playing an important role during the recording procedure, and despite the 

structured stimulus material being used in specific recording settings and with varied trails of 

tasks. The repeated speech utterances (recorded speech) cannot be replicated with reference 

to the trials or repetitions since the speech is very complex. Similarly, most of the forensic 

case speech samples are non-contemporary samples, which consist of the questioned sample 

and suspected (reference) samples which are recorded or extracted in two contexts by the 

police personnel where the criminals’ emotional state would not be similar.  

For example, a study was done by Devi, Srinivas, and Nandyala (2014) and Ghiurcau, 

Rusu, and Astola (2011) reported that the performance of the speaker recognition system 

reduced significantly when the emotional state altered in a human voice. Meanwhile, the 

environment also plays a major role. Recording of suspect’s (reference) speech would be 

done in the recording room which is noise-free in the police station but the test sample will be 

in field condition which will be distorted due to various factors. Background noise also plays 

an important role where it will be present in wide-frequency range and filtering of speech 

from noise will be difficult hence alters the speaker’s acoustic features.  

Gong (1995) found the low performance by the speech recognizers when the 

reference and the test samples environment altered. Das et al., in 1993 found 1% error rate 

when the system trained under quite conditions and the error rate increased to more than 50% 

in a cafeteria environment. Singh and Rajan (2011) also reported that the accuracy of the 

speaker recognition system degraded because of the presence of background noise which was 

the dominating factor that affected the speech signal.   

Therefore the use of the noise reduction technique would resolve the issue related 

to the influence of background noise on speaker identification. Thus, in the present study, 

the recorded speech samples were subjected to a module called street noise reduction and 

later introduced for speaker identification. The results revealed that after noise reduction 

(ANR) the speaker identification scores reduced [Traffic (ANR) v/s Traffic (ANR)- (/a:/- 

79.38%, /i:/- 76.72% and /u:/- 53.22%)] compared to before noise reduction (BNR) [(Traffic 

(BNR) v/s Traffic (BNR)- /a:/- 87.22%, /i:/- 81.99% and /u:/- 66.77%)] for the comparison 

between similar recording conditions. In contrast, when the comparison was made between 

two different recording conditions, that is when lab condition was compared with field 

condition the identification score was better in only lab condition comparison [(Lab v/s Lab- 

/a:/- 88.34%, /i:/- 87.61% and /u:/- 77.11%)] compared to lab verses field condition 
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comparison. In this lab verses field recording condition also after the application of noise 

reduction technique the speaker identification scores reduced [(Lab v/s Traffic (ANR)- /a:/-

58.61%, /i:/-58.94% and /u:/- 38.11%)] compared to before noise reduction [(Lab v/s Traffic 

(BNR)- (/a:/- 65.77%, /i:/- 62.27% and /u:/- 42.61%)]. Therefore, there is no considerable 

improvement in the speaker identification score after the application of the noise reduction 

technique for the comparison between similar and different recording conditions for the 

vowels/a: /, /i: /, and /u:/. Therefore the module called ‘street noise reduction’ of Sound 

Cleaner software is not very effective in resulting in a higher speaker identification score. 

However, since the first voice identification is based on many different approaches to 

speaker identification. Except for the one based on listening (auditory, psychological, 

linguistic, etc), all the other is based on spectral analysis (formant matching, microanalysis, 

voiceprint, etc). Therefore, the most important factor for both the automatic systems and the 

experts is the accuracy and the quality of the spectral image according to Kersta (1962), 

Goldstein (1976), and Barinov, Koval, and Ignatov (2010). Thus, with reference to the results 

of the present study the possible parameters which affect instrumental identification 

analysis will be discussed in this section. The parameters affecting the spectrum also affect 

the quality of speech. According to Barinov (2010), for example, the parameter called 

overloading, signal-to-noise ratio, reverberation, the nonlinearity of frequency response, 

sampling frequency and bit rate are the few possible parameters which are important as 

speech signal’s parameters and one should follow the guidelines during the application of any 

noise reduction technique. The following are the illustrations given for each parameter by the 

same author. The sound cleaner software also follows relatively similar parameters in the 

process of noise reduction, but in the present study, the module considered did not result in a 

higher speaker identification score. However, the list of few important parameters to be 

considered during the noise reduction process is discussed with illustrations in detail under 

the following sections.  

