
This is a preprint of a copyrighted paper that will appear in Multimedia Systems.

An Object-Oriented Multimedia Database System for a
News-on-Demand Application*

M. Tamer Özsu
Duane Szafron

Ghada El-Medani
Chiradeep Vittal

Laboratory for Database Systems Research
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2H1

{ ozsu, duane, ghada, vittal}@cs.ualberta.ca

Abstract
We describe the design of a multimedia database management system for a
distributed news-on-demand multimedia information system. News–on–
Demand is an application that utilizes broadband network services to de-
liver news articles to subscribers in the form of multimedia documents.
Different news providers insert articles into the database, which are then
accessed by users remotely, over a broadband ATM network. The par-
ticulars of our design are an object-oriented approach and strict adherence
to international standards, in particular SGML and HyTime. The multime-
dia database system has a visual query facility which is also described in
this paper. The visual query interface provides three major facilities for
end users: presentation, navigation and querying of multimedia news
documents. The main focus, however, is querying of multimedia objects
stored in the database.

Keywords: database management, SGML, HyTime, object-oriented de-
sign

1. Introduction
One of the characterizing features of multimedia information systems is their integra-

tion of large amounts of complex structured data. This characteristic makes them an excel-
lent candidate for the use of database management system (DBMS) technology. Unfortu-
nately, it is still rare to find multimedia information systems that use DBMSs. This pre-
cludes the system support for standard DBMS functions such as querying, update control
through transactions, etc. Since most of the current generation of multimedia systems are
single user systems on personal computers, this has not yet become a major problem.
However, as next generation multi-user systems are developed (such as news-on-demand,
collaborative and interactive work, electronic publishing) the need to develop multimedia
DBMSs that provide native support for these functions are likely to increase.

* This research is supported by a grant from the Canadian Institute for Telecommunications Research

(CITR) under the Networks of Centres of Excellence program of the Government of Canada.

2

Another reason why DBMS technology has not so far penetrated this application area
is the unsuitability of the relational DBMS technology for the task at hand. We defer to
Section 4 the detailed discussion of the shortcomings of relational DBMSs in supporting
multimedia information systems. Briefly, relational systems are good at supporting busi-
ness data processing applications, but not very appropriate for supporting “advanced appli-
cations” such as multimedia information systems. Therefore their role has been restricted to
the storage and management of meta-information (i.e., almost a directory service) rather
than multimedia data. The emerging object-oriented DBMS technology (Dogac et al. 1994)
is specifically targeted for these application domains.

We place emphasis on the use of DBMS technology in support of multimedia infor-
mation systems despite the existence of a number of “multimedia file systems”. One reason
for this is the standard argument in favor of DBMSs: file systems leave to the user the re-
sponsibility of formatting the file for multimedia objects as well as the management of a
large amount of data. The development of multimedia computing systems can benefit from
traditional DBMS services such as data independence (data abstraction), high-level access
through query languages, application neutrality (openness), controlled multi-user access
(concurrency control), fault tolerance (transactions, recovery), and access control. A sec-
ond important reason is that multimedia objects have temporal and spatial relationships such
as the synchronization and display of information between captioned text, video and sound.
These relationships should be modeled explicitly as part of the stored data. Thus, even if
the multimedia data is stored in files, their relationships need to be stored as part of the
meta-information in some DBMS. As indicated above, this has been the traditional role of
DBMSs in multimedia information systems; the term “multimedia database” often refers to
a centralized directory service for data stored in various file systems. Finally, multimedia
applications are generally distributed. Both the target application (news-on-demand) and
many other multimedia applications require multiple servers to address their storage re-
quirements. Thus, distributed DBMS technology (Özsu and Valduriez 1991) can be used to
efficiently and transparently manage data distribution; distributed file systems are no match
for distributed DBMSs in their functionality.

In this paper, we describe our design of an object-oriented multimedia information
system design to support a News-on-Demand application. At the center of this facility is the
design of a multimedia type system that allows high level modeling of multimedia applica-
tions. A second area of focus is the development of a visual querying facility. Most of the
current multimedia user interfaces only support browsing. However, as multimedia data-
bases grow larger and more complex, the need for ad hoc querying will become more
prominent. Therefore we have decided to focus on these two central database management
issues early on and these are the focus of this paper.

In addition to the central use of object-oriented DBMS technology as discussed
above, another feature that characterize our work is its strict adherence to the Standard
Generalized Markup Language (SGML) and the Hypermedia/Time-Based Structural La-
naguage HyTime standards (ISO 1986; ISO 1992). These are ISO standards (numbers
8879 and 10744) that are sufficiently rich to support the target application, and are gaining
widespread popularity. SGML mostly deals with textual documents whereas HyTime adds
support for hypermedia documents (e.g., links, video, etc.).

Our work is part of a larger project on Broadband services which involves Canadian
universities and research institutes. Broadband services is one of the six major projects that
the Canadian Institute of Telecommunications (CITR) undertakes. CITR is one of the
Networks of Centres of Excellence funded by the Government of Canada. Further infor-
mation on CITR and its constituent projects can be found on the World Wide Web at

3

http://www.citr.ee.mcgill.ca

In this paper, we assume some rudimentary familiarity with object-oriented technol-
ogy. We do not provide detailed descriptions of SGML and HyTime either, even though
we summarize those features of these standards that are central to our design. In Section 2,
we start with an overview of the target application, News-on-Demand. Section 3 discusses
the system architecture that we are developing. Sections 4 and 5 are central to the paper and
present the design of the type system and the design of the visual query interface, respec-
tively. We compare our work with some of the more important design efforts in Section 6.
Finally, in Section 7, we provide a summary of the current state of development and indi-
cate the directions that we are following.

2. Application Environment

2.1 The News-on-Demand Application

News-on-Demand is an application which provides subscribers (or end users) of the
service access to multimedia documents (news articles) that are inserted into a distributed
database by news providers (or information sources). The news providers are commercial
news gathering/compiling organizations such as wire services, television networks, and
newspapers. The news items that they provide are annotated and organized into multimedia
documents by the service providers (who may also be news providers). The subscribers
access this multimedia database and retrieve news articles or portions of relevant news arti-
cles. This is typically a distributed service where clients access the articles over a broad-
band network from distributed servers (see Fig. 1).

The News-on-Demand application raises two important issues that are not common to
all mulitmedia systems that use databases:

Fig. 1. Processing Environment

DTD’s

SGML/
HyTime

Compiler

Type
System

…

Query
Processor

Service Providers End Users

SGML/HyTime
Processing System

Database
Processing System

Multimedia DBMS

Disk-
based

Repository

4

• There are several news providers inserting documents into the database from different
remote sites, over a network. This requires an open system following a standard for
news article representation and encoding to enable transmission over the network and
insertion into the database. There is a similar concern at the user’s end, where different
browsers and interfaces may be used to access the articles.

 The choice of SGML/HyTime as the standard for document representation is reflected
in the overall organization of the news-on-demand multimedia information system ap-
plication (Fig. 1). News providers compose hypermedia articles on their own authoring
systems. These articles are then translated to the SGML/HyTime representation. A
SGML/HyTime compiler checks the document being inserted against the document type
declaration (DTD) which describes the acceptable document structure. It then instanti-
ates the appropriate objects in the database. Subscribers use a querying interface to ac-
cess articles and/or article components from the database, which can also be queried by
various system components (e.g., the quality-of-service negotiation module (Hafid et
al. 1994), the synchronization module (Lamont and Georganas 1994) to obtain relevant
meta-information. Our current focus is on the database processing side of Fig. 1.

• Once inserted into the database, the news article is not updated by either the news pro-
vider or the subscriber. Thus, we have a read–only model for the database. The news
provider may insert newer versions of the news article, however, as time progresses.
The database management system would handle the version management issues.

2.2 Multimedia News Documents

A document is a structured collection of pieces of information related to a particular
subject. In a multimedia document, these pieces of information are not restricted to conven-
tional text, but include other media such as audio, video, and images. These media may
themselves be composite, so that we may have combinations of audio and video, image and
text, etc. The structure of the document (i.e., the relationships between various document
components) enables the contents of the document to be understood by the reader. The
structure is strictly hierarchical in nature, with the document itself sitting at the root of the
tree. As an example, a book is made up of chapters; chapters consist of sections; sections
consist of paragraphs, and so on. This structure is in addition to the actual content of the
book. In other words, there is a distinction between the document content and the structure
of the document.

Two types of structure can be identified: the logical structure and the presentation
structure of the document. The logical structure refers to the logical organization of docu-
ment components; the presentation structure refers to the layout of the components actually
displayed to the reader. The logical structure of a book would be the organization into
chapters, sections, paragraphs and so on; while the presentation structure has information
on the number of columns of text used to display the document, the fonts and font sizes
used to display the chapter titles, whether images are displayed in color or in grayscale, etc.

Documents often have links to other documents or document components. Common
examples of such links in paper based documents are bibliographic references, footnotes
and cross-references. Text overlaid with a link structure is called hypertext. In the case of
multimedia documents, this term is changed to hypermedia. Our model of a news article is
a structured hypermedia document.

2.3 A Sample Multimedia News Article

This section describes a sample multimedia news document that will be used as a

5

running example throughout this paper. We use an article about the Department of Com-
puting Science at the University of Alberta. The article is organized as a series of news re-
leases which are interlinked. We will describe the document components in terms of the
media present in the document; the full document is depicted in Fig. 2.

• The text portion consists of the title, the (optional) subtitle, the keywords, an
(optional) abstract paragraph, the date and location of the news release, the paragraphs
that make up the article’s content, the author, and the titles of any images appearing in
the text. This information contains data that may not be shown in the presentation of the
document, such as keywords.

• The images in the document are any pictures related to the subject of the article. In this
case, the picture of the building which houses the department is included in the docu-
ment. The image can be stored in any format (GIF, TIF, JPEG, etc.). The presentation
of the image is also independent of the logical structure, because we may choose to re-
produce the image inline with the rest of the document, or display it in a separate win-
dow.

• The sound or audio component of the document is the recording of a welcome mes-
sage from the Chair of the Department. Here again, the representation format is inde-
pendent of the logical structure of the document. The tone and volume of the audio
playback are examples of presentation attributes.

• The video component is a tour of the facilities. The representation format of the video
data (MPEG, MJPEG, Quicktime, etc.), and the presentation aspects (frame rate, size

Department of Computing Science
The Department of Computing Science at the University of Alberta is one
of the oldest computer science departments in Canada, having been estab-
lished in 1964. The Department is part of the Faculty of Science together
with seven other departments . Its main office is located in 615 General
Services Building.

 GSB - Home of the CS Department
This is a young and active Department. It is currently made up of 32 fa c-
 ulty , 27 support staff and approximately 100 graduate students. There are
 research programs in many areas of computing science. Research ties exist
with TRLabs and Alberta Research Council.

