Frans-Willem Duijnhouwer

Chris Widdows

Capgemini

& fduijnho@capgemini.nl
® +31 306896651
(Office)

Capgemini Expert Letter

AUGUST 2003

Open Source Maturity Model

In order to be able to determine if an open source product is
suitable for an organisation, Capgemini has developed the
Open Source Maturity Model. This model allows you to
determine if or which open source product is suitable using
just seven clear steps. Not only a good way to keep
interesting but immature products away from your business,
but also an useful tool to objectify the discussion on applying
Open Source in the workplace. Given the current strong
political interest for Open Source, having a professional

approach to open source products is an asset.

n THE USEFULNESS OF A MATURITY
MODEL

* Why should an organisation even think about Open
Source and how would we compare are the first
questions we answer.

® This is why the Open Source Maturity Model was
developed: a tool used to compare and decide.

H OPEN SOURCE PRODUCT INDICATORS

* Twentyseven parameters make the open source products
of today comparable.

® The product indicators have been chosen in a way that
allows future developments of an open source product to
influence the outcome.

m THE MODEL

Seven steps take you from a wide range of products with
differing capabilities to well balanced comparison on
which to base a decision.

2003. C. Widdows, E.W.
Please submit changes or
Inft n is bas

, employees of Capgemini
ves (o our websile, www.Seriouslyopen.org

hest :, but opinions reflect judgment at the time and are

subject to change. This document is published under personal license, which can be found on
www.Seriouslyopen.org

Open Source Maturity Model
THE USEFULNESS OF A MATURITY MODEL

THE USEFULNESS OF A MATURITY MODEL

It isn’t wise to be clever to quickly

It is easy to be satisfied about exchanging commercial product XYZ for open
source product OSABC. Meanwhile dark clouds are gathering over the
organisation, the storm of problems caused by unfounded use of a new product is
definitely approaching.

The Capgemini Open Source Maturity Model allows a correct application of open
source products. In a short timeframe, using some simple steps it shows what is
right and what isn’t.

OPEN SOURCE IN A CORPORATE SETTING

The concept of Open Source raises lots of questions, in particular when the application of
Open Source within a corporation is discussed. Open Source products have many advantages,
but are easily categorised as ‘cheap” and ‘nerdy’ software. This usually prevents them from
properly being considered during a product selection phase. Which is a pity, because a proper
review of these products would show that there are situations in which open source products
can be used effectively.

Views of openness

Open Source doesn’t use one common set of licensing terms, but what binds them all is the
thought that intellectual access shouldn’t be restricted. Some are very protective and demand
that any future development should remain as unrestricted as the source. The GNU GPL
license' is a good example. Others are less restrictive, the BSD Linux license” for example.
The term ‘open’ or ‘free’ refers to the intellectual knowledge within the software product. It
doesn’t refer to the economic aspect that deals with the use or acquisition of that knowledge.

Advantages

One of the Open Software advantages is the fact that an organisation owns the product
components, in sharp contrast with commercial software that increasingly favors a
subscription model. This affects the continuity of the production process, for example by
having to follow the mandatory “upgrade’ policies that cause an enormous ‘lock-in’.

The absence of commercial interest in Open Source software builders is seen by many as an
important advantage, even if it only seems to promise a nicer / kinder view of the world.

Another advantage is that the cost of the software is usually significantly lower than with a
similar commercial product. The openness (due to availability of the source code) is also big
advantage for corporations looking for modifications to the product. Knowledgeable parties
can add to the original source code, allowing the product to remain coherent and still offer
new functionality.

" GNU GPL is the www.GNU.org General Public License
*BSD is Berkely Systems Development

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
THE USEFULNESS OF A MATURITY MODEL

Open source can cause confusion

The openness in technology is not the same as clarity for the potential user audience. For
instance the confusing version numbers, which rarely indicate any sense of usability (some
very usable products have yet to reach version 1.0) make it hard to evaluate the product
potential. Another reoccurring issue is complexity of matching the feature set to business
requirements. Capgemini recognised this challenge and has looked for ways to allow an
organisation to approach Open Source in a professional and business-like manner. This has
resulted in the Open Source Maturity Model (OSMM), which provides a systematic approach
for evaluating, implementing Open Source products within a corporate environment.

