
CybersecurityZhao et al. Cybersecurity (2021) 4:20
https://doi.org/10.1186/s42400-021-00084-8

SURVEY Open Access

Evaluation indicators for open-source
software: a review
Yuhang Zhao1,2* , Ruigang Liang1,2*, Xiang Chen3 and Jing Zou4

Abstract

In recent years, the widespread applications of open-source software (OSS) have brought great convenience for
software developers. However, it is always facing unavoidable security risks, such as open-source code defects and
security vulnerabilities. To find out the OSS risks in time, we carry out an empirical study to identify the indicators for
evaluating the OSS. To achieve a comprehensive understanding of the OSS assessment, we collect 56 papers from
prestigious academic venues (such as IEEE Xplore, ACM Digital Library, DBLP, and Google Scholar) in the past 21 years.
During the process of the investigation, we first identify the main concerns for selecting OSS and distill five types of
commonly used indicators to assess OSS. We then conduct a comparative analysis to discuss how these indicators are
used in each surveyed study and their differences. Moreover, we further undertake a correlation analysis between
these indicators and uncover 13 confirmed conclusions and four cases with controversy occurring in these studies.
Finally, we discuss several possible applications of these conclusions, which are insightful for the research on OSS and
software supply chain.

Keywords: Open-source Software, Evaluation, Indicator, Correlation, Vulnerability, License

Introduction
The ever-increasing complexity of modern software
makes software development difficult and error-prone.
Modular programming is proposed to ease software
development and gain momentum in recent years. Gen-
erally, to build a software system, one developer only
needs to implement the primarymodule and invoke open-
source software (OSS) for non-primary modules (Huang
et al. 2006). Although OSS offers great convenience for
rapid development, it brings several unpredictable issues,
such as security risks (Silic and Back 2016), copyleft dis-
putes (Kennedy 2001), and compatibility issues (Gordon
2011). These issues have recently drawn the attention of
both researchers and practitioners. For example, the US
Department of Homeland Security funded Coverity to
design Coverity Scan to analyze the quality and security

*Correspondence: zhaoyuhang0313@iie.ac.cn; liangruigang@iie.ac.cn
1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100049, China
Full list of author information is available at the end of the article

of OSS. According to the latest Coverity Scan Report, as
of February 2017, Coverity Scan has tested more than
7,000 various OSS projects and found a large number
of defects at the source code level (Coverity Scan-Open
Source Report 2017). The abuse of open-source code has
caused numerous code defects and vulnerabilities (Hoep-
man and Jacobs 2007), which can not only destroy code
quality and performance but also bring issues like license
infringement (Schryen and Kadura 2009).
Motivation. Prior studies analyzed how to evaluate OSS

(Crowston et al. 2004; Sen 2006; Fershtman and Gandal
2004; Ghapanchi 2015). They proposed various indicators
for evaluating OSS. However, since there is no uniform
definition of success or performance, their studies usu-
ally use different indicators to evaluate OSS. Alternatively,
they used quantitative evaluation indicators as evaluation
criteria, which is the main reason for conclusion conflicts
in prior studies. Moreover, their studies do not analyze
the importance of various indicators. Some indicator def-
initions are relatively abstract, so different studies have

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00084-8&domain=pdf
http://orcid.org/0000-0001-9621-9602
mailto: zhaoyuhang0313@iie.ac.cn
mailto: liangruigang@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Zhao et al. Cybersecurity (2021) 4:20 Page 2 of 24

different quantitative standards for them. Therefore, a
systematic and credible evaluation structure for OSS is
urgently needed.
The data used in prior studies to evaluate OSS are

mostly collected from the open-source community at a
single time point. Usually, the OSS developers are volun-
tary and obligated to fix bugs or update a new version.
Therefore, time has greater influence on OSS than closed
source software. Regardless of the time, the data collected
may not fully reflect the overall status of OSS. Therefore,
choosing a time node has become a critical but difficult
point. For OSS that has been released for several years,
need it collect data from the beginning? How often is the
best update frequency for users? How the stable status
influence users and developers? These problems need to
be resolved through a more detailed analysis.
Finally, there is no systematic statistical analysis to

investigate the correlations between these indicators. The
correlation between indicators is generally only reflected
as additional content in previous studies. However, under-
standing the correlation between different indicators is
conducive to making a targeted modification to improve
user experience. Therefore, we summarize and collate the
correlations between the indicators presented in the pre-
vious studies, and further identify more correlations to
guide the evaluation of OSS projects.
Our Approach. We investigate 56 papers from 1999 to

2020. In these studies, the indicators designed for OSS
and the quantification method for each indicator are also
slightly different. We classify these indicators into five
types, code, license, popularity, developer, and sponsorship.
Among these five types, code includes several aspects,
such as vulnerability, source risk, and reusability; Popular-
ity includes market penetration and user interest; Devel-
oper includes reliability, project activity, developer num-
ber, and the corresponding contribution. Subsequently,
we perform a correlation analysis on these indicators
and then identify how one indicator influences another
indicator.
Findings. The main findings of our empirical study can

be summarized as follows:

• Confirmed correlations. The correlation between
some indicators has been recognized by several
arguments. In particular, project status, age, activity,
copyleft, and developer interest will promote its
popularity. A license will reduce its popularity.
Copyleft and sponsor can promote project activity.
Moreover, copyleft has a positive influence on the
number of developers. Finally, OSS can positively
influence the popularity and developer interest in a
Unix-like operating system.

• Controversial correlations. Different studies may
adopt different approaches and experimental data

sets, so that the correlation value calculated by the
approach may be different. As a result, their
conclusions may be inconsistent in some cases. For
example, user interest and Unix-like operating
systems have an extreme correlation with project
activity. Moreover, whether a license or program
language correlates with project status and popularity
is unclear. One proposed they are independent
(Lerner and Tirole 2005), but the other argued there
is a positive correlation (Comino et al. 2007).

• Newly-found correlations. There are still some
correlations between indicators that have not been
explored in prior studies. We use a directive graph
and transitive law to indicate possible correlations.
For example, copyleft, sponsor, and Unix-like
operating system may promote the project status.

Contributions. The contributions of this paper are out-
lined as follows:

• Survey OSS evaluation.We conduct an in-depth
survey of the previous studies for 56 papers and
classify their indicators into five types manually. For
each type, we summarize its sub-type indicators and
the correlation of these indicators found in the
previous studies. This will be a leading for others to
evaluate and choose the OSS in future.

• New findings.We find the co-certified and opposite
conclusions in previous studies. Since correlations
between some sub-type indicators in the previous
studies have not been analyzed, we also give our
conjecture.

The rest of the paper is organized as follows: “Related
work” section briefly describes the related studies
on OSS assessment and existing evaluation methods.
“Overview” section shows the overall research framework.
“Evaluation indicators” section summarizes the indica-
tors proposed by previous studies and their corresponding
meanings. “Correlation analysis” section shows the statis-
tics of the correlation among these indicators by plotting
charts. “Discussion” section discusses the strength and the
weakness of our empirical study, and “Conclusion” section
concludes this paper.

Related work
Assessment of OSS success
Open source is of great importance for its economic and
time-to-market advantages. The success of OSS is an
essential measurement for choosing appropriate projects
in the repositories. However, there are only a few reviews
on OSS success evaluation. Alireza et al. (2014) summed
up 23 papers on OSS success evaluation. Then they sum-
marized commonly used indicators. However, they did
not mention the correlation among indicators. Moreover,

Zhao et al. Cybersecurity (2021) 4:20 Page 3 of 24

the collection of related papers seemed incomplete. Mar-
gan and Čandrlić (2015) summarized the reason and his-
tory for OSS’s success. Then they analyzed the quality and
success criteria. Their work only enumerated prior stud-
ies about OSS success, but they had not analyzed these
studies’ differences. The study of Gezici et al. (2019) is the
closest to our work. They surveyed the relation of quality
and success of OSS. In particular, they used a system-
atic mapping to categorize existing studies into five parts
based on research questions, contribution and research
types, quality criteria and metrics, success criteria and
metrics, the relation of quality and success, and demo-
graphics. In the part of the success criteria and metrics,
they analyzed the indicators used to evaluate OSS. Their
study’s focus is to analyze the relationship between the
quality indicator and success indicator in prior studies,
which indicators are commonly used to analyze success
indicators, and the indicators most frequently used to
measure success. However, we mainly focus on exploring
the indicators related to OSS’s success in prior studies and
their correlation.

Evaluation perspective and typical evaluation methods for
OSS
Although there may be few surveys on OSS success,
many organizations, companies as well as individuals
have adopted evaluation methods along with their spe-
cific needs to determine which software to use. According
to user classification, the OSS evaluation can be gener-
ally divided into three perspectives: user, developer, and
tester (Cheng and Guo 2019; Yuan et al. 2010). In partic-
ular, due to prior works and our research on employees
from one famous company, users generally choose OSS
that meets their functional requirements. Moreover, the
chosen OSS must be of good quality and within the
scope of license for further development or modifica-
tion (?{33-lerner2005scope}). Developers gener-
ally develop their own software that meets their require-
ments and exist little or no license risk (Lerner and Tirole
2005; Fershtman and Gandal 2004). Tester is generally a
third party, mainly testing whether OSS has a significant
impact on company and society (Yuan et al. 2010).
According to different concerns, a common evaluation

perspective can be divided into four indicators: quality,
maturity, reliability and vulnerability.

Quality
Generally speaking, software quality (Aberdour 2007)
mainly refers to software’s ability to meet users’ needs or
comprehensive expectations in use. For the quality evalu-
ation of OSS, current influential evaluationmodels are the
Open Source Maturity Model (OSMM) (Golden 2008),
OpenBRR model (Wasserman et al. 2006), and QSOS
model (Semeteys 2008). The QSOS model’s complexity

is the highest, while the OSMM model’s complexity is
the lowest. In addition, there is another quality evalua-
tion model SQO-OSS (Samoladas et al. 2008) for OSS,
which can continuously evaluate a system by considering
the open-source community.

Maturity
Software maturity (Petrinja et al. 2009) mainly refers
to technical characteristics or application characteristics
that can be achieved by OSS. It needs to consider general
quality characteristics and the uniqueness in development
or business model. At present, a variety of models have
been proposed for the maturity evaluation, such as Capa-
bility Maturity Model (CMM) (Paulk et al. 1993), Open-
Source Maturity Model (OMM) (Petrinja et al. 2009)
that is similar to CMM but aims at OSS, the QualiPSo
(del Bianco et al. 2009) maturity model and a model
(Kuwata et al. 2014) based on OSS community to evaluate
products.

Vulnerability
Software vulnerabilities are essentially the existence of
defects in software (Wolf et al. 2013).When evaluating the
vulnerability of OSS, it is usually analyzed from the source
of the vulnerability, the component it belongs to, the com-
ponents that the vulnerability impacts, and the degree of
the vulnerability impacts. Common evaluation methods
can be divided into three types: static analysis methods
(Erturk 2012), dynamic analysis methods, and cross-type
analysis methods (Aggarwal and Jalote 2006).

Reliability
The reliability of OSS mainly examines the probability
that OSS can maintain unobstructed operation in the pre-
scribed tests. Cristescu and Cristescu (2009) systemati-
cally introduced software reliability, themethod of judging
reliability, and a possible method of establishing a relia-
bility model. Zhu and Pham (2018) developed a reliability
model for multi-release software, which is used to detect
legacy faults, newly introduced faults, and related faults
detection processes. Yang et al. (2016) established a frame-
work for multi-version software reliability modeling and
considered the delay of the patch, which is similar to
that of Zhu and Pham (2018), but the model is upgraded.
Moreover, it fully illustrated the necessity and importance
of reliability analysis.

Overview
Target
OSS has a significant impact on the software fields
(Bretthauer 2001). Although it brings great convenience,
improper citation methods may bring problems. Prior
studies proposed the indicators from different perspec-
tives to measure OSS. However, there is no survey work

Zhao et al. Cybersecurity (2021) 4:20 Page 4 of 24

for summarizing these evaluation indicators. Therefore,
the targets of this paper can be summarized as follows:

1 The first target is to analyze the evaluation indicators
of OSS in the previous studies comprehensively;

2 The second target is to compare similarities or
differences of conclusions for each study, and analyze
specific reasons for controversial conclusions;

3 Based on predecessors’ conclusions, combined with
current using status of OSS, the third target is to point
out some research aspects still need to be carried out.