Overloading or clipping would occur in terms of signal amplitude limitation that is 

when the dynamic range of one of the elements in the recording chain does not match the 

dynamic range of the recorded sound signal. Figure 5.1, showing the average spectra of the 

original 100 Hz sine wave and after clipping the spectrum is changed with additional 

frequencies. In any automatic voice identification system, the difficulty will initiate when the 

maximum amplitude level reaches 10-15% in corresponding to the degree of clipping. Once 

the recording has been closed, there would be no chance to compensate for the influence of 

such clipping. Thus, the remaining option would be the adjustment and proper selections of 

equipment in the recording chain. 

To add on, since the speech signal is dynamic with varying amplitude; the above-

mentioned problem is very negligible. This is because very often the speech fragments are 

found without any clippings even if the quality of recorded files is poor. This segment is 

recommended to consider for further processing and analysis.  
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Figure 5.1: Average spectra of the original 100 Hz sine wave (Blackline) and after clipping 

(blue line) 

Another example of a single sound is depicted in Figure 5.2. On observation, the 

level of the original third formant (2900 Hz) is seen to be towards the level of additional 

frequencies in the range 1500-2500 Hz. These frequencies as a formant will be accepted as 

the false formant by both experts and automatic feature extraction algorithms. 

 

   

 

 

 

Figure 5.2: Instantaneous LPC spectra of initial “o”-like sound (Blackline) and after 

clipping (blue line) 

The signal-to-noise ratio describes how much higher the level of useful signal is than 

the level of the unwanted signal (noises). In Figure 5.3 (a) High-quality signals, (b) Signal 

with the SNR at 55-60 dB. 

 

 

 

 

 

Figure 5.3 (a) and (b): High-quality speech signal without any noises and with SNR 55-60 

dB 

In some instances the signal will be noisy, this includes a combination of various 

types of noises which mask the identification features in a form of visible speech and mask 

the useful signal as perceived audio. Thus, from a noisy speech sample, it becomes 

sometimes impossible to extract individual features (almost all of them are spectral based) of 
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the speaker even in the noise cancellation processing as shown in Figure 5.4. With reference 

to the dynamic LPC of the spectrogram, in quiet recording and a noisy environment is shown 

in Figure 5.5.    

To run formant’s based identification in any automatic feature extraction algorithms 

the SNR of 10dB is not always sufficient. The type of noise and the pronounced sound at the 

moment plays an important role. But a minimum level of SNR equal to 10dB is required for 

the formant analysis of speech samples by experts and automatic systems. But in the present 

study, the SNR was higher.  

 

 

 

 

 

Figure 5.4: SNR of noisy recording very low and even negative 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Dynamic LPC spectrograms of a clean recording (on top) and a noisy one 

(at the bottom). 

Reverberation happens when the initial signal gets reflected due to different surfaces 

and the reflected signals combine with the original signal. Therefore a combination of the 

reflected signal which is picked by the microphone with a time delay corresponding to the 

distance of the reflecting surface and its initial signal form the reverberated signal. The 

quality of the reflecting surface decides the amount of similarity between the initial signal 
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and the reflected signal. Thus, reverberation changes the sounding, waveform, and spectrum 

of every sound signal. The extent of reverberation is decided by the parameter called 

reverberation time that is the reflections that need to decay to the level of initial signal minus 

60 dB in a millisecond as depicted in Figure 5.6. The dynamic FFT spectrograms of a signal 

recorded in a sound-treated room (on top) and the reverberated one in a different environment 

(at the bottom) are represented in Figure 5.7. 

From the above-mentioned point of view, it is important to consider two different 

sounds separately during any type of speech analysis. Since there would be a possibility of 

overlapping of the spectrum from one sound to another leading to feature extraction mistakes. 

Therefore it is recommended that on 20dB level the maximum time needed for an impulse to 

decay should be no larger than the duration of the average sound. This value is noted to be 

around 100ms and 300ms for reverberation time and the initial value of up to 60dB 

suppression.   

 

 

 

 

 

Figure 5.6: The reverberation time measurement 

 

 

 

 

 

 

 

Figure 5.7: Dynamic FFT spectrograms of a quiet recording (on top) and the reverberated one 

(at the bottom) 

 The non-linearity of the frequency response is related to the recording device. Every 

device in the recording chain will have its amplitude-frequency response which executes its 

function as a filter thus alter the initial spectrum of the speech signal. Due to this, the 

recording chain output of the original signal’s spectrum significantly changes as shown in 

Figure 5.8.  It is recommended that the frequency response of any speech recording device 
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(from phone or radio channels) should be linear in the frequency range from 100Hz to 

5500Hz or at least to 4000Hz or flat. In the present study also the recording frequency 

response was 4000Hz for lab condition whereas it was different when the recording was done 

in field condition. These differences were due to the recording devices used in these 

conditions.   