Open Source Maturity Model

The OSMM describes how an Open Source product should be assessed to ensure that the
product meets the IT challenges companies face today. The OSMM accomplishes this by
linking an extensive product analysis with a thorough review of the company and its IT
issues.

Capgemini’s knowledge and experience serves a the ‘glue’ that links these two parts together
to product a clear, independent and reliable overview of the use of a Open Source product
within a specific company.

The OSMM is a part of the process used by Capgemini to produce an independent advice.
One in which Open Source is on a level pegging with regular commercial offerings.

Commercial
product knowledge
Advice
| | |
*— | | .
»
[OSMM

Figure 1 The OSMM as an integral part of the Capgemini advice process

The OSMM brings Open Source expertise to the selection and advisement process and forms
a natural addition to the process already used by Capgemini. In close cooperation with the
customer the OSMM allows Capgemini to:

1. Determine the maturity of a Open Source product,

2. Access a Open Source product’s match to the business requirements,
3. Compare Open Source products with commercial alternatives,
4. Show the importance of an Open Source Partner (OSP).

After evaluating a range of products that might qualify as a solution for the formulated
business requirements the suitability of those products (which is a combination of product
maturity and feature match) becomes clear. The customer can then make an informed
decision about the use of Open Source software in the workplace.

W. Duijnl E AUGUST 2003

Open Source Maturity Model
THE USEFULNESS OF A MATURITY MODEL

PRODUCT SELECTION

Currently the number of Open Source projects is strongly increasing. The developer
communities are growing both in size and geographic spread. Another frequent occurrence is
that an Open Source project is ended due the emergence of an alternative that is accepted by
the user community. This set of dynamics must be dealt with, but how? Do we incorporate
products that show enormous potential but still fall short into the product portfolio or not?
How is a product that is ‘hot” but still a little *not” valued / compared?

To answer these questions we need to compare Open Source projects in an objective manner.

One way of looking into the future is examining the quality of the release management. In the
commercial software world it is quite common to view a 1.0 release with some trepidation.
But in the world of Open Source it is quite common to find beta versions being used for
production. So the infamous 1.0 release usually requires a more positive evaluation when
assessing Open Source than its commercial counterpart.

Features in time

A very important part of the process is the product’s feature set. A product that has features
that need to be implemented will be much less suitable in the workplace when compared to
one that already has all the required features. Especially with software it pays to formulate
policy based on what is available instead of on what is promised. This implies that any
product cannot participate in the selection process purely based on expectation.

If a product shows potential and in time will deliver a richer feature set than its nearest
competitors, it could be wise to postpone the final comparison for a certain period. Such a re-
evaluation would only be carried out if the product is properly managed and the expectations
are clearly above average, in short; is this product mature enough to wait for? This allows the
product to evolve into a top contender, which results in a more accurate final advice. Any
postponement is subject to being able to wait until a second measurement can be made. At
which time all the products will be re-measured to provide an accurate measurement.

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

OPEN SOURCE PRODUCT INDICATORS

How to compare apples and oranges?

The review of an Open Source product is different from a review of a commercial
product. Whereas a commercial product strives to protect the intellectual property,
an Open Source product is focussed on sharing that same property.

A brief overview of some of the differences clearly shows why the key
comparison indicators are so different.

DIFFERENCES BETWEEN OPEN SOURCE AND COMMERCIAL PRODUCTS

Open Source products are freely available and naturally that is not the case for commercial
products. Generally the users of a commercial product do not receive the source code of the
product, but users of an Open Source product expect to receive the source code. Some of
other differences between these types are presented in the table below.

Commercial Open Source

Supplier A company A community

Product Driven by corporate economics Driven by product functionality
development

Limited numbers with product | Varies from a small to very large group
Developers knowledge, all paid for the supplier of developers. Often permanently
employed, sponsored or volunteers.