Chair’s Welcome Tour of Facilities Research Programs

M.T. Özsu 10 November 1994
Fig. 2. Sample News Document Presentation

6

of the window, etc.) may not be information relevant to the logical structure of the
document. Video is seldom displayed on its own – there are associated media played
back, or synchronized along with the video. Therefore, in the video clip about the fa-
cilities, the voice of the commentator is synchronized with the video so that the viewer
does not find the lip movements out of phase with the sound of the voice being played
back. There could be text subtitles displayed along with the video, giving the French
translation of the commentary.

• The subscriber typically would like more information on the various events and people
mentioned in the article that may not be found in the document itself. By providing
links to other documents, or document components where further information can be
found, this document enhances its information capacity. Another possibility is that the
user may want to make comments (annotations) on the text that would be visible the
next time the document is retrieved.

In Fig. 2, the links to other documents are marked by underlined text. There could be
other more obvious icons used to denote the links. This may depend on the preferences of
the viewer or author and the capabilities of the display terminal. Again, this is a presenta-
tional aspect that is separate from the logical structure of the document.

It is important to note that Fig. 2 represents only one possible ‘rendition’ of the news
article. The user, for example, may prefer not to see any text at all, or if the available dis-
play is an ASCII terminal, only the text portion may be presented, causing the system to
skip the retrieval of the image, audio, and video components of the documents.

3. System Architecture
The current prototype of our multimedia DBMS is an extension of a generic1 object-

oriented DBMS called ObjectStore (Lamb et al. 1991). The extensions provided by the
multimedia DBMS include specific support for multimedia information systems. The con-
ceptual architecture, omitting many components not yet developed, is depicted in Fig. 3.
The development of a type system that supports common multimedia types is at the heart of
the multimedia extensions. Our research has so far focused on this central issue as well as
the development of a compatible visual query processing interface. These two components
enable high-level modeling and access capability for application developers and end users.
Future work, as discussed in Section 7, includes the development of an application-
independent API2 and a more powerful query model that supports content-based queries of
images and video, as well as an optimizer for these queries.

The fact that we are currently using a generic object-oriented DBMS introduces some
important restrictions. There is no native multimedia support and there is no access to
source code. Therefore, the only way to extend the generic DBMS is to use standard ob-
ject-oriented techniques to build a multmedia layer. Our generic object-oriented database
will eventually be replaced by our own object-oriented database in later stages of this re-
search. This will enable us to take advantage of advanced features like temporal models that
are fundamental for multimedia applications. It is hoped that one of the results of this re-
search and other similar projects will be to convince commercial object-oriented DBMS

1 In the sense that it doesn’t have native multimedia support.
2 “Application independent” in this context does not mean that the API is general enough to support any

application. It means that the API is not tied to one multimedia application, but may be used by a number

of multimedia applications.

7

vendors of the utility of advanced object-oriented capabilities.

Applications

End Users

ObjectStore

Visual Query Interface Application
Independent API

…

M
ul

tim
ed

ia
 D

BM
S

Ex
te

ns
io

ns

Query Processor &
Optimizer

Multimedia Type System

Fig. 3. Conceptual DBMS Architecture

Currently, the visual query interface – described in Section 5 – interacts directly with
the ObjectStore query processor via the multimedia type system. Each menu item is linked
to an ObjectStore query which is invoked when the selection is made. As our application-
specific query processor and optimizer development progresses, the visual query interface
will interact with it rather than with the ObjectStore system. The new interaction is shown
by a dashed line.

This architecture is open so that it can accommodate various multimedia servers.
Many of these servers are file system servers without full database management functional-
ity (e.g., querying). If file system servers are used, but the applications require database
functionality, then a multimedia DBMS layer can be placed on top of the file system servers
and the underlying storage system can be modified accordingly.

As indicated earlier, this is a distributed system where a number of clients access a
number of servers over a broadband network. In our prototyping environment, the clients
and servers are IBM RS6000/360 interconnected by a broadband ATM network. This is a
multiple client/ multiple server system.

8

Primitive media types (monomedia) is classified as continuous media, or non-
continuous media. Continuous media refers to those types which have to be presented at a
particular rate for a particular duration of time. These include audio and video. Continuous
media support creates some of the most difficult problems in multimedia information sys-
tems and significantly influences the design and the load of systems. Non-continuous me-
dia such as text and still images do not have the real–time constraints of audio and video. In
our system, continuous media and non-continuous media are stored on different servers.
Thus, data is distributed between a number of non-continuous media servers (NCM serv-
ers) and a number of continuous media servers (CM servers). The distribution of data is
transparent to the users since they use querying facilities provided by client DBMS mod-
ules, rather than directly accessing individual servers.

The current implementation does not integrate the continuous media servers with the
database. The continuous media server is a disk array-based file system (Neuhold et al.
1994). In addition to the text and still images, the database stores all meta-information
about the files on the continuous media file server. Finally, the database stores descriptive
information about the environment that is used by the Quality of Service (QoS) Negotiator
(Hafid et al. 1994) and the Synchronization routines (Lamont and Georganas 1994). The
database is queried by the client modules to determine the location of a particular piece of
multimedia data. After obtaining the file name and the server on which it resides, the file is
accessed directly from the file server. This architecture is necessary since the database sys-
tem chosen for the implementation of the application does not provide any native support
for continuous media. In later versions of the system, the two components will be more
tightly integrated.

The client machines contain the query interface, the multimedia DBMS client, syn-
chronization modules, and the decoders for MPEG and Motion JPEG data streams.

The retrieval of a document involves several system components and each must ac-
cess the database to determine information necessary for the completion of its tasks.

Briefly, the subscriber browses the database through the Visual Query Interface de-
scribed in Section 5 and then chooses a document to be displayed. The subscriber then uses
the QoS Negotiator to select the desired level of quality and cost of access. The Synchroni-
zation component then takes over by coordinating the delivery of several streams of
monomedia data over the network. To do this, it requests the CM Servers and the NCM
Servers (i.e., the ObjectStore DBMS) to retrieve the appropriate files and start the streams.

4. Design of the Multimedia Type System
The design of the type system actually involves the conceptual design of the multime-

dia database. There are four issues in designing a multimedia database:
• The different media components of the document (i.e., text, image, audio, and video)

need to be modeled and stored in the database. These are called monomedia objects and
their storage structures in the database is critical for good performance.

• A representation is needed for the document’s logical structure. Not every multimedia
information system represents the document structure explicitly. For example, a multi-
media system that uses postscript files for text documents containing images, ignores
the hierarchical structure of the document. It is important to represent this structure ex-
plicitly both for querying and for presentation.

• In multimedia documents, one has to deal with the representation of the spatial and
temporal relationships between monomedia objects. These relationships are important
for presentation purposes.

9

• The meta and descriptive information necessary for the operation of the system com-
ponents needs to be determined and stored in the database. As well, access routines
need to be provided (as part of the API) for easy access to this information.

In this section, we focus on the first three issues which are central to the database de-
sign. The following three sections present our approach to addressing these issues. The
meta and descriptive information that is stored in the database is described in (Vittal et al.
1994). As indicated earlier, we use an object-oriented approach and follow the
SGML/HyTime standard. A few words about our design decisions are in order.

We use object technology – rather than relational – for a variety of reasons. First,
multimedia objects are complex in their structure. The primitive objects (monomedia ob-
jects) are not only simple strings or numbers (e.g., names, addresses, and salaries of em-
ployees), but also include video, digitized voice and images. There is no support for these
types in relational systems nor is there a way to extend the type system to incorporate them
(extended relational systems are an exception). The “binary large objects” (BLOBs) that are
supported in some relational systems are not sufficient to model these entities. One can
store the image, for example, as one BLOB, but it is not possible for the relational DBMS
to interpret this BLOB (i.e., access parts of it or perform image-specific operations on it).
Object-oriented DBMSs, even though they may not support these types generically, can at
least be extended to include them as part of the multimedia DBMS extensions.

Second, multimedia documents are structured complex objects containing a number
of these primitive objects. For a database where such multimedia documents are stored,
there should be facilities for (a) accessing objects based on their semantic contents, and (b)
accessing different components of these objects. Furthermore, there are relationships
among the multimedia objects (i.e., classification, specialization/generalization, and aggre-
gation hierarchies) that need to be modeled (Dimitrova and Golshani 1992).

Third, multimedia information systems require an extensible data model that allows
application designers to define new types as part of the schema. Furthermore, the applica-
tions themselves must be able to add and delete new multimedia types dynamically. There-
fore, multimedia systems must not have static schemas and the DBMS must be able to han-
dle dynamic schema changes. Object-oriented systems meet all of these requirements much
better than relational ones.

We follow an international standard for multimedia document representation, because
the target application demands that a standard representation be used, for which various
authoring tools are available. The tools themselves can be different, but they should at least
be based on the same document representation. This is one way to support heterogeneity of
tools while providing a unified database representation.

SGML (ISO 1986) has been chosen as the standard to follow because of its suitability
for the target application, its relative power, its widespread use (for example, the Hypertext
Markup Language, HTML, that is the basis of World Wide Web is an application of
SGML) and its role as the basis of the HyTime (ISO 1992) hypermedia representation
standard. SGML mostly deals with textual documents whereas HyTime adds support for
hypermedia documents (e.g., links, video, etc.). The two other alternatives to follow
would have been Office Document Architecture (ODA) Standard (ISO 1989) and the
MHEG Standard. ODA is not sufficiently rich to be used in this application and the MHEG
standard (even in draft form) was not yet released when this work was started. While
SGML/HyTime is gaining acceptance and tools are being developed for it, MHEG is still in
draft form.

10

4.1 Modeling of Monomedia Objects

Since the continuous media file server is not yet integrated with the multimedia data-
base, we only store descriptive information about audio and video objects in the database.
Text and images are stored in the database. Since ObjectStore does not provide native sup-
port for multimedia data, the multimedia DBMS that sits on top of ObjectStore implements
these data types as atomic types.

The Type System for Atomic Types

Fig. 4 illustrates the type hierarchy for atomic types. In this paper, we omit full de-
scriptions (i.e., attributes and methods) of these types due to space considerations. They
are given in (Vittal et al. 1994). Instances of atomic types hold the raw (mono) media rep-
resentation along with other information relevant to the QoS scheduler and synchronization
module.

Fig. 4. Atomic Types Hierarchy

There are two subtypes of atomic media types – one for non-continuous media
(NCMType) and another for continuous media (CMType). The attributes and methods
which are common to both kinds of media are abstracted in the Atomic type. These are
the length and generic QoS parameters such as jitter, cost and delay.

