THE LIGHT CUPULA PHENOMENON A SYSTEMATIC REVIEW

ABISHEK UMASHANKAR 19AUD002

This Dissertation is submitted as part

fulfilment for the Degree of Master of Science in Audiology

University of Mysore, Mysuru

ALL INDIA INSTITUTE OF SPEECH AND HEARING

Manasagangothri, Mysuru 570 006

September 2021

CERTIFICATE

This is to certify that this dissertation entitled 'The Light Cupula Phenomenon -

A Systematic Review' is a bonafide work submitted as a part for the fulfilment for the degree of Master of Science (Audiology) of the student Registration Number: 19AUD002. This has been carried out under the guidance of the faculty of this institute and has not been submitted earlier to any other University for the award of any other

Diploma or Degree.

Mysuru September 2021 Dr. M. Pushpavathi
Director

All India Institute of Speech and Hearing Manasagangothri, Mysuru 570 006

CERTIFICATE

This is to certify that this dissertation entitled 'The Light Cupula Phenomenon -

A Systematic Review' is a bonafide work submitted as a part for the fulfilment for the degree of Master of Science (Audiology) of the student Registration Number: 19AUD002. This has been carried out under my guidance and has not been submitted earlier to any other University for the award of any other Diploma or Degree.

Mysuru

September 2021

Dr. Animesh Barman

Guide

Professor,

Department of Audiology,
All India Institute of Speech and Hearing

Manasagangothri, Mysuru 570 006

DECLARATION

This is to certify that this dissertation entitled 'The Light Cupula Phenomenon -

A Systematic Review' is the result of my own study under the guidance of Dr. Animesh

Barman, Department of Audiology, All India Institute of Speech and Hearing, Mysore

and has not been submitted earlier to any other University for the award of any other

Diploma or Degree.

Mysuru

September 2021

Registration Number: 19AUD002

I dedicate my dissertation, to

Amma and Appa.

Thank you both for your love, blessings, support, hard work, and sacrifice. The confidence that you had in me made me achieve the impossible in life even though many said I couldn't do it and has brought me to where I am today

ACKNOWLEDGMENT.

With the support of my Guide Dr. Animesh Barman and the blessings of Shri Maha Periyava, I was able to achieve a big feat in my life by completing my postgraduate dissertation.

I would like to thank the director of AIISH Dr. M Pushpavathi and HOD department of audiology Dr. Prawin Kumar for providing the platform to carryout my dissertation.

I would like to extend my gratitude to my mentor Mr. Narendrakumar who has molded me to become a great student.

I would like to thank Dr. Prashanth Prabhu for giving me the platform to conduct various research works where I could publish and present research papers at national and international level. Thank you sir for being such an inspiration and it is my pleasure that I could do a lot of research works under your guidance.

I would also like to thank Ms Jasmine Lydia and Ms Subhashini Dhandayutham for trusting me at a very young age to carry out research. My first research work started in II BSc and I never stopped after there, thanks to you two.

I would like to thank my JC guide Dr. Niraj Kumar Singh for constant guidance during JC. I ended up taking my JC topic for my dissertation thanks to you sir.

I would like to thank Dr. Sandeep Maruthy for inspiring me to come and join AIISH. Your talk in the HCC conference is what made me join AIISH sir, thank you for being such an inspiration.

I would like to personally thank all the Audiology faculty Dr. Ajith Kumar, Dr. Manjula P, Dr. Sujeet Kumar Sinha, Dr. Chandini Jain, Dr. Devi N, Dr. Sreeraj Kodanath, Dr. Hemanth N Shetty, Dr. Geetha, Ms. Spoorthy, and Dr. Nisha for your wonderful teaching and constant support to all of us. I would also like to thank the clinical supervisors Dr. Sharath Kumar, Dr. Jithin Raj, Dr. Megha, Mr Baba, Mr Vikas, Mr Nagarajau, Mr Jawahar Antony for all the support and enlightening our clinical skills.

I would like to thank all my faculty from MERF Mr Ranjith Rajeswaran, Mr Pachaiappan, Ms Saranya Gunalan, Ms Deepika Jayachandran, Ms PS Divya, Ms S Divya, Ms Rishaba Priya, Ms Amritha G for your support.

Apart from my teachers I had 4 wonderful seniors who were like my teachers during my I Bsc thanks to which I had confidence in our field right from the beginning. Thank you Patricia (the legend), Maya akka, Ameena akka and Srividya akka for seeing potential in me and guiding me from the beginning.

During the short time in AIISH I managed to become meet some wonderful seniors and became close with them. Thank you Ajith anna, Kruba anna, Prasanna

anna, and Kalai anna for the memories. Special thanks to Kruba anna for the help in drawing, it came out really good.

Thanks to all the II Msc bois (LL) for the wonderful memories in hostel as it being my first time. Special adventures with first floor bois, especially with Prateek (Se), Ankeet, Anshuman (Dale Steyn), Prabhdha, Biraj, Dilli Raj (Dr. P), Aasheesh, and Chethan (Ch). You guys are unimaginably crazy with poor jokes. Prateek (Se), you have been the most selfless and nicest guy I have known, happy to have you as my friend.

Chethan (Ch), thanks for being with me these two years as a really good and supportive friend (sarcastic). All these years you have been annoying, irritating, and also killing me with your Pjs. Even with all these negatives, I am honoured to have a friend like you but wish you buy me a new racket that you broke and stop bullying me to buy your mobile charger.

Special memories and fun with chetas Athul (Ricky Ponting), Praveen (Cheta), Freddy (ha ha ha), thanks for the memories. Thank you Muthu and Abu for the six years journey.

My fun and adventure started from my bachelors where I was a part of this dangerous gang of 'we are' with founders Dianna (Gu) and Rizwana (AA)s being my all time besties. The childish fights, thrill and incidents almost getting us suspended will not be forgotten. Other powerful gang members Abinaya, Anitha, and Giri, thank you for being with me and all the fun. Thanks to my sista Santhoshi for the annoyance, irritation, and care.

Special special special thanks to my all time bestie Niranjana, you have tolerated me for 6 years. Thanks for having my back and providing all kinds of support right from my practicum to teaching me during exams. You have been the best support system for me. Special thanks to my bestie Subha for always being with me during both my tough times and good times. Good to have you as my best friend

Would like to thank my batchamtes yolomaaris for the amazing 4 years of UG life. Thank you Janani, Sor, Hiran, Anamika (peter), Prathiba, Vishali, Nandini, Jo, Kairthana, Roth, Snow, Akshay, Deepika, Angel, and all others for the journey.

I have had constant support always from my all time favourite juniors of MERF Shivadharini (Simoosi), Divyashree (Gosu), Pavitra (Eli), Sugathi, and Lachu. Thank you juniors for the best time. Let your life be full of thrill and adventure.

In this short time in these 2 years, I managed to meet with some wonderful people, although couldn't spend much time with them, happy to have interacted with them and got to know about them. Thank you Priyanka (dumbo), Yaalu (kolanthai), Ranjini (Bek), Saranya (Jijinu), Sahana, Rachana, Kavitha, Prakruthi (Chashme), Christabell, Amrithavarshini Jayashree, and Brahmjot.

In these 2 years not had much interaction with juniors but managed to have a wonderful junior. Thank you Chandana (Kopa) for your constant support and memories. You have been very supportive these years and not only my favourite junior but my good friend too. With your character and talent, you will definitely achieve your goals and I will support you however I can. But I need a grand treat on your first paper publication.

Special kudos to my JC partners Ashish, Tasneem, and Chashme for the wonderful JC we did together. A big thanks to my posting partners of Plumpy and Co Bhagya (Whitener), Chashme, Dip tea, and Freddy boy for the fun, fight, and other memories

I would like to thank my dissertation partners Suryakanth and Sunny Khurana for the memory of doing an adventurous dissertation.

A special thanks, thumbs up, and fist up to my dynamic A section classmates which is a special team led by captain Dilli Raj Paudel (Dr. P) and vice captain Anshumaan (Dale Steyn) comprising of powerful team members of myself (smart one), Aaadi Padi, Ariya (Aira), The virus, Kajal, Athul (Ricky Ponting), Freddy Josh (ha ha ha), Aaapoo, Chethu, Bhagya (Whitener), Ankeet, Aasheesh, Meera, Chatri, Panja Sara Eli, Jijinu (Ginger), and Halsa Hazma Vadilathan.

Thank you maudiolus, renovators 2.0 and juniors, seniors of AIISH and MERF

TABLE OF CONTENTS

	Contents	Page Number
	List of Tables	ii
	List of Figures	 iii
Chapter 1	Introduction	1-9
Chapter 2	Methods	10-17
Chapter 3	Results	18-63
Chapter 4	Discussion	64-76
Chapter 5	Summary and Conclusion	77-79
	References	80-84
	Annexure	85-86

LIST OF TABLES

Table	Caption	Page
number		Number
2.1	Different search options used across databases	14-15
3.1	Reasons for the exclusion of four articles that were	20-21
	considered after full-text screening.	
3.2	Study design and the level of evidence of the articles	22-23
	selected for systematic review.	
3.3	Summary of the finalized articles	24-55
3.4	Quality analysis for the articles depicting the results for	57
	the four domains	
3.5	Characteristics, pathophysiology, test to be	63
	administered, treatment for light cupula based on critical	
	evaluation of reviewed articles.	
4.1	Differential diagnosis between light cupula.	75
	Canalolithiasis, Cupulolithiasis, and central pathology	
	based on the direction, latency, persistency, and	
	fatigability of nystagmus with null plane being either	
	present or absent.	

LIST OF FIGURES

Figure	Caption	Page
number		Number
2.1	Flowchart on the way the methodology has been carried out.	10
3.1	PRISMA flow diagram for representation of the items that were screened, included and excluded in the systematic review process.	19
3.2	Graphical representation of QUADAS 2 results depicting proportion of studies depicting low, high, and unclear for risk of bias assessment.	58
3.3	Graphical representation of QUADAS 2 results depicting proportion of studies depicting low, high, and unclear for concerns regarding applicability.	59
4.1	Activity of cupula during rest position in individuals with normal vestibular functions	68
4.2	Cupula deflection in the right ear at rest position in individuals with light cupula due to reduced density in cupula or increased density in endolymph.	68
4.3	Cupula deflection in the left ear at rest position in individuals with light cupula due to reduced density in cupula or increased density in endolymph.	69
4.4	Head movement towards the right with an approximate null plane angle of 20 degree where Cupula is seen to have no activity.	69
4.5	Head movement towards the left with an approximate null plane angle of 20 degree where Cupula is seen to have no activity.	70
4.6	Number of individuals with light cupula in each article (ranges from 9 to 47).	74

Chapter 1

INTRODUCTION

Dizziness refers to the abnormal sensations relating to the body's perception of space. Drachman and colleagues in 1972 classified dizziness into five types: vertigo, presyncope, light headedness, disequilibrium, and other dizziness. Within dizziness, vertigo is the abnormal sensation relating to the body's perception of space due to a sudden internal or external spinning sensation during a head movement (Wipperman, 2014). Vertigo can be due to a peripheral lesion or a central lesion. Some peripheral vestibular disorders include Benign Paroxysmal Positional Vertigo (BPPV), Meniere's disease, vestibular neuronitis, labyrinthitis, Vestibular Schwannoma, Perilymphatic Fistula, and Superior Semi-circular Canal Dehiscence. The central vestibular disorders which commonly cause vertigo include cerebellopontine angle tumours, migraine-associated vertigo, vertebrobasilar ischemic stroke, vertebrobasilar insufficiency, fistula neoplasms of higher structures, etc. (Hanley et al., 2001).

Vertigo can often be diagnosed with a detailed case history, objective tests, and subjective tests. The case history includes, obtaining the patient's symptoms where a clinician could use the traditional SO-STONED method, which means Symptoms, Often (Frequency), Since, Trigger, Otology, Neurology, Evolution, and Duration. Some of the subjective tests which are commonly used to asses vestibular function include the head impulse test, head shake nystagmus test, dynamic visual acuity test, ocular tilt test, past pointing test, Fukuda stepping test, subjective visual acuity test, hyperventilation induced nystagmus test, Valsalva induced nystagmus test, finger to nose test, diadokinesis test, and other diagnostic maneuvers for BPPV. The objective tests used to assess vestibular functions by an audiologist includes

Vestibular Evoked Myogenic Potential (VEMP), caloric test, videonystagmography (VNG), and Video Head Impulse Test (vHIT) (Parker et al., 2019; Welgampola et al., 2019).

Amongst peripheral and central forms of vertigo, peripheral vertigo is the most common type of vertigo (Omron, 2019). The most common cause of vertigo due to peripheral pathology is BPPV (Kim et al., 2021). The cardinal symptoms of a client with BPPV include sudden vertigo induced by a change in head position during several head turn activities like turning over in the bed, lying down, looking up, stooping, or any other sudden change in head position (Kim & Zee, 2014). The severity of the BPPV is broad in a spectrum, ranging from mild to severe. The mild symptoms are, positional vertigo with inconsistency, and the moderate symptoms are positional vertigo with more frequent attacks and disequilibrium. Severe vertigo gives an impression of continuous vertigo provoked by most head movements (Imai et al., 2017a; Instrum & Parnes, 2019). These vertiginous symptoms may last for a few days, weeks, months, or years or can be recurrent over many years (Imai et al., 2017a).

The pathophysiology of BPPV involves the disruption in the normal biomechanics of endolymph flow in the semicircular canals. In a BPPV condition, the Otoconia crystals from the utricle dislodge and fall into either one of the three semicircular canals or fall into two or all semicircular canals due to multiple causes (Nuti et al., 2016; Vaduva et al., 2018). The otoconia crystals in the semicircular canals become a free-floating debris that hampers the normal movement of the endolymph. In a typically normal condition, the three semicircular canals in the inner ear help to detect the angular acceleration by being positioned at nearly right angles to each other. Each of the canals is filled with potassium-rich endolymph

with a swelling at the base termed the "ampulla." The ampulla contains the gelatinous mass "cupula," with the same density as the endolymph. This cupula is further attached to its polarized hair cells, making it the sensory organ (Bhattacharyya et al., 2017; Kim & Zee, 2014; Vaduva et al., 2018). During a head movement, the direction of the endolymph flows in the opposite direction of the head movement, causing it to deflect the gelatinous cupula housed in the ampulla. Depending on which canals get stimulated, the responses may be an excitatory response or an inhibitory response. There are two types of movements; an Ampullofugal movement which refers to the endolymph movement of semicircular canals away from the ampulla, and an Ampullopetal movement which refers to the endolymph movement towards the ampulla. The Ampullofugal movement causes a stimulatory response in the ampulla of the superior and posterior canals. The Ampullopetal movement causes an excitatory response in the ampulla of the lateral canal (Argaet et al., 2019; Yetiser, 2019). The cupula forms an impermeable barrier across the lumen of the ampulla, and therefore if any particles are present in the lumen, the particles cannot enter through the cupula. The Otoconia crystals are not permeable through the cupula. They can only enter/exit through the non-ampullary end. In very rare cases, otoconia crystals enter through the ampullary end and get attached to the cupula proximal to the utricle (Rabbitt, 2019).

