
IT 13 087

Examensarbete 15 hp
December 2013

A Bird-watching Database System

Conny Andersson

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

A Bird-watching Database System

Conny Andersson

This report describes in detail the working process of constructing a normalized
relational database with an associated graphical user interface, based on raw data data
sets in CSV-format acquired from the Avian Knowledge Network. The data files
contained the bird sightings from the year 2009 in North America. An
entity-relationship model of the database was designed, including a table representing
the raw data as well as tables representing the corresponding normalized relational
data. As a first step the bulk loading facility of the DBMS is used for loading a CSV file
into the raw data table. Then a SQL stored procedure is used for populating the final
relational tables by transforming and cleaning the rows of the raw data table.
Performance measurements were made about the data transformation as well as a
comparison between querying the raw data table versus the final normalized tables. In
addition a graphical user interface (GUI) was developed that allows a user to query
the database in a flexible way. The performance measurements indicated that querying
the normalized tables was more efficient than querying the raw data table.

Tryckt av: Reprocentralen ITC
IT 13 087
Examinator: Olle Gällmo
Ämnesgranskare: Tore Risch
Handledare: Silvia Stefanova

Contents

1 Introduction .. 1

2 Requirements ... 2

3 System development .. 3

3.1 Design .. 3

3.2 Implementation .. 6

3.2.1 Population of the database ... 6

3.2.1.1 Bulk loading into the temporary table .. 6

3.2.1.2 Populating the normalized database with the content of the temporary table 7

3.2.2 Constructing the stored procedures for the parser ... 9

3.2.3 GUI implementation .. 12

4 Evaluation .. 15

5 Related work .. 19

6 Conclusions and future work ... 20

References .. 21

Appendix 1 ... 22

The import query .. 22

The SPLIT_STR function .. 22

The stored procedure Parsetext (first parser) ... 23

The stored procedure Parsetext (improved version) .. 24

The stored procedure Looptable .. 25

The complete script for populating the database ... 26

Appendix 2 ... 30

Appendix 3 ... 32

Appendix 4 ... 33

1

1 Introduction

The main goal of this project is to implement a bird-watching database system to be used for

analysing the developments and trends of bird populations. The current file representation used

consists of a file of the type comma-separated values (.csv), which is not an efficient nor a

flexible format for a database. Raw data can be complicated and slow to query since information

is encoded inside text strings. For example, in the Bird database CSV files each row of a CSV

file contains a bird observation. For each bird observation there is a field species, which

contains a string representing all bird species that have been observed and how many of each

species. If such information is stored in the tables of a database as raw data strings the querying

becomes very slow, since no indexing on species can be made. This leads to the entire table

having to be scanned to find all observations of a species. In addition the queries become

clumsy because substring matching has to be used rather than logical conditions.

A relational database should be normalized if it is to be structured for ease of update and

querying. The advantages of normalization are that it makes the database simpler to update and

avoids redundant data representations [1]. The main four levels of relational database

normalization are 1NF (First Normal Form), 2NF (Second Normal Form), 3NF (Third Normal

Form), and BCNF. In the project a normalized relational database schema was designed as

BCNF, being a high degree of normalization.

The raw CSV data is converted to a format suitable for storage in the normalized relational

database. The process of populating the database is illustrated by Figure 1 below. First the CSV

file is bulk loaded without any data transformations into a raw data table, called DBimport, in

the database server. Then the raw data table is processed to clean and convert the data in order

to populate the normalized tables. This process is called ETL, (Extract, Transform, Load). In

this case the ETL process is implemented as a stored procedure in SQL, which is a program

running inside the database server.

CSV-­‐file Bulk
load

Raw data
table ETL

Normalized
tables

Figure 1: The process of populating the database system

2

2 Requirements

There were some requirements to be fulfilled for the project to be successful, as listed below. Some

of the original requirements were modified and others added during the course of the projects.

1. A relational database should be designed based on an analysis of the bird-watching data

found on the website of Avian Knowledge Network [2]. The relational database is to be

stored using RDBMS (relational database management system). The design of the database

should be general enough to allow extensions later on.

2. The database should be populated with data from Avian Knowledge Networks website using

ETL-techniques. The ETL-scripts used to load the database should be written so that data

effortlessly can be added at a later time.

3. At least ten SQL queries should be defined to be used to analyse bird populations.

4. The database should be tuned to speed up the execution time of queries, if needed.

5. In order to understand the performance implications of using a normalized database, the per-

formance of queries executed directly on the raw data table should be compared with the

newly constructed normalized database.

6. To analyse the performance and tune the database, the performance of a tuned and an un-

tuned database when executing queries should be measured.

7. A GUI should be implemented that demonstrates the functionality of the entire system.

8. To document and analyse the work, a report that satisfactory documents the system should

be written. The report should include an overview of related technologies.

9. The implementation of the project should be made with MySQL and Java. It should also be

portable to different DBMSs and operating systems.

3

3 System development

The development of the system was the main part of the project. This chapter is divided into two

major parts; design and implementation. The design part describes the steps taken to develop the

design of the database system, and the implementation part describes the process of implementing

the whole database system.

3.1 Design

The design of the database system was made by constructing an ER-diagram that should fulfil the

BCNF normal form. A relational schema was designed including foreign key constraints between

tables.

Before designing the database system it was important to first analyse the contents of the CSV file. It

is important to understand the information stored in the different fields of the CSV file in order to

design the database correctly and be sure not to miss any important data. The detailed explanations

of the data stored in each field of the file is shown in Appendix 2. The bird-watching data provided

for this project was divided into different CSV files containing the data gathered that particular year.

For this project the data from 2009 was used. As can be seen in Figure 2, there are a few issues with

the contents of the CSV files. Some of the fields that at first seemingly only contains integers also

sometimes have occurrences of ‘?’ in them, indicating unknown values (column O).

In the example shown in Figure 2 the contents of the species field (column P) is structured as first the

name of the species followed by a colon character and then an integer value that describes the amount

of individual birds of that particular species that was observed. A space character is then used to

separate the different species and their corresponding values from each other.