 

 

  

 

 

Figure 5.8: Average FFT spectra of the original sound signal and the same signal recorded 

through the devices with a non-linear amplitude-frequency response. 

Sampling frequency and bit rate will determine the amount of information being 

recorded from the initial analog form and the same saved as a digital audio file. Here, the 

sampling frequency limits the maximum existing frequency in a digital file according to the 

Nyquist theorem. The frequency as 8000, 11025, 16000, 22050, 32000, 44100 Hz, etc is the 

common sampling rate. Therefore, the frequency range of the original signal will be limited 

up to 4000, 5512, 8000, 11025, 16000, 22050 Hz, etc. respectively. Thus, resulting in the 

exclusion of the high formants from the speech signal’s spectrum, and the same is 

represented in Figure 5.9.  

In any practical scenario of the recorded speech signal, the maximum frequency with 

which it can be heard or recorded will be around 5500Hz and it goes a bit higher in very rare 

cases. This implies that it is sufficient that in any speech analysis and voice identification the 

sampling rate should be twice bigger than its maximum frequency. Therefore, for recording 

from microphone channels the sampling frequency should be 11025Hz or 16000Hz and for 

any type of recording from phone or radio channels, it should be 8000Hz. In the present 

study, this particular point of using a proper sampling rate might have not resulted in losing 

the high-frequency range and all highest formants which are important for speaker 

identification.   

 

 

 

 

Figure 5.9: Average FFT spectrum of a speech signal sampled with 8000Hz. 
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The dynamic range of the recorded audio signal will be limited because of the bit rate. 

Every bit of quantization carries information about 6 dB of the dynamic range of the signal. 

Generally, 8-bit, 16-bit, 24-bit, etc are the popular bitrates. With reference to the dynamic 

range of the input signal, these correspond to 48, 96, 144 dB, etc. The digital clipping of the 

speech signal will be caused due to the incorrect bit rate and this will cause a similar problem 

as in the case of overloading. For all the types of speech analysis or voice identification, it is 

proposed to use 16-bit coding or a maximum of 24-bit coding since the dynamic range of 

human speech is less than 96dB. For instance, the digital clipping and corresponding side 

effects can happen when the lower non-sufficient bit rate is recommended.  

Therefore all these above-mentioned alterations in the speech signal will have a varied 

influence on the speaker identification task. However, in the present study, a default noise 

reduction technique called the “Street Noise Reduction” module of Sound Cleaner software 

was used and is the product of Speech Technology Center Ltd. The software doesn’t illustrate 

the changes happening with the speech signal after the application of the noise reduction 

technique as shown in the study by Barinov (2010). However, Barinov (2010) has carried out 

a series of experiments involving forensic experts and automatic voice identification system 

Voice Net, produced by Speech Technology Center Ltd. In general, the points under the 

parameters listed in Barinov's (2010) study can be considered as a supporting variable for the 

difference in speaker identification score obtained for the conditions and/or comparisons 

before and after the application of the noise reduction technique in the present study.   

But, some studies are addressing the correlation between the influences of noise 

reduction technique on the speech parameters, and however, the results of the present study 

show a positive correlation. The noise reduction technique would have contributed some 

changes in the speech parameters involved for speaker identification since there is a reduction 

in the speaker identification scores after the application of the noise reduction technique 

irrespective of the comparisons (two similar recording situation before noise reduction/after 

noise reduction, two different recording situation before noise reduction/after noise 

reduction) and the vowels (/a:/, /i:/ and /u:/) considered. However, in contradiction to the 

results of the present study, the following are the studies in support of the noise reduction 

technique not affecting the speech parameters. 

For example, the known fact is, the speech gets corrupted when it is influenced by any 

kind of noise. But with the use of any kind of noise reduction methods the speech properties 

will be enhanced (no pictorial illustrations are provided). Thus, the spectral noise subtraction 

method was used by Berouti, Schwartz, and Makhoul (1979) to enhance speech which was 

corrupted by broadband noise, and found no loss of intelligibility in the speech. According to 

Udrea and Coichina (2003), the spectral noise subtraction method is defined on the basic 

principles of the spectral subtraction method that is to subtract the short-term spectral 

magnitude of noise from the signal.  Average signal and average noise are estimated and 

subtracted from each other.  This will make the signal-to-noise ratio improved. For instance, 

in vowels since the frequency properties are known; the noise separation properties would 

become much easier according to Davis (2002).  