New trends are incorporated quickly if | New ICT developments are

Stability there is a commercial incentive. incorporated into the product if this
benefits the users.

Commonly not organised, every user | Users participate in virtual

maintains contact with the supplier | communities and discuss among

Users independently. themselves and with the developers

about the product and future
developments.

There are many more differences between Open Source software and commercial software.
But the table already shows that there is genuine need to select Open Source products based
on a different set of indicators from the ones used for commercial products.

Open Source product review

The review of the product is conducted using a number of objective and measurable facts.
This is because the emphasis in this stage is on how the product came to be and the success it
has in obtaining a market share. Those units of measure are termed the product indicators.

Besides the product indicators it is also important to assess which aspects of the product are
relevant within the specific context of the review and how the product scores on those
aspects. Factors like maintenance, training facilities, connectivity to existing infrastructure
and interoperability to other products. These indicators are strongly driven by the needs of the

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

customer and are not pre-defined by Capgemini. The OSMM describes which steps
Capgemini takes to determine these indicators, how to score on these indicators and how the
selection a product is achieved. These indicators are called application indicators.

PRODUCT INDICATORS IN DETAIL
Product indicators are grouped into 4 different groups:
® Product
® [ntegration
o Use
® Acceptance

Each of these groups consists of a number of indicators, which together form the product
score. The group Product focuses on the “internals’ of the product, things like the
development and stability of the developer group or the purpose of the product. The group
Integration measures the options to link the product to other products or infrastructure. In
addition it is also a measure for the product’s modularity. The Use group tells us something
about the way in which the user is supported in everyday use of the product. For instance by
reviewing the number of support options made available to the user. The Acceptance group is
all about the way the product is received in the user community, as this is largely indicative
of the product’s ability to grow and become a prominent product.

The manner in which Capgemini applies the indicator to an Open Source product is described
for each product indicator. Application indicators can only be scored according to
information provided by the customer during interviews. Without a customer there can be no
application of an Open Source product.

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

Age (Product)

The longer a product remains under active
development, the smaller the chance becomes
that the developers suddenly stop. For all Open
Source initiatives the first year is the largest
hurdle. Commonly the initiative is halted due to
lack of response (lots of work, no glory) or that
the group is too small to sustain the workload
that the product generates. As long as there’s no
financial compensation for all this effort the
group must attract new developers or seek a
product sponsor. Either of these will allow the
group to sustain the development effort.

Selling points (Product)

Products with a clearly defined selling point
more easily gain market share. Take Qmail (a
MTA?) for example. Despite sendmail being the
accepted standard, it still managed to gain a
sizeable market share and create an active
community. The reason: Qmail was developed
because of difficulty experienced when trying to
configure sendmail to be a secure MTA. Qmail's
selling point; it addressed an important
weakness of sendmail. But if we look at all the
different Open Source GUI toolkits we see a
different picture. Despite a large number of high
quality toolkits being available, new ones keep
popping up again and again. The newcomers
have no clear selling points and usually don’t
last very long.

Developer community (Product)

The saying ‘many hands make light work’
certainly holds true when dealing with an Open
Source product. Changes to people’s ambitions
and personal life frequently result in that person
moving on to do other things. The greater the
group of active developers the less chance that
the product development stalls. A large group
also requires that the group must organise to
continue to effectively work together. Group
organisation is one of the driving forces behind
an effective community.

* MTA is a Mail Transfer Agent

Human hierarchies (Product)

Projects with one all-controlling leader tend to
last just a short time. Projects that delegate
control to other active members (usually dividing
the project into separate areas of attention,
allowing the original ‘captains’ to explore newer
avenues) have matured more. It not only allows
the project to grow whilst maintaining the stable’
version, it gradually increases the supporting
community

Licensing (Product)

Open Source products can choose from several
different licenses. The choice made tells us
something about the way in which the intended
users are approached. Some are very
restrictive, so restrictive in fact that they become
the subject of the discussion if the product can
still be considered Open Source under such a
license. Some companies try to find ways in
attracting large numbers of non-paid developers
(something Netscape tried for some time),
allowing the company to lower the development
costs. Others offer several licenses, even
catering for commercial variants (MySQL does
this).