Our approach

We collect 56 papers about OSS and its evaluation indi-
cators from online scholar search engines, such as IEEE
Xplore, ACM Digital Library, DBLP, and Google Scholar.
Then we find that 42 of them proposed the methods
to evaluate OSS, 34 of them analyzed the correlation of
specific indicators, and others discussed how indicators
affect OSS. We ask four members to read and analyze all
these papers and summarize their conclusions in the table.
Unfortunately, we did not conduct a cross-check since the
data sets of prior studies were collected in different years.
Therefore, we only compare the conclusions of each work
theoretically. We orthogonally separate the indicators we
found in the related studies and obtain five uncorrelated
evaluation indicators, which are code, license, developer,
popularity, and sponsorship. After that, we summarize
the correlation between the various sub-indicators and
summarize some findings. The process is shown in Fig. 1.
Paper collection. We collect papers by using keywords

from the popular scholar search engines as mentioned
above and from the related studies in the gathered papers.
The chosen keywords are “OSS”, “open source software”,
“success” and “performance”. We classify them into two
groups. In these groups, group A contains “OSS” and
“open-source software”, group B contains “success” and
“performance”. There are so many matches, but most
of these do not meet our requirements. After filtrating,
we find a total of 79 prior studies. Then, we read the
abstract of these papers and identified whether its con-
tent is related to OSS success. After reading its contents,
we find 23 studies did not mention specific evaluation
methods or the correlation between indicators. They only
discussed the success of an open-source community or a
single open-source project. Therefore, the remaining 56
studies are what we need. Based on their contents, we
summarize prior studies’ evaluationmethods. These stud-
ies also analyze the influence of one indicator on OSS and
the correlation between indicators.
Indicator Identification. As mentioned above, we

summarize the data sets and approach used in previous
studies in Table 1. From Table 1, most of the experi-
mental data came from two open-source communities of

SourceForge1, FreshMeat2 and github3, and a small part
of the data came from other websites, such as Meano4
and OpenMoko5, and Debian6. At present, Github has
achieved excellent application results, with 9 million
developer users. Due to the widespread usage of the cloud
in recent years, Github has an advantage over the previ-
ous ones because developers can use a fork to contribute
code more easily. According to our investigation, Fresh-
Meat has been merged with SourceForge. Moreover, the
use of SourceForge has shown a slight declination. There-
fore, in the future work, if there is an analysis of OSS
attributes, the data set used is more likely to come from
the Github website. In prior studies, the most used eval-
uation approach is the regression method. It can be used
for analyzing the correlation for specific indicators. Ordi-
nary least squares regression (OLS) (Legendre 1806) is
the most basic method in regression analysis. It has the
least requirements for model conditions and is also the
most frequently used in the process of statistical anal-
ysis. Generalized Least Squares (GLS) (Aitken 1936) is
a generic form of OLS. The difference between them
is that OLS assumes the residuals are homoscedasticity,
while GLS can be used to eliminate heteroscedasticity.
The two-stage least squares method (2SLS) (James and
Singh 1978) is used to test regressionmodels with endoge-
nous variables. The difference between 2SLS and OLS is
that OLS guarantees minimum variance while 2SLS guar-
antees consistent estimates. The three-stage least squares
method (3SLS) (Zellner and Theil 1962) is the extension
of 2SLS. By using all the information, 3SLS pays attention
to the simultaneous correlation of each equation’s random
perturbation terms in the model. Besides the regression
method, there are some other data analysis approaches.
Latent class cluster analysis (LCA) (Andersen 1982) is a
technique for finding subtypes in multivariate classifica-
tion data. Atlas-ti7 is a mature work platform, mainly used
for all kinds of data analysis. The tool is easy to use, and
the calculation is accurate. Abductive approach (Abduc-
tive Inference 1994) is also called abductive reasoning,
which is a method that generalizes reasonable individual
things to general things and obtains certain principles or
rules. Theory-driven approach (Chen and Rossi 1983) is
often used to measure the validity of a specific method.
Principal component analysis (PCA) (Karl Pearson 1901)
is the simplest method to analyze multivariate statistical
distribution by using characteristic quantities, and it is
generally used to reveal data internal structure. Inferen-
tial statistics (Lowry 2008) makes an informed inference

1https://sourceforge.net
2http://freshmeat.sourceforge.net
3https://github.com
4http://maemo.org
5http://wiki.openmoko.org/wiki/Main_Page
6https://www.debian.org/distrib
7https://atlasti.com/

https://sourceforge.net
http://freshmeat.sourceforge.net
https://github.com
http://maemo.org
http://wiki.openmoko.org/wiki/Main_Page
https://www.debian.org/distrib
https://atlasti.com/

Zhao et al. Cybersecurity (2021) 4:20 Page 5 of 24

Fig. 1 The overview of our methodology

of the overall data and information based on the sam-
ple data and information. Six-vertex measurement model
(Robinson and Vlas 2015) is a method proposed by the
authors to solve the requirements problem. They also
demonstrate its feasibility in the previous study. Wilcoxon
rank-sum test (Wilcoxon 1945) uses the sign and size
information of the difference between the observed
value and the center position of the null hypothesis
to test. Its effect is better than the sign test. Bonfer-
roni correction (Dunnett 1955) is often used in multiple
comparisons, which can correct familywise error rate
conservatively.
The evaluation of OSS in prior studies can be sum-

marized in Table 2. The data is collected from the
papers about success indicators mentioned above. From
Table 2, they can be divided into four categories: code,
license, developer, and popularity. Coupled with the
unique attributes of OSS, sponsorship, they constitute
a five-dimensional indicator to measure OSS together.
Next, we analyze their impact on OSS. As we can see,
the authors used more static data in earlier works. With
the continuous deepening of research, researchers found
only using the data at a single point for analysis obvi-
ously cannot meet the accuracy required. For the first
time, Garousi (2009) used dynamic indicators to evaluate
four systematically-sampled OSS projects. They obtained
data across the project’s lifetime about three indica-
tors: developer number, download number, and bug-
fixing performance. Apparently, dynamic data is more
convincing than static data. Therefore, there are some
studies after Garousi using dynamic indicators to per-
form data collection and experimental analysis. What’s
more, the indicators in earlier works are more possible

to evaluate the attributes of projects or something influ-
encing users’ choice. Since 2011, these indicators have
focused more on the impact of developers on the over-
all project, in particular, developers capability, developers
interest, etc.
Correlation Analysis. We summarize all the conclu-

sions in the studies discussing the correlation between
indicators. And we show these indicators and correla-
tions via a directed figure, which is shown in Fig. 2. From
this figure, we can find the correlation of some indicators
remains unknown, such as the correlation of project status
and popularity, the correlation of project age and activity.
However, we can use a transitive relation to analyze these
possible correlations.

Evaluation indicators
Based on the above analysis, most of the evaluation
indicators in the prior studies are not comprehen-
sive. Therefore, we show the definition of indicators
for OSS success. OSS success means OSS does not
cause problems in other areas while meeting users’
functional needs. These problems include security
issues, license misusing issues, and program errors or
crashes issues. Obviously, frequent program errors and
crashes can affect both users and developers of the
project.

Code
Code (i.e., source code) is the carrier of functions for a
system, and its quality is highly dependent on developers’
experience and abilities (Foolbox Native 2020). Therefore
in this study, we take into account three aspects for code:
vulnerability, source risk, and reusability.

Zhao et al. Cybersecurity (2021) 4:20 Page 6 of 24

Table 1 Statistics of investigated papers. “Source” denotes where the projects are collected for investigation, “# Project” indicates the
number of investigated projects, and “Approach” shows what methods are used to obtain the conclusions

Study Source # Project Data analysis methods

Lerner (2005) SourceForge 40000 OLS1

Colazo et al. (2009) SourceForge 62 OLS and Cox regression

Sen et al. (2008) SourceForge 196 responses Multinomial logit analysis

Grewal (2006) SourceForge 108 Latent class cluster analysis

Crowston et al. (2004) SourceForge 122 PSM2

Garousi (2009) SourceForge 8,627 N.A.

Crowston et al. (2003) Surveys via SlashDot3 170 Atlas-ti13

Sen (2006) FreshMeat 12923 FIML4

Wu et al. (2007) SourceForge 56 3SLS5

Stewart et al. (2005) FreshMeat 147 MANCOVA6

Raymond (1999) Fetchmail12 N.A. N.A.

Fershtman et al. (2004) SourceForge 71 GLS7

Subramaniam (2009) SourceForge 8,627 Random-effects and linear regression

Midha et al. (2012) N.A. 283 VIF8

Colazo (2005) SourceForge 62 OLS

Tsay et al. (2012) Github N.A. Separate negative & binomial regression

Homscheid et al. (2016) Survey 321 Theory-driven approach

Spaeth et al. (2015) Maemo and OpenMoko N.A. N.A.

Teigland et al. (2014) eZ Publish N.A. Abductive approach

Guinan et al. (1998) 15 organizations 66 Teams PCA16

English et al. (2007) SourceForge 110,933 N.A.

Beecher (2008) Debian9 50 GQM10 Method

Robinson and Vlas. (2015) SourceForge 31 Six-Vertex measurement model

Comino et al. (2007) SourceForge 88,192 N.A.

Giuri et al. (2004) SourceForge N.A. Multinomial logit analysis

Schweik (2009) SourceForge 107,747 N.A.

Ghapanchi (2015)) N.A. 1,409 PLS11

Chang (2018) CFA and brigades’ Slack channels 143 Inferential statistics method

Ke and Zhang (2011) SourceForge 233 PLS

Peng (2019) Github N.A. OLS, GLM17, BLR18

Feitelson et al. (2006) SourceForge 1681 Least-squares analysis

Emanuel et al. (2010) SourceForge 160141 Datamining 2-Itemset Association Rule

Tamura and Yamada (2007) Fedora Core Linux N.A. Neural network and NHPP model

Norikane et al. (2018) QT project database N.A. Prediction model

Bao et al. (2019) Github 917 Wilcoxon rank-sum test with Bonferroni correction

Yang et al. (2013) Ohloh N.A. Regression data analysis

Hanoğlu and Tarhan (2019) Github 17 Understand 5.1 and JASP

Crowston and Shamshurin (2017) ASF14 Incubator 74 Violin plot

Joy et al. (2018) Github 130 OLS

Chen et al. (2015) N.A. 70 Data Analysis

Greene and Fischer (2016) Github 1000 N.A.

Zhao et al. Cybersecurity (2021) 4:20 Page 7 of 24

Table 1 Statistics of investigated papers. “Source” denotes where the projects are collected for investigation, “# Project” indicates the
number of investigated projects, and “Approach” shows what methods are used to obtain the conclusions (Continued)

Study Source # Project Data analysis methods

Rebouças et al. (new12-20) Github 35360 Fisher’s Exact Test

Hata et al. (020803) Github 22 Game-theoretical models

Fronchetti et al. (020804) Github 450 Random Forest and KSC clustering algorithm19

1OLS: Ordinary least squares regression
2PSM: Parametric Survival Model
3Surveys via SlashDot: The data was collected by surveying developers via SlashDot, a popular Web-based discussion board
4FIML: Full Information Maximum Likelihood
53SLS: Three-Stage Least-Squares regression
6MANCOVA: Multivariate analysis of covariance
7GLS: Generalized least squares regression
8VIF: Variance Inflation Factors
9Debian: This survey is made among Linux kernel developers
10GQM: Goal, Question, Metric method
11PLS: Partial least squares regression
12Fetchmail: Full-featured IMAP and POP client
13Atlas-ti: A program used for qualitative research or data analysis
14ASF: Apache Software Foundation
15LCA: Latent class cluster analysis
16PCA: Principal component analysis
17GLM: Generalized linear model
18BLR: Bayesian linear regression
19KSC clustering algorithm: K-Spectral Centroid clustering algorithm

Vulnerability
There are many types of definitions for vulnerability (Wolf
et al. 2013; Brooks 2003; Ezell 2010). We combine these
viewpoints and regard it as computer security flaws or
weaknesses that can cause serious consequences. Vul-
nerability threatens confidentiality, integrity, availability,
access control, and monitoring mechanisms of the sys-
tem or its application data. If a project has many vul-
nerabilities, it has a significant risk of incorporating it
into your project. Frei et al. (2006) analyzed a dataset
with more than 14,000 vulnerabilities, studied how to
patch on a large scale vulnerabilities, and provided valu-
able suggestions for security investment decisions. Mell
et al. (2006) introduced how the Common Vulnerability
Scoring System (CVSS) judged the severity of a vulnera-
bility. In their study, its indicators were used to examine
the performance of OSS vulnerabilities. Marconato et al.
(Marconato et al. 2012) analyzed the vulnerability cycle
of various platforms and found the disclosure in Win-
dows platform had been delayed as far as possible until
patch releases. As a result, it becomes critical whether
the bug in OSS has been fixed. Vulnerability rating is
usually quantified by the Common Vulnerability Scoring
System (CVSS) (Mell et al. 2007). It is composed of three
metric groups: Base, Temporal and Environmental. This
method is designed for characterizing vulnerabilities and
providing users with a concise vulnerability awareness.
Houmb et al. (2010) used CVSS and Bayesian Belief Net-
work (BBN) (Jensen 1996) to quantitatively estimate the
security risk of a system or a specific part of the system,

where CVSS is used to build the model and its value is
input for running the BBNmodel. They reorganized CVSS
metrics to evaluate the performance of a system. The new
CVSS outputs the frequency and impact of vulnerabil-
ity instead of vulnerability severity level. This work can
also be applied to OSS to assess the impact of vulnerabil-
ities on security performance. Notice this study did not
mention how to analyze the data when there are multiple
vulnerabilities in the system. Lin et al. (2008) used CVSS
to measure the severity of an organization’s vulnerability.
Compared with vulnerability assessment tools, they added
manually imported system features to generate environ-
ment and time scores. The problem of their study is that
only one vulnerability assessment can be completed.