Figure 2: An example of the contents of the CSV file

4

One of the goals when designing this database was to make it BCNF which stands for Boyce-Codd

Normal Form. This is done to make the database more flexible when it comes to updates, and to

reduce redundancy in the database. A downside of BCNF is that it can in some cases make the

database slower since more joins are needed in particular queries. As a means to achieve BCNF an

Entity-Relationship (ER) -diagram was created, which is shown in Figure 3. The ER-diagram

improves the understanding of the data that is to be stored in the database, and it will also show a

general view of how the database is going to be structured when it is implemented [3].

Figure 3: The ER-diagram of the database

The explanation of the attributes of the raw data tables DBimport and Taxonomy, depicted as islands

in the ER-diagram above, can be viewed in Appendix 2 and Appendix 3. There are four attributes in

the ER-diagram that are not covered in those appendices, since they have been extracted from other

attributes or added for eventual future usage. These attributes are date, numbersSighted, name and

address (name of the Species table is covered by sci_name attribute of Taxonomy table). It should

also be noted that the error attribute of the DBimport table was added later in order to register errors

that can’t be handled in a proper way when data is loaded.

The date attribute is the attributes year, month and day merged into one attribute of the date SQL

data type. The numbersSighted attribute belonging to the Birds_sighted relationship describes how

many birds of each species was sighted during a certain observation. The Observer table contains

5

information about the people who made the bird observation, i.e. name and address. Worth noting

is that there is no data to insert regarding the names and addresses of the observers at this time, but

these attributes were chosen to be part of the design anyway to facilitate the potential need for these

attributes at a later stage.

As a step in the process of designing a relational database it is necessary to design a relational

schema. A relational schema is different from ER-diagrams in the way that it also shows which

attributes are primary key of each table, as well as showing the foreign key constraints between the

different tables. The relational schema is shown below in Figure 4, where primary keys are

underlined and FK indicates foreign keys.

Figure 4: The relational schema of the database

6

3.2 Implementation

The implementation of this project is divided into three major parts: the software to populate the

database, the implementation of the required data transformations into normalized tables, and the

construction of the GUI. A data parser was needed as a tool to help split unnormalized strings in the

species column into atomic values to be inserted into the tables of the database. The SQL stored

procedure code snippets referred to in the text, as well as all written code can be found in Appendix

1.

3.2.1 Population of the database
The process of populating the database was to first bulk load the data from the CSV file into the

temporary table DBimport, which is used as an intermediate storage where the cleaning of the data

takes place to populate the tables of the normalized database. The cleaning process consists of two

steps:

1. The first step is to correct flawed data, for example changing occurrences of question marks,

indicating that there is no data for a particular table cell, to null.

2. The second step is to report and mark any rows that are erroneous in some way.

3.2.1.1 Bulk loading into the temporary table

The data was imported into the database without any data transformations using the MySQL bulk

load mechanism LOAD DATA INFILE [4]. The specific statement used in this project is shown in

Appendix 1. The statement takes the data in the CSV file where the tables columns are separated

based on a chosen field separator (here ‘,’) and loads it directly into the table specified in the

statement. A problem was that MySQL was originally running in InnoDB Strict Mode [5] [6],

which does automatic data type validity checks of inserted values as a guard against populating the

database with illegal values. All rows containing illegal data are raising errors that stops the

loading. There were two different approaches to solve this issue: one is to in a pre-processing step

use another programming language, suited for parsing strings, to check the CSV file for erroneous

values and correct them before loading the CSV file into the tables of the database, and the other is

to disable strict mode and handle the issues at a later stage. The latter option mentioned was chosen

to solve this task, since it is easier to correct the problems when data is stored in a temporary table

than having to create a program in another programming language that could eventually be very

time consuming to implement.

7

It originally took 500 seconds to import a CSV file that contained roughly 450 000 entries, which

raised some suspicion whether it could execute a lot faster. The course of action taken to speed up

the execution of the statement was to increase the value of the buffer pool in the settings of the

DBMS. This means that more of the computer’s RAM is used as a buffer when doing the bulk load,

which leads to less read/writes to disk and therefore provides a faster execution time. By now the

query would execute properly but it skipped five rows due to violations of the primary key

constraint in the temporary table DBimport. The reason for this was that the contents of the column

samplingId was expected to be unique, which was not the case. Because of this it was decided that

there is no point to have a primary key attribute in DBimport, since errors such as non-unique

samplingId values will be handled later in the process anyway. After dropping the primary key

constraint in DBimport the query executed successfully after 32 seconds.

3.2.1.2 Populating the normalized database with the content of the temporary table

The population of the Observer table was done using a simple straight forward insertion of all

distinct observerId attribute values from the temporary table DBimport into the Observer table,

using the query “INSERT INTO Observer (observerId) SELECT DISTINCT observerId FROM

DBimport;;”.

While trying to populate the Location table with the latitude and longitude values from the

temporary table, an issue revealed itself. The latitude and longitude values were imported into a

column in the temporary table that only allows values of the type INT, which led to the decimals

being cut off. As a solution to this problem all the tables in the database system that had the latitude

and longitude columns had to be changed so that the type of the columns was DECIMAL(15, 12)

instead. The numbers used as arguments in this type declaration decides that the maximum number

of total digits is 15, and 12 of those 15 digits are the decimals to the right of the decimal point [7].

These values were chosen because many decimals are needed to make the latitude- and longitude

values exact enough, while latitude values fit inside the interval (-90,90) and longitude inside the

interval (-180,180), so the integer part doesn’t need to be bigger than three integers.

The temporary table DBimport now contained erroneous values in the latitude and longitude fields.

This was solved by deleting all contents of the DBimport table by executing the command

TRUNCATE TABLE, which performs a fast deletion of the contents of a table by dropping the

table completely and recreating it again [8]. The CSV file was then bulk loaded into DBimport

again so that the complete latitude and longitude values would be included. When that was done the

8

Location table could get populated with the values of latitude, longitude, country and state from the

temporary table.