Collaboration with other products
(Integration)

As the product gains acceptance within the
target audience the call for the ability to work
with other products is heard more often. Usually
the request to be able to ‘script’ certain aspects
of the product’s functionality is the first feature
that points to interoperability. The next step is
the incorporation of more structural changes,
like using PAM (Plugable Authentication Module,
a generic interface to allow interaction between
a product and a separate authentication system)
for example. Collaboration with other products is
therefore the result of change requests that have
been accepted by the development team. So it
isn't just the product that is collaborating.

AUGUST 2003

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

Modularity (Integration)

As an Open Source product gains more market
share, others could become more interested in
parts of the product’s functionality. This allows
the developers to develop a more flexible
licensing scheme (protecting the core, but
allowing fewer restrictions on other parts), which
could even allow commercial developments to
hook up to parts of the system. By splitting the
product into several modules commercial
interest can be atiracted without sacrificing the
Open Source principle. This is what happened
with Xfree (XFree86), the X-server used by most
Linux distributions. Previously video card
manufacturers where required to give out all the
card’s inner details to get Xfree to work with their
card. This was changed to allow (closed source)
binary drivers to hook up with the rest of Xiree.
The users gained access too much more recent
and powerful hardware and video card
manufacturers were now more involved in
supporting Xfree. The opposite also happens,
commercial products are offered in a trimmed
down version to users as Open Source, while
the full product remains commercial (closed
software).

Standards (Integration)

In the world of commercial software setting your
own standard is still seen as a way to protect the
investment in the product. For Open Source
products adhering to widespread and accepted
standards is extremely important. By only
supporting standards that are common in just a
couple of environments can adversely influence
the acceptance of a product. This depends a lot
on the product itself, for instance a product can
connect to a database using a direct connection
(limited to certain databases), ODBC (standard
in use in Unix/Linux and windows) or OLEDB
(standard only used in windows).

Support (Use)

With some products the support is obtained by
mailing the single developer. Others maintain a
discussion group (or even groups), but only a
couple of regulars respond to request. A few
maintain very active discussion groups in which
a large number of members will offer support.
Some products will even guarantee support if
you pay them. The manner in which support is
given or offered says a lot about the way the
development group takes its users seriously.

Ease of deployment (Use)

If a product becomes so popular that even
independent parties start to offer training
courses, it is almost a certainty that it has
become a mature product; the very least it has
become a very popular product. More commonly
seen with Open Source is that active users start
writing task specific papers (HOWTO’s). These
HOWTQO's allow new users to accomplish the
desired functionality without having to master all
of the product capabilities. HOWTO'’s cover all
aspects of product usage, not only how to set-up
for a particular application, but also how to
maintain the product. Existence of
documentation detailing day-to-day maintenance
is an indication of maturity.

User community (Acceptance)

Some products generate hardly any noise; some
have several busy discussion groups. When an
Open Source product is well received it is
common to witness an outburst of user requests,
suggestions and problem reports. The
discussion group quickly fills up with large
numbers of messages, so the developers must
expand and start to manage this huge flow of
feedback. This could be described as an Open
Source project’s puberty. An active community is
not to be underestimated. When Sybase
stopped all development on Watcom C++ (a
developers tool) the community rallied and
negotiated an open source option. Today it lives
on as Open Watcom C++.

Market penetration (Acceptance)

The installed base tells us something about the
importance of the product within the intended
users. A product with a large installed base
(Apache for example) provides additional
stimulus to form communities. Users will want to
voice new requirements, discuss problems, and
therefore require a platform to do so. Some
users may have clear ideas on how to advance
the products; others will appreciate the
possibility to communicate directly with
members of the development team. A lager
installed base indicates a more mature product.

Open Source Maturity Model

OPEN SOURCE PRODUCT INDICATORS

PRODUCT INDICATORS

Capgemini uses the following indicators to access the maturity of Open Source products.