Access source
Access source refers to the channels from developers
to suppliers and from suppliers to users (Boehmke and
Hazen 2017). Attackers can use attack methods for each
part of the software life cycle to implant a backdoor or
Trojan to achieve their intended purposes. Boehmke and
Hazen (2017) proposed that OSS was widely used and had
the potential to change the supply chain information sys-
tem. Therefore, when considering the choice of OSS, its
access source should be well evaluated to ensure avail-
ability. Ellison and Woody (2010) analyzed the compo-
nents of software supply chain risk and analysis methods
to reduce the possibility of vulnerabilities in purchased
software elaborately. Levy (2003) analyzed how OSS and
proprietary software brought in risk.

Zhao et al. Cybersecurity (2021) 4:20 Page 8 of 24

Table 2 OSS evaluation indicator proposed in the prior studies. “Evaluation Indicator” denotes the used evaluation indicators for
investigation, “Static” indicates whether the authors used data at a single point to represent the whole time

Study Year Evaluation Indicator Static

Project activity

Crowston et al.(2004) 2004 Developer number Yes

Bug fixing time

Download number

Developer type

Developer satisfaction

User satisfaction

Crowston et al. (2003) 2003 Users’ participation Yes

Quality

Project process

Project recognition codes

Developer number

Garousi (2009) 2009 Download number No

Bug-fixing performance

License type

Project age

Sen (2006) 2006 Project status Yes

Potential users

Project system compatibility

Concurrent Versioning Systems (CVS) code commit

Download number

Grewal (2006) 2006 Bugs closed per month Yes

Support requests per month

Number of page views

Add new features

Raymond (1999) 1999 Fix bugs Yes

Release new versions

Output of each contributor

License type

Fershtman et al. (2004) 2004 Program language Yes

Operating system

Target users

Ranking of activity percentile

Lerner (2005) 2005 Developers number Yes

Bugs or errors number

Midha et al. (2012) 2012 Download number No

Concurrent Versioning Systems (CVS) code commit

Colazo (2005) 2005 Developer number Yes

Developer contribution

Tsay et al. (2012) 2012 Developer interest No

Developer contribution

Project activity

Zhao et al. Cybersecurity (2021) 4:20 Page 9 of 24

Table 2 OSS evaluation indicator proposed in the prior studies. “Evaluation Indicator” denotes the used evaluation indicators for
investigation, “Static” indicates whether the authors used data at a single point to represent the whole time (Continued)

Study Year Evaluation Indicator Static

Subramaniam (2009) 2009 Developer interest Yes

User interest

Project size

Beecher (2008) 2008 Developer Yes

Project activity

Hit number

Comino et al. (2007) 2007 Project status Yes

Giuri et al. (2004) Developer capability Yes

Project age

Schweik (2009) 2009 Project activity Yes

Downloads number

Developer interest

Project activity

Ghapanchi (2015) 2015 User interest Yes

Developer pernancement

Developer pernancement

Chang (2018) 2018 Developer satisfaction Yes

Project status

Feitelson et al. (2006) 2006 Download number Yes

Israeli and Feitelson (2007) 2007 Download number Yes

Release new version

Emanuel et al. (2010) 2010 Download number Yes

Developer contribution

Ke et al. (2011) 2011 Developer capability Yes

User satisfaction

Margan and Čandrlić (2015) 2015 Developer capability Yes

Developer interest

Developer number

Joy et al. (2018) 2018 Project size Yes

Project age

Peng (2019 2019 Connected projects Yes

Watching number

Crowston and Shamshurin (2017) 2017 Volume of communication Yes

Software reusability
Software reusability reveals the difficulty of modifying
code for other uses, including understanding correc-
tions, changes, and improvements. It is related to the
difficulty and time for reasonable secondary develop-
ment and fixing vulnerabilities. Poulin (1994) emphasized
reusable software generally has attributes (such as ease of
understanding, good error and exception handling, and
portability). Fershtman and Gandal (2004) used program-

ming language and operating system as a measuring indi-
cator for OSS. Sen (2006) also proposed that project
system compatibility is an important factor. Capiluppi
and Boldyreff (2007) emphasized the stability of folders
is the key to reusability, so it is necessary to exam-
ine the frequency of updates. Update too frequently or
only occasionally does not meet requirements. Tamura
and Yamada (2007) used a neural network to assess
the best release time for OSS, and the result shows it

Zhao et al. Cybersecurity (2021) 4:20 Page 10 of 24

Fig. 2 This is the correlation between the indicators evaluated above. The color of one node represents the out-degree of the node, and the size of
one node represents the in-degree of the node. Out-degree indicates the number of edges connected from a node. In-degree indicates the
number of edges attached to a node. The color of the node transforms from dark pink to white and even to green. The heavier the pink of the node,
the lower its in-degree. And, the heavier the green of the node, the higher its in-degree. What’s more, the larger the size of the node, the higher its
out-degree. There are also different colors of edges, such as yellow, orange, and blue. The color of the edge depends on the weight of the
correlation of two nodes. If the correlation is a positive impact, the color of the edge is a warm color; Otherwise, the color is a cold color

will take at least 149 days for developers. Hauge et al.
(2009) used website, documents, license, and release fre-
quency to assess the reusability of OSS. What is more,
language translation (Midha and Palvia 2012; Ghapanchi
and Tavana 2015) is also an important measurement for
reusability. It is defined for measuring how many lan-
guages the documents of OSS (such as readme file and
license file) has been translated into. As we know, docu-
ments play an important role for developers or users to
understand OSS.

License
License is defined as “the one complied with open source
definition, and it allows the software to be freely used,
modified, and shared” (Open Source Initiative 2018).

License type
There are about 80 licenses for open-source software. In
terms of copyright, these licenses can be categorized into
two classes (i.e., permissive licenses and copyleft licenses)
based on whether it is under the request of copyright.
From the restriction perspective, these licenses can be
categorized into three types (i.e., highly restrictive, restric-
tive, and unrestrictive) based on the restrictiveness of

redistribution rights (Lerner and Tirole 2005). In particu-
lar, the highly restrictive license usually requires manda-
tory open source, like GPL (The GNU General Public
License v3.0 2018). The restrictive license does not need
to open source when referenced as a library. It has cer-
tain commercial value but still have many constraints.
The unrestrictive license does not need to open source.
However, there still exist other license types. For example,
Apache requires patents. BSD (The 2-Clause BSD License
2018; The 3-Clause BSD License 2018) does not require
patents, but its binding is regarded as the weakest. Cur-
rently, widely used open-source licenses can be classified
into Table 3.

Issues of license use
German et al. (2010) analyzed possible license compati-
bility issues during the software distribution process and
discovered some current license issues. Valimaki (2003)
analyzed how several open-source companies use dual
licensing (i.e., a proprietary license and an open-source
license). The case studies in the study is limited. Since,
there are almost none companies that actually have an
end-user application performed well with a dual licensing
model.

Zhao et al. Cybersecurity (2021) 4:20 Page 11 of 24

Table 3 Frequently used open-source license classification

Category License Name

Highly restrictive Eclipse Public License 1.0/ European Union Public
License 1.1

GNU Affero General Public License v3.0/ Creative
Commons Attribution Share Alike 4.0

GNU General Public License v2.0 / GNU General
Public License v3.0

LaTeX Project Public License v1.3c / Microsoft
Reciprocal License

Mozilla Public License 2.0 / SIL Open Font License 1.1
/ Open Software License 3.0

Retrictive GNU Lesser General Public License v2.1 / GNU Lesser
General Public License v3.0

BSD 3-clause Clear License / Apache License 2.0 /
Artistic License 2.0

Creative Commons Attribution 4.0 / Creative
Commons Zero v1.0 Universal

Academic Free License v3.0 / Microsoft Public License

Unrestrictive BSD 2-clause “Simplified” License / BSD 3-clause
“New” or “Revised” License

ISC License / MIT License / The Unlicense /zlib License

Indicators affected by license
Highly restrictive licenses have a significant impact on
the indicators of OSS. Lerner and Tirole (2005) analyzed
the restricted capacity of each license and the impact of
license on some objective attributes of OSS. The author
performed empirical studies by conducting a statistical
analysis of the data obtained by open-source websites. But
the problem of the empirical studies is the obtained data
can only reflect the open-source effect by using the cur-
rent license. There are no empirical studies conducted
to prove using other licenses will improve or reduce
the open-source effect. Stewart et al. (2005) studied the
impact of licenses and sponsorship on OSS. Colazo and
Fang (2009) studied the correlation between license and
project activities. They put forward a point of observ-
ing the permanence of developers firstly. By observing the
time interval of the one submits code, we can analyze
whether the developer abandons the project. This indica-
tor was innovative at the time. Senyard and Michlmayr
(2004) proposed an appropriate license, which will attract
developers.
Subramaniam et al. (2009) obtained the percentage of

OSS with three types of licenses through classifying open-
source data. Then they analyzed the impact of each type
of license on user interest, developer interest, and project
activity. Based on their experimental results, there are 63%
of OSS using GPL, which is a highly restrictive license.
They deemed that highly restrictive licenses will discour-
age developers from choosing that OSS, which will reduce
OSS’s popularity since developers may want to retain the
right to modify or reuse their own codes. What is more,

project administrators are likely to decide which license
to use. Therefore, if the project is designed mainly for
developers, an unrestrictive license (such as BSD or MIT)
is used mostly in academic environment (Lindman et
al. 2010). Otherwise, the highly restrictive or restrictive
license is valid.

Indicators affecting license
Sen et al. (2008) studied the influence of developers’ moti-
vations and attitudes towards OSS on their choice of
licenses. They used an online survey to collect data. How-
ever, the data set is too small. Moreover, the focus of their
study is to analyze which license a particular group tends
to choose. Therefore, there is less analysis of the license
itself.
The information of “Indicators affected by license” and

“Indicators affecting license” sections is summarized in
Table 4. In prior studies, the researchers focused on the
study of the influence of licenses on various indicators
of OSS and investigated which indicators will affect the
choice of license. We can find developers’ motivation and
attitude to OSS development, the natural language of
developers, and the target user, will all affect it. Among
them, if the developer seeks higher redistribution rights
and greater status opportunities, the developer may be
inclined to choose a less restrictive license. If the devel-
oper is looking for a higher social obligation or solving
a greater challenge, the developer may choose a more
restrictive license. This is in line with our objective per-
ception. At the same time, different restrictive licenses
may have a positive or negative impact on the attributes of
OSS. But in previous studies, we can notice their conclu-
sions may be controversial. Stewart et al. (2005) proposed
that a less restrictive license has a positive impact on the
popularity of OSS. At the same time, popularity has a
positive impact on vitality, which is also called activity. It
can be concluded that less restrictive licenses also have
a positive impact on the activities. However, Colazo and
Fang (2009) proposed copyrighted licenses have a pos-
itive impact on the activities. Their main consideration
is whether a license has copyright requirements during
the dissemination process. This is also a restrictive aspect
of the license. From our objective perception, the more
restrictive licenses, the more developers may participate
in development activities. But when the restrictions are
lower, the popularity of OSS is higher, and the number of
users is also higher. Therefore, more bugs or errors may be
found, which will also promote the development of OSS.
In summary, the impact of open-source licenses on OSS
activities still needs more in-depth research.

Popularity
Popularity is the quality, state, or condition of being
liked, admired, or supported by many developers.

Zhao et al. Cybersecurity (2021) 4:20 Page 12 of 24

Table 4 The indicators about license

Paper # Indicator Affected by License Correlation Indicator Affect License Correlation

Lerner (2005) Project activity N.A. N.A. N.A.