The NCMType media are further subtyped into Text and Image media types.
NCMType has the attribute content which is an array of characters. The Text subtype
has additional methods: match which implements a pattern matching algorithm, and sub-
string which returns a portion of the text object given the two integers representing the
start and end locations. The Image type has additional attributes such as the width, height
and colors of the image. Both these types have attributes for the QoS parameters specific to
the media they model. The Image type can be further subtyped to reflect the different stor-
age formats possible.

A similar subtyping scheme is seen on the CMType side of the type hierarchy. The
Video type can be subtyped to handle different storage formats. Synchronized text

Atomic

Text SyncText Temporal

NCMType CMType

Video Audio

Image

11

(SyncText) is not subtyped from Text, since it is stored on the file system, not as an
object in the database. The methods match, and substring cannot be applied to the
synchronized text media. The Temporal supertype of video and audio is defined because
both have a duration attribute. Note that the actual data corresponding to objects of type
CMType (and its subtypes) are stored in the continuous media file server which is not un-
der the control of the multimedia DBMS. Thus, these objects in the database only store
meta-information.

Storage Model for Text

Text (a character string) is an atomic type which is supported in the database sys-
tem. However, in the news documents, the text component of the article is richly struc-
tured, consisting of many hierarchically arranged components (also called elements). One
alternative for representing text components of a multimedia document is to define object
types for each of these structure components and associate with each of them a fragment of
the complete text of the article.

Storing the text content of the article by fragmenting it in this manner can have serious
performance implications. For example, to store the second instance of the paragraph ele-
ment in the sample document of Fig. 2, we need three fragments – the emphasis element,
the link element and the rest of the text. Accessing the text of the paragraph now involves
three accesses to persistent store.

Although there are strategies such as clustering to improve performance, with large
objects involved, these techniques may be inadequate. In any case, the pointer swizzling
overhead of these objects cannot be overcome by clustering. Furthermore, if pattern-
matching methods are defined on text elements, it would be necessary to re-assemble the
entire text component of the document which has performance implications.

In addition to performance issues, there are modeling complications as well. One
problem is to decide what the granularity of the fragmentation should be – paragraphs?
sentences? words? The granularities can be determined by the granularities of the logical
elements of the document. Thus, each logical element would contain a fragment of the text.
For example, there would be an Emphasis type for instances of logical emphasis ele-
ments. This can cause several copies of the same piece of text residing in various logical
element instances. The second problem which arises is as follows: suppose an emphasis
starts at some position in one word and runs until some position of a subsequent word
(i.e., does not cover entire words). Since there is a logical emphasis element in the mark-
up of this document, it would be necessary to create an instance of the Emphasis type and
store the emphasized text as the value of one instance of this type. However, this precludes
the possibility of querying for either one of those two words involved in the emphasized
string.

To avoid fragmenting the textual elements in this manner, we store the entire text
content as a single string. To associate a particular instance of an element with its text con-
tent we store the first and last character locations of that portion of text in the entire text
content. We call pairs of integers such as these, annotations. Using this model the text
content of the sample news document can be modeled as depicted in Fig. 5. In this exam-
ple, the first paragraph instance has the annotation [33, 338]. The link sub-element of the
paragraph has the annotation [264, 274].

Every document instance in the database has a “base” object (of type Arti-

12

cle_root) associated with it which stores the text string forming the text content of the
article, and the lists of annotations associated with each text element type. To display the
document, the browser can scan these lists efficiently and determine the presentation of the
text. We map this representation to a type system by defining a type, Text, whose in-
stances store a single string that is the entire text content of a document as represented in
Fig. 5. We also define a type to correspond to every allowable annotation, as specified in
the document DTD.

Fig. 5. Annotations to Mark-Up Text Documents

There are two distinct advantages of using this storage model for text elements:
• Displaying the text becomes faster, and more efficient because multiple accesses to per-

sistent store are avoided.
• Indexes can be built on these annotation objects which can aid searches for element in-

stances. For example, it is possible to search for emphasized strings in a document.

There is one disadvantage of this approach. Updates to the text content are expensive,
since a change to the content of a document may cause many annotations to change. This

Paragraph 1

Begin

End

Emphasis 1

Begin

End

Department of Computing
Science The Department of
Computing Science at the
University of Alberta is one of
the oldest computer science
departments in Canada,
having been established in
1964. The Department is part
of the Faculty of Science
together with seven other
departments. It’s main office is
located in 615 General Services
Building. GSB - Home of the
CS DepartmentThis is a young
and active Department. It is
currently made up of 32
faculty, 27 support staff and
approximately 100 graduate
students. There are research
programs in many areas of
computing science. Research
ties exist with TRLabs and
Alberta Research Council.
M.T. Özsu10 November 1994

Begin

End

Fig.

Begin

End

Link 1

Annotation Annotation

13

can be avoided to a certain extent by specifying annotations relative to some enclosing
structure, say with respect to a paragraph. Then, after an edit, the only annotations that
change are the annotations of the sub-elements in the edited paragraph and the annotations
of all following paragraphs but not the annotations for the sub-elements of these para-
graphs.

4.2 Modeling Document Structure

The logical structure of a document is necessary for its contents to be understood. For
example, document presentation, certain queries and hyperlinks all rely on the logical
structure of the document. SGML uses markups to represent this information.

Markups, Elements, Document Type Definitions and Architectural Forms

SGML is a meta-language which describes the logical structure of a document by us-
ing markups to mark the boundaries of its logical elements. The generalized markup ap-
proach of SGML separates the description of structure from the processing of the structure.
The philosophy is that processing instructions can be bound to the logical element at the
time of formatting, or display. Descriptive (or generalized) markup identifies logical ele-
ments using start tags and end tags to mark their boundaries.

The markup in SGML is rigorous (Goldfarb 1990) in that elements can contain
other elements to form a hierarchy. Thus, chapter elements can contain title and
section elements; section elements can contain paragraph elements and so on.
The hierarchy is a tree, and whole subtrees can be manipulated as one unit. In other
words, an SGML document consists of instances of document elements arranged in a hier-
archical structure.

SGML does not specify what these elements should be, or what the hierarchy should
look like. Instead, the list of elements types, and the relationships between them is ex-
pressed as a formal specification called a Document Type Declaration (DTD). A DTD is
written in SGML by the document designer for each category of document being designed.
In our case, we need to write a DTD for multimedia news articles, but there could be DTDs
for books, letters, technical manuals etc.

A DTD specifies element types, the hierarchical relationships between element types,
and attributes associated with them. Attributes contain information that is not part of the
document content. In the example multimedia news document of Fig. 2, the following ele-
ment types can be identified: article, headline, date, paragraph, Fig.,
Fig. caption, emphasis, author, link. Note that the article itself is consid-
ered an element and there may be other elements (e.g., keywords) that are not demonstrated
in the rendition of Fig. 2. If we omit the audio and video elements, the marked-up sample
news document looks like the following:

<article>

<front>

<author> M.T. Özsu </author>

14

<keywords> computer science, University of Alberta, education </keywords>

<hdline> Department of Computing Science </hdline>

<date> 10 November 1994 </date>

<location> Edmonton, Alberta, Canada </location>

</front>

<body>

<paragraph> The Department of Computing Science at the University of Alberta is

one of the oldest computer science departments in Canada, having been established in

1964. The Department is part of the Faculty of Science together with seven other

<link linkend=sci_depts.sgml>departments</link>. It’s main office is

located in 615 General Services Building.</paragraph>

<figure filename=gsb.gif>

<figcaption>GSB – Home of the CS Department</figcaption></figure>

<paragraph> This is a young and active Department. It is currently made up of 32

<link linkend=faculty.sgml>faculty</link>, 27 <link

linkend=faculty.sgml>support staff </link> and approximately 100 gradu-

ate students. There are research programs in many areas of computing science. Re-

search ties exist with <emphasis>TRLabs </emphasis> and

<emphasis>Alberta Research Council</emphasis>.</paragraph>

</body>

</article>

This document is declared to be an article type. Thus, the legality of its mark-up is
determined according to the article DTD which defines the acceptable article document
structure. The full DTD for the multimedia news articles is given in Appendix 1.

The discussion so far omitted links, audio, and video objects. These are the domain
of the HyTime standard which defines 69 special hypermedia elements, called architectural
forms (AF), that can be used in DTDs. For example, there is an architectural form called

15

clink which defines a so-called contextual link. A contextual link is a link with an anchor
rooted in a particular context, exactly like the links shown in the sample news document.
To use architectural forms in our HyTime document instances, we first define element
types which conform to the specification of the architectural forms. Then we use instances
of these conforming element types.

Type System for Elements

Fig. 6, 7 and 8 show the type hierarchies for logical document elements. The su-
pertype of all elements is the Element type. This models the fact that all elements need to
maintain a reference to their parent element in the document instance hierarchy, so that the
hierarchy can be navigated starting from any element. When links are made to arbitrary
elements in different documents, or when searches are performed over several documents,
it is often useful to know the article these element instances belong to. Therefore, each ele-
ments maintains a reference to the article that contains it. Element is subtyped into Tex-
tElement, Structured and HyElement.

Fig. 6. First-Level Element Type Hierarchy

In the DTD for news documents given in Appendix 1, we divide the document into
components called async and sync. This reflects the fact that continuous media with
synchronization constraints (sync) need to be handled by HyTime conforming element
types, and other SGML element types are adequate to deal with text and image data
(async). The supertype HyElement encompasses all the HyTime elements used in the
DTD. We delay a discussion of these types until Section 4.3.

Due to the annotation-based storage model, elements defined for textual data in the
DTD have corresponding types in the type system each with an attribute whose value is the
annotation of the element in the article instance. Their supertype is the TextElement
type. This supertype has methods to manipulate these annotation values. An additional
method defined on TextElement is getString which returns the string value captured
by the annotation. The TextElement type hierarchy (excluding StructuredText
which is described later) is illustrated in Fig. 7.

Element

StructuredTextElement HyElement

StructuredText AudioVisual SyncArticle

16

TextElement

Loc Source

Author Subject Date

QuoteEmphasis

Emph1 Emph2

FigcaptionEdinfoElement

Keywords

Fig. 7. Type Hierarchy for Other Text Elements

The types in Fig. 7 correspond to text elements that do not have any subelements.
Most of the types here do not have any additional methods or attributes other than those
present in TextElement; they have been created as subtypes purely for classification
purposes, and to retain the uniform approach of modeling all element types as types in the
type system.

The type Structured is a supertype for elements in the DTD with complex con-
tent models. That is, structured elements can have child elements in the document instance
and need to maintain references to them. Correspondingly these elements have the method
getNth which returns a reference to their nth child element. Since the types of these child
elements are so diverse, the only common supertype is Element, which is the return type
of this method.

Elements which are both structured and based on text have a common supertype
called StructuredText. The subtypes of this type includes all text elements with com-
plex content models, like list, section, Fig., frontmatter, etc. The type
system rooted at this type is shown in Fig. 8.