78 

 

On the other hand, in the frequency domain, the Fourier method details the spectral 

content of the signal. The time-domain information for a particular event will be lost because 

the preservation of time instances is not considered while using the Fourier transformation. If 

the signal is stationary this condition can be unnoticed. Whereas, the speech signal 

comprising acoustic waves carry information in a non-stationary way. To overcome this 

problem another alternative method was proposed by Shonda and Simon (2003) called the 

Wavelet analysis. To get the accurate signal representation by producing precise 

decompositions of signal a concept called multi-resolution analysis is used in Wavelet. Here 

the higher-order derivatives, small discontinuities, and self similarities can be revealed. Like 

many traditional methods, this does not remove noise by low-pass filtering but includes the 

nonlinear function. The low-pass filtering method which is a linear time-invariant, might blur 

the sharp features in the signal and sometimes difficult to separate noise from the signal 

where the Fourier spectra overlap. The noise is removed based on the threshold of the 

Wavelet coefficients. This is because; the values of the signal that has energy concentrated in 

a small number of Wavelet coefficients will be large in comparison to the noise. This process 

allows features in the original signal to remain sharp. The lack of shift-invariance is the only 

disadvantage of Wavelet de-noising which means the Wavelet coefficients will not move by 

the same amount that the signal has shifted. But all the de-noising results can be averaged 

over all possible shifts of the signal to overcome the problem. This process of noise reduction 

using Wavelet coefficients threshold can be obtained in MATLAB command wdencmp. 

The other noise reduction technique could be the use of inverse filtering by Barinov et 

al. (2010) and found no change in the formant structure of the speech sound. On the other 

hand with the unknown temporal-spectral characteristics of speech signal combined multi-

condition model training and missing-feature theory was used to model noise by Md Imdad, 

Akhtar, & Md Imran (2012). There was a positive result where the speech signal was not 

affected by the removal of background noise. In missing feature theory, for example, consider 

a spectrum that has been passed through a high-pass filter.  If we assume that the first eight 

spectral magnitude features are below the threshold and are labeled as “missing.” Once each 

spectral magnitude feature in a frame is labeled as present or missing, a computationally 

simple modification of probability models discards missing features and forms densities that 

would have been obtained by training without missing features.  Another study by Sukor & 

Syafiq (2012) passed the signal to the pre-treatment process where the background noise was 

removed. The results showed that the speaker recognition system was able to identify the 

voice pattern correctly.  

Therefore, these various noise reduction methods working based on different 

principles incorporate certain advantages and disadvantages during the process of noise 

reduction. Each method has their distinct abilities to reduce noise sources from the given 

signal. Thus, in the present study, the existing Sound Cleaner Software was used to apply 

noise reduction technique to the traffic field recording signal and the speaker identification 

scores were obtained. Therefore to summarize the results, the average percent correct speaker 

identification scores reduced drastically in traffic conditions compared to lab conditions, and 
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also the average percent correct speaker identification scores were poorer in traffic conditions 

after the application of noise reduction technique compared to before the application of noise 

reduction technique. Hence to conclude, the module called ‘street noise reduction’ of Sound 

Cleaner software was sensitive to some extent only in reducing the traffic noise. This is 

because during the noise reduction processes the speaker-specific acoustic features would 

have been altered to a greater extent which resulted in revealing poorer scores in traffic 

conditions after the application of noise reduction technique when compared to before noise 

reduction technique. Therefore to conclude the study, the outcome after the application of 

noise reduction technique on speaker identification for traffic noise was not effective in 

comparison with lab recording condition. Among vowels, the average percent correct speaker 

identification scores were better for the vowel /a:/ followed by /i:/ and /u:/. Hence to conclude 

vowel /a:/ acts as a better cue for speaker identification. 
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

Every matured voice has unquestionably a unique character dependent upon the 

structure of the head, neck, and face of the individual. The coordination among these 

structures in association with the nervous system results in speech production. The most 

natural and common way used to communicate information by humans is through speech. 

Speech signal conveys several types of information. For example, speech signal conveys 

linguistic information (language and message) and speaker information (regional, emotional, 

and physiological characteristics). With reference to speaker information, different 

individuals sound different with respect to their voice, which is a known fact. This can be 

illustrated with an example of how an individual is identified through his voice in any 

telephone conversation. This is due to the property of individuals’ speech being speaker-

specific. The same principle is considered in one type of speaker identification method. The 

method in which a person is recognized exclusively (perceptually) from his voice and is 

known as speaker recognition which is known for long period (Atal, 1972). Among the 

biometric identifiers such as speech or handwriting, verification of individuals' identity based 

on the voice has significant advantages and practical utilizations because speech is a product 

of an underlying anatomical source, namely, the vocal tract and a result of natural production. 