The original CSV file contained the date of the sampling in the form of three columns, one for the

year, one for the month and one for the day of the year. Since this is not only unnecessarily

cluttering but also a waste of memory it was decided that one column with the type DATE would be

used in the new database. Fortunately MySQL provides a function called MAKEDATE that takes

the year and the day of the year as arguments and returns the date in DATE format [9].

The time and the duration of the sampling had to be manipulated as well, since they were in decimal

form. In this case the number 12.75 was used to represent the time 12:45 for example. This issue

was solved by, in the INSERT query multiplying the time value with 3600 to get the time in

seconds, and then use the function SEC_TO_TIME with the previous value as argument to get the

time in TIME format.

There was a CSV file called Taxonomy among the other files retrieved from the Avian Knowledge

Network. The most relevant contents of this file, such as the birds Latin names and their English

names, was imported into the Species table of the database using a query very similar to the one

used to populate the DBimport.

There were also occurrences of ‘?’ in the columns birdingPartySize, observationDuration, and time,

of the original CSV file, which are not allowed in an INT- or TIME-type column. These were re-

placed by null instead. However a column of type TIME does not allow null values at default, so

this had to be changed before it was possible to replace the question marks with null. The solution

to this was to drop the Sampling table and set the time attribute to have null as default value when

the Sampling table was recreated, thereby forcing the time attribute to accept null values.

The only task left to be done on the implementation of the database was to populate the Sampling

table with the data from DBimport including the adjusted values of date and time mentioned earlier.

With the database completely populated the foreign keys of the tables were added to the system af-

terwards and the whole database was now entirely implemented.

9

3.2.2 Constructing the stored procedures for the parser
The populating of the Birds_sighted table turned out to be very complicated, which led to the

decision of implementing a parser that could divide the species strings into parts small enough to be

inserted into the Birds_sighted table. This parser was implemented using two stored procedures: one

that parses strings, splits them and inserts them into the Birds_sighted table, and one that provides

the other stored procedure with strings extracted from the species column of DBimport.

The Birds_sighted table contains the columns samplingId, species and numbersSighted (the number

of individuals of a species that was sighted during an observation). The strings in the species

column of DBimport contain all this information as one text string that in some cases is very long.

The strings need to be split into appropriate pieces by parsing them, before they can be inserted into

the Birds_sighted table. The algorithm for doing this is outlined below where the long text string is

referred to as S. See Appendix 2 or Figure 2 for examples of the contents of the species column in

the temporary table DBimport.

1. Split the string S into two substrings based on the first encountered space. The first part is

now called S_first and the second S_rest, where S_first is a string containing a sighted bird

species followed by a colon followed by the number of sighted birds belonging to that spe-

cies, S_rest is the rest of the original string S.

2. Split the string S_first at the colon and call the first part of it S_first_species and the second

S_first_number.

3. The string S_first_species now contains the species and the string S_first_number contains

the number of birds. Insert into the Birds_sighted table a row containing the id of the sam-

pling, the species in S_first_species and the number of observations in S_first_number. If

the string S_rest is not empty, go to step 1 with S assigned to S_rest.

This algorithm was implemented as a stored procedure, in MySQL, called Parsetext. It uses a func-

tion that was created for the purpose of splitting these strings, called Split_str(str, char, int) that

takes a string str (to be split), a character char (which is used to decide where the string is split) and

an integer int (that decides if it’s the first (1) or the second (2) part of the string that is to be re-­

turned) as arguments. It splits the string into two at a certain characters position and returns either

the first or the second part of the string without the character that acted as splitting point. Both the

stored procedure Parsetext and the function Split_str can be viewed in Appendix 1.

10

However, it was found that this parser was not as efficient as it could be and therefore a new parser

using the following algorithm was implemented, also using a stored procedure. This algorithm in-

stead builds up strings by parsing the original string character by character. If it encounters a colon

character, “:”, it is known that the string that has been built-up so far is the name of a species, and if

it encounters a space, “ “, the built-up string is in fact the number of individuals sighted of that par-

ticular species. In the algorithm depicted below the long text string is referred to as B. The variable

counter_val is initialized to the integer 1. Set the variable length_val to be the amounts of strings in

B that are separated by spaces (‘ ‘).

1. Extract the substring between the counter_valth and the counter_val-1th occurrence of space

(‘ ‘) in B and call it cur_str.

2. Split cur_str at the point of the colon (‘:’) and insert the first part into name_val and the

second part into number_val.

3. If number_val is ‘X’ then insert null into the variable number_val_int else insert the value

of number_val into number_val_int.

4. Insert the values of name_val, number_val_int, and the samplingId into the Birds_sighted

table.

5. If length_val is not zero then increase counter_val by one and decrease length_val by one

and go back to point 1, else exit.

Another stored procedure, Looptable, was used to help with the population of the Birds_sighted ta-

ble, since the stored procedure Parsetext needs to be called for every row in the temporary table.

This was done by using a cursor in Looptable that for each row in the temporary table DBimport

calls Parsetext. This stored procedure can be viewed in Appendix 1.

A major setback in this project was the performance of the stored procedure Looptable. There ex-

isted some suspicion that the execution of it could take quite a while, so it was decided to try to exe-

cute this stored procedure for only the first ten rows of DBimport. The result of the execution of the

stored procedure was satisfying except the fact that it took 12 seconds to finish for only ten rows,

which is unsatisfactory. Some simple calculations show that it would take more than six days effec-

tive time to execute the query with the full table, which contains roughly 450 000 rows. This was

considered to be too long because of the fact that there is a chance something goes wrong on the

fifth day, which could lead to five days of execution being wasted. Therefore a few more options

11

were explored; one was to export the results to a CSV file by using the SELECT INTO OUTFILE

query and then bulk-load it back, but this was rejected because in each loop in Parsetext the query

would be called and each query results in a new file being created, so at the end of this there would

be an extreme amount of files on the computer hard drive potentially using up all the memory. The

other option was to use the statement TEE to print all the results from the queries to a file, but this

would not work either, since the TEE statement prints every single query and statement, so every

select-query and variable assignment would be printed to the file, which would lead to the major

part of the file consisting of unnecessary data.