Developers number Negative Target user (end-users et al.) Positive

Bugs or errors N.A. Language (English) Negative

Stewart et al. (2005) Project popularity Negative N.A. N.A.

Project activity Negative N.A. N.A.

Colazo et al. (2009) Developer number Positive N.A. N.A.

Coding activity level Positive N.A. N.A.

Developer permanence Positive N.A. N.A.

Development speed Positive N.A. N.A.

Sen et al. (2008) N.A. N.A. Motivation/Attitude Positive

Senyard and Michlmayr (2004) Developer number Positive N.A. N.A

Popularity is often used to measure OSS (Crowston et
al. 2006; Midha and Palvia 2012; Subramaniam et al.
2009). Sen (2006) used project popularity as an eval-
uation basis and analyzed the impact of license type,
project age, project status, potential users, and project
system compatibility on popularity. Emanuel et al. (2010)
used association rules by data mining to analyze the
success factors. They used the download number as a
measurement for OSS success. They conducted a Unix-
like system, translation language (English or European),
and stable project status, which positively affected pop-
ularity. Senyard and Michlmayr (2004) convinced that
users and developers promoted the popularity. However,
all of the analyzed attributes are static. And popularity
is a dynamic attribute. Using static attributes to evalu-
ate a dynamic attribute is less rigorous. In open-source
projects, it usually includes market penetration and user
interest.

Market penetration
Market penetration is defined for measuring the using
proportion or percentage of a certain OSS under a
similar function at a point time. Feller and Fitzgerald
(2001) believed some well-known OSS (such as Linux and
Apache) could use the rate of market penetration as an
evaluation criterion. However, as we all known, it can
only be used to evaluate the highly used OSS. The rate
of market penetration about the unpopular OSS has large
deviations.

User interest
User interest is usually quantified as the number of down-
loads. Grewal et al. (2006) and Crowston et al. (2004) both
used this indicator in their studies. However, the num-
ber of downloads is a static indicator. The impact of time
on indicators and OSS is not considered from a longi-
tudinal perspective. The advantage of the study (Garousi
2009) is that they considered the lifetime of projects.

Crowston et al. (2003) found that users’ satisfaction and
participation in discussion or bug reports are essential
attributes.
In Table 5, we can find previous studies mainly used

downloads number, hit number, and the number of sub-
scribers to quantify the abstract attribute of software
popularity. The unique one is the study of Crowston et
al. (2003). They used users’ satisfaction and participa-
tion to measure popularity. But this indicator is still an
abstract indicator. In the study of Guinan et al. (1998),
they conducted a questionnaire survey on whether users
are satisfied with a software. And Crowston et al. (2003)
also used survey for user data collection. Therefore, it
is feasible to measure the degree of software satisfaction
through a large amount of specific user data. And this is
a more concrete approach. As for what factors can affect
the popularity of OSS, Stewart et al. (2005) and Wu et al.
(2007) focused on the license, project age, status, poten-
tial users, system complexity, project centrality, project
density, sponsorship, etc.

Developer
A developer in software is a person who writes computer
programs. The developer includes many aspects, such
as developer capability, developer motivation and project
activity.

Developer capability
Developer capability generally reflect the number of
developers and the individual contributions of develop-
ers. Lerner and Tirole (2005), Garousi (2009), Crowston
et al. (2004) and Wu et al. (2007) used the number of
developers to scale the performance of OSS. Colazo et
al. (2005) emphasized that the diversity of roles and con-
tributions of project participants has a positive effect on
OSS success. Tsay et al. (2012) and Fershtman and Gandal
(2004) also used the output of each contributor as an mea-
sure for evaluating OSS. Chang (2018) has talked about

Zhao et al. Cybersecurity (2021) 4:20 Page 13 of 24

Table 5 The indicators about popularity

Paper # Quantification Indicator Affect Popularity Correlation

Grewal (2006) Downloads N.A. N.A.

Crowston et al. (2004) Downloads N.A. N.A.

Garousi (2009) Downloads N.A. N.A.

Crowston et al. (2003) Users’ satisfaction N.A. N.A.

and participation

License type Negative

Project age Positive

Sen (2006) Hit Project status Stable positive

Subscriber Potential users Desktop users or administrators positive

Project system compatibility Linux positive

Project centrality Negative

Wu et al. (2007) N.A. Project density Positive

Project age Positive

License Negative

Stewart et al. (2005) Downloads Sponsor Positive

Subscriber License Negative

Stable project status Positive

Emanuel et al. (2010) Downloads Unix-like operating system Positive

Translation language Positive

Team leadership Positive

Documents Positive

Senyard and Michlmayr (2004) N.A. Users and Developers Positive

License Negative

Proejct status Stable positive

1User satisfaction is used to measure how satisfied users are with the functions of OSS after using
2User participation measures the degree of user participation in project activities, whether they have raised issues, participated in the activities of solving issues, submitting
commits, fixing bugs, and so on

the indicators of developer comparatively overall. He
investigated how the number of developers, individ-
ual contribution, or developer self ability influences
the performance of OSS and how the team struc-
ture, leadership, and communication efficiency influ-
ence the project progress and developer permanency.
Senyard and Michlmayr (2004) summarized the influ-
ence of the leadership and management style of OSS
authors and the communication style between develop-
ers on the whole project. Ke and Zhang (2011) proposed
developers’ capability, and their effort will promote the
performance of OSS. Greene and Fischer (2016) also con-
cluded that developer capability had a positive effect on
OSS performance. Although they came to the same con-
clusion, they used different datasets. The one is gath-
ered from SourceForge, and the other is gathered from
Github.

Developermotivation
Developer motivation is referred to as what motivates
developers to decide and continue to contribute to OSS.
Markus et al. (2000) proposed to social values (such as
altruism, reputation, and ideology) may motivate the con-
tributors. Tsay et al. (2012) measured OSS based on the
social and technical characteristics of contributors and
their attention and contribution to OSS. They argued task
focus and work concentration would promote developer
attention. However, the description of the experiment in
their study is too brief, even not describe specific features
for the chosen data set. Moreover, they did not analyze the
correlation between different indicators. Hata et al. (2015)
promoted social values and project documents had a pos-
itive effect on developers. Also, Fronchetti et al. (2019)
analyzed the OSS data of 72 weeks and concluded doc-
uments, project age, number of program languages, and

Zhao et al. Cybersecurity (2021) 4:20 Page 14 of 24

its popularity all promoted new developers to join to the
OSS.

Project activity
Project activity contains many fields. Raymond (1999)
measured it by checking whether there were continuous
volunteer developers to fix bugs, add new features, and
release new versions frequently or early. Crowston et al.
(2003) proposed a two-level hierarchy to evaluate OSS
based on empirical research and previous successful Infor-
mation Systems (IS) models. They found the number of
developers involved in the process is an essential attribute
to be the evaluation criterion of OSS. This study contains
only the opinions of some people participating in the sur-
vey, and the survey sample is small. Therefore, results are
highly dependent on the quality of the sample population.
In addition, there is no proof or in-depth study of sur-
vey results. After that, Crowston et al. (2004) proposed
the number of developers in the extended development
community, project activity, and bug fixing time should
also be used to evaluate the performance of OSS. Lerner
(2005) evaluated the performance of OSS based on the
ranking of activity percentile on SourceForge. Subrama-
niam (2009) regarded the level of developer interest and
project activity as an evaluationmeasurement of OSS. The
author separately analyzed the impact of time-related and
time-irrespective indicators. The experiment is relatively
complete and puts forward the influence of the operat-
ing system on OSS. Based on the basis of the previous
experiment, time-related indicators have been added. This
is the first quantitative longitudinal study and the eval-
uation of project attributes is more credible. However,
a time-irrespective indicator may also include the plat-
form on which OSS is released. Garousi (2009) analyzed
the impact of the ability to handle issues on OSS perfor-
mance. It is divided into waiting time, the percentage of
solved issues, and the age of different types of issues. The
age of different types of issues is a relatively new concept
and has not been mentioned before in previous studies.
The problem of this study is that only four OSS are ana-
lyzed. The dataset is insufficient. Midha et al. (2012) used
the activities of developers to measure OSS success. They
established an evaluation model that includes both exter-
nal and internal attributes. But their analysis of developer
activities only considers the complexity and modularity of
source code, which is far from enough. Developer activity
should be a time-related indicator and cannot be mea-
sured solely by time-irrespective indicators. Norikane et
al. (2018) proposed that project activity will promote the
developer by using the prediction model. There are more
reviews for OSS, and the developer has more possibility to
become a long-term developer.
In Table 6, the indicators used to quantify developer

attributes include project activities, developers number

and their contributions, developer satisfaction, follow-
ers number, and the number of projects one developer
owned. In other words, the chosen indicators quantify
developer attributes from four different aspects: the num-
ber of developers, the degree of developers’ attention,
the degree of developers’ satisfaction with the project,
and the degree of user attention to the project. Unfortu-
nately, most of the researchers only choose one or two
aspects to measure the performance of developers in their
own study. To our best knowledge, there is no compre-
hensive measurement of the performance of developers
from the above four aspects. Regarding which indica-
tors may affect developers, previous studies analyzed four
categories of attributes, developer’ s motivation, user’ s
influence on the project, support or restrictions on the
project and the mutual influence between each project.
The four attributes all belong to the influence of the exter-
nal environment on the developer. External property of
projects is defined as a set of indicators that may affect
the development and maintenance of OSS from outside
of source code. Previous studies have analyzed the impact
of it on developers. Of course, the impact of intrinsic
property on developers should also be carefully analyzed.
For example, a more general development language may
attract more developers. At the same time, there may be
differences in code quality among developers. This may
cause many developers to promote project activities in the
process of continuous communication.

Sponsorship
Sponsorship (Mcdonald 1991) is a contract in which one
party provides financial support, and the other party gives
back to the payer exploitable commercial potential. In
open-source software, sponsors are usually famous enter-
prises or universities. They aim to enhance their publicity
and innovation capacity by attracting external knowledge.
Apparently, sponsorship is usually seemed to be the boost
of the performance of OSS.
There are many indicators affected by sponsorship. Wu

et al. (2007) proposed financial support, which usually
be deemed as sponsorship, had positive effect on the
performance of OSS. Homscheid et al. (2016) evaluated
the influence of firm-sponsorship based on the model of
social capital theory and individual’ s value creation. They
proposed that sponsorship has a positive effect on the
correlation between social capital and source code con-
tribution. However, there was no description about their
experiment except data-set to prove their hypothesis. And
their conclusion also had no emphasis of their hypothe-
sis. West et al. (2005) believed sponsorship could prevent
developers from abandoning the project while it is still
usable. And on-going sponsorship provided special sup-
port to improve the chances of project success, such as
resources, legitimacy, and technical capabilities. But it is

Zhao et al. Cybersecurity (2021) 4:20 Page 15 of 24

Table 6 The indicators about developer

Paper # Quantification Indicator Affect Developer Correlation

Add new features

Raymond (1999) Fix bugs N.A. N.A.

Release new versions

Social values

Markus et al. (2000) N.A. (Altruism, reputation, Positive

and ideology)

Crowston et al. (2003) Developer type N.A. N.A.

Developer satisfaction

Developers

Crowston et al. (2004) Bug fixing time N.A. N.A.

Project activity

Fershtman et al. (2004) Output of each developer License Negative

- License Negative

Subramaniam (2009) Developer interest Target audience Unsureness

Activity level User interest Positive

Garousi (2009) Developers N.A. N.A.

Bug-fixing performance

Midha et al. (2012) Developers (CVS log files) N.A. N.A.

- Project centrality Positive

Wu et al. (2007) Project activity Project density Negative

Popularity Financial support Positive

Colazo (2005) Developers N.A. N.A.

and its contribution

Follower - -

Tsay et al. (2012) Projects owned Task focus Positive

Projects contributed Work concentration Positive

Developers

Colazo et al. (2009) Activity level Copyleft Positive

Developer permanence

Development speed

Project activity

Lerner (2005) Developers N.A. N.A.