The presence of a free-floating debris in the endolymph causes a faster movement of the endolymph that creates a mismatch with the head movement due to the gravitational push made by the free-floating debris (Yu et al., 2021). BPPV caused by free-floating debris within the membranous semicircular canals is called Canalolithiasis. On the other hand, the debris gets stuck to the cupula, causing a continuous deflection of the cupula during a head movement, resulting in a

mismatch between the cupula movement and the head movement which is due to the weight of the debris on the cupula. BPPV caused by attached debris to the cupula is called Cupulolithiasis. Both Canalolithiasis and Cupulolithiasis cause nystagmus, which is the repeated and rhythmic oscillation of the eyes (Balatsouras et al., 2018; Imai et al., 2017b). Posterior canal BPPV is the most common type of BPPV, followed by the lateral canal and anterior canal BPPV being the least common. The commonality of BPPV in the posterior canal is due to the higher gravitate in the posterior canal, making it easier for the debris to have a gravity-dependent fall and the anterior is not a gravity framed structure for the debris to fall, thus making it the least common BPPV (Martens et al., 2019). BPPV can be diagnosed with the help of diagnostic maneuvers such as Dix Hallpike, modified Dix Hallpike, and sidelying test for posterior canal BPPV, roll test, bow and lean test for lateral canal BPPV, and rose test for anterior canal BPPV (Lou et al., 2020). Two types of nystagmus can be observed in clients with BPPV. One is geotropic nystagmus, and the other is apogeotropic nystagmus. Geotropic nystagmus is where the nystagmus is towards the ground during the diagnostic tests, and apogeotropic nystagmus is where the nystagmus beats away from the ground. The BPPV can be diagnosed either as canalolithiasis and cupulolithiasis (geotropic or apogeotropic) based on the latency, adaptation, fatigability of the nystagmus, and severity of vertigo. Individuals with canalolithiasis get geotropic nystagmus due to the free-flowing movement of the otoconia crystals in the endolymph in the same direction of the head movement, and individuals with cupulolithiasis get apogeotropic nystagmus due to the weight of the otoconia crystals acting upon the cupula opposite to the direction of the head movement. Many possible forms of BPPV can occur in patients. A typical form of BPPV would be transient geotropic nystagmus in the

case of Canalolithiasis and persistent apogeotropic nystagmus in the case of Cupulolithiasis. However, in very rare cases of canalolithiasis, the free-flowing debris is present in the non-ampullary arm of the Semicircular Canals, and transient apogeotropic nystagmus is seen. In rare cases where the debris is stuck to the utricular side of the cupula, a persistent geotropic nystagmus is seen in the case of Cupololithiasis (Hiruma et al., 2018; Wang & Yu, 2018).

Direction-changing positional nystagmus (DCPN) is thought to be of a central origin. In very rare cases, a peripheral origin of vertigo can also show symptoms of DCPN where there is a spontaneous reversal of initial positional nystagmus while maintaining the head position, which is also defined as reverse nystagmus of the DCPN (Shin et al., 2015; Maia et al., 2020).

Clinicians over the years have found out a very rare form of presentation of a persistent geotropic direction-changing positional nystagmus that is not caused due to a dislodged otoconia crystals but due to the change in relative density between the cupula and the endolymph. They called this phenomenon as the light cupula (Choi et al., 2017).

The light cupula is a very rare phenomenon wherein the cupula's specific gravity is comparatively lower than the surrounding endolymph. According to Ewald's law, there will be a persistent geotropic Nystagmus in these individuals due to the lightweight of the cupula. With the change in the head position, the hair cells in the semicircular canals are either activated or inhibited (Shin & Kim, 2015), and this phenomenon resembles the Canalolithiasis type of BPPV. However, similar to the cupulolithiasis (heavy Cupula phenomenon), individuals with light cupula also have a null plane with an angle approximately 15 to 20 degrees from the supine

position. The null plane or the null point is a point that corresponds to the head position where the semicircular canals are aligned horizontally/vertically. There is no influence of gravity at this particular null point, and the cupula does not get displaced due to heavy debris, light debris, or even the endolymph movement, thereby resulting in no nystagmus at this angle (Kim et al., 2018). The intake of alcohol leads to nystagmus, and the mechanism was known as the Positional alcohol nystagmus (PAN). The PAN was the first nystagmus type identified by Aschan et al. in 1956 to resemble the light Cupula hypothesis concerning the relative density between the Cupula and Endolymph (Han et al., 2020). The mechanism behind it was that the alcohol might cause an imbalance between the cupula and endolymph as ethanol with a specific gravity of 0.79 causes an accelerated diffusion of blood capillaries into the cupula lowering its density which results in hypersensitive deflection of the cupula and thereby creating an imbalance of specific gravity between endolymph and cupula (Zhang et al., 2020). The name light cupula was first coined in 2002 by Shigeno et al. In 2004, Hiruma et al. reported persistent nystagmus in some of his patients implying that symptoms were similar to cupulolithiasis and that the cupula was lighter than the surrounding endolymph (Hiruma et al., 2018; Wang & Yu, 2018; Zhang et al., 2020). Concerning the possible mechanisms of the light cupula, there have been five major hypotheses put forward to explain the phenomenon. The first hypothesis is the "lighter cupula" hypothesis which explains the reduction in the absolute density of the cupula, similar to the mechanism of positional alcohol nystagmus. The positional alcohol nystagmus has two phases. Phase one of the positional alcoholic nystagmus (PAN 1) happens in the light cupula as accelerated diffusion in the blood capillaries to the cupula may make it lighter. Another explanation for light cupula is the "heavier endolymph" hypothesis. Heavy

endolymph could result from inflammation to the inner ear in cases of meningitis or labyrinthitis. These inflammations cause a rise in the Cerebrospinal Fluid (CSF) protein at the endolymph level, making it denser. Heavy endolymph can also be seen in cases with sudden sensorineural hearing loss (SSNHL) with a vertigo symptom. In SSNHL patients, possible damage in the blood-brain barrier due to a minor hemorrhage in the inner ear results in plasma protein leakage from the inner ear vessels to the endolymph. Heavy endolymph can cause an additional force to the cupula due to its density, thereby creating hyper-sensitive deflection in the cupula. The third mechanism is the "light debris" hypothesis, which is the opposite of the heavy debris seen in cupulolithiasis. Otoconia crystals in cupulolithiasis increase the cupula's mass, and deflection seen in the cupula is due to the weight of otoconia crystals on the cupula during head movement. But light debris, which could be in the form of plasma or leukocytes during head movement, creates a buoyant force that is acted upon the cupula, making it lighter. The fourth mechanism is the "utricular macular" hypothesis proposed by Hiruma and colleagues in 2018, where they stated that a dysfunctioning utricular macular could result in persistent geotropic nystagmus (Zhang et al., 2020). The fifth mechanism is the "density" hypothesis, which is a more recent hypothesis by Kim et al. in 2018 where they proposed that if the density of the perilymph increases and is relatively more than the endolymph, a constant gravitational force is acted upon the endolymph (Kim et al., 2018). This gravitational force causes an excessive endolymph push that results in a high deflection of the cupula and causing a symptom of persistent geotropic nystagmus. The other possible causes of light cupula include vestibular migraine, meningitis, labyrinthitis, SSNH, CNS disorders, such as brainstem stroke, cerebellar tumors, and HIV encephalopathy, which may also present with persistent symptoms geotropic

Direction Changing Positional Nystagmus. Treatment methods such as intratympanic steroid injections, repositioning maneuvers have been tried but found to be partially successful. However, habituation exercises can be tried to reduce the symptoms of nystagmus (Park et al., 2018; Tang et al., 2019).

1.1 Need for the study

The concept of the light cupula, although described in 2002, has only been widely discussed recently with the presence of more previously published literature within the decade ranging from original articles to case reports (Kim.,2014 Kim, et al., 2014). Individuals with canalolithiasis present with the characteristics of geotropic nystagmus, whereas individuals with cupulolithiasis present with persistent apogeotropic nystagmus, and individuals with vertigo of a central origin present with nystagmus that can be persistent and geotropic. The light cupula is often misdiagnosed with these conditions as characteristics of these conditions are similar to that of the light cupula. Audiologists must be aware of the light cupula phenomenon and must be able to differentially diagnose between central Nystagmus, Canalolithiasis, and heavy Cupula. Two literature review studies have been documented recently, but no systematic review studies were done (Wang et al., 2017; Zhang et al., 2020). The current article is the first known systematic review article to shed light on the concept of the light cupula, its symptoms, possible causes, and documentation of various experiments from other literature.

1.2 Aim of the study

To analyze various experiments done on light cupula based on a Systematic review research design.

1.3 Objectives of the study

- To identify published articles related to light cupula and the type of nystagmus associated with a light cupula and highlight the distinguished phenomena associated with any specific cause of light cupula.
- 2. To understand the diagnostic criteria for light cupula phenomena
- 3. To understand the Pathophysiological and possible treatment measures underlying the Light Cupula Phenomena.

Chapter 2

METHODS

Based on the objectives mentioned above, an attempt was made to extract information from the published articles as a part of the systematic review process. Information was gathered from several sources, and articles were shortlisted. Each relevant article was critically evaluated to arrive at the objectives. A flowchart of how the methodology was carried out has been depicted below:

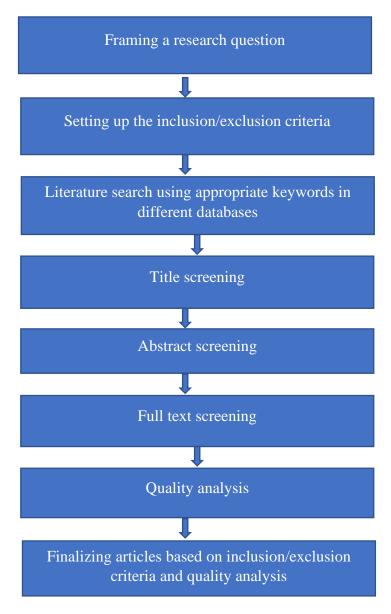


Figure 2.1: Flowchart on the way the methodology has been carried out.

2.1 Research design

The current study incorporated a Systematic Review research design.

2.2 Eligibility criteria

Eligibility criteria was defined as inclusion and exclusion criteria based on which articles were included and excluded in the systematic review. The inclusion and exclusion criteria for this systematic review is as follows

2.3.1 Inclusion Criteria

- The publications were from the peer-reviewed journals
- The articles were included but were not restricted to the topic of the light cupula.
- The articles included were original articles containing human subjects with appropriate sample size, appropriate usage of test battery utilized to diagnose light cupula, and appropriate usage of relevant statistical analysis
- The time limit for article selection was not considered, considering the rarity of the pathology, and articles from any year of publication were included.

2.3.2 Exclusion Criteria

- Articles of a single case study, short communications, letter to the editor, systematic review, and metanalysis were not included.
- Articles with language apart from English were excluded.
- Articles focussing on concepts other than light cupula were excluded.

Scientific articles from different sources focusing on light cupula or related articles were gathered from the different sources to archives the objectives of the systematic review.

Articles collected from the various sources have been screened based on several criteria

before considering it for systematic review. The detailed procedure for selection of the articles is given below.

2.3 Literature search

Articles published from various peer-reviewed journals were searched in different databases like Pubmed, Pubmed Central, Science direct, Web of Science, Shodh Ganga, Google Scholar, and J-GATE. For search strategy in PubMed and PubMed central, the BOOLEAN operations such as AND, OR, and NOT were used, and for other databases, its respective keyword extraction was used. The keywords used were light cupula, heavy endolymph, persistent geotropic nystagmus, directional changing positional nystagmus, DCPN, and positional alcoholic nystagmus.

The search was based on PICOS(P- Population, I- Intervention, C-Comparison, O-Outcome, S-Study Design). The articles were filtered based on the inclusion and exclusion criteria recommended by Methley et al., 2014 where according to them the PICO framework is an endorsed framework by the Cochrane library that can be utilized to identify components related to clinical evidence for systematic review. The PICO alone could be used to extract quantitative data but PICOS can be used to extract qualitative data as well. Considering the presence of adequate medical evidence and the possibility for consideration of qualitative data in the current study, a PICOS framework was adopted rather than other frame works like SPIDER (sample, phenomenon of interest, design, evaluation, research type) and PICO.

2.4 Selection process

The selection of the articles included in the review was based on whether they met the inclusion criteria mentioned in the eligibility criteria. Each article was screened, keeping in mind the keywords for the review and inclusion and exclusion criteria. The articles that did not fulfil the inclusion criteria or which came under the exclusion criteria mentioned earlier were excluded from the study. Two authors independently carried out the selection process independently, followed by a third author if any conflict of interest was encountered. For the data selection procedure, the articles were title screened in the first stage, followed by abstract screening, and then full-text screening was done. Duplicate detection was done before title screening with the help of the same software. After duplicate detection, the remaining articles were title screened, where relevant articles were shortlisted based on the title, followed by the abstract screening. Articles were shortlisted based on the abstract where articles fulfilling the inclusion criteria were selected for the full-text screening. In contrast, the articles which didn't fulfil the inclusion criteria or which came under the exclusion criteria were excluded from the systematic review process. The study selection followed the latest PRISMA guidelines from title screening to abstract screening to finalizing the articles based on the inclusion/exclusion criteria (Moher et al., 2009). The search was carried out using the Rayyan intelligent system software (Ouzzani et al., 2016) where the databases of Pubmed, Pubmed Central, Scopus, Web of Science, Shodh Ganga, Google Scholar, and J-GATE containing the articles were imported into the Rayyan intelligent system software.

Articles were searched for in each of the above, using a set of keywords. Due to the differences in the search and indexing algorithm in place in each of the databases, the keywords mentioned were extracted separately from each database after the search and the keywords extracted from each databases have been depicted in table 2.1.

 Table 2.1

 Different search options used across databases

DATABASE	SEARCH
PubMed	(((((light cupula) OR (heavy endolymph)) OR (persistent geotropic
	nystagmus)) OR (direction changing positional nystagmus)) OR
	(dcpn)) OR (positional alcohol nystagmus)
PubMed central	(((((("light"[MeSH Terms] OR "light"[All Fields]) AND
	cupula[All Fields]) OR (heavy[All Fields] AND
	("endolymph" [MeSH Terms] OR "endolymph" [All Fields]))) OR
	(persistent[All Fields] AND geotropic[All Fields] AND
	("nystagmus, pathologic" [MeSH Terms] OR ("nystagmus" [All
	Fields] AND "pathologic"[All Fields]) OR "pathologic
	nystagmus"[All Fields] OR "nystagmus"[All Fields]))) OR
	(directional[All Fields] AND changing[All Fields] AND
	("nystagmus, physiologic" [MeSH Terms] OR ("nystagmus" [All
	Fields] AND "physiologic"[All Fields]) OR "physiologic
	nystagmus"[All Fields] OR ("positional"[All Fields] AND
	"nystagmus"[All Fields]) OR "positional nystagmus"[All
	Fields]))) OR dcpn[All Fields]) OR (positional[All Fields] AND
	("ethanol" [MeSH Terms] OR "ethanol" [All Fields] OR
	"alcohol" [All Fields] OR "alcohols" [MeSH Terms] OR
	"alcohols"[All Fields]) AND ("nystagmus, pathologic"[MeSH
	Terms] OR ("nystagmus" [All Fields] AND "pathologic" [All
	Fields]) OR "pathologic nystagmus"[All Fields] OR
	"nystagmus"[All Fields]))
Science direct	("light cupula" OR "heavy endolymph" OR "persistent geotropic
	nystagmus" OR "direction changing positional nystagmus" OR
	"dcpn" OR "positional alcohol nystagmus")
Web of science	light cupula OR heavy endolymph OR persistent geotropic
	nystagmus OR direction changing positional nystagmus OR dcpn
	OR positional alcohol nystagmus

Shodh Ganga	light cupula, heavy endolymph, persistent geotropic nystagmus,				
	directional changing positional nystagmus, DCPN, and positional				
	alcoholic nystagmus.				
Google scholar	light cupula OR heavy endolymph OR persistent geotropic				
	nystagmus OR direction changing positional nystagmus OR dcpn				
	OR positional alcohol nystagmus				
J-GATE	light cupula OR heavy endolymph OR persistent geotropic				
	nystagmus OR direction changing positional nystagmus OR dcpn				
	OR positional alcohol nystagmus				

2.5 Data collection process (extraction of articles; Title screening to finalizing articles)

The preliminary search was executed independently across all the electronic databases using Boolean operators and keywords by two authors. The results that came from various databases were compiled together using a reference management system i.e., "Rayyan- intelligent, systematic review." The Rayyan intelligent system software has options of inclusion (i), exclusion I, and maybe (?). The 'inclusion' option enables insertion of the articles, the 'exclusion' option excludes/deletes the articles, and the 'maybe' option allows the reviewer to view it at a later stage. The authors had the option to use these features and segregate the articles. These features were used in all title screening, abstract screening, and full-text screening procedures before finalizing the articles for systematic review. The total number of articles combining all the databases was noted, the number of selected articles after title screening, the number of selected articles after the abstract screening, and the number of articles after full-text screening were also noted down. The articles from different databases were converted into different formats. The articles from the PubMed database were selected and downloaded in the form of a text document, while the data from the science direct and J- gate databases were downloaded in the form of RIS file format, which is developed by the research information systems. For the science direct

database and web of science, the format was extracted as BIB, and for google scholar the format was extracted as XML. The finalized articles were also imported to the MENDELEY reference managing software for citation purposes.