As the stored procedure Looptable was run using the MySQL Workbench, which is a visual tool for

designing and maintaining databases, a few issues arose. One of these issues was that the query

ended if the execution time exceeded 600 seconds, even though the time limit was changed to 0,

which is interpreted as infinity, it still wouldn’t run past the 600 second limit. Therefore Looptable

was executed in the windows command prompt-environment instead, where there are no limits on

the execution time.

Another issue was that Looptable stopped after about an hour with the error ‘ERROR 1172 (42000):

Result consisted of more than one row’. To see on which row of the temporary table the error oc-

curred on, a print statement was added in Looptable that printed which row was currently being pro-

cessed. This showed that the last row being processed was row 16944 in the temporary table DBim-

port. After some time it was discovered that the source of this error was that two different entries

had the same SamplingId, which should never happen since this is supposed to be a unique identi-

fier. This issue was solved by adding the attribute error in the DBimport table, which is a flag to de-

cide if the row should be skipped because it can’t be handled at this moment. Then it was easy to

just exclude the rows that contained errors when, in the stored procedure Looptable, choosing which

rows that should be processed by the stored procedure Parsetext. The values of these rows was also

excluded from being inserted into the normalized tables. With these issues resolved the stored pro-

cedure finished successfully after 13 hours execution time, which is a better time than earlier esti-

mated.

12

3.2.3 GUI implementation
The GUI was implemented using Java (JavaSE-1.7), Swing and the JDBC (Java DataBase Connec-

tivity) driver Connector/J (version 5.1.23). By using these it is possible to execute queries to the

MySQL database through a Java GUI, which is exactly what was sought to achieve in this project.

As a first step a simple connection from Java to the MySQL database was established, and a SHOW

TABLES query was executed with the result of the query shown in the console. With this important

functionality implemented the programming of the GUI was started. The major design choice of the

GUI-implementation was the decision to use GridBagLayout[10], which basically just divides the

application-window into a grid where different graphical objects can be placed inside or span across

different grid-squares.

The basic idea of the GUI is to have a text box where the user enters the query to be executed once

the button beside it is pressed. The result of the query will be displayed as a table, and there will

also be a number of labels that will display relevant information like execution time and eventual

error messages.

To successfully implement this design the following Swing objects was used; a JTextField for the

users query, JButton for the query to be executed, JTable with a JScrollPane for the query results

and some JLabels for various information. The final appearance of the GUI is shown in Figure 5,

Figure 6 and Figure 7. Figure 5 shows the start window of the application, Figure 6 shows how the

application looks after a syntax error in the query, and Figure 7 displays the result of a successful

query to the database.

13

Figure 5: The start window

Figure 6: Example of a failed query

14

Figure 7: Example of a successful query

15

4 Evaluation

To evaluate this project and its results a few performance measurements has been performed. Two

performance tests was run, the results from them are shown in Table 1 and the diagram in Figure 8.

One of the tests, illustrated as Parser in the table and diagram, was to run the stored procedure that

parses the species string and inserts it into the correct table, on different amount of records (rows in

the temporary table). The other test, illustrated as Populating in the table and diagram, was to popu-

late the rest of the database, on different amount of records from the temporary table. These perfor-

mance measurements was made to illustrate which part of populating the database that was the most

time consuming. The column Records references to the rows of the temporary table, which contains

all the original data from the CSV file.

Records * 103 Parser (min) Populating (min)

0 0 0

1 0.4338 0.05155

5 3.4965 0.065083

10 6.6155 0.083316

15 9.7236 0.09275

20 13.3696 0.1172

50 40.3418 0.155483

100 79.9 0.3165

150 120.4 0.50936

200 160.9 0.72445

250 201.4 0.822383

300 241.9 1.54793

350 282.4 1.822383

400 322.9 1.91953

450 363.4 2.26273

Table 1: Performance measurements

16

Figure 8: Performance measurements

By looking at Figure 8 it is easy to see that the time consuming step of the complete task of populat-

ing the database is the parsing of the species strings. The reason why the execution time of the pars-

ing is so much higher than the execution time of populating the rest of the database is that for each

row in the temporary table the parser needs to go through each character of the string, stored in the

column species, one-by-one in a means to split it up into the correct pieces so the data can be in-

serted in the Birds_sighted table accurately. These strings can be as long as 4200 character in the

particular CSV file that was used in this project, which means that in most cases the parsing will

have much more time-consuming task on its hands than the task of just populating the tables with

values that can easily be extracted from the temporary table.

Another performance test was made to evaluate if the normalized database is more efficient to

query than the unnormalized raw data table. This was done by timing the same five queries on each

of the two databases, both when the database was warm and cold, and comparing the results. A da-

tabase is said to be cold when the cache has recently been cleared, and warm when the cache has

data from previous queries in it. The five queries that the databases were tested on are showed be-

low, and the results are shown in Table 2.

0 100 200 300 400 500

0.01

0.1

1

10

100

1000

Records * 1000

Ti
m

e
(l

o
g

1
0

 *
 m

in
) parser

populating

17

1. SELECT COUNT(*) FROM DBimport WHERE species LIKE '%Mycteria_americana%';

SELECT COUNT(*) FROM Birds_sighted WHERE name = 'Mycteria_americana';

This query is used to find out on how many occasions this particular species of birds has

been sighted.

2. SELECT AVG(time) FROM DBimport;

SELECT AVG(HOUR(time)) FROM Sampling;

This query shows the average time of all the bird observations in the table.

(Note that these queries will return different values since the DBimport table has ‘?’ in the

time field, while the normalized table Sampling will have null. When executing the query

“SELECT AVG('?');;” the return value will be zero, so these zero-values will be counted in

when the query is run on DBimport. The Sampling table will disregard these values since

they were changed to null before being inserted into Sampling).

3. SELECT COUNT(*) FROM DBimport WHERE species LIKE '%Catharus_ustulatus%'

AND month = 5;

SELECT COUNT(*) FROM Birds_sighted AS c, Sampling AS s WHERE c.samplingId =

 s.samplingId AND c.name = 'Catharus_ustulatus' AND MONTH(s.date) = 5;

This query returns the amount of observation of the bird species Catharus ustulatus during

the month of May.