Fig. 8. Type System for Structured Text Elements

Instances of the Article type are at the root of the composition hierarchy. Accord-
ing to the DTD, they should have references to instances of Frontmatter, Async and
Sync types. In addition, the date, source, subject, and author are attributes (type

ListItem Section

Fig.

Async

Hdline Paragraph

Link

FrontMatter

List Abs-pEdinfo

Ilink-AF

Subhdline

17

String) of Article, even though these values are already stored (by means of annota-
tions) as instances of Date, Source, Subject, and Author types respectively
(Fig. 7). There is a performance reason for replicating the contents of these attributes. We
would like to index the collection of Article instances on the values of these attributes,
since queries predicated on these are likely to be frequent. However, ObjectStore collec-
tions can only be indexed on attributes. The string value of instances of Date, Source,
Subject,and Author can only be obtained by the application of the method get-
String(). Hence, although we could have methods getDate, getSource, get-
Subject, and getAuthor for the Article type, it would not have been possible to
build indices on these methods if we had not defined them as direct attributes of Article.

AudioVisual and Sync are the other two subtypes of Structured. In the DTD,
the element audio-visual models one set of logically related HyTime components. For
instance, if the document was one hour of a television broadcast, there would be one
audio-visual each for the news, for the commercial segments, etc. The whole broad-
cast would be modeled by the sync element, and captured by the Sync type. Sync in-
stances are collections of AudioVisual instances.

Structured elements have complex content models and pose two problems. The first
problem is due to the ‘or’ connector (‘|’)in the content model. For example, the Async
element has the content model:

<!ELEMENT async - - (section|Fig.|link)*>

If we have three fields for the Async type each of which is list of references of the
type of one of the three elements listed on the right hand side, then we lose the relative or-
derings between say, Section instances and Fig. instances which are the children of
the Async instance. One solution to this problem is to have just one list of references of
the existing common supertype of Section, Fig., and Link; this is Structure-
dElement in this case. However, this leads to type checking problems since references to
any subtypes of StructureElement (say Paragraph elements) could now be in-
serted into the list.

A second solution is to use union types: the parameter of the list of children is the
union type of the three types: Section, Fig., and Link. Unions are present in the
C++; ObjectStore allows named union types to be made persistent. However, a discrimi-
nant method has to be provided to differentiate between the types in the union, and the user
has to ensure that the right type is being accessed (i.e., the user has to do some type
checking). The third solution (the one we have adopted) is to create an abstract supertype of
Section, Fig., and Link. The parameter of the list is then this supertype and there
are no type checking problems. The drawback is that it creates an explosion of types in the
system. We call abstract supertypes created for this purpose pseudo-union types.

The second problem occurs in the use of the ‘follows’ connector (‘,’). For example
the element frontmatter has the content model:

<!ELEMENT Frontmatter --(Edinfo,Hdline,Subhdline,Abs-p)>

18

This means that instances of Edinfo, Hdline, Subhdline, and Abs-p must
follow each other in any document instance. To capture this in our type system, we need a
mechanism to order the attributes of the type Frontmatter. Again, this feature is not
present in the data model of ObjectStore. We assume an implicit ordering of attributes in
this case. The behavior of the Frontmatter type is such that it enforces the ordering.
Thus, when the method getNth(3) is applied to an instance of Frontmatter, the re-
sult is a reference to an instance of the type Subhdline.

4.3 Modeling Presentation Information

The third major issue in multimedia database type design is the representation of spa-
tio-temporal relationships among document elements. This information is accessed by the
synchronization routines in planning the retrieval of monomedia objects and the presenta-
tion of these objects according to a presentation specification. Our representation of spatio-
temporal relationships is compliant with the HyTime standard.

The HyTime standard is divided into modules, each of which describes a group of
concepts and architectural forms. These modules are the base module, the measurement
module, the location address module, the hyperlinks module, the scheduling module, and
the rendition module. Each module may use certain features of other modules lower down
in the hierarchy; thus the location address module does define AF’s which are used in the
rendition module. Each HyTime DTD must declare the names of the modules it requires.

In our DTD for multimedia news articles, we use certain features of the base module
(as do all HyTime documents), some of the location address module, some of the hyper-
links module, and some of the scheduling module. We skip the description of these mod-
ules, except for the scheduling module. Concepts needed from other modules will be de-
fined where required.

Finite Coordinate Spaces

To represent relatively simple spatial and temporal constraints between document
elements, we use the finite coordinate space (FCS) architectural form defined in the sched-
uling module. This, in turn, requires features of the measurement and location modules. In
the discussion that follows, several architectural forms will be used in the examples but not
explained. It is hoped that the relevant ideas can be abstracted. The following convention is
used: whenever an element type name appears with a ‘my_’ prefix in an example, then it
conforms to the architectural name that follows the ‘my_’ prefix.
HyTime models space and time using axes of finite dimensions. A finite coordinate space is
a set of such axes. All measurements are associated with axes. The units of measurement
along axes are called quanta. There are various types of quanta defined in HyTime, besides
the normal units of measurement – including characters, words, nodes in trees, etc. Fig. 9
describes the various concepts used. The finite coordinate space shown here has three axes:
two spatial, and one temporal.

19

Time Axis

Y Axis

X Axis

Event

Extent

Fig. 9. Axes, Events, and Extents (adapted from (DeRose and Durand 1994))

In HyTime, an extent is a set of ranges along the various axes defining the FCS. An
event corresponds to an extent in the FCS. An event schedule consists of one or more
events. Extents are specified using the extlist architectural form. Events are created
using the event AF; event schedules using the evsched architectural form. The docu-
ment instance associates a data object with the event. The semantics and the manner in
which the events are rendered are defined by the application. An example depicting the use
of FCS’s for storing presentation information is given in (Vittal et al. 1994). We omit it in
this paper due to space considerations.

Separation of Presentation from Logical Structure

The SGML/HyTime philosophy is to bind the processing instructions to the logical
elements of the document as late as possible. Thus, the association of an “emphasis” ele-
ment to italics, for example, is not done until formatting (presentation) time, even though
this information needs to be stored in the database. The list of associations between logical
elements and their processing instructions is known as a style sheet. We, therefore, store
style sheets in the database.

To represent the style sheet in the database as a separate piece of information from
the document instance we extend our type system to include a DTD for style sheets. The
style sheet DTD that we implement is given in Appendix 2.

It should be noted that style sheets are inadequate to specify the entire range of proc-
essing instructions. One example is context sensitive processing – the processing of an em-
phasis element may depend on whether it occurs in the abstract paragraph or in the main
body of text. Another aspect is the layout of text – for example in two or three column for-
mats. The first can be handled using the LINK option of SGML (Goldfarb 1990). For the
second problem, we can associate this information as processing instructions for the root of
the document instance tree; in this case the instance of an article element.

20

Type System for Presentation Information

Since we use HyTime to model temporal and spatial information, the same concept of
a document can be extended to include the presentation layout as well. To represent proc-
essing instructions, we have another category of documents – the DTD for style sheets.
This too is a collection of elements with hierarchical relationships.

The type HyElement in Fig. 6 is the supertype for all HyTime elements in the type
system. Its immediate subtypes are those modeling the architectural forms used in the DTD.
The attributes of HyElement are its ID (assigned by the author of the document, or by the
document authoring software), and the string representing the name of the architectural
form. This models the assumption that every HyTime element can be linked to, and should
answer the architectural form it conforms to. The sub-hierarchy rooted at HyElement is
depicted in Fig. 10.

Fig. 10. Type Hierarchy for HyTime Elements

Of the nine HyTime architectural forms used in the DTD, the most important are the
fcs and the ilink AFs. The ilink AF can be a Structured element depending upon the
DTD designer. We create a type for this AF, called Ilink_AF, as a subtype of the
HyElement type. In the DTD for news articles, the link element has a complex content
model and conforms to the ilink AF. Therefore, the Link type is a subtype of both Il-
ink_AF and Structured. According to the HyTime standard, the ilink AF has to have
the attributes linkends and anchrole (anchor role). The ilink AF can be used to
specify multiple destinations per link, and can link any element to any other element. The
linkends attribute is therefore a list of Element references. The anchrole is of type
String. The Ilink type has the pure virtual method traverse which takes the object
ID of a destination element (present in the linkends attribute), and performs a traversal
according to the applications semantics (hence Ilink is an abstract type, like most other
types representing architectural forms). This method is defined in the Link subtype.

TextElement Structured HyElement

StructuredText

Ilink_AF
Evsched_AF

Extlist_AF

Event_AF Fcs_AF
Axis_AF

Dimspec_AF

Link

Temporal

Saudio Spatial

SvideoStext

Av-fcs Av-evsched

Av-extlist

X Time

Xdimspec Ydimspec

Tdimspec

Marklist_AF

Axes-marklist

Y

21

The fcs element is important because it provides the interface to the other system
components to determine the types of media objects present in the continuous media, and to
determine the presentation schedule of the media objects which are a part of the fcs. The
attributes and methods of the Av-fcs type illustrate how this information can be ob-
tained. It has a method GetSchedule which returns an object of type TimeFlowGraph
which contains the schedule of the objects. The method GetVideoObjects returns a list
of references to objects of type Video (an atomic type). These atomic objects can be que-
ried for location and QoS information.

The other HyTime elements (Fig. 10) are architectural forms used in the DTD. All
three axes (x, y, and time) declared in the DTD are similar, except for the dimensions,
measurement units, and measurement granularity, which are reflected in the values of the
axisdim, axismeas, and axismdu attributes. However they have different se-
mantics in the DTD; thus they are separate subtypes of Axis_AF.

Event_AF type has been subtyped to represent the three different types of events
possible in the finite coordinate space – text, video and audio (Stext, Svideo, and
Saudio). The intermediate supertypes Spatial and Temporal reflect the fact that
Saudio has a purely temporal dimension, while Svideo and Stext have both spatial
and temporal dimensions. These types have attributes which reference the atomic type in-
stances which store the media associated with these objects. For instance, an Stext type
instance will have a reference to an instance of SyncText. The Exspec attribute refer-
ence the Extlist instances which hold the values of the extents of these elements along
the three axes.

The extlist architectural form has the concrete element type Av-extlist. The
children of this element are the three elements conforming to the dimspec architectural
form. Therefore the Av-extlist type is a subtype of the Structured type. The
three subtypes of Dimspec_AF (not shown in the diagram) are exactly the same, but are
separate for classification purposes. They contain elements conforming to the marklist
AF, and are hence Structured elements.

The elements of the style sheet DTD are shown in Fig. 11. There are 7 elements in
that DTD, of which only 3 are structured elements (style-sheet, rule, and spec).
All the elements consist of strings. It is preferable not to use the annotation model to store
these text elements. This is because the size of the style sheet is small (no large objects, and
a few lines of text). Therefore the types modeling the elements of this DTD are either sub-
types of Structured, or are direct subtypes of Element.