Bugs or errors

Senyard and Michlmayr (2004) N.A. Leadership Positive

Communication effectiveness Positive

Hata et al. (2015) N.A. Documents Positive

Social values Positive

Popularity Positive

Fronchetti et al. (2019) N.A. Documents Positive

Project age Positive

Program languages Positive

1Task focus presents how much focus developer has contributed on projects
2Work concentration presents how much developers have contributed for a certain project in all his projects

Zhao et al. Cybersecurity (2021) 4:20 Page 16 of 24

Table 7 The indicators about sponsor

Paper Indicator Affected by
Sponsorship

Correlation

Wu et al.
(2007)

Performance Positive

Homscheid
et al. (2016)

Relation between social
capital

Positive

and source code
contribution

West et al.
(2005)

Developer permanency Positive

Resource, legitimacy,
technical capability

Positive

Developer diversity Negative

Spaeth et al.
(2015)

Intrinsic motivation Positive

Teigland et
al. (2014)

Innovation capability Negative

likely sponsorship will recruit external contributors and
reduce its diversity. Spaeth et al. (2015) proposed per-
ceived community-based credibility and openness of the
sponsoring firm have a positive impact on the intrinsic
motivation of volunteer participants. But the data set is
collected from a single source. To improve the credibility
of the conclusions, multi-source data is essential. Teigland
et al. (2014) proposed that sponsor had great influence
on the ecology of OSS. Open-source communities with
corporate sponsorship may be subject to management
restrictions from sponsors. And sponsor may interfere
with the functional features of the entire project. There-
fore, the innovation capabilities of community may be
deeply cut down.
In Table 7, we can find that sponsorship as an exter-

nal attribute has a positive impact on the success of OSS.
Specifically, sponsorship promotes the developer‘s perma-
nency, the resource, legitimacy, and technical capability
obtained by the project. This is consistent with objec-
tive reality. However, we can also find sponsorship has
a certain negative impact on innovation capability and
developer diversity.

Correlation analysis
According to whether the correlation between the indica-
tors has been confirmed, the correlations can be divided
into three types: confirmed correlations, controversial cor-
relations, and new-finding correlations. Based on the
above study analysis, we model the correlation between
indicators into a directive graph using Gephi 8, a use-
ful open-source data visualization tool. Figure 2 shows
the correlations between various indicators for evaluating

8https://gephi.org/

OSSmentioned in previous papers, and the width of edges
shows the strength of correlations.

Confirmed correlations
In the investigated related studies, 25 studies analyze the
correlation between different indicators. However, the
focus of their analysis is quite different. Among them, the
correlations that has been confirmed by at least two works
are listed:

1) license
negative−−−−→ popularity

The strictness of licenses has a negative effect on
popularity. There are four studies (Wu et al. 2007;
Stewart et al. 2005; Stewart et al. 2006; Subramaniam
et al. 2009), which perform a correlation analysis on
9,119 projects in total. Highly restricted licenses (e.g.,
GPL) are often acceptable for general users. But for
users who use the OSS for secondary development,
they will be requested to open source, even if only a
small piece of code is used or the code is used as a
library function reference. Therefore, using OSS with
a highly restricted license may have to reveal code
unwilling to make public. As a result, a highly
restrictive license may persuade such a part of
developers. Although common users and developers
have different needs, they both play an irreplaceable
role in the process of promoting and developing OSS.
What’s more, developers and common users belong
to a mutually reinforcing relationship. If a project
loses several developers, then the project activity will
be significantly reduced or even disappear. This also
has a significant attack on the enthusiasm of common
users. As a result, the popularity of the whole project
will be substantially affected. Therefore, a highly
restricted license will limit the popularity of the
whole project. An inappropriate choice of license is of
great importance.

2) language translation
positive−−−−→ popularity

Language translation may have a positive effect on
popularity, which is often quantified as the number of
downloads. Midha and Palvia (2012) and Ghapanchi
et al. (2015) perform a correlation analysis on 1,308
projects in total. Language translation is a sub-type
indicator. It presents how many sorts of language
documents have been translated into to promote its
spread. Apparently, the larger number of documents
it is, the more people will understand it, and the
larger possibility of widely spread may be.

3) copyleft
positive−−−−→ project activity

In his two studies (Colazo and Fang 2009; Colazo et
al. 2005), Colazo found copyleft has a positive
influence on the number of developers and project
activity based on 62 projects in total. Copyleft can

https://gephi.org/

Zhao et al. Cybersecurity (2021) 4:20 Page 17 of 24

protect the rights of developers since it prevents
others from directly copying developers’ source code.
Compared with the ones without copyleft, it is
obvious OSS with a copyleft can attract more
developers to invest their energy.

4) project activity
positive−−−−→ user interest

Project activity has a positive effect on user interest.
Subramaniam et al. (2009) and Stewart and Ammeter
(2002) summarized that conclusion. They performed
a correlation analysis of 8,629 projects in total. On
the one hand, project activity represents OSS is still
maintained by developers, so it is easier for users to
ask for help if they encounter problems. On the other
hand, it means OSS may still have room for
development, and problems can be discovered.
Developers may encounter an error or bug during
programming, using or debugging, and they may
even get a CVE ID, which is attractive for any users.

5) developer interest
positive−−−−→ user interest

Developer interest has a positive effect on user
interest. Ghapanchi (2015) and Subramaniam et al.
(2009) performed a correlation analysis on 10,036
projects in total. Developer interest is a signal of how
much effort a developer puts into an OSS. Therefore,
the more developers devote to projects, the better
quality and security projects will become. What is
more, users usually choose the project with high
quality and security. Therefore developer interest
may promote the development process of OSS, thus
affecting the external characteristics of the whole
OSS and arousing users’ interest.

6) sponsor
positive−−−−→ popularity

The sponsor has a positive effect on popularity (i.e.,
user interest). And it is proved non-market sponsor
has a more positive effect on popularity. Stewart et al.
(2002, 2005, 2006) demonstrated this conclusion in
their three studies with 518 projects in total. In our
opinion, sponsorship improves the ability of OSS to
deal with risks and the possibility of maintaining
long-term support from developers. Both of these
capabilities are very attractive to users. In the use of
software, it is common to face risks. If there is no
timely and effective technical support, it will cause
incalculable losses to users.

7) sponsor
positive−−−−→ project activity

The sponsor also has a positive effect on the project
activity of OSS. Wu et al. (2007) and Stewart et al.
(2006) drew the same conclusion by analyzing 274
projects. Sponsor is not only a recognition of their
work, but also a responsibility to develop better OSS.
As a result, developers will be more active and
sustained with the sponsorship.

8) project status
positive−−−−→ popularity

Project status has a positive effect on popularity (i.e.,
user interest). OSS may be more popular when it is in
a stable status. Stewart and Ammeter (2002), Sen
(2006) and Subramaniam et al. (2009) performed a
correlation analysis on 22,552 projects in total. The
stable status reflects that the OSS has been modified
and tested by multiple parties and has remained
stable in function. This will make it easier for the
majority of users to have confidence in the software’s
performance and security. Therefore, users may
prefer stable projects while choosing function-similar
OSS.

9) project age
positive−−−−→ popularity

Project age has a positive effect on popularity. Wu et
al. (2007), Ghapanchi and Tavana (2015) and Sen
(2006) have proved this point through experiments
with 14,004 projects in total. The older the OSS
project is, the lager number of testings or patches the
project may has. The problems that may be faced
about project function and safety can also be referred
to the experience shared by predecessors. Obviously,
this is more popular with users than new OSS.

10) unix-like operating system
positive−−−−→ popularity

Sen (2006) proposed a Unix-like operating system
had a positive effect on popularity. And Ghapanchi
and Tavana (2015) argued the more types of
operating systems OSS could be used on, the more
popular OSS would be. They verified the above
conjecture through experiments with 13,948 projects.
Windows OS is the most used operating system in
the world, and general software can be deployed and
used on windows. Therefore, OSS can be used on
Unix-like operating systems, which means OSS may
satisfy the requirements of a large part of users. There
will be fewer failures due to system reasons.

11) unix-like operating system
positive−−−−→ developer interest

The Unix-like operating system has a positive
correlation with developer interest. Subramaniam et
al. (2009) and Beecher et al. (2008) achieved this
finding through experiments with 8,669 projects in
total. As we know, although Windows is
user-friendly, it is not very friendly to developers.
Developers actually use Unix-like operating systems
more. Therefore, OSS that can be used in a Unix-like
operating system will be more attractive to
developers.

12) communication effectiveness
positive−−−−→ project activity

Communication effectiveness apparently has a
positive influence on project activity. Chang (2018)
conducted this point by analyzing 143 projects using
inferential statistics method. Stewart et al. (2006)

Zhao et al. Cybersecurity (2021) 4:20 Page 18 of 24

analyzed the effect of communication effectiveness
on the entire open-source team. And they came to
the same conclusion as Chang. What’s more, Senyard
and Michlmayr (2004) also agreed with this.

The above confirmed correlations are listed in Table 8.

Controversial correlations
But in these prior studies, there are still some views that
have not reached a unified point. For example, Stewart
et al. (2006) proposed user interest has a positive effect
on project activity. And the authors had proved his opin-
ion by experiment and calculated the correlation value
(14.854). However, Subramaniam et al. (2009) concluded
that user interest has a negative effect on project activity.
They also calculated the correlation value (-0.081), and its
signature is 0.0003.
The status of open-source projects has a certain impact

on their popularity, which is the choice of all the users.
But for the impact of developers, there are theories (Stew-
art and Ammeter 2002) that indicate there may be a
situation where the project is stable, but the developer’s
interest may decrease. To our best knowledge, there are no
experiments to verify this conjecture. Moreover, it can be
found from Fig. 2 that project status promotes popularity,
and popularity also promotes project activity to a certain
extent. Therefore, we boldly guess that developer interest
or project activity in a stable state will remain as the one
in alpha or beta version.
In addition, Beecher et al. (2008) proposed Debian

had a positive effect on the inter-release time of OSS. It
means if OSS is designed for using on Debian systems,
it will need more time for waiting a new time. As we
all known, Debian system is a type of Unix-like system.
Therefore, the conclusion can also be regarded as Unix-
like system may postpone the inter-release time of OSS.
However, Subramaniam et al. (2009) concluded Unix sys-
tem has a positive effect on project activity, which is often
used to measure the frequency of releasing new versions,
and the value of correlation are 0.389 (0.150) and 0.134
(0.029) in two experiments of two periods. They came
to the opposite conclusions, and there is no new work
about this part. We can not justify for sure which one is
true.Beecher et al. (2008) did not conduct experiments
to verify his theory. Subramaniam et al. (2009) is more
convincible.
What is more, the effect of the license also has some-

thing confused. Lerner and Tirole (2005) concluded that
license is independent of the project status of OSS. But,
Comino et al. (2007) proved that license plays a nega-
tive effect on project status, and the value of correlation
is -0.1156. More work is needed to measure the possible
ambiguity between indicators accurately.

Last but not least, Wu et al. (2007) and Joy et al. (2018)
proposed programming language had none promotion
effect on the popularity of OSS. But in the next work,
Ghapanchi and Tavana (2015) found programming lan-
guage had a positive influence on the popularity. Appar-
ently, the second work is more convincing. Although
there are not many differences between languages, some
people may be only proficient in one programming lan-
guage. Therefore, the OSS written with the universal
programming language may attract the most followers or
users. These controversial correlations are summarized in
Table 9.

Newly-found correlations
Figure 3 is an example from Fig. 2, including the part
related to the indicator, developer number. From Fig. 3,
we can see there are obvious transitive law. For example,
copyleft has a positive effect on the developer number,
and the developer number has a positive effect on project
activity. Due to predecessors’ conclusion, copyleft does
have a positive effect on project activity. There are also
many other similar examples in Figs. 2 and 3. Therefore,
we can use this transitive law to find new correlations that
have not yet been discovered, and our findings are listed
as follows.

1) Popularity, project activity, user interest, and
developer interest are more representative and more
commonly used to measure the status of OSS. The
nodes named popularity, project activity, user interest,
and developer interest are of larger in-degree. As we
can see, previous studies mainly investigated how
other indicators influence them or OSS’s performance.
Therefore, these four attributes are classified into two
attributes, popularity and developer, as a basis for
evaluating OSS. As for code, license and sponsorship,
as the inherent attributes of OSS, they are also very
important for evaluation. Therefore, our evaluation
indicators are divided into the above five categories.

2) Copyleft, sponsor, and Unix-like operating system may
have a positive effect on project status. That means an
OSS project has a larger possibility of attaining a stable
version since copyleft promotes both the project
activity (Colazo and Fang 2009; Subramaniam et al.
2009) and developer number (Colazo et al. 2005)
(Colazo and Fang 2009). What’s more, both of them
promote the project status (Chang 2018) (Stewart et al.
2006; Ghapanchi 2015). Therefore, we deem copyleft
will promote OSS to attain a stable status. Also, the
Unix-like operating system and sponsor both have a
positive effect on project activity (Subramaniam et al.
2009; Beecher et al. 2008; Wu et al. 2007; Stewart et al.
2006). Therefore, they also may promote project status.