4. SELECT COUNT(*) FROM DBimport WHERE country = 'United_States' AND state =

'Kentucky' AND month = 6;

SELECT COUNT(*) FROM Location AS l, Sampling AS s WHERE l.country =

'United_States' AND l.state = 'Kentucky' AND s.latitude = l.latitude AND s.longitude =

l.longitude AND MONTH(s.date) = 6;

This query displays the amount of bird observations made in Kentucky, USA during June.

5. SELECT samplingId, latitude, state FROM DBimport WHERE latitude =

(SELECT MAX(latitude) FROM DBimport);

SELECT s.samplingId, l.latitude, l.state FROM Sampling AS s, Location AS l WHERE

s.latitude = (SELECT MAX(latitude) FROM Location) AND s.latitude = l.latitude AND

s.longitude = l.longitude;

This query shows in which state the northernmost bird observation took place.

18

In Table 2 below, the term unnormalized raw data table refers to using DBimport to store the whole

content of the original CSV file. The normalized database refers to using the normalized tables pop-

ulated with the data from the original CSV file. Cold and warm database denotes whether or not the

cache of the DBMS is empty (cold) or if it’s filled with data from previous queries (warm).

Query Normalized database,

cold (sec)

Unnormalized raw

data table, cold (sec)

Normalized database,

warm (sec)

Unnormalized raw

data table, warm (sec)

1 0.016 2.234 0.000 1.562
2 1.657 1.437 0.156 0.282
3 0.844 1.422 0.015 0.453
4 0.609 1.422 0.062 0.250
5 0.016 1.750 0.000 0.594

Table 2: Performance measurements between the normalized database and the unnormalized raw data

table, with and without cache

These results illustrates the fact that the normalized database is faster than the unnormalized raw

data table on all five queries when executed on a warm database, and it is also faster in the majority

of the cases when the query is executed on a cold database. This reflects that the normalized data-

base is more time-efficient, on average, than queries to the unnormalized raw data table, no matter

if the results are cached or not. The reason for it being more time-efficient is that if a query contain-

ing the MAX()-function is executed on an unnormalized raw data table, all data needs to be scanned

to obtain the result requested, since all information is in one table. If the same query is executed on

a normalized database, which in this case consists of a few more but smaller tables, there is a big

chance that only one of the small tables needs to be scanned, which will be much less time-consum-

ing. Another scenario that works in favour of the normalized database is if a user wants to know the

maximum amount of birds sighted at one moment and of what species, because then only the

Birds_sighted table, which is indexed on the numbersSighted column, have to be scanned for its

maximum value. While if the same information is to be extracted from the DBimport table, each

species string needs to be parsed to find the maximum value, which is an unnecessarily complex

and time-consuming query to perform.

19

5 Related work

Microsoft Access [11] has a feature called Table Analyzer [12], which can help a user normalize a

database by dividing tables that contains repeating information into separate tables where each type

of information is stored only once.

Another software that can assist with normalizing databases is NORMA [13], which is a conceptual

modelling tool. NORMA is a free and open source plug-in for Microsoft Visual Studio [14] (versions

2005, 2008, 2010, and 2012).

There is also software that can aid in the task of loading a CSV file into a database. One of these is

SSIS [15] (SQL Server Integration Services). An important thing to note is that this software is for

Microsoft SQL Server, but it is still relevant since it can connect to MySQL using the Con-

nector/Net driver. With the software a user can load a CSV file into a database using a graphical

user interface with many different features, such as tools to transform data.

Mysqlimport [16] is another software that can be used to import CSV files into a database. It is a

command-line interface for the SQL statement LOAD DATA INFILE, which basically means that

the options the user selects in mysqlimport relates directly to different clauses inside the LOAD

DATA INFILE syntax. The mysqlimport software doesn’t have any features for parsing or cleaning

data.

MySQL Workbench [17] also provides a function with which the user can load a CSV file into a

database. However this was tried during this project without success, which was the reason that the

LOAD DATA INFILE statement was used instead.

20

6 Conclusions and future work

My work in this project resulted in a normalized database system with the purpose of storing, re-

trieving or updating information about bird observations acquired by the Avian Knowledge Net-

work.

In this project I have contributed with a robust and scalable database design that will greatly im-

prove the usability of the data in the CSV file. This design was then used when the database was

constructed, populated and later optimized. It is because of this design that the final results of the

project were so positive.

I have also spent a lot of time and effort into constructing a runnable script that can be used to con-

struct and populate a database with the contents of a CSV file. This script is written in a very gen-

eral way, therefore it is easy to change the script if one would need to use it on a CSV file that is

structured in a slightly different way.

When the database was implemented a series of tests was performed on it to see if it was up to

standards. These tests displayed positive results, such as querying the normalized database being

faster than querying the raw data table DBimport. This indicates that all the effort I put into this pro-

ject was not in vain.

One could argue that there is a better solution to the problem with the unnecessarily long execution

time of the stored procedure Parsetext, for example to process the species rows in another language

that is faster than MySQL, since it doesn’t seem to be very effective. I believe that if the species

rows instead were to be exported and processed using a faster programming language such as Pearl,

Java or C, and then exported to a CSV file and later bulk loaded into the database, the overall exe-

cution time would be a lot shorter. However, the fact that the parser was shown to be the most time

consuming step of the process does not mean that this project was unsuccessful, since bulk loading

data that has to be parsed and cleaned is done a lot less frequently than querying the database. As a

whole, the requirements of this project have been met.