Thus, comprising inherent constrained biometric feature where it does not require a 

specialized input device, therefore the user acceptance of the system would be high. In recent 

advances to improve the performance and flexibility of speaker recognition, new tools have 

been produced in speech technologies. Telephone conversation has increased in recent years. 

Due to the increased usage of mobile phones for conversational purposes, the crime rate is 

increasing drastically by misusing the same for many crime-related activities like bomb 

threats, ransom demand, sexual abuse, and hoax emergency call. In these conditions, voice is 

the only evidence available for analysis. Hence there is a need in the measurement of the 

voice for the establishment of legal proof by police and magistrates.  

Therefore a method called speaker identification aims ‘to identify an unknown voice 

as one or none of a set of known speakers on comparison’ (Naik, 1994; Nolan, 1983). 

Speaker verification is another common task in speaker recognition in which an identity 

claim from an individual is accepted or rejected by comparing a sample of his speech against 

a stored reference sample by the individual whose identity he is claiming’ (Nolan 1983). 

Hence, Forensic Speaker Identification is seeking an expert opinion in the legal process as to 

whether two or more speech samples are of the same person. Thus, according to some set of 

authors speaker recognition can be studied under two headings: a) speaker identification and 

b) speaker verification (Fururi, 1994; Nolan, 1997; Rabiner & Juang, 1993; Rose, 2002).  
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Speaker recognition is affected by various factors. With reference to the different 

contexts of the conversational speech sample, the interesting one is the background noise. 

Since the speaking environment is always associated with one or more types of noise, the 

considered speech sample may be accompanied by some noise. Thus, for the listeners, the 

speech will not be heard clearly. Thus, background noise also plays a major role in forensic 

speaker identification. Most of the speech recognition instrument will have difficulty in 

identifying speech signal when it is accompanied by background noise. To overcome this 

problem, the noise has to be filtered so that the required speech signals will be free from 

noise and the same will be used for further analysis. Various approaches have been 

implemented to improve the noise robustness of speaker recognition. The following are the 

techniques which can be listed in general: Techniques such as Kalman filtering (Fingscheidt. 

Suhadi, Stan, 2003) or Spectral Subtraction (Garcia & Rodriguez, 1996) can be used to filter 

noise from speech, based on the prior knowledge of the noise characteristics. It is also 

possible to extract noise-robust features, e.g. relative spectral features (Hermansky & 

Morgan, 1994) from speech signals instead of removing the background noise. It is also 

possible to ignore the parts of speech corrupted by background noise using missing feature 

theory (Bonastre, Besacier, & Fredouille, 2000).  The above approaches are used in statistical 

speakers’ models (e.g Hidden Markov Models (HMMs) or Gaussian Mixture Models 

(GMMs). 

 

However, the global leader in Speech Technologies Center is a leading developer of 

voice and multimodal biometric systems, as well as the solutions for audio and video 

recording, processing, and analysis. For over 20 years, the SpeechPro under STC has been 

developing specialized tools for efficient noise reduction and text transcription of low-quality 

recordings. Various studies on the perception of poor audio recordings and noisy speech 

signals carried out by SpeechPro have resulted in the formation of the unique sound filtering 

algorithms that are now presented in the software and hardware products like Sound Cleaner, 

ANF II, and The Denoiser Box. In the present study, the Sound Cleaner Signal Enhancement 

Program Model 5142 (Noise Cancellation Software) was used to reduce the background noise 

and an attempt has been made to see its effect on speaker identification score for the samples 

which was subjected to noise reduction. 

Thus, in the present study, speaker identification was carried out using the machine 

method using the semi-automatic speaker identification process. This has been selected from 

the classification of Hecker (1971) and Bricker and Pruzansky (1976) speaker identification 

as: (i). Speaker identification by listening, (ii). Speaker identification by visual method & (iii) 

Speaker identification by the machine which is subdivided into (a) Semi-automatic speaker 

identification and (b) Automatic speaker identification.  

