
A Software Engineering Research Repository

Roger T. Alexander James M. Bieman Robert B. France
Software Assurance Laboratory
Computer Science Department

Colorado State University
Fort Collins, Colorado USA

[rta,bieman,france]@cs.colostate.edu

ABSTRACT
Software developers lack objective information to assess the effec-
tiveness of current and proposed technologies and practices. We are
developing a Software Engineering Research Repository (SERR),
a widely-accessible repository of software development artifacts.
The core artifacts of SERR are development artifacts, for exam-
ple, code, models, and test cases, organized by projects. These raw
materials provide a base for carrying out analyses and the results
can be stored as related artifacts in the repository. In this way, the
knowledge content of the repository can be built incrementally, pro-
viding a rich support base for other research activities. Research
programs can thus build upon the results produced by other pro-
grams that utilize the repository. Software developers will be able
to access objective data from the repository to assess software en-
gineering tools and techniques.

1. INTRODUCTION
While much progress has been made in moving software de-

velopment towards an engineering discipline, advances in devel-
opment methods, tool environments, languages, and management
techniques have not kept pace with the growing complexity of soft-
ware solutions. Software development organizations are increas-
ingly being challenged to develop high quality software solutions
in a timely and cost-effective manner.

Developers faced with the task of developing large, complex
software solutions (e.g., secure, flexible, fault-tolerant distributed
systems) often use mostly anecdotal information to help select soft-
ware development methods and tools. A lack of scientifically-based
data makes it difficult to (1) assess the extent that current technolo-
gies and practices address software development problems, and (2)
identify and understand fundamental software development prob-
lems.

Significant progress can be made if a widely-accessible reposi-
tory of software development artifacts with well-known properties
and characteristics is created. Such a repository can be used to sup-
port community-based evolution of software development knowl-
edge. The artifacts can provide the data needed by research con-
cerned with understanding development phenomenon (e.g., under-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

standing the effects of change on system architectures). The results
of these studies can then be added to the repository, thus enhanc-
ing the role of the repository as a software development knowledge
source. The repository can, for example, (1) facilitate compara-
tive analyses of experiences related to the development of systems,
(2) be used to communicate software development successes and
failures to the software development community, (3) provide raw
data on system artifacts (e.g., designs, code), technologies, and
practices to research programs, (4) support efforts related to col-
lecting empirical data about software processes, development tech-
nologies and notations, implemented systems and their models, and
(5) support technology transfer and education. Currently there are
no widely-accessible repositories that we know of that have the va-
riety of software design information that we envisage.

The fact is that we do not understand the characteristics of the
population of professionally developed computer programs. Thus,
our ability to draw conclusions from scientific results and general-
ize them is severely hampered. Historically, this problem is a result
of the closed nature of professional software development. With
few exceptions, companies with significant investment in intellec-
tual property are reluctant to make their source code available to
the scientific community. Thus, software engineering researchers
are forced to use small samples that are usually drawn from stu-
dent populations. However, the proliferation and adoption of open
source software offers the possibility that this may change.

2. OVERVIEW OF THE SERR
Our goal is to develop a sustainable, widely-accessible reposi-

tory of software development artifacts to support software develop-
ment research and education. The repository is referred to as the
Software Engineering Research Repository (SERR). The core arti-
facts of SERR are development artifacts, for example, code, mod-
els, and test cases, organized by projects. These raw materials pro-
vide a base for carrying out analyses and the results can be stored
as related artifacts in the repository. In this way, the knowledge
content of the repository can be built incrementally, thus providing
a rich support base for other research activities. Research programs
can thus build upon the results produced by other programs that
utilize the repository.

While users of SERR may get the impression that artifacts are
physically stored in a central location, this may not be the case for
all artifacts. We will allow SERR contributors to locate artifacts on
their sites and build links to the sites from the SERR site. The intent
is to build up a network of software development research resources
that researchers and practitioners can access from a single point.
We also envisage that the repository will contain other artifacts that
may not necessarily be directly related to development projects in
the repository, for example, development experience reports, tool

bieman
To appear in Proc. Workshop on Empirical Research in Software Testing (WERST 2004).