21

References

[1] Stephens K, Ryan; Plew R, Ronald, Database Design, 2001, s 206, Sams Publishing,

Indianapolis, Indiana, USA, ISBN: 0-672-31758-3

[2] “Avian Knowledge Network” http://www.avianknowledge.net/ (2014-02-19 14:32)

[3] “ER-modeling” http://www.databasedesign.co.uk/bookdatabasesafirstcourse/chap3/chap3.htm Chapter

3.1 (2014-02-11 10:35)

[4] “LOAD DATA INFILE Syntax” http://dev.mysql.com/doc/refman/5.1/en/load-data.html (2013-11-19

18:16)

[5] “InnoDB Strict Mode” http://dev.mysql.com/doc/innodb/1.1/en/innodb-other-changes-strict-mode.html

(2013-11-08 11:31)

[6] “InnoDB Storage Engine” http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html (2013-

11-08 11:32)

[7] “MySQL Documentation, decimal” http://dev.mysql.com/doc/refman/5.1/en/precision-math-decimal-

changes.html. (2013-07-11 19:38)

[8] “Truncate table statement” http://dev.mysql.com/doc/refman/5.0/en/truncate-table.html (2014-02-12

09:32)

[9] “MySQL Documentation, MAKEDATE()” http://dev.mysql.com/doc/refman/5.6/en/date-and-time-

functions.html#function_makedate. (2013-07-12 12:25)

[10] “GridBagLayout documentation”

http://download.java.net/jdk7/archive/b123/docs/api/java/awt/GridBagLayout.html (2013-11-08 12:48)

11] “Microsoft Access” http://office.microsoft.com/en-gb/access/ (2013-11-12 09:27)

[12] “Table Analyzer” http://office.microsoft.com/en-us/access-help/about-the-table-analyzer-

HP005275385.aspx (2013-11-12 09:28)

[13] “NORMA” http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx (2013-11-12

09:29)

[14] “Microsoft Visual Studio” http://msdn.microsoft.com/en-US/vstudio/ (2013-11-12 09:30)

[15] “SQL Server 2012 Integration Services, SSIS.” http://www.microsoft.com/en-us/sqlserver/solutions-

technologies/enterprise-information-management/integration-services.aspx. (2013-07-18 10:04)

[16] “Mysqlimport.” http://dev.mysql.com/doc/refman/5.0/en/mysqlimport.html (2013-07-18 11:23)

[17] “MySQL Workbench.” http://www.mysql.com/products/workbench/ (2013-07-18 11:30)

http://www.avianknowledge.net/
http://www.databasedesign.co.uk/bookdatabasesafirstcourse/chap3/chap3.htm
http://dev.mysql.com/doc/refman/5.1/en/load-data.html
http://dev.mysql.com/doc/innodb/1.1/en/innodb-other-changes-strict-mode.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/precision-math-decimal-changes.html
http://dev.mysql.com/doc/refman/5.1/en/precision-math-decimal-changes.html
http://dev.mysql.com/doc/refman/5.0/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html#function_makedate
http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html#function_makedate
http://download.java.net/jdk7/archive/b123/docs/api/java/awt/GridBagLayout.html
http://office.microsoft.com/en-gb/access/
http://office.microsoft.com/en-us/access-help/about-the-table-analyzer-HP005275385.aspx
http://office.microsoft.com/en-us/access-help/about-the-table-analyzer-HP005275385.aspx
http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx
http://msdn.microsoft.com/en-US/vstudio/
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/enterprise-information-management/integration-services.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/enterprise-information-management/integration-services.aspx
http://dev.mysql.com/doc/refman/5.0/en/mysqlimport.html
http://www.mysql.com/products/workbench/

22

Appendix 1

The import query
USE birdObservations;
LOAD DATA LOCAL INFILE
"/path_to_AKN_data/eBird/ebird_americas_data_grouped_by_year_v2.0/2009/checklists.csv"
INTO TABLE DBimport
COLUMNS TERMINATED BY ','
ESCAPED BY '"'
LINES TERMINATED BY '\n';

The SPLIT_STR function
USE birdObservations;
DROP FUNCTION IF EXISTS SPLIT_STR;
DELIMITER //
CREATE FUNCTION SPLIT_STR(str VARCHAR(4500), splittingchar VARCHAR(2), x INT)
RETURNS VARCHAR(4500)
BEGIN
 RETURN SUBSTR(SUBSTRING_INDEX(str, splittingchar, x),
 LENGTH(SUBSTRING_INDEX(str, splittingchar, x-1))+IF(x > 1, 2, 1));
END //
DELIMITER ;

23

The stored procedure Parsetext (first parser)
USE birdObservations;
DROP PROCEDURE IF EXISTS Parsetext;
DELIMITER //
CREATE PROCEDURE Parsetext(sid VARCHAR(45))
BEGIN
 DECLARE str VARCHAR(4200);
 DECLARE cur_str VARCHAR(70);
 DECLARE name_val VARCHAR(50);
 DECLARE number_val INT;
 DECLARE length_val INT DEFAULT 1;
 DECLARE counter_val INT DEFAULT 1;

 SELECT species FROM DBimport WHERE samplingId = sid INTO str;
 loop_label: LOOP
 IF length_val != 0 THEN
 SELECT SPLIT_STR(str,' ',counter_val) INTO cur_str;
 SELECT SPLIT_STR(cur_str,':', 1) INTO name_val;

 IF BINARY(SPLIT_STR(cur_str,':',2)) != 'X' THEN
 SELECT SPLIT_STR(cur_str,':', 2) INTO number_val;
 ELSE
 SELECT null INTO number_val;
 END IF;

INSERT IGNORE INTO Birds_sighted(samplingId, name,
numbersSighted)
VALUES (sid, name_val, number_val);
SELECT CHAR_LENGTH(SPLIT_STR(str,' ',counter_val + 2))
INTO length_val;

 SET counter_val = counter_val + 1;
 ITERATE loop_label;
 ELSE
 LEAVE loop_label;
 END IF;
 END LOOP;
END //
DELIMITER ;

24

The stored procedure Parsetext (improved version)
DROP PROCEDURE IF EXISTS Parsetext;
DELIMITER //
CREATE PROCEDURE Parsetext(sid VARCHAR(45))
BEGIN
 DECLARE str VARCHAR(4200);
 DECLARE name_val VARCHAR(50) DEFAULT '';
 DECLARE number_val VARCHAR(10);
 DECLARE number_val_int INT;
 DECLARE length_val INT DEFAULT 1;
 DECLARE counter_val INT DEFAULT 1;
 DECLARE cur_str VARCHAR(50) DEFAULT '';

 SELECT species FROM DBimport WHERE samplingId = sid
INTO str;