Therefore, the present study focuses on the Semi-automatic Speaker Identification 

(SAUSI) where the known and the unknown samples from the speaker are selected by the 

examiner and are processed by the computer program to extract certain parameters. And the 

final interpretation will be made by the examiner. Few examples of such studies are with the 
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parameter-first and second formants (Atal, 1972; Hollien, 1990; Kuwabara & Sagisaka, 1995; 

Lakshmi & Savithri, 2009; Nolan, 1983; Stevens, 1971), higher formants (Wolf, 1972), 

fundamental frequency (Atkinson, 1976), fundamental frequency contours (Atal, 1972), 

Linear prediction coefficients (Markel & Davis, 1979; Soong, Rosenberg, Rabiner & Juang, 

1985), Cepstral coefficients and Mel-Frequency Cepstral Coefficients (Atal, 1974; Fakotakis, 

Anastasios & Kokkinakis, 1993; Rabiner & Juang, 1993; Reyond & Rose, 1995), Long-Term 

Average Spectrum (Kiukaanniemi, Siponen & Matilla, 1982).   

Among these short and long term acoustical parameters, Mel-Frequency Cepstral 

Coefficients (MFCCs) are extensively used in the present era for speaker identification tasks 

and has been shown to yield tremendous results (Hasan, Jamil, Rabbani & Rahman, 2004; 

Jyotsna, 2011; Mao, Cao, Murat & Tong, 2006; Singh & Rajan, 2011; Tiwari, 2010; Wang, 

Ohtsuka, & Nakagawa, 2009). Mel-frequency cepstrum is a cepstrum with its spectrum 

mapped onto the Mel- Scale before the log and inverse Fourier transform is taken. As such, 

the scaling in Mel-frequency cepstrum mimics the human perception of distance in 

frequency, and its coefficients are known as the MFCC. The present study will be focusing 

on the usefulness of Mel -Frequency Cepstral Coefficients (MFCC) on speaker recognition.  

It is evident from these reviews that MFCCs are perhaps the best parameter for 

speaker identification and less susceptible to variation of the speaker’s voice and surrounding 

environment (noise). Also, the vowels may be the most suitable among speech sounds for 

speaker identification. However, to date, there are limited studies on vowels as strong 

phonemes for speaker identification using semi-automatic methods in the presence and 

absence of noisy situations and after the application of speech signal to any noise reduction 

techniques. In the present study, the Sound Cleaner software (speaker recognition instrument) 

is used to reduce the noise and study the effect of the same on speaker identification. In 

forensic sciences, the scientific testimony has to be provided to impress any court of law and 

from whichever country the research would have been executed. However, for any result to 

be called scientific, it has to be measured, quantified, and reproducible if and when the need 

arises. Therefore, a method to carry out these analyses becomes a must. In this context, the 

present study was conducted. 

Accordingly, the current study aimed to investigate the effect of noise and noise 

reduction technique on speaker identification using MFCCs on long vowels in the Kannada 

language for lab condition (Condition I), traffic condition (Before Noise Reduction- BNR) 

(Condition II), traffic condition (After Noise Reduction- ANR) versus traffic condition 

(ANR) (Condition III), lab versus traffic condition (BNR) (Condition IV), lab versus traffic 

condition (ANR) (Condition V) and Traffic condition (BNR) versus traffic condition (ANR) 

(Condition VI).   

A total of 60 participants with 30 males and 30 females in the age range of 20-40 

years were considered for the study. All the participants were native speakers of the Kannada 

language with no history of speech, language, hearing problems, no associated psychological 

or neurological problems, and no reasonable cold or respiratory conditions at the time of 
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recording and normal oral structure. Commonly occurring hypothetical Kannada meaningful 

sentences with long vowels /a:/, /i:/, /u:/ was used as material for a reading task. The same 

was recorded in two different conditions: I- Laboratory condition and II- Traffic (Field) 

condition. These recorded samples were analyzed under two phases: 1- Before noise 

reduction (BNR) and 2- After noise reduction (ANR), using Sound Cleaner- Universal Noise 

Cancellation Software. In Sound Cleaner software, the ‘Street Noise’ scheme was selected for 

the present study. Further, Speech Science Lab Workbench, a Semi-Automatic vocabulary 

dependent speaker recognition software was used to extract Mel-Frequency Cepstral 

Coefficients (MFCC) for the truncated (PRAAT software) vowels.  