Fig. 11. Style Sheet Element Types

Element

StructuredElement

Cat-name Source-element

Pres-attr Value

Style-sheet Rule Spec

22

4.4 Example Design

In this section we use our sample document to demonstrate how the type system de-
scribed in the previous sections can be exercised. This discussion concentrates on the com-
position hierarchy that emerges among objects according to the document structure. The
composition hierarchy is based on the attributes of each type. Instead of presenting the at-
tributes abstractly, we will demonstrate how the structure of the sample document is
mapped to a composition hierarchy as objects are instantiated and their attribute values set.
This discussion refers to Fig. 12 and 13, where object instances of type X are denoted as
MyX and the arrows are from objects to their component objects.

The root of the composition hierarchy (Fig. 12) is one instance of the Article type
object, called MyArticle. MyArticle has three attributes, among others, that point to a
Frontmatter type object, called MyFrontmatter, an Async type object, called
MyAsync, and a Sync type object, called MySync. MyFrontmatter, holds the information
in the document that is delimited by the markup <front> and </front> . As discussed
in Section 4.2, the body of the document is separated into an asynchronous part
(MyAsync) and a synchronous part (MySync). The asynchronous part describes the text
and image part of the document.

Fig. 12. Partial Object Composition Hierarchy

According to the DTD of Appendix 1, each document is separated into sections first.
In our example, we assume that the Fig. which consist of the building’s picture and the text
before it is one section (even though it is only one paragraph) and the part after the Fig. is a
second section. Thus, there are two Section type objects (MySection-1 and MySection-
2) as well as one Fig. type object, MyFig. which are components of MyAsync.

The rest of the hierarchy should be obvious. Note that there are composition paths

MyArticle

MyFrontmatter MyAsync MySync

MyEdinfo MyHdline MySection-1 MyFig. MySection-2

MyAuthor

MyKeywords

MyDate MyParagraph-1 MyParagraph-2

MyLink-1 MyEmphasis-2

MyLink-2

MyFigCaption

MyLink-3

MyEmphasis-1

23

from some of these objects to instances of atomic types (Fig. 4). For example, MyFig. has
a link to an object of type Image (or one of its subtypes depending on the type of the Im-
age) for the picture of the building.

The synchronous part of the document that corresponds to the audio and video is
shown in Fig. 13. In the sample news document of Fig. 2, it is assumed that a closed cap-
tioned video of the Guided Tour is associated with the article.

Fig. 13. Composition Hierarchy for the Synchronous Portion of the Example Document

The closed caption video consists of the video, synchronous with the commentary
(audio), along with captions which appear periodically, giving the French translation of the
commentary. The three media are modeled as events in the finite coordinate space described
in the DTD. The whole “audio visual” therefore consists of the two spatial axes (the time
axes), the finite coordinate space, and the list of event extents along the axes.

Since there is only one closed captioned video, there is only one instance of the
AudioVisual element in Fig. 13, which has as its children the instances of the axes, the
instance of the Av-fcs, and multiple instances of extent lists (MyAv-extlist).

 The Av-fcs instance itself contains just one event schedule (there could be several;
for example if the commentary had been partitioned into logical segments). The event
schedule is just the collection of the events occurring in the FCS. Since the audio and video
data are not segmented, there is just one audio event, one video event; there are how-
ever several synchronized text (Stext) event instances, one for each caption.

According to the DTD, each extent list consists of dimension specifications
(dimspec), which in turn consist of marker lists (list of positions along the axes). The first
two instances of the Av-extlist type are shown in the figure; the contained dimspec

MyArticle

MyFrontmatter MyAsync MySync

MyEdinfo MyHdline MySection-1 MyFig. MySection-2

MyAuthor

MyKeywords

MyDate MyParagraph-1 MyParagraph-2

MyLink-1 MyEmphasis-2

MyLink-2

MyFigCaption

MyLink-3

MyEmphasis-1

24

instances are shown for the second. We omit the marker list since it is too involved to dis-
play in one figure.

Not shown in the composition hierarchy are the occurrences of instances of atomic
types. In Fig. 12, MyFigure has a reference to an instance of Image. In Fig. 13, My-
Audio has a reference to an instance of Audio, MyVideo to an instance of Video, and
MyStext-1, etc. have references to instances of SyncText.

5. Visual Querying Facility
Many of the tools that access multimedia information systems are based on browsing.

In the case of hypermedia documents, these browsing tools may become sophisticated
enough to allow navigation via links, playing of audio and video components, etc. Many
tools ignore the equally important query facility which allows ad hoc querying of the mul-
timedia news database. Our research focuses on querying multimedia databases and the
prototype that we have developed provides an integrated system for querying and browsing
of multimedia news documents.

We are ultimately interested in the development of query languages, access primi-
tives, and visual query facilities that would allow sophisticated querying of these databases,
including content-based querying of all types of media. However, our current research and
system has so far concentrated on elaborate searching of textual parts of documents and
provides means for accessing other monomedia objects by means of keywords.

The following retrieval scenario elaborates on the type of queries the user and the
system may perform.
• The user wishes to see some articles about educational institutions. Alternatively, the

request may be to view some articles featuring University of Alberta. Therefore, the
database is queried for all documents with the keywords education in them (or Uni-
versity of Alberta).

• The database returns a list of titles of articles with the required keywords. Other in-
formation displayed could be the list of media types in the article, and the nominal cost
of retrieval of the document. This cost changes as the user negotiates the quality of
service desired (or can be paid for) with the system. Note that each of these additional
pieces of information is obtained through the user interface by querying the documents
in the list.

• The user selects one particular article (for example, the one described in Section 2),
and retrieves the document after negotiating the cost of access.

• The retrieval process itself triggers additional queries to the document in the database
to fetch the necessary information for accessing and displaying the document. This in-
cludes fetching meta-information, presentation information, etc.

• Although a keyword based search is the most likely scenario, there are other queries
possible that would return a list of documents matching the search criteria. For exam-
ple:

 - return documents with a particular text string within the text of the article.
 - return documents with video, but no text.
 - return documents with a certain location and date.
 - return documents by a certain author, etc.

 Searches also allow the user to retrieve components of a document (only video, for ex-
ample) rather than the complete document.

25

• Queries can be performed on the displayed document as well. Text string matching is
a common example. Following the links within the document could result in more que-
ries by the system to determine the meta-information associated with the new docu-
ment.

• Other complex queries based on the contents of various multimedia objects may be
used. For example, “return all documents with video clips depicting research on …”.

5.1 Design Principles

Since multimedia systems have a lot of potential in delivering information to the us-
ers, special attention should be given to the actual usability of these systems. A system's
usability is determined by how easily and effectively the users can use and communicate
with the system. Usability parameters for most systems include ease of use, efficiency,
ease of remembering and pleasantness (Nielsen 1990a). Some general and generic design
requirements for usable multimedia user interfaces have been identified including simplic-
ity, consistency, engagement, depth and fun to use. In addition to these general design re-
quirements, there are more specific requirements for the News-on-Demand application. The
general high-level functions required of the system can be summarized as follows:
• Browsing/Viewing information: Users should be able to view multimedia

documents by reading text, looking at images, playing video, listening to audio and
following links to related information.

• Searching for information: Users should be able to search the news using a vari-
ety of criteria such as date, author, subject, location, and, most importantly, it’s con-
tent. The system should provide a fast and easy way for searching and an efficient
mechanism for accessing and displaying search results.

• Customizing the system: Users should be able to define and modify system set-
tings. Settings should include: document layout, screen layout, window specifications,
quality of service parameters and others.

• Other functions: These include allowing users to add their own annotations to
news documents, providing users with additional navigational aids such as maps and
subject indexes, and providing users with a history of the visited documents.

These requirements point to a customizable and easily extensible interface which
combines the browsing capability (found in most existing multimedia interfaces) with a
querying capability (lacking in many of the same interfaces). Furthermore, the querying
capability should be a visual one that merges seamlessly with the browsing facility and sat-
isfies the other general usability requirements of a multimedia user interface.

These requirements suggest a number of design decisions. Our choices vis a vis these
decisions can be summarized as follows:
• Hypermedia: Hypertext/Hypermedia provides the user with a non-sequential means

of freely browsing information according to individual need (Nielsen 1991).
 Not all multimedia systems use hypermedia links (Blattner and Dannenberg 1992).

However, in the News-on-Demand application, documents often have links to other
related data such as background information, more news coverage, and expert analysis.
Therefore, a hypermedia interface is a good design choice as it provides the news read-
ers with an easy and efficient way of accessing and browsing related information.

• Query mechanism: A hypertext/hypermedia interface to a multimedia system may
not be sufficient to provide all of the accessing mechanisms the user needs to obtain in-
formation from the database. In many applications, such as News-on-Demand, users
need to search for specific information based on partial knowledge. This must be ac-
complished more simply and quickly than is possible through the browsing facilities of

26

hypermedia. Moreover, as the information increases in quantity and complexity, the
browsing facility of hypermedia becomes more and more inadequate. According to
studies of the usability of hypertext systems, users have often reported that they be-
come disoriented while navigating through hypertext systems and fail to reach points of
interest. This phenomenon was reported even when using the most popular commer-
cial hypertext systems (Nielsen 1990b; Nielsen 1991). For the News-on-Demand ap-
plication, a querying facility that allows users to search and retrieve information directly
from the database is a good design choice. The user interface should provide an easy
way for performing queries and searches, and examining the results.

• Input modalities: A “good” user interface should provide the user with appropriate
interaction modes, depending on the application and the types of input needed from the
user. We can categorize the modes of interaction into three major categories (Blattner
and Dannenberg 1992):

 - Direct manipulation of graphical objects on the screen.
 - The use of natural language.
 - The use of formal languages.

 In case of the news-on-demand application, a graphical user interface, with direct
manipulation techniques, is sufficient to deal with user input. Typically, users need to
click on icons to follow links, choose options from menus and lists, type text, etc.

• Tight integration with the OBMS: An important aspect of the visual query fa-
cility is its tight integration with the OBMS. Each of the allowed functions has a corre-
sponding ObjectStore query specification. Thus, each user request is translated into an
invocation of a query on the database and the translation of the result to the visual form
that is requested.

• Separation of presentation from document storage: As discussed in Sec-
tions 2.3 and 4, we follow the SGML/HyTime principle to separate the document stor-
age from its presentation. We also separate certain presentational features, such as
window size, control panels for various displays, etc., from the style sheet and con-
sider these as the user profile. This is because styles are associated with individual logi-
cal elements, but there are other presentational features that are independent of the types
of element being displayed. For example, one user may specify that clicking a video
button in a document should start playing the video immediately while another user’s
preference may be to open up a video control window with VCR-type controls. These
choices are made more frequently than the choices of styles, and may require a different
storage model than the one adopted for the document content which assumes no up-
dates to the content.