2.6 Quality analysis

2.6.1 Assessment of Risk of bias and reference standard using QUADAS 2

Risk of bias assessment was carried for selected studies using the Quality Assessment for Diagnostic Accuracy Studies (QUADAS-2) tool given by Whiting et al., 2011 to avoid the risk of bias. The QUADAS 2 tool helps in the assessment of the quality of the articles. The tool is completed in four phases.

Phase 1: reporting the systematic review question based on patients, index test, reference standards, and target condition.

Phase 2: review specific tailoring

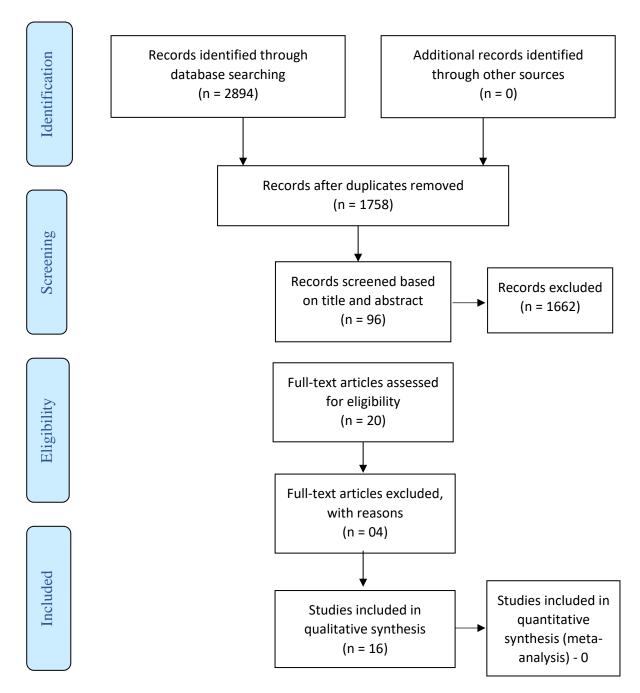
Phase 3: reviewing the published flow diagram.

Phase 4: judgement on bias and applicability. The assessment of risk of bias and applicability in phase 4 consists of four domains which are patient selection, index test, reference standard, flow and timing.

Articles were assessed based on these four domains to find out the risk of bias, and applicability. All 4 domains in the tool of phase 4 assesses risk of bias and the first three domains of phase 4 assesses applicability. The scores were marked as 'low', 'high', and 'unclear' in both the risk of bias and applicability. The tool consists of several signaling questions under each domain (given in annexure 1), which can be answered as 'yes ' with 50% or more of yes response meaning low risk of bias and if the signaling questions are answered as 'no' with 50% or more with no response it means there is a high risk of bias.

The same with unclear response. The applicability section does not have signaling questions and is just assessed as 'low', 'high', and 'unclear'. However, if there are conflicts or uncertainty following inadequate information, it was answered as 'unclear.' The test was analyzed by two independent reviewers to avoid risk bias, where a third reviewer was considered to avoid any discrepancy between the two reviewers.

2.6.2 Level of evidence


Based on the type and methodology of the study design, the level of evidence was assessed using the Oxford Centre of Evidence Based Medicine (OCEBM) scale. The OCEBM scale has five levels. Level 1 means it is a randomized control trial, level 2 mens it is a cohort study, level 3 means it is a case control, level 4 means it is a series, and level 5 means it is a single case study. Level 1 and level 2 have subscales of 'a' and 'b', a level 1a indicates a systematic review, a level 1b means it is a randomized control trial, level 2a level 2b with cohort studies and low quality randomized control trial respectively. There was an option of rejecting articles based on the level of evidence. However, in our study, we chose to reject only level 5 type of articles (case study) and preserve the rest of the articles documenting its level of evidence (Oxford Centre for Evidence-Based Medicine: Levels of Evidence (March 2009) — Centre for Evidence-Based Medicine (CEBM), University of Oxford,).

Based on the search strategy, articles were screened from different databases and were selected based on the inclusion and exclusion criteria. All the selected articles underwent quality analysis and level of evidence testing. The objective, methodology, results, implications were discussed in detail and were critically evaluated. The objectives of the current study were discussed in detail based on the outcome of the systematically reviewed selected articles. The study selection and article informations have been explained in detail in a flowchart, table, and written in the results section.

Chapter 3

RESULTS

The articles were finalized based on the PICOS/PECOS framework with appropriate search strategies utilized in the above-mentioned databases. Out of the seven databases searched, a total of 2894 articles were obtained (Pubmed – 470, Pubmed Central – 861, Web of science - 28, Science direct – 1072, Shodh Ganga – 0, Google Scholar – 400, and J-GATE – 63) out of which 1122 articles were removed as duplicates. A total of 1772 articles underwent title screening, and post title screening, 1676 articles were removed as none of these articles either had light cupula or heavy endolymph or persistent geotropic nystagmus in their title. Around 96 articles underwent abstract screening, 29 articles that mentioned about case studies and topics other than light cupula were removed based on abstract screening with 67 articles undergoing a full text screening. The articles selected for full text screening also included articles related to BPPV that may discuss light cupula as an objective. However, only 16 articles were finalized for review after full text screening as the 51 articles removed after full text screening only dealt with BPPV and other disorder apart from light cupula. Around four articles were close to being finalized but had to be removed on specific reasons. One article mentioned persistent geotropic nystagmus to be a cupulolithiasis on the utricular side of the cupula but did not consider light cupula as a possibility. The article by Imai et al. (2011) considered treatment options for both geotropic and apogeotropic nystagmus but failed to mention about light cupula. Articles by Hong et al. (2018) does acknowledge the presence of light cupula in the background information but oriented the article completely towards pseudo spontaneous nystagmus and its pathology. The last article by Choi et al. (2018) had 32 individuals with light cupula in their study but did not mention the mechanism, diagnostic criteria, and treatment of light cupula as the objectives and discussion of the article was only focussed towards BPPV. The rest 16 articles underwent quality analysis and level of evidence assessment by two independent reviewers.

Figure 3.1 PRISMA flow diagram for representation of the items that were screened, included and excluded in the systematic review process.

Out of the 20 articles that were included for eligibility assessment, four articles were removed and 16 articles were finalized. The reason for exclusion of the four articles is given below in table 3.1.

TABLE 3.1Reasons for the exclusion of four articles that were considered after full-text screening.

SNO	AUTHOR	TOPIC	REASON FOR OMMISSION
	AND YEAR		
1	Imai et al.	Natural course of	Although the article discussed the
	(2011)	positional vertigo in	treatment time for both the
		patients with	geotropic and apogeotropic variant,
		apogeotropic variant of	it did not mention the light cupula
		horizontal canal benign	phenomena.
		paroxysmal positional	
		vertigo	
2	Hong et al.	Pseudo-spontaneous	Although the article considered
	(2018)	nystagmus in patients	light cupula one of the
		with geotropic direction-	pathophysiological mechanisms for
		changing positional	persistent geotropic nystagmus in
		nystagmus	the background, it abstained to
			elaborate on the light cupula
			phenomena. It only highlighted the
			presence of pseudo-spontaneous
			nystagmus and its pathophysiology.
3	S. K. Kim et	Differences in the Head	This article mentions persistent
	al. (2019)	Roll Test, Bow, and Lean	geotropic nystagmus to have
		Test, and Null Plane	characteristics of long duration
		between Persistent and	nystagmus and null plane.
		Transient Geotropic	However, the article only attributes
		Direction-Changing	the cupulopathy/heavy cupula
		Positional Nystagmus	phenomenon to have characteristics
			of persistent geotropic nystagmus
			and not light cupula.

	S. Choi et al. (2018)	Utility of the bow and lean test in predicting subtype of benign paroxysmal positional vertigo	The article aimed to assess the efficacy of the bow and lean test in the assessment of BPPV. Although there were 32 patients with light cupula, the complete focus of the article was to oriented to the diagnosis and management of BPPV with characteristics, assessment, and treatment of the light cupula not being discussed.
--	-----------------------	--	--

Amongst the 16 articles finalized for the review process, around 10 articles have case series type of design (level 4 evidence), three studies with a case control study design (level 3 evidence), one study with a retrospective design (level 3 evidence), one study with a retrospective cohort design (level 2 evidence), and one study with a prospective observational study (level 2 evidence). The details of the level of evidence assessment based on the OCEBM scale has been mentioned in the methods section. The number of patients with light cupula ranged from 9 to 47 patients in these articles. The type of study, number of patients, level of evidence using the OCEBM scale, and the risk bias using the QUADAS 2 quality analysis tool has been briefly mentioned in table 3.2.

TABLE 3.2

Study design and the level of evidence of the articles selected for systematic review.

S.No.	Author Name and Year	Country	Type of study	No of patients	OCEBM Scale	Quality Analysis (Risk of bias).
1	Seo et al. (2016)	Japan	Case series study design	27 (13 men and 14 women)	4	Low
2	Tomanovic and Bergenius (2014)	Sweden	Case series study design	20 (mean age of 53 years with DCPN)	4	Low
3	Imai et al. (2015)	Japan	Case control study	107 (22 men and 85 women) with horizontal canal BPPV	3a	Low
4	Hiruma et al. (2011)	Japan	Retrospective case review study	16 patients with DCPN and neutral points	4	Low
5	C. H. Kim and Hong (2018)	South Korea	Retrospective case review study	65 patients with persistent geotropic nystagmus	4	Low
6	Ichijo (2016a)	Japan	Prospective case series study design	31 heavy cupula (mean age 64.3 years) and 33 light cupula (mean age 60.9 years)	4	Low
7	C. H. Kim, Choi, et al. (2014)	Korea	Prospective case series study	19 individuals with light cupula	4	Low
8	Ichijo, (2020)	Japan	Case control study	140 patients (47 light cupula, 48 heavy cupula, and 45 canalolithiasis) with mean age of 57.4, 58.7, and 53.1 years respectively	3a	Low
9	Ban et al. (2016)	Korea	Prospective case series study	30 individuals with persistent DCPN.	4	Low

10	C. H. Kim, Kim, et al., (2014)	Korea	Retrospective case review study	47 individuals with light cupula out of the total 129	4	Low
11	Tang et al. (2019)	China	Retrospective cohort study design	25 individuals with 9 light cupula and 16 heavy cupula.	2b	Low
12	Park et al. (2018)	Korea	Prospective observational study	47 individuals (15 ITS, 16 Vestibular suppressant, and 16 CRP groups)	2b	Low
13	C. Kim et al. (2014)	Korea	Retrospective case series design	17 SSNHL (9 males and 8 females)	4	Low
14	Wang et al. (2019)	China	Case control study	52 patients (22 males, 30 females; mean age, 49.6 years) presenting with geotropic or apogeotropic DCPN.	3b	Low
15	Ichijo, (2016b)	Japan	Prospective case series study	19 patients with heavy cupula (mean age 62.8 years) and 14 patients with light cupula (mean age 63 years)	4	Low
16	Ichijo, (2012)	Japan	Retrospective study design	18 patients (16 females and 2 males with mean age of 55 years)	3b	Low

All 16 articles have incorporated specific methodology with a specific diagnostic criteria for light cupula with subjective/objective tests administered, and also some articles discussed the treatment outcomes of certain procedures in individuals with light cupula. The details of each article from the aim and objectives until discussion and implications along with author's critical evaluation has been mentioned in detail in the summary table below (table 3.3).

TABLE 3.3

Summary of the finalized articles.

Author	Objectives	Methods	Results	Discussion	Pathophysiology	Critical
name and					mentioned	evaluation
year						
Tang et	The paper	Diagnostic criteria:	Test findings:	The null plane is	Decrease in density of	Advantages:
al.	intended to	Persistent geotropic DCPN	Nine patients	crucial in	cupula.	The need for the
(2019)	explore the	for light cupula and	with	determining the		study, aim and
	possibility in	persistent apogeotropic	persistent	lesion side for	Increase in specific	objectives were
	exacting	DCPN for heavy cupula	horizontal	light or heavy	gravity of endolymph	well displayed in
	the angle of	Participants:	geotropic	cupula. Although		the introduction.
	null plane in	After undergoing the	DCPN were	the short-term	Attachment of light	
	precise	supine roll test 359	confirmed as	therapeutic effect	debris	Methods were
	diagnosis of	individuals were	"light	of the light		clear and
	the two types	considered and only 25	cupula," other	cupula is not as		appropriately
	of DCPN	patients with persistent	16 patients	promising		written with more
	thereby	DCPN were enrolled and	with	as the effect seen		of pictorial
	suggesting a	followed up.	persistent	in heavy cupula,		representation.
	standardized		horizontal	the long-term		
	diagnosis and	According to the direction	ageotropic	prognosis in both		A clear cut
	treatment	of nystagmus, the patients	DCPN were	groups is		differential
	option	were further classified as	confirmed as	comparable;		diagnosis
	_	light cupula and heavy	heavy cupula.	-		between heavy

fo	or both heavy	cupula based on the	All 25	with all patients	cupula, light
ar	nd light	direction of nystagmus.	patients had	recovered after	cupula and
cu	apula.		null plane; the	30 days of	canalolithiasis
		The incidence,	mean value	treatment.	was provided.
		characteristics of	and standard	Authors imply	
		nystagmus and the efficacy	deviation of	that individuals	Limitations:
		of repositioning maneuver	the null plane	with light cupula	Use of bow and
		in the two groups were	in light cupula	must undergo	lean test was
		compared	and heavy	VRT exercises	unclear as it was
		Tests administered:	cupula was	and	mentioned only
		Supine roll test with	25.67 and	intratympanic	in the discussion
		videonystagmography and	27.06	steroid treatment	
		rotatory chair test using the	respectively.	for better	The progress of
		Vesticon system 2000		prognosis.	light Cupula at
		infrared video	The mean		day 30 was not
		ophthalmogram and caloric	value and		justified.
		test	standard		
		Treatment: Brabecue and	deviation of		The discussion
		Guffoni maneuver with a	the		was more
		follow up every week until	termination		generalized as the
		one month.	plane in light		results were not
			cupula was		properly
			28.78, and		mentioned and
			30.25 in		justified in the
			heavy cupula.		discussion
					section.

There was no statistical significance between the two groups.

Caloric test was not done in all subjects.

20% of light cupula cases had canal paresis

.

Treatment

outcomes:

All patients recovered after 30 days of treatment.