 SELECT (CHAR_LENGTH(str) - CHAR_LENGTH(REPLACE(str,' ','')))
 INTO length_val;

 loop_string: LOOP
 IF (length_val != 0) THEN
 SELECT SUBSTRING_INDEX(SUBSTRING_INDEX(str,' ',

counter_val),' ',-1) INTO cur_str;
 SELECT SUBSTRING_INDEX(cur_str,':',1) INTO name_val;
 SELECT SUBSTRING_INDEX(cur_str,':',-1) INTO number_val;
 IF (BINARY(number_val) = 'X') THEN
 SELECT null INTO number_val_int;
 ELSE
 SELECT number_val INTO number_val_int;
 END IF;
 INSERT INTO Birds_sighted(samplingId, name, numbersSighted)

VALUES (sid, name_val, number_val_int);
 SET counter_val = counter_val + 1;
 SET length_val = length_val - 1;
 ITERATE loop_string;
 ELSE
 LEAVE loop_string;
 END IF;
 END LOOP;

END //
DELIMITER ;

25

The stored procedure Looptable
USE birdObservations;
DROP PROCEDURE IF EXISTS Looptable;
DELIMITER //
CREATE PROCEDURE Looptable()
BEGIN
 DECLARE sid_val VARCHAR(45);
 DECLARE no_more_rows BOOLEAN;
 DECLARE loop_cntr INT DEFAULT 0;
 DECLARE num_rows INT DEFAULT 0;

 DECLARE table_cur CURSOR FOR
 SELECT samplingId FROM DBimport WHERE error = 0;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET no_more_rows = TRUE;

 OPEN table_cur;
 SELECT FOUND_ROWS() INTO num_rows;

 the_loop: LOOP

 FETCH table_cur INTO sid_val;

 IF no_more_rows THEN
 CLOSE table_cur;
 LEAVE the_loop;
 END IF;
 CALL Parsetext(sid_val);
 SET loop_cntr = loop_cntr + 1;

 END LOOP the_loop;
 SELECT num_rows, loop_cntr;
END //
DELIMITER ;

26

The complete script for populating the database
CREATE DATABASE birdObservations;
USE birdObservations;
-- create tables
CREATE TABLE Birds_sighted
(
samplingId VARCHAR(45) NOT NULL,
name varchar(50) NOT NULL,
numbersSighted INT,
CONSTRAINT pk_Birds_sightedEntry PRIMARY KEY (samplingId,name)
);

CREATE TABLE DBimport
(
samplingId VARCHAR(45) NOT NULL,
latitude DECIMAL(15,12),
longitude DECIMAL(15,12),
year INT(11),
month INT(11),
day INT(11),
time VARCHAR(45),
country VARCHAR(45),
state VARCHAR(45),
observationType VARCHAR(45),
observationDuration VARCHAR(45),
distanceTravelled INT(11),
area INT(11),
observerId VARCHAR(45),
birdingPartySize VARCHAR(45),
species VARCHAR(4200),
error BOOLEAN NOT NULL DEFAULT 0
);

CREATE TABLE Location
(
latitude DECIMAL(15,12) NOT NULL,
longitude DECIMAL(15,12) NOT NULL,
country VARCHAR(45),
state VARCHAR(45),
PRIMARY KEY (latitude, longitude)
);

CREATE TABLE Observer
(
observerId VARCHAR(45) NOT NULL,
name VARCHAR(45),
address VARCHAR(45),

27

PRIMARY KEY (observerId)
);

CREATE TABLE Sampling
(
samplingId VARCHAR(45) NOT NULL,
date DATE,
time TIME DEFAULT NULL, -- So that occurrences of '?' can be changed to null
birdingPartySize INT(11),
observationType VARCHAR(45),
observationDuration TIME,
distanceTravelled INT(11),
area INT(11),
observerId VARCHAR(45),
latitude DECIMAL(15,12),
longitude DECIMAL(15,12),
PRIMARY KEY (samplingId)
);

CREATE TABLE Species
(
name VARCHAR(45) NOT NULL,
commonName VARCHAR(100),
PRIMARY KEY (name)
);

CREATE TABLE Taxonomy
(
sci_name VARCHAR(45),
taxon_order INT(11),
primary_com_name VARCHAR(100),
category VARCHAR(45),
order_name VARCHAR(45),
family_name VARCHAR(45),
subfamily_name VARCHAR(45),
genus_name VARCHAR(45),
species_name VARCHAR(45)
);
-- load csv file into temporary table DBimport.
LOAD DATA LOCAL INFILE
"/path_to_AKN_data/eBird/ebird_americas_data_grouped_by_year_v2.0/2009/checklists.csv"
INTO TABLE DBimport
COLUMNS TERMINATED BY ','
ESCAPED BY '"'
LINES TERMINATED BY '\n';
-- load Taxonomy CSV file into temporary table Taxonomy.
LOAD DATA LOCAL INFILE
"/path_to_AKN_data/eBird/ebird_americas_data_grouped_by_year_v2.0/doc/taxonomy.csv"
INTO TABLE Taxonomy