Indicator Immature Mature
Product
The project has just started. The | The project is been active for
A stability of the developers group and | some time. The project stability
ge)
need for the product are unclear. and need for the project are no
longer issues.
Not fully described or clearly unsuitable | One of the ‘standard’” licences
for the product. (www.opensource.org/licenses/)
)) Offers clear motives for choosing
Licensing the license type, which s
supported by the user community.
Often allows both commercial and
Open Source variants to co-exist.
Human Original founder is lead developer and | Large community, multiple leaders
hierarchies solely responsible. Development | who coordinate. Separation of
depends on a single person. development and maintenance.
Selling Only enthusiasm. Commercial issues like security or
points * maintainability.
Small tight knit group. Very active developers
community, several hand-offs
Eﬁ;ﬂ%&?{ have taken place. Documented
y procedures to becoming a
member.
Integration
No modules, still one single product. | Product has been separated into
Functionality is offered on a ‘take all or | smaller pieces of functionality.
Modularity nothing’ basis. Users can select which parts are

required. Allows tailoring of the
product to a particular situation.

Collaboration

Not in focus yet. Product development

Product is close to completion.

with other is still firmly centred on core | Attention is shifting to linking the
products functionality. product to other products.
Use
Uses propriety protocols or uses dead | Uses current accepted protocols
Standards end technologies. and models. Deals with issues
surrounding standards, integration
etc.
Just within the own community and then | Besides ~ community support,
only provided by a small minority within | professional support can be
that community. purchased. A SLA can be
Support negotiated. The community itself is

active and questions draw
responses from a wide section of
the community.

* Open Source projects usually start because of some frustration with current offerings. This results in projects
that ‘wanted to try it themselves’” or *want to become main product because the current ones are good enough’.

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

Indicator Immature Mature
Acceptance
Little to no training facilities or courses. | Training or courses available. In
Documentation is poor, particularly with | addition to well written
Ease of regard to maintenance. documentation lots of HowTo”’s of
users detailing particular

RSN situations. Within the group

knowledge about maintaining the
product is readily available.

Small group, possible with a high | Large group that often has divided
proportion of ‘lurkers®. itself into sub-groups. Each group
User Community has a specific focus. Traffic in
general is best described as high-
volume.

Few references, just local promotion. | Often mentioned by others (for
Low exposure is the reason the product | example Gartner, ZDNet, Netcraft,
isn't wildly known. IDC). Multiple cases of successiul
implementation across a range of
companies. Well known.

Market
penetration

Capgemini has reviewed many Open Source products and has extensive experience using
these indicators and how they are applied to Open Source products. Because of this,
Capgemini now has a portfolio containing various Open Source product reviews to which
new reviews are being added. Existing reviews are updated on a regular basis, ensuring
accuracy of the reviews contained in the portfolio. The use of a consistent approach ensures
an independent, reproducible and professional result.

Because Capgemini is willing to commit to an Open Source product recommendation and
ensure that the customer is provided with sustainable and maintainable solution the maturity
measurement is a vital part of the process. There is a clear relation between the level of
maturity of a product and the risk that the project development will come to an end. Due to
the unique nature of Open Source, even a product that is no longer under active development
can still be successfully deployed. Support can then be provided by a smaller number of
developers.

> A document detailing on how to use the product for a particular task or in particular situation. Usually written
by a ‘fellow” user.
o People that are interested in using the product but show little inclination to contribute to it.

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

A COMPARISON

The table below shows the scoring criteria for the indicators.

Product indicator Score: 1 Score: 3 Score: 5
Product

Age < 2 months 1-2 years > 3 years

Ueror Unclear / unknown Clear (GPL, LGPL). | Multiple options catering to

OS| approved.

the user’s requirements.

Human hierarchies

Individual

Club

Organisation

Selling points

Individual enthusiasm

Group enthusiasm

Business motives

Developer community

Not clear how to
become a member

Becoming a
member is possible,
but requires initiative

Clearly documented
procedures. Mentions skill
and roles available. Use of
group development tools
is required.