The repositioning maneuvers to treat the patients with light cupula was done using the

26

			Barbecue method.			
			A long term prognosis			
			could be seen in light cupula			
			with canalith			
			repositioning			
			maneuvers			
СН.	The study	Diagnostic criteria:	Test findings:	Bow and lean	None mentioned	Advantages:
Kim et	aimed to	Persistent geotropic DCPN	Upon the bow	test maybe of		The need for the
al. (2016)	compare the	with null plane.	and lean test,	minimal use in		study, aim and
	results of a	Participants: Total	the affected	aiding		objectives were
	Bow and lean	individuals enrolled were	side was	lateralization,		well displayed in
	test with those	129 (41 men and 88	identified as	hence the null		the introduction.
	of a head roll	women; age 19–86 years)	the direction	plane direction		
	test for	diagnosed with either	of bowing	must be noted to		Methods were
	lateralization	canalolithiasis	nystagmus 55	decide the side		clear and
	of	(n = 66) or cupulopathy $(n = 66)$	% (36 of 66)	of lesion.		appropriately
	HSCC-	= 63; 47 with	of patients	In individuals		written with more
	canalolithiasis	heavy cupula and 16 with	with	with light		of pictorial
	and	light cupula) where all	canalolithiasis	cupula, Bow and		representation.
	cupulopathy	underwent the same	, which was	Lean has found		
	(heavy cupula	maneuvers.	concordant	to be useful to		A clear cut
	and		with the HRT	identify the side		differential

light cupula),	Tests administered: Head	result in 67 %	of lesion along	diagnosis
and measure	roll test, bow and lean test,	(24 of 36) of	with the head	between heavy
the treatment	and Dix-Hallpike test using	cases.	roll test.	cupula, light
outcomes in	Videonystagmograpy with			cupula and
patients	the eye movements	Both bowing		canalolithiasis
with HSCC-	examined at	and leaning		was provided.
canalolithiasis	various head positions and	nystagmus		
	recorded using goggles	were observed		Limitations:
	equipped	in all patients		The
	with an infrared camera.	with		pathophysiology
		cupulopathy		behind light
		and light		cupula was not
		cupula, and		mentioned.
		the side of the		
		null plane was		The possible
		identified as		treatment options
		the affected		for light cupula
		side.		was not
				mentioned.
		In 16 patients		
		with light		More focus was
		cupula, 10		given to
		showed		canalolithiasis
		greater		and
		intensity of		cupulolithiasis
		nystagmus to		than light cupula.

			the right side			
			and 6 showed			
			towards the			
			left side			
Ban et al.	The study	Diagnostic criteria:	Test findings:	CRP is not	Lighter cupula during	Advantages:
(2016)	investigates the	Presence of a geotropic	Individuals	efficient in	positional alcoholic	The treatment
	short term and	DCPN for over 2 minutes	with long-	individuals with	nystagmus	options and its
	immediate	duration with a null plane	duration	light cupula.		outcomes have
	therapeutic	Participants: The authors	DCPN had		Inner ear hypoperfusion	been mentioned
	benefits in	compared the therapeutic	no, immediate	The reason for	increasing the density of	
	individuals	efficacy of a canalith-	therapeutic	no positive	the endolymph.	Clear cut
	with persistent	repositioning procedure	effect and less	treatment		differential
	DCPN using	(CRP) in short- and long-	number of	outcomes in long		diagnosis
	canalith	duration	patients	duration		between light
	repositioning	geotropic DCPN on 30	showed short	nystagmus (light		cupula and
	maneuvers	individuals	term	cupula) is due to		canalolithiasis
	(CRM).	Tests administered:	effects.	the cupula		was present.
		Supine head roll test	Treatment	deflection and		
		visualized using	outcomes:	not light debris.		Possible
		videonystagmography	The barbecue			pathophysiologi
		Treatment: Barbecue	roll, head			al mechanism ha
		maneuver for lateral canal	shaking, and			been mentioned
		and modified epleys	modified			
		maneuver for posterior	epleys			Ruling out the
		canal	maneuvers			presence of ligh
			were given			debris as a

but no short term and immediate effect were noticed. possible cause for light cupula.

Limitations:

Poor study design used.

Reason why treatment outcomes were poor has not been mentioned clearly.

Differential diagnosis between light cupula and central pathology has not been clearly mentioned

Wang et	The study	Diagnostic criteria:	Test findings:	Characteristics	Attachment of light	Advantages:
al. (2019)	aimed to	Horizontal canal (HC)	Time to reach	between heavy	debris.	Clear cut
	compare the	Canalolithiasis: Transient	slow phase	and light cupula		differential
	direction-	nystagmus (<30 sec)	velocity was	are similar and		diagnosis was
	changing	Light cupula: Persistent	longer for	different from		given between
	horizontal	geotropic nystagmus	light and	canalolithiais.		canalolithiasis,
	positional	Heavy Cupula: Persistent	heavy cupula			heavy cupula, and
	nystagmus	apogeotropic nystagmus	than	The		light cupula.
	(DCPN)	Participants: 52 patients	canalolithiasis	pathophysiology		
	characteristics	(22 males, 30 females;		between light		Detailed test
	between	mean age, 49.6 years)	Other	and heavy		battery was
	canalolithiasis	presenting with geotropic	parameters	cupula are the		carried out and
	and light	or apogeotropic DCPN	showed no	same		multiple
	cupula of	were	significant	(cupulopathy)		parameters were
	horizontal	enrolled, and they were	difference.			studied to
	canal	divided into HC-				establish the
		canalolithiasis, HC-Heavy	The			difference.
		cupula, or HC-Light cupula	direction,			
		groups according their	duration,			The possible
		nystagmus characteristics.	latency, etc			mechanism
		Tests administered:	were similar			behind light
		Dix-Hallpike maneuver	between light			cupula was
		and supine roll test using	and heavy			explained.
		infrared illuminated, vision	cupula except			-
		denied VNG system.	the time			
		-	constant.			

		Peak slow phase velocity,				Limitations:
		time to reach slow phase				Less sample size
		velocity, time to reach peak slow phase velocity, time to decay to half peak				Central lesions have not been
		intensity, latency, and time constant were the parameters administered.				ruled out in these individuals.
						The light debris and possibility of cupulopathy in light cupula individuals cannot be explained without exploring the treatment outcomes in them.
Ichijo	The aim was to	Diagnostic criteria:	Test findings:	The recurrence	Light debris in the form	Advantages:
(2020)	determine the	Persistent nystagmus (> 1	The	rate and number	of monocytes and	This was the only
	recurrence rate	min) in the direction of ear	recurrence	of times of	lymphocytes	article that
	and number of times of	with a null plane for light	rate of light	recurrence is		measured the
	recurrence in	cupula individuals, opposite to the direction of	cupula group was 72.3%,	high in light cupula than		recurrence rate in light cupula
	light cupula,	ear with a null plane for	that of heavy	heavy cupula		which is of
	heavy cupula,	heavy cupula individuals,	cupula group	and		clinical
	man, j capaia,	and brief nystagmus (<1	was 20.8%,	canalolithiasis		significance.

and	min) in the direction of ear	and that of	which could be	Although many
canalolithiasis.	for individuals with	canalolithiasis	due to the	articles claim the
	canalolithiasis.	group was	laterality of the	pathophysiology
	Participants: The study	28.9%. Some	sleeping	to be unknown
	included patients with light	patients	postions.	and in need of
	cupula ($n = 47$; males, 5;	experienced	During a	research, the
	females, 42; mean age,	recurrence	constant sleeping	current article
	57.4 years), patients with	more than	position the light	mentions the
	heavy cupula ($n = 48$;	once. The	debris may	attachment of
	males, 13; females, 35;	mean value	fixedly attach to	light debris
	mean age, 58.7 years) and	and standard	the cupula.	especially during
	patients with	deviation of		sleeping positions
	canalolithiasis ($n = 45$;	the number of		to cause light
	males, 15; females, 30;	times of		cupula.
	mean age, 53.1 years) who	recurrence in		
	complained of positional	light cupula		The self
	vertigo and all underwent	group was 2.5		remediating
	vertigo test with evaluation	± 1.3 times,		treatment has
	of recurrence rate.	than that in		been mentioned.
	Tests administered:	heavy cupula		
	Supine roll test with the	group was 1.5		Limitations:
	number of times of	± 0.7 times,		The treatment
	recurrence and determined	and that in		outcomes
	the subtypes of a recurrent	canalolithiasis		measure using
	vertigo attack for 5 years.	group was 1.5		specific treatment
	Using an infrared charge-	±0.7 times.		

coupled device camera	Results	method has not
(videonystagmography).	indicate more	been carried out.
	recurrence	
	rate and high	Less number of
	chances of	subjects.
	recurrences in	
	light cupula	A clear cut
	Treatment	differential
	outcomes:	diagnosis and
	The authors	appropriate usage
	mention a self	of test battery has
	remediating	not been
	mechanism	mentioned in the
	within the	article.
	body stating	
	that small	
	debris is	
	completely	
	absorbed as it	
	is not foreign	
	material	
	which could	
	be the reason	
	for prognosis	
	after two	
	years.	

Park et	The study aims	Diagnostic criteria:	Test findings:	Even though	Lighter cupula theory	Advantages;
al. (2018)	to assess the	Criteria for light cupula	The DHI and	there were no	due to positional	The Efficacy of
, ,	effects of	included a persistent	VAS showed	significant	alcoholic nystagmus.	each treatment
	intratympanic	geotropic nystagmus and	no significant	differences	, ,	procedures has
	steroid	the presence of a null plane	difference	between the	Heavy endolymph theory	been well studied
	injection (ITS)	when the head is placed in	between the	three groups on	due to inner ear	giving the readers
	in light cupula.	the horizontal axis during	three groups.	DHI and VAS, it	hypoperfusion.	a comparision of
		the supine roll test.	However, a	was only ITS	** *	each treatment
		Participants: A total of 47	complete	that made a	Attachment of light	procedure.
		patients showing persistent	resolution was	complete	debris.	
		geotropic direction-	found in 6	resolution for six		The first article to
		changing positional	patients who	individuals and		use intratympanic
		nystagmus	underwent	reversal of		steroid injection.
		with null point (light	intratympanic	stronger side of		
		cupula) were randomly	steroid	nystagmus for		The treatment
		classified into three groups	injection.	the others		was selected in
		based on the treatment: ITS	Treatment	indicating good		accordance with
		(n=15), vestibular	outcomes:	progression for		an appropriate
		suppressant (VS, n=16)	The barbecue	ITS and the need		understanding of
		and canalith repositioning	maneuver was	for more animal		the mechanism
		procedure (CRP, n=16).	used in the	studies.		
		Tests administered:	CRP group			Limitations:
		Dizziness Handicap	depending			The study failed
		Inventory (DHI) and	on the			to answer the
		Visual Analogue Scale	involved side.			challenges of
		(VAS) were conducted				diagnosing light

		before, 3 days and 1 week	Dexamethaso			cupula by
		after the first treatment to	ne disodium			differentially
		compare the effect of each	phosphate (5			diagnosing
		treatment. Eye movement	mg/ml) was			between light
		was examined and	used in this			cupula, BPPV,
		recorded using goggles	study as the			and heavy cupula
		fitted to an infrared camera	intratympanic			
		(VNG).	steroid			Possible presence
		Treatment method: Utility	injection			of central
		of three treatment methods;	along with			pathology has not
		intratympanic steroid	vestibular			been ruled out in
		injection, vestibular	suppressants.			patients with ligh
		suppressants, and canalith	11			cupula.
		repositioning procedure				1
						Future directions
						on the utility of
						intratympanic
						steroid injection
						has not been
						clearly
						mentioned.
C. H.	The study	Diagnostic criteria:	Test findings:	No therapeutic	Heavy endolymph theory	Advantages:
Kim and	investigated	Presence of geotropic	Initially the	benefit of	due to inner ear	The article carrie
long,	the efficacy of	DCPN for more than 2 min	presence of	mCuRM for	hypoperfusion.	out treatment
2018)	a modified	after the supine head-roll	nystagmus did	patients	71 1	manevers for ligh
4U10)		T	not resolve for	1	Density hypothesis	

cupulopathy	test, and the presence of a	both groups	suggesting that	cupula
repositioning	null plan.	and later	the light	individuals.
maneuver	Participants: Participants	follow up	cupula or heavy	
(mCuRM) on	included 65 patients with a	days, no	endolymph	Even though there
individuals	persistent geotropic DCPN:	statistical	theories can be	was no effect of
with light	35 underwent treatment	significance	considered rather	mCuRM on light
cupula	(mCuRM group),	was obtained	than light debris	cupula, the article
	and 30 were followed-up	between	theory.	managed to
	but received no treatment	mCuRM and		successfully
	(No CuRM group).	non mCuRM		eliminate the light
	Therapeutic and survival	groups		debris theory.
	rate of	Treatment		
	persistent geotropic DCPN	outcomes No		Appropriate
	were compared between	benefit on		diagnostic,
	the two groups.	modified		treatment, and
	Tests administered: Supine	cupulopathy		pathophysiology
	head roll test along with	repositioning		of light cupula
	audiological evaluation.	maneuver on		was mentioned.
	Caloric test was also done.	35 patients		Limitations:
	Treatment methods: utility	were seen.		Even though the
	of modified canalith			article rejected
	repositioning maneuver			the light debris
	(mCuRM)			hypothesis and
				accepted the
				heavy endolymph
				hypothesis, it did

						not mention alternative treatment method as a future direction.
						Differential diagnosis between light cupula, BPPV, and heavy cupula was not mentioned.
						Possible presence of central pathology in individuals with light cupula was not ruled out.
С. Н.	The study aimed to	Diagnostic criteria: SSNHL- sensorineural hearing loss	Test findings: PTA threshold	SSNHL can cause light cupula as during	Higher density of endolymph due to inner ear hypoperfusion with	Advantages: The article was able to

nystagmus post	3 days.	post treatment	is caused in the	the density of	hearing loss and
sudden	Light Cupula - Long	(76.5 dB)	inner ear	endolymph.	light cupula.
sensorineural	duration of DCPN with	with statistical	creating		
hearing loss	null plane	significance.	increased protein		The
and to explain	Participants: Total of 17	15 out of 17	concentration		pathophysiology
the possible	patients (nine men and	patients had	resulting in the		behind SSNHL
pathophysiolog	eight women; mean	persistent	light cupula		and light cupula
y behind it.	Age of years; range	geotropic			has been properly
	between 22 years – 72	nystagmus			explained.
	years) with ipsilateral	(light cupula)			
	SSNHL and simultaneous	Canal paresis			Treatment
	BPPV showing geotropic	was observed			outcomes even
	DCPN were evaluated with	in 11 out of			though not
	variety of battery of tests	17 patients.			effective have
	Tests administered: The	SVV was			been carried out
	pure-tone average (PTA)	abnormal for			and mentioned.
	was measured as the	5 patients.			
	average threshold at 500,				Detailed test
	1,000, 2,000, and 3,000	Treatment			battery has been
	Hz.	outcomes: No			carried out to
	All 17 patients underwent	effect of			understand the
	the positioning sequence	canalith			pathophysiology.
	using supine head roll test	repositioning			
	using	maneuver on			Limitations:
	videonystagmography	light cupula.			Even though
					treatment

Caloric test was administered to check out possible presence of canal paresis. Subjective visual vertical test (SVV) was also

Treatment: A canalith repositioning maneuver was performed once daily for eight days in these individuals

administered.

measures have been carried out, it is not properly mentioned on the type of maneuver used and the time at which it was done.

Alternative treatment measures have not been mentioned.

Reason for abnormality in caloric test and SVV in the few subjects have not been clearly stated.

Hiruma	The study	Diagnostic criteria:	Test findings:	Repositioning	High density in	Advantages:
et al.	aimed to	Persistent geotropic DCPN	The angle of	maneuvers such	endolymph due to	A clear-cut
(2011)	examine the	with null plane-light cupula	null plane was	as Epleys,	positional alcohol	differentiation
	DCPN with	Persistent apogeotropic	approximately	Lemperts and the	nystagmus.	between heavy
	neutral points	DCPN with null plane-	24.5 for heavy	Brandt-Daroff		and light cupula
	as well as the	heavy cupula	cupula and	exercise for a	Less density in cupula	was provided.
	pathomechani-	Participants: Sixteen	28.5 for light	month with	due to reduced blood	
	sm of the	patients who exhibited	cupula. For	better efficacy in	flow.	MRI and MRA
	condition of	DCPN with null plane	both	the heavy cupula		were performed
	heavy and light	were examined	individuals	group than in the		to rule out central
	cupula.	Vestibular function and the	180 degrees	light cupula		pathology or
		affected side were	from the first			cardiovascular
		determined. In addition, the	null plane, a			pathology
		angle between the supine	second null			
		position and neutral point	plane could be			Appropriate test
		was measured in each	visualized. On			battery was
		patient. Other positional	MRI one			administered with
		nystagmus occurring at	individual			treatment
		other times were also	with light			methods tried.
		examined.	cupula had			
		Tests administered: Supine	infarction in			Limitations:
		roll test, caloric test,	occipital lobe.			Introduction and
		Magnetic Resonance	No			methods were
		Imaging (MRI), and	abnormality			brief with no
		Magnetic Resonance.	in magnetic			proper mention of
			resonance			test battery used.

Treatment: Epleys maneuver for posterior canal BPPV, Lempert maneuver for horizontal canal BPPV, Brand Daroff exercise for 2 patients with BPPV

angiography, 5 individuals with light cupula had deteriorated function on caloric test. **Treatment** outcomes; Treatment outcomes were better for heavy cupula individuals for all patients and treatment measures for

light cupula was not discussed.

Less sample size.

Treatment
outcomes for light
cupula were not
mentioned
properly and
alternative
treatment
methods were
also not
mentioned for
light cupula.