 

Thus, the MFCCs derived from the vowels were used to compute the Euclidian 

distance between the test and reference samples. For the present study, the feature vector 

chosen was MFCCs 13 coefficients. Upon choosing the feature vector, the system computes a 

measure of Euclidian distance and displays the summarized distance matrix for the selected 

test and reference sample. From the distance matrix, the total percentage of correct speaker 

identification scores was displayed. The analyses were performed in terms of obtaining 

correct percent speaker identification scores separately for lab v/s lab condition, traffic 

(BNR) v/s traffic (BNR) condition, traffic (ANR) v/s traffic (ANR) condition, lab v/s traffic 

(BNR) condition, lab v/s traffic (ANR) condition and traffic (BNR) v/s traffic (ANR) 

condition. Repetitions were done by randomizing the testing and training samples and the 

speaker identification thresholds were noted for the highest score and the lowest score.  

 

To explain in brief, for an average of 30 trials of randomization the results revealed 

that, (I). When lab condition was compared with lab condition, the percent correct speaker 

identification for vowels /a:/, /i:/ and /u:/ were 88.34%, 87.61% and 77.11%. (II) When traffic 

condition (BNR) was compared with traffic condition (BNR) the percent correct speaker 

identification for vowels /a:/, /i:/ and /u:/ were 87.22%, 81.99% and 66.77%. (III). When lab 

condition was compared with traffic condition (BNR) the percent correct speaker 

identification for vowels /a:/, /i:/ and /u:/ were 65.77%, 62.27% and 42.61%. (IV). When 

traffic condition (ANR) was compared with traffic condition (ANR) the percent correct 

speaker identification for vowels /a:/, /i:/ and /u:/ were 79.38 %, 76.72 % and 53.22 %.  (V). 

When traffic (BNR) condition was compared with traffic condition (ANR), the percent 

correct speaker identification for vowels /a:/, /i:/ and /u:/ were 70.25 %, 63.83 % and 35.72 

%. (VI). When lab condition was compared with traffic condition (ANR) the percent correct 

speaker identification for vowels /a:/, /i:/ and /u:/ were 58.61 %, 58.94 % and 38.11 %.  

To summarize the results, among vowels /a:/, /i:/ and /u:/, the average percent correct 

speaker identification for the vowel /a:/ was better in all the conditions (I, II, III, IV, and V). 

The present study is in consonance with the previous studies where Arjun (2015) and 

Aswathy (2016) found vowel /a:/ to be better compared to /i:/ and /u:/, Jakhar (2009), found 

vowel /a:/ to be better in live condition and vowel /i:/ in mobile network condition, Medha 

(2010), found vowels /a:/ and /i:/ to be better. But in contradiction Chandrika (2010), found 

vowel /i:/ to be better compared to /a:/ and /u:/ and Sreevidya (2010) and Ramya (2011) 
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found /u:/ to be better for speaker identification.  When different conditions were considered 

performance in lab conditions was better compared to field conditions (embedded with or 

without noise). In specific the performance scores decreases in the following order; lab v/s 

lab condition, traffic (BNR) v/s traffic (ANR) condition, traffic (ANR) v/s traffic (ANR) 

condition, traffic (BNR) v/s traffic (ANR) condition, lab v/s traffic (BNR) condition, and lab 

v/s traffic (ANR) condition. Therefore average percent correct speaker identification scores 

were better in lab condition and poor in traffic condition and poorer in lab v/s traffic 

condition. The studies which support the present study are Jakhar (2009), Ridha (2014), 

Nithya (2015), Suman (2015), Arjun (2015), Ayesha (2016) where the authors found better 

scores in live condition and poor scores in mobile network condition and poorer scores in live 

v/s mobile network condition. 

In the present study also there was a decline in the score of speaker identification for 

field condition compared to lab condition. The following reasons could be contributing 

factors. (1). From the above-supporting studies, it was clear that speaker identification scores 

reduced in-network condition which can be due to the transmission of speech signal through 

communication channels, the signals which are reproduced with errors caused by distortions 

from the microphone and channel, acoustical, electromagnetic interferences, and noises 

affecting the transmitting signal. These distortions affect the formant energy and position 

which are crucial for speaker identification. Thus, the quality and accuracy of the spectral 

picture is the most important factor for both experts and automatic systems (Barinov, Koval, 

Ignatov, 2010; Goldstein, 1976; Kersta, 1962). These authors describe only those parameters 

which affect instrumental identification analysis and this is one of the objectives of the 

present study. Thus, each of these parameters, affecting spectrum, also affects the perceived 

quality of speech. The parameters listed are overloading, signal-to-noise ratio, reverberation, 

the nonlinearity of frequency response and sampling frequency, and bit rate. This might have 

contributed to the poor percent correct identification score of traffic conditions in the present 

study.  