Integration

One large non- Limited expansion, | Defines a plug-in
Modularit extendable application | for instance by architecture to allow other

y scripting parties to incorporate
modules.
Collaboration with Stand alone Partial interaction Incorporates accepted
other products (possibly by using standards (for example:
P certain protocols). PAM)

Standards Propriety Outdated Latest industry standards.
Use

By developers By product users By independent support
Support and developers companies, product users,

developers

Ease of deployment

Little to no
documentation.
Maintenance
documentation is non-
existant.

Product reference
only. Documentation
focusses on the
product, not on its
usage.

Lots of HowTo’s for a wide
range of situations, third
party training. Users with
extensive maintenance
experience. Focus on the
deployment of the product.

Acceptance

User Community

Perhaps a mailing list

One or two
moderated groups
about all aspects of
the product.

Multiple moderated
groups, each one dealing
with distinct aspects of the
product. Users are active,
forming unofficial groups
and thinking up new
initiatives

Market penetration

Unknown

A viable alternative

Market leader

Because some indicators cannot be measured in a purely numerical sense; the score is
determined by a panel of Capgemini experts who have demonstrated knowledge of Open

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

Source and have worked with similar products. Because of the use of this ‘panel” the score
cannot be set by one single person, this ensures that the score is objective.

If an indicator isn’t applicable for a particular product, the score is set to 3. Because
Capgemini always uses a threshold value of 3+, setting the score to three ensures that this
indicator does not affect the outcome in a positive or negative way. The determination of
maturity is therefore always controlled by the indicators receiving a below or above 3 score.
This maturity threshold is a cut-off point; below this cut-off maturity is not enough to qualify
for further selection.

APPLICATION INDICATORS

An Open Source product can’t (just as any other product) be introduced into a working
environment based solely on a measurement of it strengths and weaknesses. To properly
assess product one must also take into account several environmental aspects and naturally
the present and future demands of the user. The OSMM of Capgemini takes these factors into
account by defining the following application indicators:

e Usability — The intended user audience, the experience of that group.

e Interfacing — Required connectivity, which standards are applicable. How does this
fit into the organisation?

® Performance — The expected load and processing capability. The performance
demands that must be met.

e Reliability — What level of availability should the product deliver?

e Security — What security measures are required, what restrictions are imposed onto
the product.

* Proven technology — Does the product use technology that has proven itself in daily
production?

e Vendor independence — What level of commitment between supplier and user does
the product demand?

e Platform independence — s the product available for particular ICT environments
only, or does the product allow a wide range of platforms.

® Support — What level of support is required.
e Reporting — What reporting facilities are required.

® Administration — Does the product allow the use of existing maintenance tools, the
demands for operational management.

e Adyvice — Does the client require validation / recommendation by independent parties,
if so, what is required.

e Training — Required training and facilities.
e Staffing — Is product expertise bought, taught or hired.
e Implementation — Which implementation scenario is preferred?

The data of all these indicators is collected, user requirements are determined so that it
becomes possible to access if the product is suitable or not. In addition the importance the

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
OPEN SOURCE PRODUCT INDICATORS

client attaches to each of these indicators is also recorded, scoring on a scale of 1 to 5, 1
being ‘not important” and 5 being ‘extremely important’.

For a number of the indicators the trend analysis is important. This is why the data is
recorded for three periods, the present, near future (between now and + 6 months) and distant
future (within 2 years). If it is impossible to determine the future value, or if that value is of
no importance the value of the previous period is used. Finally, the importance of the period
is also recorded.

THE MATCH

All of this data is combined to the “final® score that indicates the suitability of the product for
the given demands. Determining one single score allows an easy comparison between
candidate products.

Key indicators

Besides the cold yes/no that the use of single score causes it is important to highlight trends
and key aspects. This enables the customer to recognise indicators that could “turn’ the score.
This is especially important when a customer reassesses the importance of certain indicators.
By recognising the key indicators an organisation can quickly determine the impact of change
without having to do a complete reassessment of all the products.