Ichijo	The aims of	Diagnostic criteria:	Test findings:	The presence of	The presence of light	Advantages:
(2012)	the study were	1.Persistent Geotropic	No significant	vertical and	debris in the form of	The article was
	to clarify	nystagmus (1 minute)	difference	torsional	monocytes and	successfully able
	whether	2. In the left ear or right ear	between mean	components can	lymphocytes in the	to postulate the
	persistent	down position, horizontal	value of the	also occur from	semicircular canal.	presence of a
	direction-	nystagmus	MSV in	the horizontal		vertical and
	changing	toward the left or right	healthy ear	semicircular		torsional
	geotropic	respectively occurs	down and	canals as the		component in
	positional	3. In the supine position,	affected ear	semicircular		horizontal
	nystagmus	weak horizontal nystagmus	down position	canals are not		semicircular
	contains	continues, and it ceases	but	exactly in the		canals.
	vertical and	when the head is turned to	significance	sagittal plane.		
	torsional	the	was present			The utility of
	components,	affected ear by 20-40_	between	The eye		maximum slow
	and to	(neutral position).	supine and	movements in		phase velocity as
	quantify the	4. No nystagmus in the	nose down	the supine		a parameter to
	asymmetry.	sitting position.	position.	position and the		differentiate the
		Participants: The subjects		nose-down		nystagmus
		were 18 patients (16	Positional	position were not		between ears.
		females and 2 males, with	nystagmus	mirror images		
		a mean age of 55 years, age	was not	indicating that		The study
		range 28–80 years) with	purely	the horizontal		eliminated the
		light	horizontal.	canal ocular		presence of
		cupula who underwent	Eight (44%)	reflex is		central pathology.
		supine roll test with the	patients	influenced by		
			revealed a			

utility of video	vertical	input from the	Limitations:
nystagmography	component	otolithic organs.	There was no
Tests administered: Supine	(upward) and		clear cut
head roll test using the	15 (83%)		differentiation if
three-dimensional	patients had a		the participants
videooculography	torsional		had heavy or light
with maximum slow-phase	component in		cupula.
velocity	the healthy-		
(MSV) measured.	ear-down		Treatment
	position.		methods were not
	Seven (39%)		explained for the
	patients		participants.
	revealed a		
	vertical		The study did not
	component		highlight the
	(downward)		background,
	and 10		mechanism of
	(56%)		light cupula in
	patients		detail.
	showed a		
	torsional		
	component in		
	the nosed own		
	position.		

			Treatment outcomes: None			
Ichijo	To measure the	Diagnostic criteria:	Test findings:	As the neutral	The presence of light	Advantages:
(2016a)	neutral	1.Persistent Geotropic	The mean	position varies	debris in the form of	The paper was
	position of	nystagmus (1 minute)	neutral	widely with	monocytes and	able to
	apogeotropic	2. In the left ear or right ear	position value	even. Some	lymphocytes in the	differentiate
	direction-	down position, horizontal	and standard	patients	semicircular canal.	heavy and light
	changing	nystagmus	deviation of	exhibiting a		cupula
	positional	toward the left or right	heavy cupula	large angle of the	Greater density of	
	nystagmus	respectively occurs	individuals	neutral position	endolymph increasing the	The paper also
	(heavy cupula)	3. In the supine position,	was 31.6 \pm	(more than 40	specific gravity of light	discussed the
	and persistent	weak horizontal nystagmus	22.4 degree	degree); the	cupula.	possibility for a
	direction-	continues, and it ceases	(5-89 degree	examiners		persistent
	changing	when the head is turned to	range). The	should make		apogeotropic
	geotropic	the	mean value	patients adopt a		nystagmus in
	positional	affected ear by 20-40_	and standard	completely		individuals with
	nystagmus	(neutral position).	deviation of	lateral position		light cupula thus
	(light cupula)	4. No nystagmus in the	light cupula	in the supine		proving that not
	of the	sitting position.	was 44.4 \pm	head roll test,		only we need to
	horizontal	Participants: The	20.5 degree	and should		look in the
	canals.	nystagmus testing and	(5-85 degree	confirm the		direction but also
		analysis was done with the	range). Both	direction of		the angle of null
		measurement of neutral	were	nystagmus in		plane as based on
		position (null plane) for	statistically	order to avoid		the angle of null
		both individuals considered	significant	mistaking		plane, the light

using a large protractor on	Treatment	positional	cupula always has
31 individuals with heavy	outcomes:	nystagmus for	a greater angle
cupula (12 males and 19	None	spontaneous	than heavy
females with average age		nystagmus.	cupula.
range of 64.3 years) and 33			
individuals with light			The findings were
cupula (10 males and 23			appropriately
females with average range			correlated with
of 60.9 years)			the possible
Tests administered: Supine			pathophysiologic-
head roll test using video			al mechanism.
nystagmography			
			Possible presence
			of central
			pathology was
			ruled out
			T.
			Limitations:
			The study did not
			mention the
			individuals.
			Weak study
			•
			treatment mode for these individuals. Weak study design

						As large protractors may not available in all clinics to measure the angle of null plane, the authors did not mention any alternatives to measure the null plane.
Seo et al. (2016)	To study the clinical	Diagnostic criteria: Diagnostic criteria for	Test findings: Null plane	The results showed	Decrease in density of cupula.	Advantages: The study
	features of positional nystagmus of light cupula (PNLC).	PNLC were persistent geotropic positional direction-changing nystagmus, presence of	was found in all patients opposite to that of	similarity in PNLC and cupulolithiasis of the lateral semicircular	Increase in specific gravity of endolymph	managed to explore the clinical features of light cupula.
	(FINLC).	nystagmus in supine position and absence of nystagmus in a position deviation from supine position and in upright position and with no evidence of cerebellar or	nystagmus in the supine position. For 22 patients the nystagmus was in the ear down position with 18	canal not only with respect to the nystagmus, but also in terms of the clinical course	Attachment of light debris	Follow up on patients to see how the nystagmus fading away was studied.

central nervous system having the Ruling out the pathology. dominant possibility of Participants: 27 same side and central lesion. participants with PNLC 4 having the dominant side comprising 13 men and 14 Limitations: women, aged 36-80 years in the There was no were included. clear cut opposite Tests administered: Supine direction. differentiation if head roll test was done and **Treatment** the participants had heavy or light disappearance of outcomes nystagmus was observed in The cupula. all patients nystagmus The study did not disappeared with in 7 days mention the in 19 cases, treatment mode within 1 for these month for 24 individuals. cases, and 1 patient had The study did not until 6 mention the months. reason for Recurrence disappearance of was observed nystagmus in these individuals in nine cases

С. Н.	The aim of this	Diagnostic criteria: Long	Test findings:	The presence of	Lighter cupula theory	Advantages:
Kim,	study was to	duration DCPN in the	All 19	persistent DCPN	due to positional	Clear cut
Kim, et	characterize	supine head roll along with	patients had	differentiates	alcoholic nystagmus.	differentiation
al. (2014)	the clinical	the presence of null plane	long duration	light cupula from		between light
	features and	Participants: 19 patients	DCPN with	horizontal canal	Increase in density of	cupula and
	typical	with persistent geotropic	null plane,	canalolithiasis. A	endolymph due to inner	canalolithiasis
	positional	DCPN. Positional	and the	horizontal canal	ear hypoperfusion, inner	was provided.
	nystagmus	nystagmus with subjective	intensity of	BPPV with	ear ischemia, and	
	in patients with	and objective test analysed	nystagmus	canalolithaisis	inflammation or injury to	Appropriate
	persistent	Tests administered: Supine	was stronger	presents with	the inner ear that causes	pathophysiology
	geotropic	head roll test and bow and	on one side	latency and	debris to float in the	has been
	direction-	lean test using	in13 patients	rarely a null	endolymph.	mentioned
	changing	videonystagmography	(68%) on	plane unlike the		
	positional		supine head	features in a light		Clear cut clinical
	nystagmus		roll test.	cupula.		characteristics
	(DCPN) and		Overall, the			and diagnostic
	address the		affected side			criteria has been
	possible		could be			mentioned.
	pathophysiolog		identified in			
	у		18 patients			Limitations:
	of the disease.		(95%).			Background and
			Treatment			methods were
			outcomes:			very brief not
			None			explaining the
			mentioned			detail protocol.

						Treatment for light cupula was not attempted and mentioned.
						Possible presence of central pathology has not been ruled out in patients with light cupula.
						Weak study design.
Imai et	The study	Diagnostic criteria:	Test findings:	The time	Decrease in density of	Advantages:
a = (2015)	aimed to	Persistent geotropic DCPN	A time	constant of 35 s	cupula.	A clear-cut
al. (2015)		for light cupula diagnosis	constant value	and above is due		differentiation
al. (2013)	classify the pathophysiological basis of	for light cupula diagnosis Participants: 107 patients with horizontal canal	of 35 seconds and less was	and above is due to the deviation of the cupula in	Increase in specific gravity of endolymph	differentiation between light cupula and heavy
al. (2013)	classify the pathophysiolo- gical basis of nystagmus	Participants: 107 patients with horizontal canal BPPV (36-88 years) who	of 35 seconds and less was seen in	to the deviation of the cupula in response to	gravity of endolymph	between light cupula and heavy cupula has been
al. (2013)	classify the pathophysiological basis of	<i>Participants:</i> 107 patients with horizontal canal	of 35 seconds and less was	to the deviation of the cupula in	•	between light cupula and heavy
al. (2013)	classify the pathophysiolo- gical basis of nystagmus based on time	Participants: 107 patients with horizontal canal BPPV (36-88 years) who underwent subjective and	of 35 seconds and less was seen in transient	to the deviation of the cupula in response to gravity at each	gravity of endolymph Attachment of light	between light cupula and heavy cupula has been
al. (2013)	classify the pathophysiological basis of nystagmus based on time constant, angle	Participants: 107 patients with horizontal canal BPPV (36-88 years) who underwent subjective and objective vestibular tests.	of 35 seconds and less was seen in transient geotropic	to the deviation of the cupula in response to gravity at each	gravity of endolymph Attachment of light	between light cupula and heavy cupula has been mentioned.

slow phase velocity were	more was	cupula deviation	constant (35 s),
calculated.	seen in	in patients with	more than which
	persistent	PGN is opposite	light cupula can
	geotropic	to that of patients	be declared.
	nystagmus	with	
	with the slow	Apogeotropic	Appropriate
	phase velocity	Nystagmus	pathophysiology
	and angle of	across the	has been
	head rotation	neutral head	mentioned
	in persistent	positional range	
	geotropic	with no	Limitations:
	nystagmus	nystagmus where	Possible presence
	linearly	the long axis of	of central
	symmetrical	cupula is in	pathology has not
	against	alignment with	been ruled out in
	apogeotropic	the axis of	patients with light
	nystagmus	gravity.	cupula.
	Treatment		
	outcomes:	Apogeotropic	Treatment for
	None	Nystagmus is	light cupula was
	mentioned	considered as	not attempted and
		heavy cupula	mentioned.
		and persistent	
		geotropic	
		nystagmus is	

				considered as light cupula.		
Ichijo (2016b)	The study aims to clarify	Diagnostic criteria: 1. Persistent Geotropic	Test findings: In heavy	Individuals with heavy or light	Attachment of light debris.	Advantages: Exploring
	whether the dysfunction of the lateral semicircular	nystagmus (1 minute) 2. In the left ear or right ear down position, horizontal	cupula group, no one revealed canal	cupula do not always have a lateral canal		whether light cupula and heavy cupula have cana
	canal remain or not in patients	nystagmus toward the left or right respectively occurs	paresis (CP) and 4 patients (21%) showed	dysfunction. The caloric response		paresis or not has been explored.
	with heavy or light cupula using caloric	3. In the supine position, weak horizontal nystagmus continues, and it ceases	inverse CP (affected ear response is	increases in the 4 cases with heavy cupula could be		Differentiating between heavy and light cupula
	test.	when the head is turned to the affected ear by 20–40_	greater than healthy ear response). In	explained by the hydrostatic pressure theory		has been mentioned
		(neutral position).4. No nystagmus in the sitting position.5. Horizontal nystagmus	light cupula group, 3 patients (21%)	involved in ossicles.		Appropriate sample size is available.
		occurs in the nose-down position, and the direction is opposite to that in the supine position.	revealed CP. The MSV for light cupula and heavy cupula were			Limitations Treatment for light cupula was not attempted and mentioned.

	between the nystagmus	patients not consuming	the Prone position was	test battery (caloric and	debris	
Tomanovic and Bergenis (2014)	The aim of the study was to examine and correlate	Diagnostic criteria: Velocity of DCPN of atleast 1 degree per second exceeding 60 seconds with	Test findings: In 72% of patients, nystagmus in	As there were more common dysfunctions in the vestibular	Increase in specific gravity of endolymph Attachment of light	Advantages: Presence of central pathology was ruled out.
		heavy cupula (3 males, 16 females; mean age, 62.8 years) and 14 patients with light cupula (5 males, 9 females; mean age, 63 years) Tests administered: Head roll test, Caloric test using ice cold water. The maximum slow-phase velocity and calculated asymmetry were measured.				Background methodology and explanation of pathophysiology of light cupula was very brief.
		Participants: The subjects were 19 patients with	None mentioned			patients with light cupula.
		related to vertigo, and no central nervous system disorder	respectively. Treatment outcomes:			of central pathology has not been ruled out in
		6. No cochlear symptoms	29.2 and 24.9			Possible presen

patterns and	alcohol or having history	opposite to	utricular test), it	A sophisticated
vestibular	of CNS lesions.	that in the	can be implied	test battery was
impairment in	Participants: The study	Supine	that the	carried out which
an extended	included 20 patients with	position. The	persistent	could explain the
group of	the mean age of 53 years	vestibular	geotropic	characteristics of
patients with	with the history of	tests were	nystagmus in	light cupula
geotropic	position- induced	pathologic in	these individuals	better.
positional	horizontal nystagmus.	about 60% of	were purely of	
DCPN	Tests administered:	patients.	inner ear	The test was
	Subjective visual	At FU	disorder hence	properly
	Horizontal test, Cervical	position	concluding the	correlated with
	VEMP, and	(sitting, head	presence of light	the possible
	Videonystagmography	in normal and	cupula.	pathophysiologic-
		straight		al mechanism and
		forward)		the mechanism
		geotropic		behind light
		nystagmus		cupula was
		was found in		explained in
		40% of		detail.
		patients, but		
		was		
		significantly		Limitations:
		less intense.		There was no
		The vestibular		clear cut
		test results		differentiation if
		remained at		the participants

had heavy or light the same level at FU. cupula. Recurrent vertigo was The study did not reported in mention the 78% of the treatment mode patients. In for these all, 40% of individuals. the patients suffered from The significance of the intensity of migraine. Caloric nystagmus at showed different positions abnormality has not been for 7 patients. mentioned. **Treatment** outcomes: None mentioned

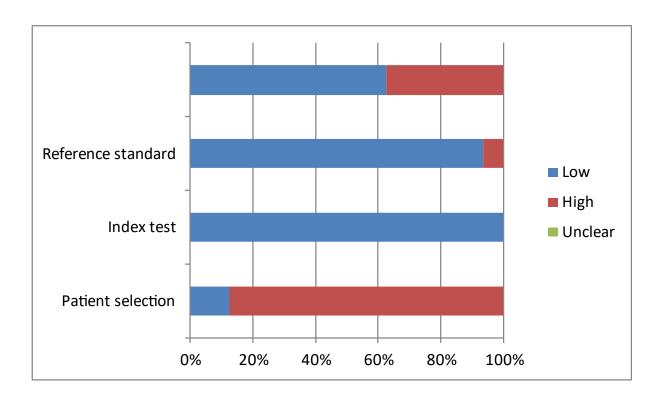
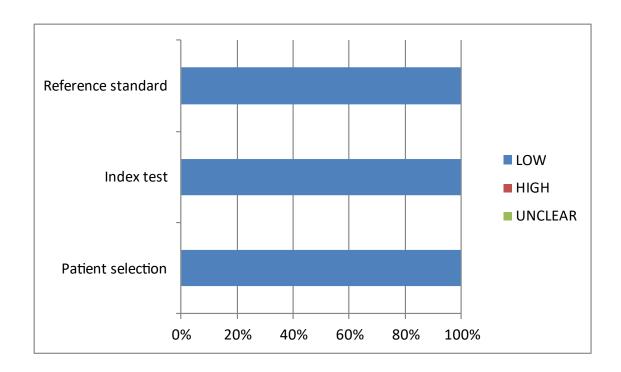