5.2 The Interface

It is not our intention in this paper to describe the full functionality of the interface.
Instead, we will highlight the major functions that it supports and focus on the querying
capability. The full set of screen shots comprising the user interface (as well as our publi-
cations) is available on the World Wide Web at
http://web.cs.ualberta.ca/~database/multimedia.html. The visual interface we have devel-
oped for the news-on-demand multimedia information system provides a number of fun-
damental functions (Fig. 14):
• initiate a quality-of-service negotiation;
• start a filtering operation in the database;
• perform a search.

27

In addition, the user can select options from menus in the Application Launcher: (1) The
Implementation menu provides debugging capabilities by displaying the ObjectStore
queries that correspond to the various functions (this issue is discussed further in the fol-
lowing section); (2) The Document List menu displays a list of the multimedia docu-
ments in the database; (3) The Tools menu provides the user with miscellaneous tools
which include subject index, history, etc.; (4)The User Settings menu allows the user to
customize the system settings as part of style sheets.

Fig. 14. Application Launcher

The search and filter operations result in a subset of the news articles being displayed.
A user may conduct further searches on these articles. Alternatively, any of the news arti-
cles may be opened by clicking on the textual description of that document.

Once a document has been opened, the user can access related material by clicking on
an anchor to follow a link. In many multimedia systems, a link can only have a single des-
tination. However, we take the more general approach of allowing multiple destinations
where each destination may be a whole multimedia document or a component of a docu-
ment. The user can navigate between documents by following or returning from links.
More importantly, the interface allows the user to perform a search from anywhere within a
document and to specify the scope of the search.

Another important feature of the interface is allowing the users to customize the pres-
entation. Customization ranges over a variety of system parameters, such as defining the
presentation of anchors within a document, attaching a font format (such as italics, bold,
reversed video, etc.) to an emphasized text, and defining different layouts for the same
document. Other examples of customization include immediate playing of a video when the
icon is clicked versus opening up a control panel (similar to a VCR) to allow explicit acti-
vation of the video. The user can also define a default document filter, quality of service
parameters, etc. for system startup. All user preferences, for the system and presentation
issues, are stored in the database as user profiles and/or style sheets.

Since our main emphasis in this paper is querying capabilities and their tight integra-
tion with the database, we will discuss them in some detail. The full interface functionality
is presented elsewhere (El-Medani 1995). Two classes of querying capabilities are pro-
vided: filtering documents and searching (both globally and from within a document).

Filtering Documents

The user can specify the scope of the documents displayed in the document list by
using the Filter option (Fig. 15). Filtering is a search on document attributes. The result
of the filter is a set of documents whose attributes match the ones specified by the user.
Filtering of documents can be performed based on subject, country of publication, title,
author, date, etc. More attributes can be added by storing them in the database. The set-

28

tings of any filter can be saved (in the user profile) as the default filter which is used dur-
ing system startup, but filters can also be applied to the document list at any time.

Fig. 15. Filtering Documents

Searching Documents

The user can search documents for specific information (apart from attributes) by us-
ing the Search facilities provided by the system. Searches can be performed onthe whole
database (Global Search), on a document list or from within a document. The user specifies
the text to search for (optionally using Boolean combinations of strings), the media types as

29

well as the scope of the search. The scope of the search can be all the documents in the da-
tabase, the documents in a list, only the current document, or document sdirectly linked to
the current document. Fig. 16 shows a global search on all the documents. For images,
audio and video, a keyword search is performed (as indicated before, we have not yet de-
veloped content-based indexing and access techniques for these media types). The search
facility allows the user to query the database and locate specific information directly as
needed. This provides an easier and more efficient way of accessing data than using the
navigation facility where exploration can be very time-consuming.

Fig. 16. Global Search

The Text submenu of the Search option (Fig. 17) allows the user to define the text
elements to be searched in the query. A user can choose to search all the text content, or
alternatively, can choose to only search specific elements such as the headline, the abstract,
paragraphs, quotations, etc.

30

Fig. 17. Text Submenu

The search facility returns a list of objects which match the query (Fig. 18). The
objects can be text paragraphs, video clips, images, audio streams or even complete docu-
ments. The types of objects returned are specified by the user during the search (it corre-
sponds to the media types checked). For example, if the user selects only video and im-
ages as the media types to be searched, the query will only return video and image objects
which match the query, but not the associated text or audio. The user can go back and nar-
row or widen the types of objects returned by re-marking the media types.

31

Fig. 18. Search Result

Since the search results list consists only of text summaries of objects, there is no
need to fetch these objects from the database server. This significantly reduces communi-
cation costs since multimedia objects can be very large and expensive to transmit. It is only
when the user selects a search result object to view that the object is actually transferred to
the client (Fig. 19).

32

Fig. 19. Document View

Style Sheets

As indicated earlier, we separate the presentational considerations of multimedia
documents from the storage of those documents. These presentational preferences are
stored as style sheets and the visual query interface provides facilities for their manipula-
tion. The Style Sheets submenu of the Document View (Fig. 20) provides a list of the
available style sheets. The user can choose any one of the defined style sheets to be used in
displaying the document. Alternatively, the user can define a new style sheet and save it in
the database.

33

Fig. 20. Available Style Sheets

Any defined style sheet can be updated by the user (Fig. 21). The operations that are
allowed include the definition of anchors, attachment of a font format to an emphasis type,
choosing a font. In the future, we intend to allow other attributes, related to presentation, to
be added to style sheets by the users. This facility is not yet provided since this requires the
generation of interface windows and DTD updates for style sheets.

34

Fig. 21. Style Sheet Settings

5.3 Coupling the Interface with the Database

A unique feature of the visual query facility is its tight coupling with the multimedia
database. Each time a search is performed or a document component is to be viewed, a
database query is issued to the underlying ObjectStore system. The visual query facility,
running on a client machine, issues ObjectStore queries to the client which fetches the re-
quired objects from the server. The ObjectStore client then returns the matching objects to
the interface. It is the responsibility of the visual query interface to manipulate these objects
depending on the tasks to be performed. In the remainder of this section, we will describe
this coupling by means of an example.

Assume that the user wishes to filter the initial document list that appears in the
Document Launcher window (Fig. 14) to include only documents dealing with education in
Canada. The user presses the Filter button and the Filter window (Fig. 15) is displayed.

35

After the user fills in the Subject and Country fields, the Ok button is pressed. The vis-
ual query interface translates this information into an ObjectStore query as follows.

Assume that the class of multimedia documents is called article and is defined as
follows in C++ (note that we only include a subset of the attributes here):

class article {
public:
 char * title;
 char * country;
 char * date;
 char * source;
 char * subject;

}

The following ObjectStore query will be produced by the visual query interface and
will return a collection of all the articles dealing with education in Canada:

os_database *news_database;
os_Set<article *> *all_articles;

os_Set<article *>& matching_articles =
all_articles->query ("article *,”

"this->subject == 'Education' &&
this->country == 'Canada',” news_database);

ObjectStore queries are always over a single top-level collection, i.e., a collection not
embedded in another object. A query returns a subset of the queried collection
(os_Collection::query()), a single object (single element query;
os_Collection::query_pick()), or a Boolean (existential query;
os_Collection::exists()). Queries can be nested (Orenstein et al. 1992). The
query constraint (the condition satisfying the query) must use data members or function
calls involving a comparison operator. These specifications required by ObjectStore must
be taken into account in translating all user actions to equivalent queries; for example, when
a document object is fetched for viewing.

6. Related Work
The issue of database design for multimedia data has been tackled from the relational

as well as the object oriented data modeling perspectives. The design involves (a) defining
a model for multimedia documents, and (b) defining models for multimedia data.

The utility of object oriented database systems for hypermedia applications (vis a vis
relational systems) is highlighted in (Balasubramaniam 1993). Perhaps the earliest object
oriented approach is (Kim et al. 1986) which discusses building a multimedia database on
top of Orion. In (Blake et al. 1994), the task of incorporating support for text in a relational
DBMS is tackled. To enable queries on structured text documents in SGML format, exten-
sions to SQL are proposed. Instances of document categories (defined by different SGML
DTD) are fields of a new data type called TEXT. Each TEXT field consists of the contigu-
ous text content of the document along with the parse tree. Elements in the DTD can be part
of the query; it is also possible to pose queries about the DTD itself. The EXPAND opera-

36

tor can be used to convert parts of the parse tree into fields of a relation. Updates to the
TEXT field are not handled. Including multimedia data and HyTime elements would not be
possible in this design. The approach of storing the text content contiguously and not frag-
menting it is similar to our approach. However, we store the locations (or annotations) of
the start and end of element instances; the parse tree is implicit in the composition hierarchy
(cf. Section 4.4). Other approaches to object oriented models for multimedia data include
(Christodoulakis 1991).

A novel object oriented model for a video database is proposed in (Oomoto and
Tanaka 1993). The model is schemaless, and includes inheritance by inclusion as an in-
heritance mechanism. This means that instances, not types, inherit attributes. Therefore, the
hierarchical structure of a video object would be described by a series of derivations, and
not by composition.

Querying of SGML documents is also the focus of (Christophides 1994), where ex-
tensions of two OBMS query languages are proposed. The paper highlights the issues as-
sociated with the object oriented modeling of SGML document structure. In particular, two
extensions to the data model of an object oriented database system (O2) are proposed. They
are: (a) ordered tuples, or the ordering of attributes of a type, and (b) union types. The ex-
tensions to the query language are (a) the contains predicate to handle querying on strings,
(b) implicit selectors to handle queries over union types, and (c) two new sorts to query
text without exact knowledge of it’s structure. Types representing unstructured document
elements are inherited from basic (atomic) types such as Text and Bitmap. This means
that textual document elements are fragments of the text content of the document, which
imposes a performance/storage overhead. However, the authors believe that the improved
access flexibility makes the new language particularly suitable for extensions to SGML,
such as HyTime. Structured document elements have types associated with them; however
there are no inheritance relationships shown between them.

Our approach to handling union types is described in Section 4.3. The ordering of at-
tributes is visible through the behavior of the types. We don’t handle queries with inexact
knowledge of the document structure in our model. Querying on strings is handled by the
method match of the Text type. Since we do not implement union types in our system,
we do not deal with selectors (queries predicated on the discriminant method). The inheri-
tance relationships described in Sections 4.1–4.3, and the composition hierarchies de-
scribed in Section 4.4 illustrate our approach: every element is an Element, and may have
an instance of an atomic type. If the element is a TextElement, then it’s content is de-
scribed by it’s annotation attribute.