Currently Capgemini has an extensive collection of Open Source product profiles. These
reusable ‘components’ contribute to a quick and professional evaluation of possibility to use
Open Source within an organisation.

C. Widdows, F.W. Duijnhouwer AUGUST 2003

Open Source Maturity Model
THE MODEL

THE MODEL

Capturing awkward data in a model

One of the fundamental properties of Open Source products is that they exhibit an
irregular improvement ‘roadmap’. A primary reason for this phenomenon is that
improvements are mostly requested, the user community has a requirement that is
addressed. With commercial software a new version also has an economic motive;
it generates income.

This irregular development path that is native to Open Source products causes
some products to improve at a very high rate, whereas the products competitors
could show a much more relaxed approach. The developer and user community
are responsible for these differences. Because of this variance updating the
maturity model on a regular basis is imperative.

OPEN SOURCE MATURITY MODEL

The product indicators that were mentioned earlier form the basis of the model. Using these
indicators the maturity of Open Source products can be determined. Capgemini consultants
with extensive Open Source product experience have determined the product indicators. The
application indicators are prioritised together with the customer.

Product indicators receive a score valued between one and five. One is poor, five is excellent
and 3 is average. All the scores are summed to produce a product score. The value of this
score tells us something about the general maturity of the product. Capgemini also maintains
a minimum score that serves as a threshold for products that represent such a high level of
immaturity that they shouldn’t be considered for professional application. The total per group
(product, integration, use and acceptance) says something about the maturity of the product
for that particular group.

Besides the product indicators the Open Source products are also scored for requirements that
relate to the manner in which the application must ultimately perform; the application
indicators. Both the customer experts and Capgemini consultants score these indicators.
During one or more interviews the customer fills a questionnaire about his/her preferences in
relation to a number of products, any of which could potentially meet the requirements. This
is done using the product indicators.

In addition the customer and Capgemini consultants will determine which indicators must
absolutely score above average. These indicators are the key indicators.

The scoring of the application indicators by the customer is discussed with a Capgemini
expert. This expert has also completed a scoring, in which his/her knowledge of the situation
is applied. By comparing notes it is possible to eliminate the grey areas and determine the
final scoring. By combining that score with the product maturity score a total score in which
both the product, the application of the product and specific customer demands are all
combined; a total score for each product.

A mandatory part of the OSMM process is the feedback phase. This is to evaluate the
effectiveness of the indicators. As the workplace changes, so should the OSMM. Evaluation
ensures that the indicators remain finely tuned and effective. As Capgemini continuously

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
THE MODEL

evaluates the product indicators by researching and participating in the various Open Source

communities the OSMM as a whole always remains up-to-date.

AN EXAMPLE

To show how the OSMM calculates an example is
presented below.

In this example we’ll compare two non-existing
products, A and B. First the product indicators are
discussed, followed by the application indicators.
Product indicators

Indicator Product A Product B
Product

Age 1 3
Licensing 2 2
Human hierarchies 1 2
Selling points 2 1
Developer community 2 2
Integration

Modularity 1 1
Collaboration with other 2 2
products

Standards 2 2
Use

Support 2

Ease of deployment 3

Acceptance

User community 2

Market penetration 3

TOTAL 23 27

Productresearch and
rough selection

Scoring of products
using the product
indicators

v

Scoring using application
indicators by a CGE&Y
consultant

v

Interview with customer
on the value
(importance) of the
application indicators

v

Scoring of the application
indicators by the
customer together with
CGE&Y consultant

v

Determining score card
per product and final
selection of right product
for customer and CGE&Y

v

Evaluation

The table allows us to determine a score for each group

of indicators. This allows us to compare products on a group basis, for this example we can

draw this graph:

Open Source Maturity Model
THE MODEL

Score per group
Product
4
3__
/ . —e— Product A
Acceptance 0 Integration
\ —— Product B
Use

It becomes clear that both products score well on use, but both products fall short when it
comes to integration.