The quality analysis was carried out using the QUADAS 2 questionnaire for all the articles to avoid risk of bias. The QUADAS 2 was chosen as it is the most accepted quality analysis tool for diagnostic research with the tool meeting with the objectives of the current study. The details on the QUADAS 2 tool and how the risk of bias was carried out is given in the methods section. Based on the quality analysis administered using the QUADAS 2 questionnaire, amongst the four domains at risk of bias, around 14 articles had a high risk of bias in patient selection, low risk of bias in other three domains of index test, reference standard, and flow & timing and 2 articles had low risk of bias in all the four domains of patient selection, index test, reference standard, and flow & timing. For applicability concern, around 16 articles under patient selection had low concern for applicability, and all 16 articles had low concern for applicability under index test and reference standard. Based on the level of evidence, ten articles were rated level 4, four articles as level 3, and two articles as level 2, with level 5 being a case study design and level 4 being a weak design. Even though around 14 articles had a high risk of bias in patient selection, it was due to the poor methodological quality that contributed in having a high risk of bias. The risk of bias in patient selection got directly correlated with the level of evidence. Based on the type and methodology of the study design, the level of evidence was assessed using the Oxford Centre of Evidence Based Medicine (OCEBM) scale. Articles of high risk of bias in patient selection had a level 4/3 evidence and articles of low risk of bias in patient selection and other domains had atleast level 2 evidence. However, none of the articles were rejected based on the level of evidence and quality analysis as there was a low risk of bias and also conisdering rarity of the disorder of the light cupula. Results of the level of evidence and quality analysis have been summarized in table 3.2 and table 3.4

TABLE 3.4


Quality analysis for the articles depicting the results for the four domains

Study	Risk of bias				Applicability concern		
	Patient	Index	Reference	Flow and	Patient	Index	Reference
	selection	test	standard	timing	selection	test	standard
Seo et al. (2016)	2	1	1	1	1	1	1
Tomanovic and Bergenius (2014)	2	1	1	2	1	1	1
Hiruma et al. (2011)	2	1	1	1	1	1	1
C. H. Kim and Hong (2018)	2	1	1	1	1	1	1
Ichijo (2016a)	2	1	1	1	1	1	1
C. H. Kim, Choi, et al (2014)	2	1	1	1	1	1	1
Ichijo (2020)	2	1	1	1	1	1	1
Ban et al (2016)	2	1	1	1	1	1	1
C. H. Kim, Kim, et al., (2014)	2	1	1	1	1	1	1
Tang et al., (2019)	1	1	1	1	1	1	1
Park et al., 2018	1	1	2	1	1	1	1
C. Kim et al., (2014)	2	1	1	2	1	1	1
Wang et al., (2019)	2	1	1	2	1	1	1
Ichijo, (2016b)	2	1	1	2	1	1	1
Ichijo, (2012)	2	1	1	2	1	1	1
Imai et al. (2015)	2	1	1	2	1	1	1

Note: *Low -1, High -2, Unclear -3

Figure 3.2 Graphical representation of QUADAS 2 results depicting proportion of studies depicting low, high, and unclear for risk of bias assessment

Figure 3.3 Graphical representation of QUADAS 2 results depicting proportion of studies depicting low, high, and unclear for concerns regarding applicability.

3.1 Tests administered

Around 14 articles discussed the utility of the supine head roll test along with videonystagmography for the diagnosis of light cupula. As the light cupula has features of persistent geotropic nystagmus with null plane, all these characteristics can be seen primarily on the supine head roll test. However, many authors have explored the utility of other tests that can aid in differential diagnosis as characteristics of light cupula may be similar to that of canalolithiasis and cupulolithiasis. Articles by Tang et al.,(2019), Kim et al.,(2018), Kim et al.,(2014), Hiruma et al., (2010), Ichijo et al.,(2016) utilized the caloric test in individuals with light cupula and for all them the caloric were deteriorated in either some or more individuals with light cupula thus indicating the presence of canal paresis in individuals with light cupula. Articles by Kim et al., (2015), Kim et al., (2014) carried out the Bow and Lean test and implied that individuals with

light cupula require the bow and lean test along with the supine roll test to identify the side of lesion. Articles by Kim et al., (2015) and Wang et al., (2019) carried out the Dix-Hallpike test in individuals with BPPV and felt the need for carrying out this test to exclude a posterior canal BPPV or to even identify the possible presence of light cupula in the posterior canal. Couple of authors utilized the peak slow phase velocity in individuals with light cupula (Wang et al., 2019; Ichijo., 2019; Ichijo., 2015; Kim et al.,2014) and established that the slow phase velocity was longer and abnormal for individuals with light cupula thus making it as an additional test battery to consider. Apart from the presence of null plane in light cupula, some authors felt the need to consider the angle of null plane for diagnosis of light cupula. For both heavy and light cupula, the null plane is present. Apart from the features of geotropic or apogeotropic nystagmus, the angle of null plane could also be considered for differential diagnosis. From the articles by Tang et al. (2019), Hiruma et al. (2010), Ichijo (2015), Ichijo (2016), all have implied that the null plane angle of the light cupula is more than that of the heavy cupula and it can be used as differential diagnosis parameter. The subjective visual vertical test has also been done by authors to check for utricular involvement in light cupula and also explore the mechanism and pathophysiology behind the light cupula mechanism. Articles by Tomanovic et al. (2014), Imai et al.,(2015), Kim et al.,(2014), have found out that the subjective visual vertical test is only affected in few patients and thus no conclusion can be drawn from it.

3.2 Treatment

Around eight articles discuss the possible treatment measures and efficacy of treatment on individuals with light cupula. Hiruma et al.,(2010) compared the effectiveness of therapeutic maneuvers between heavy and light cupula. It implied that

the treatment is effective in heavy cupula than in light cupula even after one month as heavy cupula individuals have heavy debris and light cupula have heavier endolymph. Based on his results, Kim et al., (2018), implied that there is no benefit on modified cupulopathy maneuvers on the light cupula, thus ruling out the presence of light debris. A similar finding by Ban et al., (2015) and Kim et al., (2014) was documented with no effect of canalith repositioning maneuvers on light cupula. Tang et al., (2019) also documented canalith repositioning maneuvers' effectiveness and discussed that although short-term benefits are not visualized in individuals with light cupula, the long-term benefits can be seen through vestibular retraining therapy. Park et al., (2018) tried to document the effectiveness of an intratympanic steroid injection (Dexamethasone disodium phosphate) for light cupula individuals. They found out that intratympanic steroid injection showed complete resolution to only six patients with light cupula. Ichijo (2019) mentioned a self-cleansing mechanism in individuals with light cupula where the light debris gets absorbed over time, normalizing their vestibular function.

3.3 Pathophysiology of light cupula mentioned in the articles

Except Kim etal.,(2015), all the other articles have mentioned the possible mechanism behind light cupula either correlating with their test and findings or from supporting literatures. The two most widely discusses pathophysiological mechanisms were the attachment of light debris in the form of monocytes and lymphocytes to the cupula and the increase in density of the endolymph due to inner ear hypoperfusion. The other possible mechanism mentioned by Tang et al.,(2019), Park et al.,(2018), Hiruma et al.,(2010), and Ban et al.,(2015) is the reduction in the density of the cupula resulting in reduced specific gravity due to the positional alcoholic nystagmus phase 1

that causes the alcohol to travel faster than blood through the capillaries thus making the cupula light. The article by Kim et al.,(2018) carried out the effect of modified CuRM on individuals with cupula and found out that there was no effect of canalith repositioning maneuvers on the light cupula thus successfully rejecting the light debris hypothesis as if there was a light debris, the debris must displace from the cupula during a canalith repositioning maneuver. Considering the rejection of light debris hypothesis, the overall accepted theory is the heavy endolymph theory.

3.4 Diagnostic criteria and Implications

All 16 authors have mentioned that the diagnostic criteria for a light cupula to be a persistent directional changing positional nystagmus with the presence of a null plane. The supine head roll test and the bow and lean test can help reach this diagnosis. But apart from that, there is a need to differentiate between heavy and light cupula. One way to differentiate the heavy cupula and light cupula is the direction of the nystagmus and the efficacy of treatment. Heavy cupula individuals may have persistent nystagmus which is apogeotropic, and during canalith repositioning maneuvers, the heavy cupula showed better and immediate short time progress while the light cupula, on the other hand, light cupula does not show a short term progress. Another way to differentiate is the angle of null plane, the light cupula individuals have a null plane angle that is comparatively more than the heavy cupula individual. With respect to the treatment efficacy, none of the authors of the seven articles were able to provide effective treatment measures for light cupula. Park et al., was able to show some efficacy with intratympanic steroid injections on some patients, but however there was no statistical significance between intratympanic steroid injection, vestibular suppressants and canalith repositioning maneuver as all showed poor outcomes in light cupula. Only Tang et al.,(2019) mentioned the long-term utility of vestibular rehabilitation therapy as a possible treatment method to improvise the balance function. However, none of the documented articles performed the maneuver as such. The table 3.5 depicts the diagnostic criteria, pathophysiology, diagnostic tests, and treatment for light cupula.

Table 3.5

Characteristics, pathophysiology, test to be administered, treatment for light cupula based on critical evaluation of reviewed articles.

DIAGNOSTIC	PATHOPHYSIOLOGY	TEST TO	TREATMENT
CRITERIA		BE	
		ADMINISTERED	
1. Persistent	1. Light debris due to	1. Supine head roll	1. Brandt-Daroff
Nystagmus	lymphocytes and	test	exercise
2. Geotropic in	monocytes.	2. Bow and lean test	2. Intra tympanic
nature	2. Increase in specific	3. Caloric test	steroid
3. Presence of	gravity of endolymph		injection
null plane	due to inner ear		
	hypoperfusion.		
	3. Reduction of density		
	of cupula due to		
	reduced blood supply.		

Chapter 4

DISCUSSION

Clinical characteristics of the light cupula is very much similar to BPPV and vertigo of a central origin. Understanding the light cupula phenomenon is very much essential to avoid misdiagnosis and for successfully differentially diagnosing between BPPV and vertigo of a central origin. The current study has successfully systematically reviewed original articles pertaining to the light cupula phenomena. In order to have detail understanding, the pathophysiology, characteristics, diagnosis, and possible treatment options of light cupula must be understood.

4.1 Pathophysiology of light cupula:

The articles reviewed had discussed three common mechanisms for light cupula that is the lighter cupula hypothesis, heavy endolymph hypothesis, and the light debris hypothesis. In normal circumstances the specific gravity of the endolymph and the specific gravity of the cupula must be equal, but in cases where the relative density of the cupula is lower than that of endolymph or relative density of the endolymph is higher than of the cupula, it may result in the light cupula. There are totally five hypothesis that have been put forward to explain the light cupula phenomenon (Zhang et al., 2020).

4.1.1 Lighter Cupula Hypothesis:

The lighter cupula is caused when the density of the cupula reduces thereby causing a reduction in the relative density between cupula and endolymph. There is hyper deflection of the cupula in this case. The reduced density of cupula can be seen in the phase 1 of positional alcohol nystagmus (Tang et al., 2019). Increased alcohol content increases ethanol in the cupula. As the density of ethanol is less than that of the density of the perilymph, a light cupula

develops (buoyancy hypothesis). The alcohol diffuses into the cupula faster than the surrounding endolymph owing to the proximity to capillaries, thus reducing the density of the cupula (Ban et al., 2016). The other cause could be if the flow from the vertebrobasilar artery may be disturbed, thus reducing the peripheral flow of the vestibular artery resulting in peripheral hypoperfusion, which could thereby affect the density or the viscosity of the endolymph (Zhang et al., 2020).

4.1.2 Heavier endolymph hypothesis:

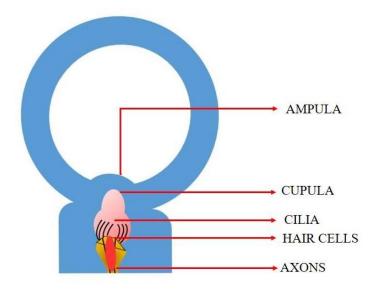
In the heavier endolymph theory, an alteration of chemical composition of the endolymph caused by labyrinthine haemorrhage, inner ear hypoperfusion, inflammation, or hormonal imbalance may increase the density of the endolymph (C. H. Kim & Hong, 2018). In cases of SSNHL with or without vertigo, there are high chances to have pathological alterations within the inner ear fluid. A minor haemorrhage is caused due to SSNHL increases inner ear concentrations on proteins (C. H. Kim, Choi, et al., 2014). Another hypothesis mentioned is that there is a disruption of the blood labyrinth barrier that causes leakage of plasma protein to the inner ear thereby increasing the density of the endolymph. An increased protein content in the ear which also could be due to no reason may increase the density of the endolymph (Ban et al., 2016). However, this particular theory is difficult to explain why horizontal canal is more involved apart from the other two semicircular canals (C. H. Kim, Choi, et al., 2014).

4.1.3 Light debris theory:

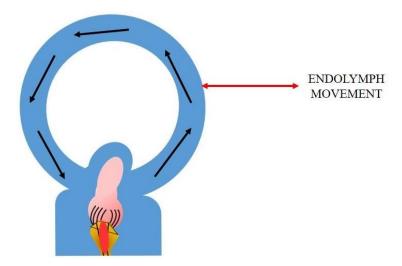
In cupulolithiasis, the otoconia debris makes the cupula heavier due to the weight attached to the cupula. On the other hand, a light debris attached to the cupula may increase the buoyancy and make the cupula lighter. Head trauma in

the utricular macula may generate this free floating debris (Ichijo, 2012, 2016a). The light debris may be in the form of degenerative, swollen and inflammatory cells in the endolymph. Researchers have found the presence of monocytes and lymphocytes on dissecting squirrel monkeys as contributing factor to the light debris (Ichijo, 2012, 2016a, 2016b). The Light debris gets attached to the light cupula during the sleeping position if a person lies down in that particular position for a longer duration of time (Ichijo, 2020). The article by Kim et al.,2018 carried out the effect of modified CuRM on individuals with cupula and found out that there was no effect of canalith repositioning maneuvers on the light cupula thus successfully rejecting the light debris hypothesis and if there was a light debris, the debris must displace from the cupula during a canalith repositioning maneuver.

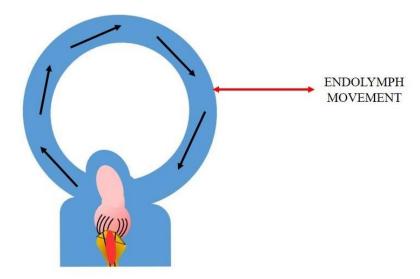
4.1.4 Utricular macular hypothesis:

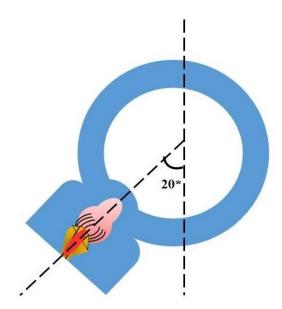

Hiruma and colleagues proposed that in individuals with audio-vestibular dysfunctions, a utricular macula dysfunction may contribute to the persistent geotropic nystagmus. The utricular macular dysfunction may generate some proteins to increase the density of the endolymph thus increasing its specific gravity (Zhang et al., 2020).

4.1.5 Density hypothesis:


A more recent hypothesis by Kim et al. in 2018 where they proposed that if the density of the perilymph increases and is relatively more than the endolymph, a constant gravitational force is acted upon the endolymph (Kim et al., 2018). This gravitational force causes an excessive endolymph push that results in a high deflection of the cupula and causing a symptom of persistent geotropic nystagmus (C. H. Kim, Choi, et al., 2014).