Zhao et al. Cybersecurity (2021) 4:20 Page 19 of 24

Table 8 The indicators have been analyzed and come to a consistent conclusion. “A
+−→ B” means Amakes a positive impact on B,

and “A
−−→ B” indicates A has negative influence on B. θ is the threshold for correlation. Generally, a value larger than |θ | indicates a

considerable positive or negative effect between two variables

Study Conclusion Correlation Value

Wu et al. (2007) License
−−→Popluarity 1.031

Stewart et al. (2005) License
−−→Popluarity 3.05

Subramaniam et al. (2009) License
−−→Popluarity -0.070 (|θ |=0.056)

Stewart et al. (2006) License
−−→Popluarity 6.620

Midha and Palvia (2012) Language translations
+−→ Popularity 0.13 0.12 0.23

Ghapanchi and Tavana (2015) Language translations
+−→ Popularity 0.281 0.22

Colazo and Fang (2009) Copyleft
+−→Developer number 0.207

Colazo et al. (2005) Copyleft
+−→Developer number 0.207

Colazo and Fang (2009) Copyleft
+−→Project activity 0.334

Colazo et al. (2005) Copyleft
+−→Project activity 0.302

Subramaniam et al. (2009) Project activity
+−→User interest 0.040 (|θ |=0.000)

Stewart and Ammeter (2002) Project activity
+−→User interest 0.264

Ghapanchi (2015) Developer interest
+−→ User interest 0.39

Subramaniam et al. (2009) Developer Interest
+−→ user interest 0.888 (|θ |=0.010)

Stewart and Ammeter (2002) (Nonmarket) Sponsor
(+)+−−−→Popularity 0.529

Stewart (2005) (Nonmarket) Sponso
(+)+−−−→Popularity 7.71

Stewart et al. (2006) (Nonmarket) Sponsor
(+)+−−−→popularity 5.849 (|θ |=1.235)

Wu et al. (2007) Sponsor
+−→ Project Activity 0.428

Stewart et al. (2006) Sponsor
+−→Project activity 1.827

Stewart and Ammeter (2002) Project status
+−→ Popularity 1.011

Sen (2006) Project status
+−→ Popularity 0.1234 0.1254

Subramaniam et al. (2009) Project status
+−−−−→ Popularity 0.304 (|θ |=0.008)

Wu et al. (2007) Project age
+−→ Popularity 0.761

Sen (2006) Project age
+−→ Popularity 0.3941 0.3992

Ghapanchi and Tavana (2015) Project age
+−→ Popularity 0.24 0.225

Sen (2006) Unix-like operating system
+−→Popularity 0.4376 0.1289

Ghapanchi and Tavana (2015) Unix-like operating system
+−→Popularity 0.113 0.044

Beecher et al. (2008) Unix-like operating system
+−→ Developer interest N.A.

Subramaniam et al. (2009) Unix-like operating system
+−→ Developer interest 0.389 (|θ |=0.150)

Chang (2018) Communication effectiveness
+−→ Project activity 0.285

Steward et al. (2006) Communication effectiveness
+−→ Project activity 0.34

Senyard and Michlmayr (2004) Communication effectiveness
+−→ Project activity N.A.

1Language is a sub-type indicator. Sub-type indicator is defined as an indicator can only divided into specific sub-type. For example, operating system is divided into Unix,
windows and others, and project status is classified as stable, alpha, and beta. Therefore, language translation is divided by language type and the number of documents has
been translated
2The two or three correlation values indicate the authors make experiments for two or three times in different periods

3) Social identification may have a positive on project
status and project activity. Social identification appeals
to a larger number of developers (Spaeth et al. 2014),
and a larger number of developers contribute to both
project status (Chang 2018; Stewart et al. 2006) and
project activities (Chang 2018; Comino et al. 2007).

4) Many indicators can promote developer interest, such
as developer sustainability (Ghapanchi 2015), release
frequency (Ghapanchi 2015), project status
(Subramaniam et al. 2009; Comino et al. 2007),
Unix-like operating system (Beecher et al. 2008;
Subramaniam et al. 2009), C-group language
(Subramaniam et al. 2009), and responsibility

Zhao et al. Cybersecurity (2021) 4:20 Page 20 of 24

Table 9 The indicators have been analyzed and whose conclusions are inconsistent. “A
+−→ B” means Amakes a positive impact on B,

“A
−−→ B” indicates A has negative influence on B, and “A

0−→ B” presents A and B are independent. θ is the threshold for correlation.
Generally, a value larger than |θ | indicates a considerable positive or negative effect between two variables

Paper Conclusion Correlation Val.

Stewart et al. (2006) User interest
+−→Project activity 14.854

Subramaniam et al. (2009) User interest
−−→Project activity -0.081 (|θ |=0.0003)

Subramaniam et al. (2009) Unix-like operating system
+−→ Project activity 0.134 (|θ |=0.029)

Beecher et al. (2008) Unix-like operating system
−−→ Project activity N.A.

Lerner and Tirole (2005) License
0−→ Project status N.A.

Comino et al. (2007) License
−−→Project status -0.1156

Wu et al. (2007) Programming language
0−→Popularity N.A.

Ghapanchi and Tavana (2015) Programming language
+−→Popularity 0.039 0.094

1The two or three correlation values indicate the authors make experiments for two or three times in different periods

assignment (Midha and Palvia 2012). And developer
interest has a positive influence on project activity
(Subramaniam et al. 2009) and user interest
(Ghapanchi 2015) (Subramaniam et al. 2009).
Therefore, all of the above indicators may promote
project activity and user interest.

5) Copyleft may have a positive effect on popularity. As
an important safeguard, copyleft can make developers
more optimistic about the prospects of the project and
attract more developers (Colazo and Fang 2009)
(Subramaniam et al. 2009; Colazo et al. 2005). And the
more developers, the more popular the project will be
Senyard and Michlmayr (2004); Beecher et al. (2008).

6) Leadership and female developers may have a positive
effect on popularity and project activity. They promote
communication effectiveness (Chang 2018), and
communication effectiveness promotes popularity
(Senyard and Michlmayr 2004; Crowston and
Shamshurin 2017) and project activity (Stewart and
Gosain 2006; Beecher et al. 2008).

7) The license may have a positive effect on project
activity since the license has a positive effect on the
node of the target at administrator or developer
(Lerner and Tirole 2005), and that node has a strong
positive effect on project activity (Subramaniam et al.
2009; Comino et al. 2007).

8) As we can see, the more popular an OSS is, the more
active it will be Stewart et al. (2005). From Fig. 2, there
are many indicators that can promote popularity, such
as application (Stewart and Ammeter 2002),
translation languages (Emanuel et al. 2010), vitality
(Stewart and Ammeter 2002), project age (Wu et al.
2007; Sen 2006), developer capacity (Ke and Zhang
2011), and modularity (Senyard and Michlmayr 2004;
Midha and Palvia 2012). As a result, they may also
promote project activity.

Discussion
Threats to validity
Since the research interest in OSS has continued to
decline in recent years, there are not many studies that
analyze the performance or success of OSS, although
these are of great practical value. Therefore, the men-
tioned papers were basically published five years or even
ten years ago, and only a small part of them was published
in recent years. With the development of time, the con-
clusions drawn in these papers may be different from the
current situation. This is a problem that is not solved in
the article. Secondly, the paper only analyzes the relevant
data obtained by predecessors, without conducting sep-
arate experimental verification. As the current status of
OSSmay have some slight changes with the above, specific
experimental data may be required for actual evaluation
to verify the conclusion. Finally, since we have not con-
ducted any cross-checks for indicator identification and
correction analysis, there may be some mistakes in the
identification and analysis process.

Potential applications
Our model is of great significance to developers, users
and software analysts. For developers, in the develop-
ment phase, they can use the indicators to evaluate
basic attributes of OSS and its R&D team. Find the
shortcomings of software or team in terms of qual-
ity or security, and make corresponding modifications.
Before releasing stable version of OSS, they can eval-
uate again, and then publish the results in the readme
file to facilitate user selection and use. For users, this
model can be used to evaluate which OSS is the least
likely to face quality or security issues under the con-
dition of the same function. For software analysts, our
model can provide a certain degree of theoretical guidance
for evaluating the ease of use or security of OSS in the
future.

Zhao et al. Cybersecurity (2021) 4:20 Page 21 of 24

Fig. 3 This is the correlation figure of the developer number node intercepted from Fig. 2. All the attributes are the same as Fig. 2

Conclusion
In this paper, we conduct an empirical study on evaluation
indicators and the correlation between these indicators.
We divide the evaluation indicators into five aspects: code,
developer, license, sponsorship, and user.What’s more, we
figure out 13 confirmed correlations and four cases with
divergence in the studies on correlations between indica-
tors. Finally, we discuss how our conclusions can be used
for guiding the choice of OSS.

Authors’ contributions
All authors have contributed to this manuscript and approve of this
submission. YZ and RL participated in all the work and drafting the article. Prof.
XC and JZ made a decisive contribution to the content of research and
revising the article critically.

Funding
Not applicable.

Availability of data andmaterials
We confirm that this manuscript has not been published elsewhere and is not
under consideration by another journal.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China. 2School of Cyber Security, University of Chinese
Academy of Sciences, Beijing 100049, China. 3School of Information Science
and Technology, Nantong University, Nantong 226019, China. 4State Grid
Economic and Technological Research Institute Co. Ltd., Beijing 102209, China.

Received: 17 November 2020 Accepted: 17 February 2021

References
Abductive Inference (1994) Computation, Philosophy, Technology. Cambridge

University Press. https://doi.org/10.1017/CBO9780511530128
Aberdour M (2007) Achieving quality in open-source software. IEEE Softw

24(1):58–64
Aggarwal A, Jalote P (2006) Integrating static and dynamic analysis for

detecting vulnerabilities. In: 30th Annual International Computer Software
and Applications Conference (COMPSAC’06), Chicaco. pp 343–350. https://
doi.org/10.1109/COMPSAC.2006.55

Aitken AC (1936) Iv.—on least squares and linear combination of observations.
Proc R Soc Edinb 55:42–48. https://doi.org/10.1017/S0370164600014346

Amrollahi A, Khansari M, Manian A (2014) Int J Inf Commun Technol Res
6:67–77. https://doi.org/10.13140/2.1.4835.1367

Andersen EB (1982) Latent structure analysis: A survey. Scand J Stat 9(1):1–12
Bao L, Xia X, Lo D, Murphy GC (2019) A large scale study of long-time

contributor prediction for github projects. Trans Softw Eng IEEE:1–1.
https://doi.org/10.1109/TSE.2019.2918536

Beecher K, Boldyreff C, Capiluppi A, Rank S (2008) Evolutionary success of open
source software: an investigation into exogenous drivers. Electron
Commun EASST 8. https://doi.org/10.14279/tuj.eceasst.8.113.111

Boehmke BC, Hazen BT (2017) The future of supply chain information systems:
The open source ecosystem. Glob J Flex Syst Manag 18(2):163–168

Bretthauer D (2001) Open Source Software: A History. Published Works 7.
https://opencommons.uconn.edu/libr_pubs/7. Accessed 12 Oct 2020

Brooks N (2003) Vulnerability, risk and adaptation: A conceptual framework.
Tyndall Cent Clim Chang Res Work Pap 38:1–16

Capiluppi A, Boldyreff C (2007) Coupling patterns in the effective reuse of
open source software. In: First International Workshop on Emerging Trends
in FLOSS Research and Development (FLOSS’07: ICSE Workshops 2007),
Minneapolis. pp 9–9. https://doi.org/10.1109/FLOSS.2007.4

Chang L (2018) Motivations, Team Dynamics, Development Practices and How
They Impact the Success of Open Source Software: A Study of Projects of
Code for America Brigades. Electron Theses Dissertations:1528. https://
digitalcommons.du.edu/etd/1528

Chen X, Probert D, Zhou Y, Su J (2015) Successful or unsuccessful open source
software projects: What is the key?. In: 2015 Science and Information
Conference (SAI). pp 277–282. https://doi.org/10.1109/SAI.2015.7237155

Chen H-T, Rossi PH (1983) Evaluating with sense: The theory-driven approach.
Eval Rev 7(3):283–302. https://doi.org/10.1177/0193841X8300700301

Cheng J, Guo JLC (2019) Activity-based analysis of open source software
contributors: Roles and dynamics. In: 2019 IEEE/ACM 12th International

https://doi.org/10.1017/CBO9780511530128
https://doi.org/10.1109/COMPSAC.2006.55
https://doi.org/10.1109/COMPSAC.2006.55
https://doi.org/10.1017/S0370164600014346
https://doi.org/10.13140/2.1.4835.1367
https://doi.org/10.1109/TSE.2019.2918536
https://doi.org/10.14279/tuj.eceasst.8.113.111
https://opencommons.uconn.edu/libr_pubs/7
https://doi.org/10.1109/FLOSS.2007.4
https://digitalcommons.du.edu/etd/1528
https://digitalcommons.du.edu/etd/1528
https://doi.org/10.1109/SAI.2015.7237155
https://doi.org/10.1177/0193841X8300700301