In more detail, this example shows that according to the product indicators product A is less
mature than product B. This means that Capgemini is less keen to use product A. Capgemini
has a threshold, below which the use of the product in a professional setting is not advised. If
a product fails to meet the minimum maturity criteria this will be explained in detail, together
with the risks and a ‘maturity prediction” (i.e. an assessment of the way in which the maturity
of this product will develop in the next 6 months based on the knowledge Capgemini has).
Even though the match on application indicators has a higher priority than the product
indicator, if the score on application indicators does not decide for one single product
Capgemini will prefer the more mature option. Likewise, even if the application match is near
perfect, if the product fails to meet the maturity threshold the OSMM will not select that
product as the preferred product.

To match the requirements of the customer to the strengths and weaknesses of the product the
customer and a Capgemini consultant have scored the product according to the application
indicators.

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

Open Source Maturity Model
THE MODEL

Application indicators

Product A Product B
Indicator Priority (P) Score (S) PxS Score (S) PxS
Usability 5 5 25 1 5
Interfacing 4 4 16 2 8
Performance 3 3 3 9
Reliability 4 2 4 16
Security 4 1 5 20
Proven technology 5 5 25 1 5
Vendor independence 2 4 8 2 4
Platform independence 2 3 6 3 6
Support 3 2 6 4 12
Reporting 1 1 1 5 5
Administration 3 5 15 1 3
Advice 2 4 8 2 4
Training 2 3 6 3 6
Staffing 5 2 10 4 20
Implementation 1 1 1 5 5
TOTAL 148 128

This shows that product B doesn’t match the customer requirements as well as product A.

The score is mainly determined by the weight factor (P), which is determined for each
indicator and the score that the customer and Capgemini consultant give for each indicator.
Because both products meet the maturity threshold, the OSMM determines that product A is
best suited for this particular situation. Even though product B is more mature, the application
indicators show that this maturity doesn’t offer any additional value to the customer in this
case.

When an indicator that is crucial to the customer receives a poor score; this could mean that
the product will not be considered for further selection. For each selection certain show-stop
indicators must be determined. If a product is scored below average on those particular
indicators, it is rejected.

When a comparison is made between Open Source products and commercial products the
same application indicators are used. The product indicators will be different. Essentially it
isn’t the community but a company that is judged on the same ability: to provide a product
over a certain period of time. But unlike with an Open Source product the option to provide
this from our own resources is not available.

Open Source Maturity Model
THE MODEL

EVALUATION, THE SECRET OF SUCCES.

As with anything that measures, calibration is important. The I'T market changes strongly
from year to year; with new ways to use IT in the workplace being discovered continuously.
The IT products also change, just as the idea of using Open Source product wasn’t really
considered to be realistic until recently. Changes in the political, economic climate and recent
changes to the licensing policy of some companies have focussed the attention on Open
Source products as a viable alternative. Independent companies have conducted extensive
research and concluded that for quite a few IT solutions Open Source offers a worthwhile
alternative. The OSMM provides a way to assess this alternative on its own merits.

To continue to profit from the advantages that the OSMM offers the continuous calibration of
the indicators is essential. Capgemini consultants constantly check the product indicators to
ensure they remain accurate. This principle is also applied to the product profiles of
previously scored products. When a product changes (such as a new release, new
functionality, different licensing etc..) Capgemini re-scores the product. Capgemini Open
Source trend watchers continuously monitor the validity of the indicators and maintain the
accuracy of these indicators.

Our business consultants monitor the application indicators, but ultimately these indicators
apply to our customers. This is why the OSMM process explicitly requires that our
consultants use the feedback of our customers as a way to maintain the accuracy of these
indicators.

The basis for the evaluation is put in place when the OSMM is actually used. The discussions
between our customers and consultants offer ample opportunity to present new and unique
insight to the evaluation process. Our consultants are required to check is any of these new
ideas warrants a permanent change to the OSMM. In our normal dealings with our customers
we constantly check to see if the ideas and decisions used in the evaluation are still valid.

By embedding these evaluations into the OSMM process they become a powerful instrument
to ensure the highest level of quality. Not just now, but also in the future.

AUGUST 2003 C. Widdows, F.W. Duijnhouwer