4.2 Clinical manifestation of light cupula:


Based on the review carried out on the 16 articles, individuals with light cupula will present with the following; (1) persistent nystagmus with a duration of more than a minute, (2) direction-changing positional nystagmus, (3) horizontal nystagmus in the direction of the affected side in the bow test and the opposite direction in the lean test, and (4) presence of a null plane occurring at an approximate angle of 20 degrees upon the supine roll test (Ichijo, 2016b; Imai et al., 2015; C. H. Kim, Choi, et al., 2014; C. H. Kim, Kim, et al., 2014; C. H. Kim & Hong, 2018; Seo et al., 2016; Tomanovic & Bergenius, 2014). The null plane or zero plane, or neutral plane, is the exact horizontal axis where there will be no effect of gravity and movement of the endolymph fluid. This non-movement of endolymph creates no deflection of the cupula, and nystagmus is not visualized (Zhang et al., 2020). The absence of nystagmus at a particular angle is not seen in individuals with Canalolithiasis. The free-floating debris still causes a viscous drag to the endolymph fluid even without the influence of an extra gravitational force resulting in vertigo at the null plane (Ban et al., 2016). The following clinical presentation of the light cupula can be helpful in the differential diagnosis between a light cupula, central vertigo, and peripheral vertigo. The following figures (figure4.1-4.5) illustrate the activity of cupula in individuals with normal balance system and in individuals with light cupula.


Figure 4.1 Activity of cupula during rest position in individuals with normal vestibular functions

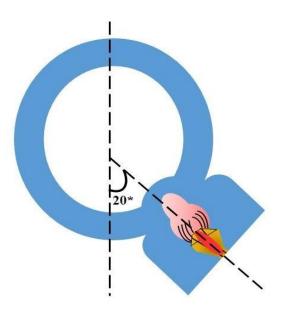

Figure 4.2 Cupula deflection in the right ear at rest position in individuals with light cupula due to reduced density in cupula or increased density in endolymph.

Figure 4.3 Cupula deflection in the left ear at rest position in individuals with light cupula due to reduced density in cupula or increased density in endolymph.

Figure 4.4 Head movement towards the right with an approximate null plane angle of 20 degree where Cupula is seen to have no activity.

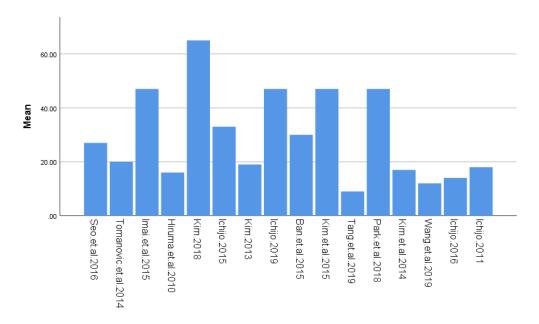
Figure 4.5 Head movement towards the left with an approximate null plane angle of 20 degree where Cupula is seen to have no activity.

4.3 Challenges in diagnosing light cupula:

Based on the systematically reviewing the 16 articles, the supine roll test is the most common subjective test used. The caloric test and videonystagmography tests are the common objective tests used in diagnosing light cupula. Based on the unique presentation of the light cupula, at times it may be challenging for clinicians to arrive at a diagnosis/impression of the light cupula based on its presentation, one such presentation is geotropic nystagmus (Ban et al., 2016; Ichijo, 2016a; Imai et al., 2015; C. Kim et al., 2014). Geotropic nystagmus is typically seen in canalolithiasis BPPV, and a presentation with geotropic nystagmus may be confused with canalolithiasis BPPV. Another challenge is persistent nystagmus of a duration of more than one minute, which can be confused with vertigo of a central origin (Tang et al., 2019). In these two conditions, it may be relatively easier to differentially diagnose BPPV, and central pathology with light cupula as all the features of light cupula are not seen in BPPV or a central lesion with vestibular involvement. However, one clinical

presentation matches the characteristics of the light cupula, and that is cupulopathy on the utricular side of the cupula. A patient with cupulolithiasis presents with persistent apogeotropic nystagmus with the presence of null plane and duration of nystagmus over one minute. In this case, the debris will be on the cupula of the non-utricular side, But if the same debris is on the cupula of the utricular side, the direction of nystagmus changes to a persistent geotropic nystagmus with a null plane which is typically seen in light cupula. The only way to differentiate between the two is during the treatment process. Suppose it's a heavy cupula, regardless of whether the debris is on the utricular or non-utricular side of the cupula, in that case, the nystagmus subsides with canalith repositioning maneuvers, and on the other hand, treatment maneuvers are not effective in individuals with light cupula (Ichijo, 2012a; C. Kim et al., 2014; Tang et al., 2019; Zhang et al., 2020). In some cases, the light cupula may present as a persistent apogeotropic nystagmus too that is similar to that of heavy cupula. According to Ichijo (2014), the presence of a light debris in the lateral side of the canal may cause a persistent geotropic nystagmus, but the same debris if present in the utricular side of the canal may cause a persistent apogeotropic nystagmus. To differentiate between these two, the angle of null plane can be considered. Regardless of whether the nystagmus is geotropic or apogeotropic in nature, the angle of null plane of light cupula is always greater than that of heavy cupula. In very rare situations, there may be a presentation of the light cupula in all three semicircular canals. Even though light cupula is most predominantly seen in the lateral canal, the concept of change in specific gravity can affect the entire endolymph and thus affecting all three semicircular canals. The null plane in such cases will be present during the supine roll test and Dix-Hallpike test too (C. H. Kim, Shin, et al., 2014). According to the case study by Kim et al., 2014, the light cupula in three semicircular canals may often be misdiagnosed as posterior

canal BPPV due to the presence of torsional component, and in this case, light cupula can be diagnosed by looking out for the presence of the null plane on both supine roll test and Dix-Hallpike test. Clinicians must consider these challenges and be well aware of the light cupula characteristics to differentially diagnose light cupula from other pathologies with similar characteristics.


4.4 Challenges in treating the light cupula:

Out of the eight articles that have discussed the possible treatment of light cupula, around four different possible treatment options have been discussed. The first is canalith repositioning maneuvers, second is vestibular rehabilitation therapy like the Brandt-Daroff exercises, third is the use of intratympanic steroid injection, and fourth is a self cleansing mechanism (Ban et al., 2016; Ichijo, 2016a, 2020; C.-H. Kim et al., 2016; C. H. Kim & Hong, 2018; Park et al., 2018; Seo et al., 2016; Tang et al., 2019). One of the challenges for treatment is that all the articles do not portray effectiveness of these treatment techniques for light cupula. Concerning the treatment of the light cupula, it has not been proven to be of much effect which can be challenging for the audiologists and otorhinolaryngologists. Out of the treatment options discussed in the seven articles, the self cleansing mechanism of light debris theory can be ruled out as a treatment option as it is proven that any debris regardless of whether it is light or heavy can be treated with repositioning maneuvers. (C. H. Kim & Hong, 2018). Even though there is no self cleansing mechanism in light debris, the self cleansing mechanism may be present in cases of heavy endolymph which is why reduction of nystagmus is seen in individuals with light cupula one month after onset (C. Kim et al., 2014). But in terms of the presence of light debris, articles state that the canalith repositioning maneuvers have not been effective thus ruling out the presence of light debris as regardless of heavy or light debris, the canalith repositioning maneuvers have an effect in displacing the debris from the cupula and channel it back to the utricle (C. H. Kim & Hong, 2018). Some case studies and articles have documented the utility of semicircular canal plugging for reducing the symptoms of vertigo in individuals with light cupula post sudden sensorineural hearing loss. The mechanism behind semicircular canal plugging is that it hampers the flow of the endolymph leading to minimal movement of the kinocilium during a positional change (Zhang et al., 2020). The other documentation is the utility of the vagus nerve stimulation. Individuals with light cupula rapidly recovered from their symptoms after transcutaneous vagus nerve stimulation; however, the symptoms reappeared later. The study was unable to document the mechanism behind the improvement of symptoms, but more experiments can be carried out in the future (Zhang et al., 2020). The two treatment modalities that may show some positive effects are the utility of intratympanic steroid and vestibular retraining therapy that can suppress the symptoms of the light cupula. Clinicians with expertise in VRT can carry out exercises like the Brandt-Daroff exercises to suppress the light cupula symptoms.

4.5 Critical evaluation of the articles systematically reviewed:

Based on the inclusion and exclusion criteria, a total of 16 articles were finalized for the review (Ban et al., 2016; Hiruma et al., 2011; Ichijo, 2012a, 2016a, 2016b, 2020; Imai et al., 2015; C.-H. Kim et al., 2016; C. H. Kim, Choi, et al., 2014; C. H. Kim, Kim, et al., 2014; C. H. Kim & Hong, 2018; Park et al., 2018; Seo et al., 2016; Tang et al., 2019; Tomanovic & Bergenius, 2014; Wang et al., 2019). Unlike many articles that have documented only single case studies (level 5 evidence), these 16 articles had participants with light cupula of more than one that enabled to run statistical analysis and arrive at a hypothesis. Another positive outcome from these articles is the

establishment of an appropriate test battery considering the challenges of diagnosing light cupula. It can be established from the majority of articles that the supine roll test is sufficient to diagnose the light cupula based on the direction, latency, persistency, fatigability, and the presence of a null plane. Table 4.1 illustrates the differential diagnosis between light cupula, canalolithiasis, cupulolithiasis, and vertigo of central origin. As an objective test, 11 articles have used the VNG, and from this, we can infer that the utility of VNG can aid in the diagnosis of the light cupula. Around seven articles mentioned the possible treatment options for the light cupula that could guide clinicians and researchers when dealing with these patients. Park et al. (2018) indicated slight progress on intratympanic steroid injection, which is a positive sign as clinicians can use it as a treatment method. One of the advantages of all the articles is that every author managed to document at least more than nine individuals with a light cupula due to which better description of the light cupula could be given. The figure 4.6 depicts the number of subjects in each article.

Figure 4.6 Number of individuals with light cupula in each article (ranges from 9 to 47).

Table 4.1

Differential diagnosis between light cupula. Canalolithiasis, Cupulolithiasis, and central pathology based on the direction, latency, persistency, and fatigability of nystagmus with null plane being either present or absent.

	Light Cupula	Horizontal Canal Canalolithiasis	Central pathology	Cupulolithiasis (Heavy Cupula)
Geotropic DCPN	+	+	+	-
Latency	-	+	-	-
Persistency	+	-	+	+
Fatigability	-	+	-	-
Null plane	+	-	-	+

On the contrary there are some limitations with these articles which can be rectified as a future direction. The first limitation is that although all articles were able to successfully document atleast more than one individual with light cupula, most of the articles (11) had a very weak study design, thus statistically limiting themselves. The other limitation is the inability to successfully come up with a treatment method as individuals with light cupula cannot only be diagnosed but must also be treated as the symptoms do not fade over time. Most of the articles (8) did not rule out the presence of central pathology that may also mimic the symptoms of light cupula. In some articles (6) a clear cut differentiation between heavy cupula, canalolithiasis, and heavy endolymph were not given. The other limitation was the mention of a self-cleansing mechanism within the body to light debris by Ichijo in 2019 as the theory of self cleansing mechanism within the light debris was ruled out by Kim et al.,(2018) and Ichijo failed to oppose the theory by Kim and colleagues. The possibility of light debris in light cupula can be ruled out as individuals with light debris can show significant progress on canalith repositioning maneuvers similar to heavy cupula as the debris,

regardless of whether it is heavy or light, can be channelled back to the utricle on CRM (C. H. Kim & Hong, 2018).

Thus, from the above systematic review it can be implied that the symptoms presented in individuals with light cupula is still a dilemma to confirm the presence of it and an effective diagnostic tool must be established to identify the light cupula to enable differential diagnosis from other disorders of BPPV and vertigo of a central origin. Overall, there has been no definitive effective treatment that is available for individuals with light cupula. The existing canalith repositioning maneuvers and other treatment options cannot completely cure the disease, although some treatment modalities have been shown to have minimal progress. The treatment discussed in the articles cannot remove the presence of any potential pathogenic factors that causes this light cupula. Even after thorough discussion, the pathophysiology of light cupula still remains unclear with further research warranted on the pathophysiology and treatment. Studies with temporal bone enable researchers to have a better understanding of the cupula and the molecular basis of the light cupula phenomena. These studies help clinicians better understand direction-changing positional nystagmus and come up with better treatment options.

Chapter 5

SUMMARY AND CONCLUSION:

BPPV is the most common vestibular pathology found in individuals with symptoms of vertigo and it has two forms which is canalolithiasis and cupulolithiasis. However, there is one condition where the condition seems to mimic the symptoms of BPPV, but actually is not a BPPV and that condition happens to be the light cupula. The light cupula is a condition wherein the specific gravity of the cupula is comparatively lesser than the endolymph of the semicircular canals. Possible reasons for the cupula to have reduced specific gravity may include vestibular migraine, meningitis, labyrinthitis, SSNH, CNS disorders, such as brainstem stroke, cerebellar tumors, and HIV encephalopathy. The pathophysiology behind light cupula includes five possible theories; light debris theory, heavy endolymph theory, lighter cupula theory, density theory and utricular macular theory. The concept of the light cupula, although described in 2002, has only been widely discussed recently with the presence of more previously published literature within the decade ranging from original articles to case reports. Individuals with canalolithiasis present with characteristics of geotropic nystagmus, individuals with cupulolithiasis present with persistent nystagmus, and individuals with vertigo of a central origin present with nystagmus that can be persistent and geotropic. The light cupula is often misdiagnosed with these conditions as characteristics of these conditions are similar to that of the light cupula. Audiologists must be aware of the light cupula phenomenon and must be able to differentially diagnose central Nystagmus, Canalolithiasis, and heavy Cupula. Considering the challenges in diagnosis, treatment, and differential diagnosis, there is a need to carry out a systematic review of articles and document the diagnosis and treatment of light cupula that can aid clinicians in differential diagnosis and treatment. The following

study is a systematic review that utilized the latest PRISMA guidelines for systematically reviewing the articles and PICOS framework for determining the inclusion criteria for the study. Articles published from various peer-reviewed journals were searched in different databases like Pubmed, Pubmed Central, Science direct, Web of Science, Shodh Ganga, Google Scholar, and J-GATE. For search strategy in PubMed and PubMed central, the BOOLEAN operations such as AND, OR, and NOT were used, and for other databases, its respective keyword extraction was used. The keywords used were light cupula, heavy endolymph, persistent geotropic nystagmus, directional changing positional nystagmus, DCPN, and positional alcoholic nystagmus. Out of 2886 articles that have been screened, 16 articles were finalized based on the inclusion and exclusion criteria. All 16 articles underwent quality analysis and level of evidence testing with no articles rejected based on the level of evidence and quality analysis. Out of the 16 articles, 14 articles discusses that the supine roll test being appropriate for diagnosing light cupula with the help of an objective videonystagmography, and eight articles discussed about the possible treatment options for light cupula. Overall, the supine roll test is the accepted test to diagnose the light cupula and the vestibular retraining therapy such as the Brandt-Daroff exercise must be tried as a possible treatment option. The symptom of light cupula is persistent geotropic nystagmus with a null plane and the knowledge of this symptom can be useful to differentially diagnose between canalolithiasis, cupulolithiais, and vertigo of central origin. As a future direction, systematic review of case reports must be carried out to get more details and knowledge of the light cupula phenomena.

5.1 Implications

- The study has given us the knowledge of the symptoms and pathophysiology of the light Cupula.
- Emphasis on the possible diagnostic tests to assess light cupula has been provided and the differential diagnosis between light cupula and other disorders has been highlighted.
- The study has also discussed the possible treatment procedures for light cupula which are useful for audiologists and otorhinolaryngologists.

5.2 Limitations

- Based on the systematic review of articles, a definitive treatment procedure for light cupula has not been established.
- The study design for most of the articles were weak with level 4 evidence and were not rejected considering the rarity of the articles.
- A meta-analysis could not be carried out.