(2). Different recording situations- During a real speech a person can recognize the 

surrounding sounds and concentrate on the speech of another person thus filtering the desired 

information out of various audio environments. Therefore, the ability of a human to recognize 

and filter sounds significantly increases the intelligibility and comprehension of the speech 

even if communication takes place in a noisy environment, situation, or condition. This is not 

in the case of lab condition, where the individuals concentrate on their own speech with no 

task of filtering another audio environment since there will be complete silence in the lab.   

However, in traffic conditions, it is a different situation. The recording equipment 

does focus on certain audio streams (specialized microphones) and impartially record 

everything that happens in the audio spectrum. As a product, we receive a ‘flat picture’ of all 

recorded sounds which often makes the speech partially unintelligible, quiet, and buried in 

the noises. In addition, the scores were poorer in field condition which can be due to the 

speaker variability factor where variations in speaker’s emotional state also play an important 



85 

 

role which might not be the same during field recording and also speech cannot be replicated 

in the same way which was produced earlier during lab recording.  

(3). Background noise also plays an important role where it will be present in wide-

frequency range and filtering of speech from noise will be difficult hence alters the speaker’s 

acoustic features. The signal in the lab condition does not contain noise and is not subjected 

to undergo the removal of background noise from voice recognition signal, for example, 

using the spectral subtraction method. Here, in this method, the short term spectral magnitude 

of noise will be subtracted from the signal. That is the average noise and average signal are 

estimated and subtracted from each other (Udrea & Coichina, 2003). Hence, there might be a 

chance of the signal getting distorted. The phonemic effect on speaker identification is 

assessed and it is found that the level of correct perceptual identification varies as a function 

of vowel production, consonant-vowel transitions, vocal tract turbulence, and inflections. 

Henceforth studies on voice quality, speech prosody/ timing, and many other speaking 

characteristics have to be considered as an important factor in the identification process. 

Davis (2002) reported that the noise separation properties would become much easier 

in vowels because the frequency properties of vowels are known. The present study focused 

on long vowels (/a:/, /i:/, and /u:/) and used Sound Cleaner software for noise reduction. The 

results revealed that after noise reduction the speaker identification scores reduced [Traffic 

(ANR) v/s Traffic (ANR)] compared to before noise reduction [Traffic (BNR) v/s Traffic 

(BNR)].  

Therefore, the average percent correct speaker identification scores reduced 

drastically in traffic conditions compared to lab conditions, and also the average percent 

correct speaker identification scores were poorer in traffic conditions after the application of 

noise reduction technique compared to before the application of noise reduction technique. 

Hence to conclude, the Sound Cleaner software was sensitive enough to reduce the traffic 

noise. But, certain reasons and observations are contributing to the poor speaker identification 

scores after the application of the noise reduction technique to the traffic condition sample. 

(1). The signal in the lab condition probably does not contain noise whereas the signal in 

traffic conditions is improbably embedded with noise. (2). During the noise reduction 

processes, the speaker-specific acoustic features might have been removed, and (3). The 

resultant speaker-specific acoustic feature might not be very effective for the calculation of 

MFCCs in the Workbench software. These variables might have resulted in poorer scores in 

traffic condition after the application of the noise reduction technique when compared to 

before noise reduction technique.  

Therefore the study can be concluded that the outcome after the application of noise 

reduction technique on speaker identification for traffic noise was not effective in acquiring 

100% correct speaker identification. However, the correct percent speaker identification was 

relatively higher within the range of 58.62% to 79.38% for the vowel /a: /. Thus, among 

vowels, the average percent correct speaker identification scores were better for the vowel /a: 
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/ followed by /i:/ and /u:/. Hence to conclude vowel /a:/ acts as a better cue for speaker 

identification. 

 

Limitations and future directions 

 Sound Cleaner software was relatively sensitive enough to reduce the traffic noise in 

the present study. However, the extended study is required to note and confirm the 

changes in the phonemic cue after the application of the noise reduction technique to 

the speech signal recorded in any conditions.   

 Further research should be executed using different recording conditions (cafeteria, 

market, etc.) and compare among them. And in addition, other advanced noise 

reduction software could also be used in further studies.  

 The study can be extended to reduce the background noise with reference to certain 

variables like increased participants, stimulus from different languages, and 

considering the other phonemes like consonants.   

 The present study used a semi-automatic speaker identification system (Workbench) 

to obtain the correct speaker identification scores, but it is also recommended to use 

an automatic speaker identification system to obtain the correct speaker identification 

scores. 
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