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

evaluations, and links to software engineering research programs.
The SERR system hardware will consist of front-end and back-

end servers, an array of hard disks, and back-up equipment and
media. SERR software will support information retrieval using
a data base, and customized software to support the submission
of artifacts to the repository, and specialized analyses of artifacts.
Such analyses may be conducted using SERR software and SERR
hardware. Some analyses will be conducted using client hardware
and/or software.

3. BENEFITS OF THE SERR
Through proper management and quality participation the SERR

can evolve into a software development knowledge repository that
is an indispensable resource for local and national research pro-
grams. Access to such a repository can speed the rate of advances in
software development by reducing the need for research programs
to develop base information and knowledge needed to support their
research goals.

3.1 Software Engineering Education
The repository is a sustainable research environment that will

also provide significant benefits to software engineering education.
The contents of the SERR can improve the knowledge and skills
that software engineering students are able to bring to a compet-
itive marketplace. The SERR will contain designs of large-scale
systems with related analysis and other information that can be
accessed for classroom use. Thus, students can experience, first-
hand, some of the complexities associated with the development of
large systems. Specifically, the SERR can provide students with
industrial-strength software artifacts that can lead to a deeper un-
derstanding of the issues and problems surrounding software de-
velopment in industry. This will make their educational experience
much more realistic and will better prepare them for the workplace.

3.2 Research.
Clearly the SERR will benefit empirical software engineering re-

search in a variety of areas including model-based software devel-
opment, business modeling, code analysis, formal verification and
testing, software evaluation, software reuse, and domain-specific
software engineering. This repository will enhance research capa-
bilities by providing needed information and data.

3.3 Benefits to the Development Community
Practitioners have trouble obtaining good exemplar software ar-

tifacts to help guide their work. The SERR can serve as a source of
experiences, exemplar artifacts, and benchmark artifacts for eval-
uation of technologies, for the overall software development com-
munity. We also see a distinct possibility that some of the tools
developed could become commercial products, which could gener-
ate revenue that could help sustain future evolution of the SERR.

3.4 Long Term Impact and SERR Evolution
The repository will be a long-term entity, with value for many

years. Although computer hardware becomes obsolete quickly,
software persists. When software is upgraded, the older version (or
portions of older versions) remains in the new version. A key re-
search concern is how systems evolve. We are not concerned about
having the latest software versions.

The repository will be a knowledge base that will grow over
time. Many of the items in the repository will be conceptual entities
(e.g., analysis and design models) rather than code. These concep-
tual entities can have a very long “shelf life”, especially if they are

technology-independent. The contents will not be static; the repos-
itory will continually be re-seeded and will reflect an accumulation
of knowledge about developing systems in different domains.

As more organizations contribute and/or participate, the greater
the value of the repository to these and other organizations. For
example, the repository can become a test bed for software reuse
studies, and for the development of tools to support reuse. Many
organizations would like to know how to make reuse work better
and to try new tools to retrieve reusable artifacts, however they do
not have the time or human resources to do this internally.

4. THE REPOSITORY INFRASTRUCTURE
A conceptual model of the repository infrastructure is shown in

figure 1. The round edge boxes represent data storage and man-
agement resources (e.g., databases), the rectangular boxes repre-
sent subsystems, the dashed directed lines indicate access relation-
ships among subsystems and the storage mechanisms. The stick
characters represent actors (i.e., roles that are played by systems
or humans outside of the SERR), and the solid lines represent as-
sociations between the actors and the SERR subsystems. SERR

Tool Interface Management

Repository Management

− updating

Software Engineering Research Repository
(SERR)