REFERENCES

- Argaet, E. C., Bradshaw, A. P., & Welgampola, M. S. (2019). Benign positional vertigo, its diagnosis, treatment and mimics. In *Clinical Neurophysiology Practice* (Vol. 4, pp. 97–111). Elsevier B.V. https://doi.org/10.1016/j.cnp.2019.03.001
- Balatsouras, D. G., Koukoutsis, G., Fassolis, A., Moukos, A., & Apris, A. (2018). Benign paroxysmal positional vertigo in the elderly: Current insights. In *Clinical Interventions in Aging* (Vol. 13, pp. 2251–2266). Dove Medical Press Ltd. https://doi.org/10.2147/CIA.S144134
- Baloh, R. W., Honrubia, V., & Konrad, H. R. (1977). Ewald's second law re-evaluated. *Acta Oto-Laryngologica*, 83(1–6), 475–479. https://doi.org/10.3109/00016487709128874
- Bhattacharyya, N., Gubbels, S. P., Schwartz, S. R., Edlow, J. A., El-Kashlan, H., Fife, T., Holmberg, J. M., Mahoney, K., Hollingsworth, D. B., Roberts, R., Seidman, M. D., Steiner, R. W. P., Do, B. T., Voelker, C. C. J., Waguespack, R. W., & Corrigan, M. D. (2017). Clinical Practice Guideline: Benign Paroxysmal Positional Vertigo (Update). In *Otolaryngology Head and Neck Surgery (United States)* (Vol. 156, Issue 3_suppl, pp. S1–S47). SAGE Publications Inc. https://doi.org/10.1177/0194599816689667
- Choi, J. Y., Lee, E. S., Kim, H. J., & Kim, J. S. (2017). Persistent geotropic positional nystagmus after meningitis: Evidence for light cupula. In *Journal of the Neurological Sciences* (Vol. 379, pp. 279–280). Elsevier B.V. https://doi.org/10.1016/j.jns.2017.06.036
- Choi, S., Choi, H. R., Nahm, H., Han, K., Shin, J. E., & Kim, C.-H. (2018). Utility of the bow and lean test in predicting subtype of benign paroxysmal positional vertigo. *The Laryngoscope*, *128*(11), 2600–2604. https://doi.org/10.1002/LARY.27142
- Drachman, D., Neurology, C. H.-, & 1972, undefined. (n.d.). An approach to the dizzy patient. *Psycnet.Apa.Org*. Retrieved June 20, 2021, from https://psycnet.apa.org/record/1973-00959-001
- Han, K., Lee, J. Y., Shin, J. E., & Kim, C. H. (2020). Positional alcohol nystagmus and serum osmolality: New insights into dizziness associated with acute alcohol intoxication. *Medical Hypotheses*, *138*. https://doi.org/10.1016/j.mehy.2020.109606
- Hanley, K., O' Dowd, T., & Considine, N. (2001). A systematic review of vertigo in primary care. In 666 British Journal of General Practice. https://www.nejm.org/doi/full/10.1056/NEJM199911183412107
- Hiruma, K., Ohara, A., & Koizuka, I. (2018). Newly classified horizontal canal positional nystagmus and its treatment. *Clinical and Medical Investigations*, *3*(4). https://doi.org/10.15761/cmi.1000169
- Hitchcock, A., Stewart, J., Novak, K., Geddes, B., & Coppel, A. (1958). *Vertigo*. http://www.clermont-filmfest.com/03_pole_regional/11_medias/239_biblio.pdf

- Hong, S. M., Kim, S. K., Park, I., & Shim, M. G. (2018). Pseudo-spontaneous nystagmus in patients with geotropic direction-changing positional nystagmus. *PLOS ONE*, *13*(4), e0196019. https://doi.org/10.1371/JOURNAL.PONE.0196019
- Imai, T., Matsuda, K., Takeda, N., Uno, A., Kitahara, T., Horii, A., Nishiike, S., & Inohara, H. (2015). Light cupula: The pathophysiological basis of persistent geotropic positional nystagmus. *BMJ Open*, *5*(1). https://doi.org/10.1136/bmjopen-2014-006607
- Imai, T., Takeda, N., Ikezono, T., Shigeno, K., Asai, M., Watanabe, Y., & Suzuki, M. (2017a). Classification, diagnostic criteria and management of benign paroxysmal positional vertigo. In *Auris Nasus Larynx* (Vol. 44, Issue 1, pp. 1–6). Elsevier Ireland Ltd. https://doi.org/10.1016/j.anl.2016.03.013
- Imai, T., Takeda, N., Ito, M., & Inohara, H. (2011). Natural course of positional vertigo in patients with apogeotropic variant of horizontal canal benign paroxysmal positional vertigo. *Auris Nasus Larynx*, 38(1), 2–5. https://doi.org/10.1016/J.ANL.2010.05.011
- Instrum, R. S., & Parnes, L. S. (2019). Benign paroxysmal positional vertigo. *Advances in Oto-Rhino-Laryngology*, 82, 67–76. https://doi.org/10.1159/000490273
- Ichijo, H. (2016). Caloric testing in patients with heavy or light cupula of the lateral semicircular canal. *Laryngoscope investigative otolaryngology*, *I*(6), 163-168.
- Ichijo, H. (2016). Neutral position of persistent direction-changing positional nystagmus. *European Archives of Oto-Rhino-Laryngology*, 273(2), 311-316.
- Ichijo, H. (2012). Persistent direction-changing geotropic positional nystagmus. *European Archives of Oto-Rhino-Laryngology*, 269(3), 747-751.
- Ichijo, H. (2020). Recurrence in patients with benign paroxysmal positional vertigo of the lateral semicircular canal. *Auris Nasus Larynx*, 47(3), 353-358.
- Kim, C. H., Kim, M. B., & Ban, J. H. (2014). Persistent geotropic direction-changing positional nystagmus with a null plane: The light cupula. *Laryngoscope*, 124(1). https://doi.org/10.1002/lary.24048
- Kim, C. H., Shin, J. E., Shin, D. H., Kim, Y. W., & Ban, J. H. (2014). "Light cupula" involving all three semicircular canals: A frequently misdiagnosed disorder. *Medical Hypotheses*, 83(5), 541–544. https://doi.org/10.1016/j.mehy.2014.09.002
- Kim, H. J., Park, J. H., & Kim, J. S. (2021). Update on benign paroxysmal positional vertigo. *Journal of Neurology*, 268(5), 1995–2000. https://doi.org/10.1007/s00415-020-10314-7
- Kim, J.-S., & Zee, D. S. (2014). Clinical practice. Benign paroxysmal positional vertigo. *The New England Journal of Medicine*, *370*(12), 1138–1147. https://doi.org/10.1056/NEJMcp1309481

- Kim, M.-B., Hong, S. M., Choi, H., Choi, S., Pham, N. C., Shin, J. E., & Kim, C.-H. (2018). The Light Cupula: An Emerging New Concept for Positional Vertigo. *Journal of Audiology & Otology*, 22(1), 1–5. https://doi.org/10.7874/jao.2017.00234
- Kim, S. K., Li, S. W., & Hong, S. M. (2019). Differences in the Head Roll Test, Bow and Lean Test, and Null Plane between Persistent and Transient Geotropic Direction-Changing Positional Nystagmus. *Journal of Clinical Medicine 2020, Vol. 9, Page 73*, 9(1), 73. https://doi.org/10.3390/JCM9010073
- Lou, Y., Cai, M., Xu, L., Wang, Y., Zhuang, L., & Liu, X. (2020). Efficacy of BPPV diagnosis and treatment system for benign paroxysmal positional vertigo. *American Journal of Otolaryngology Head and Neck Medicine and Surgery*, 41(3). https://doi.org/10.1016/j.amjoto.2020.102412
- Martens, C., Goplen, F. K., Aasen, T., Nordfalk, K. F., & Nordahl, S. H. G. (2019). Dizziness handicap and clinical characteristics of posterior and lateral canal BPPV. *European Archives of Oto-Rhino-Laryngology*, 276(8), 2181–2189. https://doi.org/10.1007/s00405-019-05459-9
- Methley, A. M., Campbell, S., Chew-Graham, C., McNally, R., & Cheraghi-Sohi, S. (2014). PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. In *BMC Health Services Research* (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12913-014-0579-0
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. In *BMJ* (*Online*) (Vol. 339, Issue 7716, pp. 332–336). https://doi.org/10.1136/bmj.b2535
- Nito, Y., Johnson, W. H., & Ireland, P. E. (1968). XII. Positional alcohol nystagmus in the cat. *Annals of Otology, Rhinology & Laryngology*, 77(1), 111–125. https://doi.org/10.1177/000348946807700112
- Nuti, D., Masini, M., & Mandalà, M. (2016). Benign paroxysmal positional vertigo and its variants. In *Handbook of Clinical Neurology* (Vol. 137, pp. 241–256). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63437-5.00018-2
- Omron, R. (2019). Peripheral Vertigo. In *Emergency Medicine Clinics of North America* (Vol. 37, Issue 1, pp. 11–28). W.B. Saunders. https://doi.org/10.1016/j.emc.2018.09.004
- Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. *Systematic Reviews*, 5(1). https://doi.org/10.1186/s13643-016-0384-4
- Oxford Centre for Evidence-Based Medicine: Levels of Evidence (March 2009) Centre for Evidence-Based Medicine (CEBM), University of Oxford. (n.d.). Retrieved July 21, 2021, from https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-200

- Park, J. S., Kim, S. Y., & Kim, M. B. (2018). Effect of intratympanic steroid injection in light cupula. *Acta Oto-Laryngologica*, *138*(9), 769–774. https://doi.org/10.1080/00016489.2018.1467135
- Rabbitt, R. D. (2019). Semicircular canal biomechanics in health and disease. In *Journal of Neurophysiology* (Vol. 121, Issue 3, pp. 732–755). American Physiological Society. https://doi.org/10.1152/jn.00708.2018
- Seo, T., Shiraishi, K., Kobayashi, T., Mutsukazu, K., & Doi, K. (2016). Clinical course of persistent geotropic direction-changing positional nystagmus with neutral position—Light cupula. *Acta oto-laryngologica*, *136*(1), 34-37.
- Shin, J. E., Jeong, K. H., Ahn, S. H., & Kim, C. H. (2015). Conversion between geotropic and apogeotropic persistent direction-changing positional nystagmus. *Acta Oto-Laryngologica*, *135*(12), 1238–1244. https://doi.org/10.3109/00016489.2015.1070965
- Shin, J. E., & Kim, C. H. (2015). Light cupula of the horizontal semicircular canal occurring alternately on both sides: A case report. *BMC Ear, Nose and Throat Disorders*, *15*(1). https://doi.org/10.1186/s12901-015-0015-z
- Tang, X., Huang, Q., Chen, L., Liu, P., Feng, T., Ou, Y., & Zheng, Y. (2019). Clinical Findings in Patients With Persistent Positional Nystagmus: The Designation of "Heavy and Light Cupula". Frontiers in Neurology, 10(APR), 326. https://doi.org/10.3389/fneur.2019.00326
- Vaduva, C., Estéban-Sánchez, J., Sanz-Fernández, R., & Martín-Sanz, E. (2018). Prevalence and management of post-BPPV residual symptoms. *European Archives of Oto-Rhino-Laryngology*, 275(6), 1429–1437. https://doi.org/10.1007/s00405-018-4980-x
- Wang, H., Li, X. Y., Yao, Q. X., & Yu, D. Z. (2018). Nystagmus characteristics of the horizontal semicircular canal light cupula. *Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery*, *32*(17), 1332–1334. https://doi.org/10.13201/j.issn.1001-1781.2018.17.009
- Wang, H., & Yu, D. Z. (2018). [Persistent geotropic direction-changing positional nystagmus: an independent disease entity?]. *Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Chinese Journal of Otorhinolaryngology Head and Neck Surgery*, 53(12), 950–953. https://doi.org/10.3760/cma.j.issn.1673-0860.2018.12.016
- Wang, S. J., Jiang, H., Gao, Z. Q., & Wu, H. Y. (2017). [Light cupulopathy: persistent direction changing positional nystagmus with a null plane]. *Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Chinese Journal of Otorhinolaryngology Head and Neck Surgery*, 52(3), 210–214. https://doi.org/10.3760/cma.j.issn.1673-0860.2017.03.009

- Welgampola, M. S., Bradshaw, A. P., & Halmagyi, G. M. (2019). Assessment of the vestibular system: History and physical examination. *Advances in Oto-Rhino-Laryngology*, 82, 1–11. https://doi.org/10.1159/000490267
- Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., Leeflang, M. M. G., Sterne, J. A. C., & Bossuyt, P. M. M. (2011). Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. *Annals of Internal Medicine*, 155(8), 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
- Wipperman, J. (2014). Dizziness and vertigo. In *Primary Care Clinics in Office Practice* (Vol. 41, Issue 1, pp. 115–131). https://doi.org/10.1016/j.pop.2013.10.004
- Yetiser, S. (2019). Review of the pathology underlying benign paroxysmal positional vertigo. In *Journal of International Medical Research* (Vol. 48, Issue 4). SAGE Publications Ltd. https://doi.org/10.1177/0300060519892370
- Yu, S., Wang, J., Shen, S., Tang, Y., Sun, X., & Liu, Y. (2021). Study of the biomechanical mechanisms of benign paroxysmal positional vertigo. *Journal of Vestibular Research: Equilibrium and Orientation*, *31*(3), 163–172. https://doi.org/10.3233/VES-201547
- Zhang, S. lin, Tian, E., Xu, W. chao, Zhu, Y. ting, & Kong, W. jia. (2020). Light Cupula: To Be Or Not to Be? *Current Medical Science*, 40(3), 455–462. https://doi.org/10.1007/s11596-020-2199-8
- Zuma E Maia, F., Ramos, B. F., Cal, R., Brock, C. M., Mangabeira Albernaz, P. L., & Strupp,
 M. (2020). Management of Lateral Semicircular Canal Benign Paroxysmal Positional
 Vertigo. Frontiers in Neurology, 11, 1040. https://doi.org/10.3389/fneur.2020.01040

ANNEXURE

QUADAS 2 questionnaire template used as quality analysis in the current systematic review study.

QUADAS-2 tool: Risk of bias and applicability judgments			
Domain 1: Patient selection			
A. Risk of bias			
Describe methods of patient selection:			
• Was a consecutive or random sample of patients enrolled?	Yes/No/Unclear		
Was a case-control design avoided?	Yes/No/Unclear		
• Did the study avoid inappropriate exclusions?	Yes/No/Unclear		
Could the selection of patients have introduced bias?	RISK: LOW/HIGH/UNCLEAR		
B. Concerns regarding applicability			
Describe included patients (prior testing, presentation and setting):	on, intended use of index test		
Is there concern that the included patients do not match the review question?	CONCERN: LOW/HIGH/UNCLEAR		
Domain 2: Index test(s) (if more than 1 index test we each test)	vas used, please complete for		
A. Risk of bias			
Describe the index test and how it was conducted an	nd interpreted:		
Were the index test results interpreted without knowledge of the results of the	Yes/No/Unclear		

• Were the index test results interpreted without knowledge of the results of the reference standard?	Yes/No/Unclear
• If a threshold was used, was it pre-specified?	Yes/No/Unclear
Could the conduct or interpretation of the index test have introduced bias?	RISK: LOW/HIGH/UNCLEAR
B. Concerns regarding applicability	

Is there concern that the index test, its conduct, or interpretation differ from the review question?

CONCERN:

LOW/HIGH/UNCLEAR

Domain 3: Reference standard

A. Risk of bias

Describe the reference standard and how it was conducted and interpreted:

- Is the reference standard likely to correctly Yes/No/Unclear classify the target condition?
- Were the reference standard results Ye interpreted without knowledge of the results of the index test?

Yes/No/Unclear

Could the reference standard, its conduct, or its interpretation have introduced bias?

RISK: LOW/HIGH/UNCLEAR

B. Concerns regarding applicability

Is there concern that the target condition as defined CONCERN: by the reference standard does not match the LOW/HIGH/UNCLEAR review question?

Domain 4: Flow and timing

A. Risk of bias

Describe any patients who did not receive the index test(s) and/or reference standard or who were excluded from the 2x2 table (refer to flow diagram):

Describe the time interval and any interventions between index test(s) and reference standard:

• Was there an appropriate interval between index test(s) and reference standard?	Yes/No/Unclear	
• Did all patients receive a reference standard?	Yes/No/Unclear	
• Did patients receive the same reference standard?	Yes/No/Unclear	
• Were all patients included in the analysis?	Yes/No/Unclear	
Could the patient flow have introduced bias?	RISK: LOW/HIGH/UNCLEAR	