The design of an OBMS application to handle the storage of SGML documents is de-
scribed in (Böhm et al. 1993). This design also fragments documents according to the
document’s SGML type definition, and enables queries on the structure of the document.
The paper does not describe the querying facilities, but describes in detail how dynamic
DTD handling is implemented by means of meta-classes. The design follows a layered ap-
proach by separating out the DTD specific features and DTD independent features into two
separate layers of classes3. Document type-specific classes are specializations of the docu-
ment type- independent classes. This means that features present in all SGML documents
(methods to navigate the document tree for example) can be abstracted out in the classes of
the document type-independent layer. Furthermore, there are two meta-classes: terminal
and nonterminal. Classes in the document type-specific layer are instances of either of these

3 There is a third layer, the HyTime layer, which is under development.

37

meta-classes. The nonterminal class has a method to create a new document-specific class
at run time. The content model of the new class can be set using another method. Finally,
instances of the document type-specific class can be created at run time using the inherited
method createElem(). In this manner, DTDs can be dynamically created and inserted
into the database.

Our approach has similarities to this design. The supertypes TextElement,
Structured, and StructuredText can be said to be document type-independent
types. We have not considered dynamic additions of DTDs to the database in our design
(although ObjectStore has metatypes in its data model and allows the dynamic addition of
classes to the ObjectStore database schema).

The implementation of a persistent object oriented system for HyTime documents
forms part of the paper (Koegel et al. 1994). The database (implemented on ObjectStore)
forms part of a HyTime engine which is used to process and display hypermedia docu-
ments represented using the HyTime standard. This design also fragments the document
according to the element types in the DTD. The design is again layered: there is an SGML
layer, a HyTime layer, and an application layer.

There are only three classes in the SGML layer: the document class, the element
class, and the attribute class. When a document is inserted into the database, an instance of
the document class is created, with its fields as the collection of all instances of the elements
of the documents. The element instances in turn have references to their attributes which are
instances of the attribute class. In the HyTime layer, each architectural form used has a
class associated with it. Instances of these AFs get inserted at document insertion time. The
application layer has a class for each element type in the DTD. These get instantiated by the
application process, which obtains information on them by querying the HyTime and
SGML layers. The application then works from this layer. Updates to these objects get
propagated down to the appropriate HyTime and/or SGML layers.

The types representing HyTime elements in our design are all subtypes of HyEle-
ment. This could be considered to be a separate ‘HyTime Layer’. However, the applica-
tion specific HyTime elements (for example Stext, Saudio) are subtypes, of types
representing architectural forms, and not a separate layer. We assume no updates to the in-
stances in the databases.

A document model based on the Office Document Architecture (ODA) is described in
(Meghini et al. 1991) and (Bertino et al. 1988). ODA is similar to SGML in that it allows
for the specification of the logical structure of the document. In addition, it allows the
specification of a layout structure, or the presentation information associated with the
document. The papers mention object oriented models as candidates to model these struc-
tures. They define an additional layer, called the conceptual structure which is used to cap-
ture the semantics of the components of the logical structure. In (Meghini et al. 1991), it is
recognized that support for multimediality is required; this is achieved by providing primi-
tive classes for each media type. Querying this document model, and the optimization of
such queries forms most of the paper (Bertino et al. 1988).

An object oriented framework for modeling composite multimedia objects (such as
multimedia documents) is proposed by the Object Systems Group at the University of Ge-
neva in (Gibbs et al. 1993; Gibbs et al. 1994). The focus is on providing a high level inter-
face for multimedia programming. In particular, (Gibbs et al. 1994) deals with data models
for time based media, and (Gibbs et al. 1993) deals with so-called audio/video (AV) data-
bases. These databases are collections of digital audio/video data and processes which can

38

compose and aggregate these data. An AV database, therefore, not only stores data, but is
also “involved with the capture, presentation and scheduling of complex objects, managing
access and allocation of devices and channel bandwidths, and notifying the application of
presentation-related events”. This model performs almost all of the functions of a HyTime
engine.

Others have focused on the temporal aspects of multimedia data, and their synchroni-
zation. (Hamakawa and Reitmoro 1993) describes a model for composing multimedia ob-
jects and the playback of the composite objects. In (Little and Ghafoor 1991), a procedure
is presented for the spatial and temporal composition of distributed multimedia objects.
Object Composition Petri-nets (an augmented model of Petri net with logic of time inter-
vals for Petri net execution) are used to specify the temporal constraints of compound mul-
timedia objects. The destination workstation retrieves the temporal relationships from the
server database, evaluates the petri net and derives the playback schedule. (Little and
Ghafoor 1993) describes a temporal model to capture the timing relationships between ob-
jects in composite multimedia objects, and maps it to a relational database. This model
forms a basis for a hierarchical data model and for temporal access control algorithms to
allow VCR-like capabilities. They show how it can be mapped to a relational database and
derive the playback algorithm.

HyTime also adopts an interval based approach to modeling timing relationships, and
establishes a composition hierarchy (Figure 13) using the document structuring feature of
SGML. All intervals are defined on a single time axis for the whole document. In our im-
plementation, this representation is mapped to an instance of a Time Flow Graph (Lamont
and Georganas 1994) (a playback schedule)4 used by the synchronization component of the
distributed multimedia system to synchronize data streams retrieved from the servers.

Many multimedia information systems provide a browsing-based user interface, but
have limited querying capabilities. Perhaps, the most popular interface of this type is Mo-
saic for accessing the World Wide Web. Along the same lines, a model for hypertext-
based information retrieval is presented in (Lucarella 1990). In (Williams 1991), a hyper-
media system for on-line technical documentation is described. It provides a browsing fa-
cility and supports limited keyword search. There are many other hypermedia systems
which provide elaborate browsing facilities but they have limited querying capabilities
(Grønbæk and Trigg 1994; Haan et al. 1992; Plaisan 1991). The system described in (Frei
and Schauble 1991) supports storage and retrieval, as well as browsing of multimedia in-
formation. These functions are achieved through hyperlinks between related information
and a searching facility. Queries are handled using a functional database query language
(FQL*) which is extended to include elementary similarity functions to allow for imprecise
queries.

7. Conclusions and Future Work
In this paper we describe an object-oriented multimedia DBMS design for a news-on-

demand application. The focus of the work reported here is the development of a type sys-
tem that supports multimedia documents and the development of a visual query interface for
accessing a multimedia database. There are three characterizing features of our type system
design: (1) the central use of DBMS technology, (2) the reliance on object-oriented sys-

4 Type Av_fcs, which models a Finite Coordinate Space has a method GetTimeSchedule which re-

turns a data structure representing the binary temporal relationships between the events in the FCS. From

this data structure, the synchronization module derives the Time Flow Graph.

39

tems, and (3) strict adherence to international standards. The database is designed to ac-
commodate actual multimedia objects as well as meta-information about them. The database
schema consists of an object type system which follows the SGML/HyTime standard for
document preparation. The query facility provides two major capabilities: querying and
browsing. Querying capabilities are necessary to allow users to directly and efficiently
retrieve information from the database. Browsing capabilities allow users to easily explore
and obtain information that is directly related to query results. Our visual interface com-
bines these capabilities by concentrating on two areas of technology: query mechanisms
and hypertext/hypermedia systems. It enables users to access the multimedia database
without having to type complicated ObjectStore queries.

This database is implemented on top of ObjectStore running under AIX. The imple-
mentation language is xlC, which is IBM’s implementation of C++ for the AIX environ-
ment.

In the long-run, we are developing an extensible OBMS that has inherent support for
multimedia formation systems. We intend to use our own system, called TIGUKAT5 (Özsu
et al. 1995), to eventually replace ObjectStore. We may not be able to achieve the same per-
formance, but there will be opportunities to expand on the functionality and investigate the
feasibility of various issues. It is difficult, if not impossible, to investigate all of the issues
related to multimedia DBMS design by building a layer on top of a closed system such as
ObjectStore. TIGUKAT is currently being prototyped at the Laboratory for Database Sys-
tems Research of the University of Alberta. It has a purely behavioral object model where
the users interact with the system by applying behaviors to objects. In this way, full ab-
straction of modeled entities is accomplished since users do not have to differentiate be-
tween attributes and methods.

In the short-term, we have started to investigate four issues: (1) making the type sys-
tem richer, (2) building front-ends to the multimedia DBMS, (3) content-based indexing
and querying of multimedia objects, and (4) the development of application specific query
languages and primitives, and the optimization of these queries. Our type system design
implements a DTD definition for multimedia news documents. We are investigating ways
of storing DTDs as objects and using meta-types to define new DTDs.

Secondly, our work, so far, has concentrated on the right-hand-side of Fig. 1. Con-
sequently, a multimedia document is currently entered into the database by creating the ob-
ject instances according to the types defined in the database. We are trying to couple our
multimedia DBMS with an SGML compiler which will be retrofitted to instantiate object
instances at the “code generation” step of compilation. Later on, we will add HyTime capa-
bility to this front-end. In this fashion, documents marked-up according to the
SGML/HyTime standard can be automatically inserted into the database.

Thirdly, we are investigating content-based indexing of multimedia objects. At this
point, the only way to query images, for example, is to define a number of attributes and
search on the values of these attributes. It is important to provide the facility to pose queries
that refer to the content of the images rather than the attributes defined on them and be able
to deal with such queries. The initial step in providing this facility is to work on indexing of
image contents. We intend to incorporate these into an image storage system that will be

5 TIGUKAT (tee-goo-kat) is a term in the language of Canadian Inuit people meaning “objects.” The Cana-

dian Inuits, commonly known as Eskimos, are native to Canada with an ancestry originating in the Arctic

regions of the country.

40

coupled with TIGUKAT.

Finally, we are studying access primitives and query languages for multimedia in-
formation systems. Particularly, we are interested in the design of application-specific
query languages by which application designers can access multimedia objects. The de-
velopment of the appropriate language features for multimedia systems is often cited as one
of the most important issues in the development of multimedia applications. These language
features will be incorporated into the TIGUKAT query model and the query language de-
veloped on top of it.