SERR Architect

SERR User

Access Management
Repository

Submission Management

− monitoring

SERR Architect

− evaluation

Tool

Pending
Submissions

<<access>>

<<access>>

<<access>>

<<access>>

<<access>> <<access>>

Figure 1: Conceptual SERR Architecture

Users (clients) will access repository artifacts through the Access
Management subsystem. This subsystem will provide a web-based
interface to the repository, and will have a back-end that controls all
client access to the repository. SERR users will also be able to sub-
mit candidate artifacts to the SERR through the Submission Man-
agement subsystem. Submissions are stored in the Pending Sub-
missions repository until they are evaluated by the Repository Ar-
chitect. If the submissions are of sufficient quality they are entered
into the repository through the Repository Management subsystem.
The Repository Management subsystem will allow the architect to
(1) package, classify and insert new or modified artifacts, (2) delete
artifacts and (3) update links between artifacts. This subsystem
will also automatically collect usage data and generate regular re-
ports, thus allowing the architect to monitor and track usage of the
repository. The Tool Interface Management subsystem provides the
interface that client-based tools will use to retrieve artifacts from,
analyze, and submit artifacts to the SERR.

The SERR will also have collection tools that use search engines
and appropriate filters to identify potential items for the repository.
An appropriate database will store the items.

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

shijith
Highlight

The repository will initially consist of the following types of ar-
tifacts: (1) system models and implementations, (2) data and other
analysis artifacts obtained by analyzing models and implementa-
tions (e.g., data dependency, control flow, and call graphs derived
from code, and measures of coupling and cohesion derived from
design models), (3) process information, and (4) miscellaneous ref-
erence information.

The core artifacts of the repository will be system development
artifacts (e.g., models, test cases, and implementations) organized
around projects. A project is a collection of development artifacts
for a system. The scope of a project can vary from a stand-alone
application system that addresses a single problem domain within
an organization (e.g., a payroll system), or a software utility such as
a word-processor or operating system, to a large integrated system
of systems that addresses enterprise-wide application needs (e.g.,
an order processing system that integrates customer handling, order
processing, and accounting systems).

4.1 Model and implementation artifacts.
A project in the SERR is a structure of artifacts related to the

development of a system. This includes all code, model, and other
artifacts (e.g., test cases, project plans), and all versions of all arti-
facts. Projects are intended to provide views of systems at different
levels of abstraction. Traceability, refinement, and realization rela-
tionships are defined among the artifacts. Techniques developed to
support project repositories for an industrial collaborator (see [4])
will be utilized.

SERR projects provide practitioners and students with realistic
examples of the types of models that can be used to represent soft-
ware requirements and designs, and their relationships with code
implementations. Researchers can use these artifacts in studies that
require analysis of software development artifacts. Requirements
and design models in the SERR will include those expressed in
standard design notations, such as the Unified Modeling Language
(UML) [3]. It is expected that the novelty and growing popular-
ity of the UML will drive demand for sample models that illustrate
how the UML can be used to model systems at various levels of
abstraction. The development of a standard XML representation
(called XMI) and tools for translating between tool-based repre-
sentations of UML diagrams and XMI representations allows us to
store UML diagrams in an accessible form.

4.2 Analysis artifacts.
The analysis tools will identify the design structures, and then

quantify the components in terms of the roles that the component
plays in the design structure. We will develop our research tools
primarily by extending existing research tools and commercial ob-
ject modeling tools.

4.3 Process Information.
Process information includes business processes as well as the

effort required to produce versions of software, defects found, and
change histories. This information is commonly collected by soft-
ware development organizations. However, organizations are often
reluctant to release such information publicly. We have been suc-
cessful in generating valuable process data (e.g., software change
histories) from common source code control system logs.

4.4 Miscellaneous reference information.
Information that is not directly tied to projects stored in the repos-

itory will also be accessible through SERR. Examples of such in-
formation are industry experience reports, and links to sites con-
taining information on software research programs and research

reference information. In this respect, the intent is to evolve the
SERR so that it can act as a starting point for accessing informa-
tion and publicly available software development and research re-
sources.

5. USING SERR TO SUPPORT RESEARCH
The repository can support a number of software engineering

research activities. We outline a few of the research activities that
can benefit from the existence of the SERR.