Zhao et al. Cybersecurity (2021) 4:20 Page 22 of 24

Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). pp 11–18. https://doi.org/10.1109/CHASE.2019.00011

Cristescu M-P, Cristescu C-I (2009) Open source software reliability, features
and tendence. Open Source Sci J 1(1):163–178

Colazo J, Fang Y (2009) Impact of license choice on open source software
development activity. J Am Soc Inf Sci Technol 60(5):997–1011

Colazo JA, Fang Y, Neufeld D (2005) Development Success in Open Source
Software Projects: Exploring the Impact of Copylefted Licenses. AMCIS
2005 Proceedings: 432. https://aisel.aisnet.org/amcis2005/432

Comino S, Manenti F, Parisi ML (2007) From planning to mature: On the
success of open source projects. Res Policy 36(10):1575–1586

Coverity Scan-Open Source Report (2017). https://www.synopsys.com/blogs/
software-security/2017-coverity-scan-report-open-source-security/.
Accessed 12 Oct 2020

Crowston K, Annabi H, Howison J, Masango C (2004) Towards a portfolio of
floss project success measures. In: Workshop on Open Source Software
Engineering, 26th International Conference on Software Engineering. IET,
Edinburgh

Crowston K, Annabi H, Howison J (2003) Defining Open Source Software
project success. In: ICIS 2003 Proceedings of the International Conference
on Information Systems (ICIS 2003), Seattle. https://doi.org/10.1287/mnsc.
1060.0550

Crowston K, Howison J, Annabi H (2006) Information systems success in free
and open source software development: Theory and measures. Softw
Process Improv Pract 11(2):123–148

Crowston K, Shamshurin I (2017) Core-periphery communication and the
success of free/libre open source software projects. J Internet Serv Appl
8:1–11

del Bianco V, Lavazza L, Morasca S, Taibi D (2009) Quality of Open Source
Software: The QualiPSo Trustworthiness Model. In: Boldyreff C, Crowston K,
Lundell B, Wasserman A (eds). Open Source Ecosystems: Diverse
Communities Interacting. Springer Berlin Heidelberg, Berlin, Heidelberg.
pp 199–212

Dunnett CW (1955) A multiple comparison procedure for comparing several
treatments with a control. J Am Stat Assoc 50(272):1096–1121. https://doi.
org/10.1080/01621459.1955.10501294

Ellison RJ, Woody C (2010) Supply-Chain Risk Management: Incorporating
Security into Software Development. In: 2010 43rd Hawaii International
Conference on System Sciences, Honolulu. pp 1–10. https://doi.org/10.
1109/HICSS.2010.355

Emanuel AWR, Wardoyo R, Istiyanto JE, Mustofa K (2010) Success factors of oss
projects from sourceforge using datamining association rule. In: 2010
International Conference on Distributed Frameworks for Multimedia
Applications, Jogjakarta. pp 1–8

English R, Schweik CM (2007) Identifying success and tragedy of floss
commons: A preliminary classification of sourceforge.net projects. In: First
International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). pp 11–11. https://doi.org/
10.1109/FLOSS.2007.9

Erturk E. (2012) A case study in open source software security and privacy:
Android adware. In: World Congress on Internet Security (WorldCIS-2012),
Guelph. pp 189–191

Ezell BC (2010) Infrastructure vulnerability assessment model (i-vam). Risk
Analysis 27(3):571–583

Feller J, Fitzgerald B (2001) Understanding open source software
development. Itnow 7(1):31

Fershtman C, Gandal N (2004) The Determinants of Output Per Contributor in
Open Source Projects: An Empirical Examination. C.E.P.R. Discussion
Papers, London. https://EconPapers.repec.org/RePEc:cpr:ceprdp:4329

Foolbox Native (2020) Welcome to Foolbox — Foolbox 2.3.0 documentation.
https://foolbox.readthedocs.io/en/latest/. Accessed 12 Oct 2020

Feitelson DG, Heller GZ, Schach SR (2006) An empirically-based criterion for
determining the success of an open-source project. In: Australian Software
Engineering Conference (ASWEC’06). pp 6–368. https://doi.org/10.1109/
ASWEC.2006.12

Frei S, May M, Fiedler U, Plattner B (2006) Large-Scale Vulnerability Analysis. In:
Proceedings of the 2006 SIGCOMMWorkshop on Large-Scale Attack
Defense. Association for Computing Machinery, New York. pp 131–138.
https://doi.org/10.1145/1162666.1162671

Fronchetti F, Wiese I, Pinto G, Steinmacher I (2019) What attracts newcomers to
onboard on oss projects? tl;dr: Popularity. In: Bordeleau F, Sillitti A, Meirelles
P, Lenarduzzi V (eds). Open Source Systems. Springer, Cham. pp 91–103

Garousi V (2009) Investigating the success factors of opensource software
projects across their lifetime. J Softw Eng Stud 4(1):1–15

German DM, Di Penta M, Davies J (2010) Understanding and Auditing the
Licensing of Open Source Software Distributions. In: 2010 IEEE 18th
International Conference on Program Comprehension, Braga. pp 84–93.
https://doi.org/10.1109/ICPC.2010.48

Gezici B, Özdemir N, Yılmaz N, Coşkun E, Tarhan A, Chouseinoglou O (2019)
Quality and Success in Open Source Software: A Systematic Mapping. In:
2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Kallithea. pp 363–370. https://doi.org/10.1109/SEAA.
2019.00062

Ghapanchi AH (2015) Investigating the interrelationships among success
measures of open source software projects. J Organ Comput Electron
Commer 25(1):28–46

Ghapanchi AH, Tavana M (2015) A longitudinal study of the impact of open
source software project characteristics on positive outcomes. Inf Syst
Manag 32(4):285–298

Giuri P, Ploner M, Rullani F, et al. (2004) Skills and openness of OSS projects:
Implications for performance[J]. Paper provided by Laboratory of
Economics and Management (LEM), Sant’ Anna School of Advanced
Studies, Pisa, Italy in its series LEM Papers Series with number 2004, 19

Golden B (2008) Making Open Source Ready for the Enterprise: The Open
Source Maturity Model. Open Source Business Resource. http://timreview.
ca/article/145

Gordon TF (2011) Analyzing Open Source License Compatibility Issues with
Carneades. In: Proceedings of the 13th International Conference on
Artificial Intelligence and Law. Association for Computing Machinery, New
York. pp 51–55. https://doi.org/10.1145/2018358.2018364

Greene GJ, Fischer B (2016) CVExplorer: Identifying candidate developers by
mining and exploring their open source contributions. In: 2016 31st
IEEE/ACM International Conference on Automated Software Engineering
(ASE), Singapore. pp 804–809

Grewal R, Lilien GL, Mallapragada G (2006) Location, location, location: How
network embeddedness affects project success in open source systems.
Manag Sci 52(7):1043–1056

Guinan P, Cooprider J, Faraj S (1998) Enabling software development team
performance during requirements definition: A behavioral versus technical
approach. Inf Syst Res 9:101–125. https://doi.org/10.1287/isre.9.2.101

Hanoğlu E, Tarhan A (2019) An empirical study on the relationship between
open source software success and test effort. In: 2019 4th International
Conference on Computer Science and Engineering (UBMK). pp 688–692.
https://doi.org/10.1109/UBMK.2019.8907012

Hata H, Todo T, Onoue S, Matsumoto K (2015) Characteristics of sustainable
oss projects: A theoretical and empirical study. In: 2015 IEEE/ACM 8th
International Workshop on Cooperative and Human Aspects of Software
Engineering. pp 15–21. https://doi.org/10.1109/CHASE.2015.9

Hauge O, Osterlie T, Sorensen C, Gerea M (2009) An empirical study on
selection of open source software - preliminary results. In: 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development. pp 42–47. https://doi.org/10.1109/FLOSS.
2009.5071359

Hoepman J-H, Jacobs B (2007) Increased security through open source.
Commun ACM 50(1):79–83

Homscheid D, Schaarschmidt M (2016) Between Organization and
Community: Investigating Turnover Intention Factors of Firm-Sponsored
Open Source Software Developers. In: Proceedings of the 8th ACM
Conference on Web Science. Association for Computing Machinery, New
York. pp 336–337. https://doi.org/10.1145/2908131.2908200

Houmb SH, Franqueira VN, Engum EA (2010) Quantifying security risk level
from cvss estimates of frequency and impact. J Syst Softw 83(9):1622–1634

Huang M, Yang L, Yang Y (2006) A development process for building
oss-based applications. In: Li M, Boehm B, Osterweil LJ (eds). Unifying the
Software Process Spectrum. Springer, Berlin, Heidelberg. pp 122–135

Israeli A, Feitelson DG (2007) Success of open source projects: Patterns of
downloads and releases with time. In: IEEE International Conference on
Software-Science, Technology Engineering (SwSTE’07). pp 87–94. https://
doi.org/10.1109/SwSTE.2007.11

James LR, Singh BK (1978) An introduction to the logic, assumptions, and basic
analytic procedures of two-stage least squares. Psychol Bull 85(5). https://
doi.org/10.1037/0033-2909.85.5.1104

https://doi.org/10.1109/CHASE.2019.00011
https://aisel.aisnet.org/amcis2005/432
https://www.synopsys.com/blogs/software-security/2017-coverity-scan-report-open-source-security/
https://www.synopsys.com/blogs/software-security/2017-coverity-scan-report-open-source-security/
https://doi.org/10.1287/mnsc.1060.0550
https://doi.org/10.1287/mnsc.1060.0550
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1080/01621459.1955.10501294
https://doi.org/10.1109/HICSS.2010.355
https://doi.org/10.1109/HICSS.2010.355
https://doi.org/10.1109/FLOSS.2007.9
https://doi.org/10.1109/FLOSS.2007.9
https://EconPapers.repec.org/RePEc:cpr:ceprdp:4329
https://foolbox.readthedocs.io/en/latest/
https://doi.org/10.1109/ASWEC.2006.12
https://doi.org/10.1109/ASWEC.2006.12
https://doi.org/10.1145/1162666.1162671
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1109/SEAA.2019.00062
https://doi.org/10.1109/SEAA.2019.00062
http://timreview.ca/article/145
http://timreview.ca/article/145
https://doi.org/10.1145/2018358.2018364
https://doi.org/10.1287/isre.9.2.101
https://doi.org/10.1109/UBMK.2019.8907012
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/FLOSS.2009.5071359
https://doi.org/10.1109/FLOSS.2009.5071359
https://doi.org/10.1145/2908131.2908200
https://doi.org/10.1109/SwSTE.2007.11
https://doi.org/10.1109/SwSTE.2007.11
https://doi.org/10.1037/0033-2909.85.5.1104
https://doi.org/10.1037/0033-2909.85.5.1104

Zhao et al. Cybersecurity (2021) 4:20 Page 23 of 24

Jensen FV (1996) Introduction to Bayesian Networks, 1st ed. Springer, Berlin,
Heidelberg

Joy A, Thangavelu S, Jyotishi A (2018) Performance of github open-source
software project: An empirical analysis. In: 2018 Second International
Conference on Advances in Electronics, Computers and Communications
(ICAECC). pp 1–6. https://doi.org/10.1109/ICAECC.2018.8479462

Karl Pearson FRS (1901) Liii. on lines and planes of closest fit to systems of
points in space. Lond Edinb Dublin Phil Mag J Sci 2(11):559–572. https://
doi.org/10.1080/14786440109462720

Ke W, Zhang P (2011) Effects of empowerment on performance in
open-source software projects. IEEE Trans Eng Manag 58(2):334–346.
https://doi.org/10.1109/TEM.2010.2096510

Kennedy DM (2001) A primer on open source licensing legal issues: Copyright,
copyleft and copyfuture. Saint Louis Univ Public Law Rev 20(2 Article 7)

Kuwata Y, Takeda K, Miura H (2014) A study on maturity model of open source
software community to estimate the quality of products. Procedia Comput
Sci 35:1711–1717

Legendre AM (1806) Nouvelles méthodes pour la détermination des orbites
des comètes: avec un supplément contenant divers perfectionnemens de
ces méthodes et leur application aux deux comètes de 1805. Courcier.
https://books.google.com/books?id=FRcOAAAAQAAJ. Accessed 12 Oct
2020