References
Böhm K, Aberer K, Hürer C (1993) Extending the scope of document handling: The de-
sign of an OODBMS application framework for SGML document storage. Technical Re-
port P-93-24, GMD-IPSI, Germany

Balasubramaniam V (1993) State of the art review on hypermedia issues and applications.
Internal document, Graduate School of Management, Rutgers University, Newark, New
Jersey

Blake GE, Consens MP, Kilpeläinen P, Larson PA, Snider T, Tompa FW (1994)
Text/relational database management systems: Harmonizing SQL and SGML. Proceedings
of the First Intl. Conf. Appl. of Databases, pp 267-280

Blattner MM, Dannenberg R.B (ed) (1992) Multimedia Interface Design. ACM Press,
New York

Bertino E, Rabitti F, Gibbs S (1988) Query processing in a multimedia document system.
ACM Trans. Office Information Systems 6(1):1–41

Christophides V, Abiteboul S, Cluet S, Scholl M (1994) From structured documents to
novel query facilities. Proceedings of the ACM SIGMOD International Conference Man-
agement of Data, pp 313-324

Christodoulakis S, Ailamaki N, Fragonikolakis M, Kapetanakis Y, Koveos L (1991) An
object-oriented architecture for multimedia information systems. Q. Bull. of IEEE Tech.
Comm. on Data Eng. 14(3): 4–15

S. J. DeRose SJ, Durand DG (1994) Making Hypermedia Work – A User’s Guide to
HyTime. Kluwer Publishers, Boston

Dimitrova N, Golshani F (1992) EVA: A query language for multimedia information sys-
tems. Proceedings of the International Workshop on Multimedia Information Systems, pp
1–20

Dogac A, Özsu MT, Biliris A, Selis T (1994) Advances in Object-Oriented Database Sys-
tems. Springer-Verlag, Berlin

El-Medani G (1995) Design and implementation of a hypertext user interface for a multi-
media kernel. M.Sc. Thesis, Department of Computing Science, University of Alberta,
Edmonton, Canada

Frei HP, Schauble P (1991) Designing a hypermedia information system. Proceedings of

41

the DEXA 91. Database and Expert Systems Applications Conference, pp 449-454

Gibbs S, Breiteneder C, Tsichritzis D (1993) Audio/video databases: An object-oriented
approach. Proceedings of the 9th International Conference on Data Engineering, pp 381-
390

Gibbs S, Breiteneder C, Tsichritzis, D (1994) Data modeling of time-based media. Pro-
ceedings of the ACM International Conference on Management of Data, pp 91–102

Goldfarb CF (1990) The SGML Handbook, Oxford University Press, Oxford

Grønbæk K, Trigg RH (1994) Design issues for a dexter-based hypermedia system.
Communications of the ACM 37(2):40-49

Haan BJ, Kahn P, Riley VA, Coombs JH, Meyrowitz NK (1992) IRIS hypermedia serv-
ices. Communications of the ACM 35(1):36-51

Hafid A, Bibal A, Bochmann, Gv, Burdin T, Dssouli, R, Gecsei J, Kerhevé B, Vu Q
(1994) On news-on-demand service implementation. Publication #928, Département
d’Informatique et de Recherche Opérationnelle, Université de Montrèal, Montrèal, Canada

Hamakawa R, Reikmoto J (1993) Object composition and playback models for handling
multimedia data. Proceedings of the First ACM International Conference Multimedia, pp
273–281

ISO (1986) Information Processing – Text and Office Information Systems – Standard
Generalized Markup Language (ISO 8879). International Standards Organization

ISO (1989) Office Document Architecture (ODA) and Interchange Format (ISO 8613).
International Standards Organization

ISO (1992) Hypermedia/Time-based Structuring Language: HyTime (ISO 10744). Inter-
national Standards Organization

Koegel JF, Rutledge LW, Rutledge JL, Keskin C (1993) HyOctane: A HyTime engine for
an MMIS. Proceedings of the First ACM International Conference Multimedia, pp 129-
136

Little TDC, Ghafoor A (1991) Spatio-temporal composition of distributed multimedia
objects for value added networks. Computer 24(10: 42-50

Little TDC, Ghafoor A (1993) Interval-based conceptual models for time-dependent mul-
timedia data. IEEE Trans. Know. and Data Eng. 5(4):551-663

Lamont L, Georganas ND, Synchronization architecture and protocols for a multimedia
news service application. Proceedings of the IEEE International Multimedia Computing
and Systems Conference, pp 3-8

Lamb C, Landis G, Orenstein J, Weinreb D (1991) The ObjectStore database system.
Communications of the ACM 34(10): 50-63

Lucarella D (1990) A model for hypertext based information retrieval. Hypertext: Con-
cepts, Systems and Applications. Proceedings of the European Conference on Hypertext,
pp 81-94

42

Meghini C, Rabitti F, Thanos C (1991) Conceptual modeling of multimedia documents.
Computer 24(10): 23–30

Nielsen J (1990a) Hypertext & Hypermedia. Academic Press, New York

Nielsen J (1990b) The art of navigating through hypertext. Communications of the ACM
33(3):296-310

Nielsen (1991) Usability considerations in introducing hypertext. In: Brown H (ed) Hy-
permedia/Hypertext And Object-Oriented Databases. Chapman & Hall, London, pp 3–17

Neufeld G, Makaroff D, Hutchinson N, (1994) The design of a file server for scalable
VBR media, Technical Report, Department of Computer Science, University of British
Columbia, Vancouver, Canada

Orenstein J, Haradhvala S, Margulies B, Sakahara D (1992) Query processing in the Ob-
jectStore database system. Proceedings of the 1992 ACM SIGMOD International Confer-
ence on Management of Data, pp 403-412

Oomoto E, Tanaka K (1993) OVID: Design and implementation of a video-object database
system. IEEE Trans. Knowledge and Data Man. 5(4):629–643

Özsu MT, Peters RJ, Szafron D, Irani B, Lipka A, MunozA (1995) TIGUKAT: A uni-
form behavioral objectbase management, VLDB Journal, in press

Özsu MT, Valduriez P (1991) Principles of Distributed Database Systems, Prentice-Hall,
Englewood Cliffs

Plaisant C (1991) An overview of Hyperties, its user interface and data model. In: Brown
H (ed) Hypermedia/Hypertext And Object-Oriented Databases. Chapman & Hall, pp 17-
31

Vittal C, Özsu MT, Szafron D, El-Medani G (1994) The logical design of a multimedia
database for a News-on-Demand application. Technical Report TR94-16, Department of
Computing Science, University of Alberta, Edmonton, Canada

Williams I (1991) Hypermedia for multi-user technical documentation. In: Brown H (ed)
Hypermedia/Hypertext And Object-Oriented Databases. Chapman & Hall, pp 17-31

Woelk D, Kim W, Luther W (1986) An object-oriented approach to multimedia databases.
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp
311–325

43

APPENDIX 1
DOCUMENT TYPE DECLARATION FOR MULTIMEDIA NEWS

ARTICLES

DOCTYPE article SYSTEM article.dtd [

<!-- HyTime Modules Used -->
<?HyTime support base>
<?HyTime support measure>
<?HyTime support sched manyaxes=3>
<?HyTime support hyperlinks>

<! -- Non-HyTime Notations used -->
<!NOTATION virspace PUBLIC -- virtual space unit (vsu)--

+//ISO/IEC 10744//NOTATION Virtual Measurement Unit//EN>

<! -- Document Structure -->
<!ELEMENT article - - (frontmatter, async, sync)>
<!ELEMENT frontmatter - - (edinfo, hdline, subhdline, abs-p)>
<!ELEMENT edinfo - - (loc & date & source & author+ &

keywords & subject)
<!ELEMENT (loc|source|subject) - - (#PCDATA)>
<!ELEMENT (hdline|subhdline) - -

(emph1|emph2|quote|link|#PCDATA)+>
<!ELEMENT date - - (#PCDATA)>
<!ELEMENT (author|keywords) - - (#PCDATA)>
<!ELEMENT abs-p- - paragraph>
<!ELEMENT async- - (section|Fig.|link)*>
<!ELEMENT section - - (title?, (paragraph|list)*)>
<!ELEMENT title- - (#PCDATA) >
<!ELEMENT paragraph

 - - (emph1|emph2|list|Fig.|link|quote|#PCDATA)*>
<!ELEMENT (emph1|emph2|quote) - - (#PCDATA) >
<!ELEMENT list - - (title?, listitem+)>
<!ELEMENT listitem - - (paragraph)*>
<!ELEMENT link - - (emph1|emph2|quote|Fig.|#PCDATA)+>
<!ELEMENT Fig. - - (figcaption?) >
<!ELEMENT figcaption - - (#PCDATA) >
<!ELEMENT sync - - (audio-visual+)>
<!ELEMENT audio-visual - -(x, y, time, av-fcs, av-extlist+)>
<!ELEMENT (x|y|time) - - EMPTY>
<!ELEMENT av-fcs - - (av-evsched+)>
<!ELEMENT av-evsched - - (audio*, video*, stext*)>
<!ELEMENT (audio|video|stext) - - EMPTY >
<!ELEMENT av-extlist- - (xdimspec, ydimspec,tdimspec)>
<!ELEMENT (xdimspec|ydimspec|tdimspec) - - (axes-marklist)>
<!ELEMENT axes-marklist - - (#PCDATA)>

44

<!ATTLIST article
id ID #REQUIRED
HyTime NAME #FIXED HyDoc>

<!ATTLIST quote
source CDATA #IMPLIED>

<!ATTLIST author
designation CDATA #IMPLIED>

<!ATTLIST Fig.
filename CDATA#REQURED
format CDATA#REQUIRED>

<!ATTLIST (x|y|time)
HyTime NAME #FIXED axis
id ID #IMPLIED
axismeas CDATA#FIXED virspace
axismdu CDATA#FIXED
axisdim CDATA#FIXED virspace>

<!ATTLIST link
HyTime NAME #FIXED ilink
id ID #REQUIRED
linkends IDREFS #IMPLIED>

<!ATTLIST av-fcs
HyTime NAME #FIXED fcs
id ID #REQUIRED
axisdefs CDATA#FIXED x y time>

<!ATTLIST av-evsched
HyTime NAME evsched
id ID #REQUIRED
axisord CDATA#FIXED x y time
basegran CDATA#FIXED vsu vsu vsu>

<!ATTLIST (audio|video)
HyTime NAME #FIXED event
id ID #REQUIRED
filename CDATA#REQUIRED
format CDATA#REQUIRED>

<!ATTLIST stext
HyTime NAME #FIXED event
id ID #REQUIRED
filename CDATA#REQUIRED >

<!ATTLIST av-extlist
HyTime NAME #FIXED extlist
id ID #REQUIRED>

<!ATTLIST av-dimspec
HyTime NAME #FIXED dimspec
id ID #REQUIRED>

<!ATTLIST axes-marklist
HyTime NAME #FIXED marklist
id ID #REQUIRED>]

45

APPENDIX 2

DTD FOR STYLE SHEETS

<!DOCTYPE style-sheet SYSTEM style-sheet.dtd [
<!ELEMENT style-sheet - - (cat-name, rule+)>
<!-- Document category name, e.g. article -->
<!ELEMENT cat-name - - (#PCDATA)>
<!-- rule which maps element (source) to style (spec)-->
<!ELEMENT rule - - (source, spec*)>
<!ELEMENT source - - (#PCDATA)>
<!-- each presentation attribute has a value -->
<!ELEMENT spec - - (pres-attr, value)>
<!ELEMENT pres-attr - - (#PCDATA)>
<!ELEMENT value- - (#PCDATA)>
<!-- No Attributes for any of the style sheet elements -->>]