5.1 Developing design evaluation technology.
The choice of software design structures determines, in part,

whether a software system will be easier or harder to test and main-
tain. Current technology offers only rough guidelines to help de-
signers make good choices; there are few objective mechanisms for
evaluating design quality. Data in the form of software design in-
formation is needed to demonstrate relationships between design
choices and external quality attributes such as software adaptabil-
ity and reusability. The repository will provide the data. System
design documents, descriptions of planned evolution, and software
repair records are SERR artifacts that can be especially useful to
this type of research.

5.2 Investigate system evolution.
Useful software systems evolve as a result of changes in technol-

ogy or changes in system environments. Evolving large, complex
software systems using current development technologies is diffi-
cult, error-prone, and expensive, as was evident in Y2K efforts.
Currently, industries are struggling to evolve their large, integrated
application systems to gain competitive advantage, in the face of
rapidly changing technologies (e.g., Internet/web-based technolo-
gies). Our ongoing research on software evolution is described
in [1]. The repository will contain evolution trails of software arti-
facts that will be used to study how software systems evolve. The
results of this study will be used to develop engineering approaches
to software evolution that manage the complexity and cost of evolv-
ing large, complex software systems.

5.3 Document the empirical value of models.
Information system developers use models to help in the devel-

opment process. Conceptual models, logical models, implementa-
tion models, and test models are created at various points in the pro-
cess. Most developers agree that models provide value. However,
assertions of the value of models are based on conjecture and anec-
dote, not on evidence gathered from empirical studies. The SERR
can a vehicle to collect and document empirical data regarding the
value of models — the costs and benefits of creating and main-
taining various types of models. This data will allow researchers,
students, and practitioners to better determine how and when to use
models.

5.4 Investigate model-based software develop-
ment.

Models of software requirements and designs can help manage
the complexity of creating and evolving large, integrated software
systems. The repository will provide artifacts that will allow us
to study the precise relationships between models and technology-
specific technologies (e.g., MicroSoft’s .Net, Sun’s J2EE, C++, C).
Results of this study will be used to develop model-based approaches
to software development in which models are used to generate im-
plementations in particular technologies [2]).

5.5 Document enterprise models.

shijith
Highlight

Enterprise information models include models that show the in-
formation that a business processes (entities) and the interrelation-
ships between these entities, and the processes followed in perform-
ing their business functions. Most examples that practitioners, re-
searchers, and teachers have available are very limited in scope,
with most encompassing only very small aspects of real business
problems. One could collect, document, and store more complete
enterprise-wide models, including both high-level conceptual mod-
els as well as low-level design models, as well as ones in between
in addition to actual production code and test suites. Researchers
will then be able to analyze various models to support, for exam-
ple, empirical work or to identify reusable artifacts such as patterns
(e.g., see [2]); students will gain a clearer understanding of models
that are used in real-world information system development, and
gain a larger business-wide view of IT; and practitioners will have
examples to use to compare with their own models and architec-
tures.

5.6 Develop Cost Models.
Businesses aim to select IT solutions that provide the most ben-

efit for their cost. There are almost always many options, and it
is usually not easy to understand the tradeoffs that come with each
option. A research project might develop and store business cost
models for various types of solutions to various types of business IT
problems. Researchers, students, and practitioners can then com-
pare business models and their proposed solutions, and better de-
termine which solutions are better for their needs.

6. REFERENCES
[1] R. B. France and J. Bieman. Multi-view software evolution: A

uml-based framework for evolving object-oriented software.
In Proceedings of the International Conference on Software
Maintenance 2001, 2001.

[2] R. B. France, S. Ghosh, and D. Turk. Towards a model-driven
approach to reuse. In Proceedings of the 7th International
Conference on Object-Oriented Information Systems (OOIS
2001). Springer, 2001.

[3] The Object Management Group (OMG). Unified Modeling
Language. Version 1.3, OMG, http://www.omg.org, June
1999.

[4] R. Trask and R. France. RIGR - a repository model based
approach to management. In Proceedings of UML Workshop
on the Practical UML-Based Rigorous Development Methods.
GI-Edition, Lecture Notes in Informatics, 2001.