Lerner J, Tirole J (2005) The scope of open source licensing. J Law Econ Organ
21(1):20–56

Levy E (2003) Poisoning the software supply chain. IEEE Secur Priv 1(3):70–73
Lin C, Chen C, Laih C (2008) A Study and Implementation of Vulnerability

Assessment and Misconfiguration Detection. In: 2008 IEEE Asia-Pacific
Services Computing Conference, Yilan. pp 1252–1257. https://doi.org/10.
1109/APSCC.2008.212

Lindman J, Paajanen A, Rossi M (2010) Choosing an open source software
license in commercial context: A managerial perspective. In: 2010 36th
EUROMICRO Conference on Software Engineering and Advanced
Applications. pp 237–244. https://doi.org/10.1109/SEAA.2010.26

Lowry R (2008) Concepts and Applications of Inferential Statistics. Online
Statistic Textbook. http://faculty.vassar.edu/lowry/webtext.html. Accessed
12 Oct 2020

Marconato GV, Nicomette V, Kaâniche M (2012) Security-related vulnerability
life cycle analysis. In: 2012 7th International Conference on Risks and
Security of Internet and Systems (CRiSIS), Cork. pp 1–8. https://doi.org/10.
1109/CRISIS.2012.6378954

Margan D, Čandrlić S (2015) The success of open source software: A review. In:
2015 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). pp 1463–1468.
https://doi.org/10.1109/MIPRO.2015.7160503

Markus ML, Agres BMCE (2000) What makes a virtual organization work? MIT
Sloan Manag Rev 42(1):13

Mcdonald C (1991) Sponsorship and the Image of the Sponsor. Eur J Market
25(11):31–38. https://doi.org/10.1108/EUM0000000000630

Mell P, Scarfone K, Romanosky S (2006) Common vulnerability scoring system.
IEEE Secur Priv 4(6):85–89

Mell P, Scarfone K, Romanosky S (2007) A complete guide to the common
vulnerability scoring system version 2.0. In: Published by FIRST-forum of
incident response and security teams (Vol. 1). p 23

Midha V, Palvia P (2012) Factors affecting the success of open source software.
J Syst Softw 85(4):895–905

Norikane T, Ihara A, Matsumoto K (2018) Do review feedbacks influence to a
contributor’s time spent on oss projects? In: 2018 IEEE International
Conference on Big Data, Cloud Computing, Data Science Engineering
(BCD). pp 109–113. https://doi.org/10.1109/BCD2018.2018.00028

Open Source Initiative (2018). https://opensource.org/licenses. Accessed 12
Oct 2020

Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) Capability maturity model,
version 1.1. IEEE Softw 10(4):18–27

Peng G (2019) Co-membership, networks ties, and knowledge flow: An
empirical investigation controlling for alternative mechanisms. Decis
Support Syst 118:83–90. https://doi.org/10.1016/j.dss.2019.01.005

Petrinja E, Nambakam R, Sillitti A (2009) Introducing the OpenSource Maturity
Model. In: 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, Vancouver. pp 37–41.
https://doi.org/10.1109/FLOSS.2009.5071358

Poulin JS (1994) Measuring software reusability. In: Proceedings of 1994 3rd
International Conference on Software Reuse, Rio de Janeiro. pp 126–138.
https://doi.org/10.1109/ICSR.1994.365803

Raymond E (1999) The cathedral and the bazaar. Knowl Technol Policy
12(3):23–49

Rebouças M, Santos RO, Pinto G, Castor F (2017) How does contributors’
involvement influence the build status of an open-source software
project?. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). pp 475–478. https://doi.org/10.1109/MSR.
2017.32

Robinson WN, Vlas RE (2015) Requirements evolution and project success: An
analysis of sourceforge projects. AMCIS

Samoladas I, Gousios G, Spinellis D, Stamelos I (2008) The SQO-OSS Quality
Model: Measurement Based Open Source Software Evaluation. In: Russo B,
Damiani E, Hissam S, Lundell B, Succi G (eds). Open Source Development,
Communities and Quality. Springer US, Boston. pp 237–248

Schweik C (2009) The Dependent Variable: Defining Open Source “Success”
and “Abandonment” Using Sourceforge.Net Data. National Center for
Digital Government Working Paper Series: 35. https://scholarworks.umass.
edu/ncdg/35

Sen R, Subramaniam C, Nelson ML (2008) Determinants of the choice of open
source software license. J Manag Inf Syst 25(3):207–240

Schryen G, Kadura R (2009) Open source vs. closed source software: towards
measuring security. In: Proceedings of the 2009 ACM Symposium on
Applied Computing (SAC). ACM, Honolulu. pp 2016–2023. https://doi.org/
10.1145/1529282.1529731

Semeteys R (2008) Method for Qualification and Selection of Open Source
Software. Talent First Network, Ottawa. http://timreview.ca/article/146

Sen R (2006) Open source software development projects: determinants of
project popularity. Technical report, EERI Research Paper Series

Senyard A, Michlmayr M (2004) How to have a successful free software project.
In: 11th Asia-Pacific Software Engineering Conference. pp 84–91. https://
doi.org/10.1109/APSEC.2004.58

Silic M, Back A (2016) The influence of risk factors in decision-making process
for open source software adoption. Int J Inf Technol Dec Making
15(01):151–185

Spaeth S, Krogh GV, He V (2014) Research Note — Perceived Firm Attributes
and Intrinsic Motivation in Sponsored Open Source Software Projects. Inf
Syst Res 26(1):1–241

Spaeth S, von Krogh G, He F (2015) Research note - perceived firm attributes
and intrinsic motivation in sponsored open source software projects. Inf
Syst Res 26(1):224–237. https://doi.org/10.1287/isre.2014.0539

Stewart K, Ammeter T (2002) An exploratory study of factors influencing the
level of vitality and popularity of open source projects. ICIS 2002
Proceedings: 88

Stewart KJ, Ammeter AP, Maruping LM (2005) A Preliminary Analysis of the
Influences of Licensing and Organizational Sponsorship on Success in
Open Source Projects. In: Proceedings of the 38th Annual Hawaii
International Conference on System Sciences, Big Island. pp 197c–197c.
https://doi.org/10.1109/HICSS.2005.38

Stewart KJ, Ammeter AP, Maruping LM (2006) Impacts of license choice and
organizational sponsorship on user interest and development activity in
open source software projects. Inf Syst Res 17(2):126–144

Stewart KJ, Gosain S (2006) The impact of ideology on effectiveness in open
source software development teams. Mis Q 30(2):291–314

Subramaniam C, Sen R, Nelson ML (2009) Determinants of open source
software project success: A longitudinal study. Decis Support Syst
46(2):576–585

Tamura Y, Yamada S (2007) Software reliability assessment and optimal
version-upgrade problem for open source software. In: 2007 IEEE
International Conference on Systems, Man and Cybernetics.
pp 1333–1338. https://doi.org/10.1109/ICSMC.2007.4413582

Teigland R, Gangi PMD, Flåten B, Giovacchini E, Pastorino N (2014) Balancing
on a tightrope: Managing the boundaries of a firm-sponsored OSS
community and its impact on innovation and absorptive capacity. Inf
Organ 24(1):25–47. https://doi.org/10.1016/j.infoandorg.2014.01.001

The 2-Clause BSD License (2018). https://opensource.org/licenses/BSD-2-
Clause. Accessed 12 Oct 2020

The 3-Clause BSD License (2018). https://opensource.org/licenses/BSD-3-
Clause. Accessed 12 Oct 2020

https://doi.org/10.1109/ICAECC.2018.8479462
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1109/TEM.2010.2096510
https://books.google.com/books?id=FRcOAAAAQAAJ
https://doi.org/10.1109/APSCC.2008.212
https://doi.org/10.1109/APSCC.2008.212
https://doi.org/10.1109/SEAA.2010.26
http://faculty.vassar.edu/lowry/webtext.html
https://doi.org/10.1109/CRISIS.2012.6378954
https://doi.org/10.1109/CRISIS.2012.6378954
https://doi.org/10.1109/MIPRO.2015.7160503
https://doi.org/10.1108/EUM0000000000630
https://doi.org/10.1109/BCD2018.2018.00028
https://opensource.org/licenses
https://doi.org/10.1016/j.dss.2019.01.005
https://doi.org/10.1109/FLOSS.2009.5071358
https://doi.org/10.1109/ICSR.1994.365803
https://doi.org/10.1109/MSR.2017.32
https://doi.org/10.1109/MSR.2017.32
https://scholarworks.umass.edu/ncdg/35
https://scholarworks.umass.edu/ncdg/35
https://doi.org/10.1145/1529282.1529731
https://doi.org/10.1145/1529282.1529731
http://timreview.ca/article/146
https://doi.org/10.1109/APSEC.2004.58
https://doi.org/10.1109/APSEC.2004.58
https://doi.org/10.1287/isre.2014.0539
https://doi.org/10.1109/HICSS.2005.38
https://doi.org/10.1109/ICSMC.2007.4413582
https://doi.org/10.1016/j.infoandorg.2014.01.001
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

Zhao et al. Cybersecurity (2021) 4:20 Page 24 of 24

The GNU General Public License v3.0 (2018). https://www.gnu.org/licenses/
gpl-3.0.html. Accessed 12 Oct 2020

Tsay JT, Dabbish L, Herbsleb J (2012) Social Media and Success in Open Source
Projects. In: Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work Companion. Association for Computing
Machinery, New York. pp 223–226. https://doi.org/10.1145/2141512.
2141583

Valimaki M (2003) Dual licensing in open source software industry. Systèmes
d’Information Manag 8(1):63–75

Wasserman A, Pal M, Chan C (2006) The business readiness rating model: an
evaluation framework for open source. In: Proceedings of the EFOSS
Workshop, Como

West J, O’Mahony S (2005) Contrasting community building in sponsored and
community founded open source projects. In: 38th Hawaii International
Conference on System Sciences. https://doi.org/10.1109/HICSS.2005.166

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull
1(6):80–83

Wolf S, Hinkel J, Hallier M, Bisaro A, Lincke D, Ionescu C, Klein RJT (2013)
Clarifying vulnerability definitions and assessments using formalisation. Int
J Clim Change Strateg Manag 5(1):54–70

Wu J, Goh K-Y, Tang Q (2007) Investigating Success of Open Source Software
Projects: A Social Network Perspective. ICIS 2007 Proceedings: 105. http://
aisel.aisnet.org/icis2007/105

Yang X, Hu D, Robert DM (2013) How microblogging networks affect project
success of open source software development. In: 2013 46th Hawaii
International Conference on System Sciences. pp 3178–3186. https://doi.
org/10.1109/HICSS.2013.251

Yang J, Liu Y, Xie M, Zhao M (2016) Modeling and analysis of reliability of
multi-release open source software incorporating both fault detection and
correction processes. J Syst Softw 115:102–110

Yuan L, Wang H, Yin G, Shi D, Li X, Liu B (2010) Mining frequent development
patterns of roles in open source software. In: 2010 7th International
Conference on Ubiquitous Intelligence Computing and 7th International
Conference on Autonomic Trusted Computing. pp 444–448. https://doi.
org/10.1109/UIC-ATC.2010.113

Zellner A, Theil H (1962) Three-stage least squares: Simultaneous estimation of
simultaneous equations. Econometrica 30(1):54–78

Zhu M, Pham H (2018) A multi-release software reliability modeling for open
source software incorporating dependent fault detection process. Ann
Oper Res 269(1-2):773–790

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://doi.org/10.1145/2141512.2141583
https://doi.org/10.1145/2141512.2141583
https://doi.org/10.1109/HICSS.2005.166
http://aisel.aisnet.org/icis2007/105
http://aisel.aisnet.org/icis2007/105
https://doi.org/10.1109/HICSS.2013.251
https://doi.org/10.1109/HICSS.2013.251
https://doi.org/10.1109/UIC-ATC.2010.113
https://doi.org/10.1109/UIC-ATC.2010.113

	Abstract
	Keywords

	Introduction
	Related work
	Assessment of OSS success
	Evaluation perspective and typical evaluation methods for OSS
	Quality
	Maturity
	Vulnerability
	Reliability

	Overview
	Target
	Our approach

	Evaluation indicators
	Code
	Vulnerability
	Access source
	Software reusability

	License
	License type
	Issues of license use
	Indicators affected by license
	Indicators affecting license

	Popularity
	Market penetration
	User interest

	Developer
	Developer capability
	Developer motivation
	Project activity

	Sponsorship

	Correlation analysis
	Confirmed correlations
	Controversial correlations
	Newly-found correlations

	Discussion
	Threats to validity
	Potential applications

	Conclusion
	Authors' contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author details
	References
	Publisher's Note