28

COLUMNS TERMINATED BY ','
ESCAPED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 LINES;
-- Change all occurences of '?' in column observationDuration to null
UPDATE DBimport
SET observationDuration = null
WHERE observationDuration = '?';
-- Change all occurences of '?' in column birdingPartySize to null
UPDATE DBimport
SET birdingPartySize = null
WHERE birdingPartySize = '?';
-- Change all occurences of '?' in column time to null
UPDATE DBimport
SET time = null
WHERE time = '?';
-- set error column of duplicate samplingId rows to 1
UPDATE DBimport
SET error = 1
WHERE samplingId IN
(SELECT x.samplingId FROM (SELECT DISTINCT samplingId FROM DBimport
GROUP BY samplingId HAVING COUNT(samplingId) > 1) AS x);
-- load observer data into Observer table (no values for name and address exists at the moment)
INSERT INTO Observer (observerId) SELECT DISTINCT observerId FROM DBimport WHERE
error = 0;
-- load species data into Species table
INSERT INTO Species (name, commonName) SELECT DISTINCT sci_name,
primary_com_name FROM Taxonomy;
-- load location data into Location table
INSERT INTO Location (latitude, longitude, country, state) SELECT DISTINCT latitude,
longitude, country, state FROM DBimport WHERE error = 0;
-- load the Birds_sighted-table with the processed values from the species strings in DBimport
-- Looptable calls Parsetext on each entry in the species column of DBimport
CALL Looptable();
-- load sampling data into Sampling table
INSERT INTO Sampling
(SamplingId, Date, Time, BirdingPartySize, ObservationType,
ObservationDuration, DistanceTravelled, Area, ObserverId, Latitude, Longitude)
SELECT SamplingId, makedate(Year, Day), sec_to_time(Time*3600),
BirdingPartySize, ObservationType, sec_to_time(ObservationDuration*3600),
DistanceTravelled, Area, ObserverId, Latitude, Longitude FROM dbimport WHERE error = 0;
-- add index on the Birds_sighted-table
CREATE INDEX num_index ON Birds_sighted(numbersSighted);
-- add foreign key constraints for observerId in Sampling table
ALTER TABLE Sampling
ADD CONSTRAINT fk_ObserverId
FOREIGN KEY (observerId)
REFERENCES Observer(observerId);
-- add foreign key constraints for latitude and longitude in Sampling table

29

ALTER TABLE Sampling
ADD CONSTRAINT fk_LatLong
FOREIGN KEY (latitude, longitude)
REFERENCES Location(latitude, longitude);
-- add foreign key constraints for samplingId in Birds_sighted-table
ALTER TABLE Birds_sighted
ADD CONSTRAINT fk_SamplingId
FOREIGN KEY (samplingId)
REFERENCES Sampling(samplingId);
-- add foreign key constraints for name in Birds_sighted-table
ALTER TABLE Birds_sighted
ADD CONSTRAINT fk_Name
FOREIGN KEY (name)
REFERENCES Species(name);

30

Appendix 2

Explanation of the attributes in the DBimport CSV file.

SAMPLING_EVENT _ID Unique identifier for each data sample / checklist.

LATITUDE Decimal latitude.

LONGITUDE Decimal longitude.

COUNT_TYPE What kind of observation this sample is: stationary (P21), traveling

(P22, P34), area (P23, P35), or casual (P20). Protocol P34 is a small

amount of data contributed from the Rocky Mountain Bird Observa-

tory that is believed to be high quality. Protocol P35 data are back-

yard area counts made on consecutive days.

COUNTRY Full name of country /political unit where observation took place.

STATE_PROVINCE Name of the state, province, or region where observation was made.

YEAR Year.

MONTH Month of the year, ranging from 01 through 12.

DAY Day of the year, ranging from 1 through 366.

TIME Time when observation started, ranging from [0, 24). Fractional

hours represent minutes (e.g. 13.5 = 1:30PM). Times are local times

(including daylight savings when / where appropriate).

EFFORT_HRS Duration of observation, in hours.

EFFORT_DISTANCE_KM Distance travelled during observation period, in kilometres. Equals 0

for non-traveling counts.

EFFORT_AREA_HA Size of survey area for area counts, in hectares. Equals 0 for non-area

counts.

OBSERVER_ID Identifier for the person who submitted the data.

31

NUMBER_OBSERVERS Number of observers in the birding party.

SPECIES The species observed followed by a colon and the number of birds of

that species that was observed. Eventual other birds observed follow

after a space. (e.g. Actitis_macularius:6 Anhinga_anhinga:5 Ar-

dea_herodias:2)

32

Appendix 3

Explanation of the attributes in the Taxonomy CSV file.

SCI_NAME The Latin name of a bird species.

TAXON_ORDER The taxonomical order (INTEGER).

PRIMARY_COM_NAME The primary common name of a species.

CATEGORY The category of a species. For example if it is a species, a hybrid or a

slash (eg. Cackling/Canada Goose).

ORDER_NAME The order name of the species.

FAMILY_NAME The family name of the species.

SUBFAMILY_NAME The subfamily name of the species.

GENUS_NAME The genus name of the species.

SPECIES_NAME The name of the species.

33

Appendix 4

-- SELECT samplingId, numbersSighted, name FROM Birds_sighted WHERE numbersSighted =
(SELECT MAX(numbersSighted) FROM Birds_sighted);
-- What is the biggest observation of a particular bird, and which bird is that.

-- SELECT AVG(birdingPartySize) FROM Sampling;
-- What is the average birding party size?
-- Birding party size being how many bird observers was present during the observation.

-- SELECT AVG(HOUR(time)) FROM Sampling;
-- What is the average time for the reported bird observations.

-- SELECT COUNT(*) FROM Birds_sighted AS c, Sampling AS s WHERE c.samplingId =
s.samplingId AND c.name = 'Catharus_ustulatus' AND MONTH(s.date) = 5;
-- See at how many different occasions this particular bird has been seen during May

-- SELECT SUM(numbersSighted) FROM Birds_sighted AS c, Sampling AS s WHERE
c.samplingId = s.samplingId AND c.name = 'Catharus_ustulatus' AND MONTH(s.date) = 5;
-- See how many specimens of this particular species that have been sighted during May.
-- Query above does not take into account the entries where the
-- amount is set to null, previous X, which means the number of birds
-- of that particular species is not 100 % accurate.

-- SELECT name, MAX(numbersSighted) FROM Birds_sighted;
-- What is the biggest observation of a particular bird, and which bird is that.

-- SELECT COUNT(*) FROM Location AS l, Sampling AS s WHERE l.country = 'United_States'
AND l.state = 'Kentucky' AND s.latitude = l.latitude AND s.longitude = l.longitude AND
MONTH(s.date) = 6;
-- How many bird observations have been made during June in Kentucky, USA?

-- SELECT c.name, s.samplingId, s.observerId, s.latitude FROM Sampling AS s, Birds_sighted AS
c WHERE s.latitude = (SELECT MAX(l.latitude) FROM Location AS l, Sampling AS sa WHERE
sa.latitude = l.latitude AND sa.longitude = l.longitude AND MONTH(sa.date) = 2) AND
s.samplingId = c.samplingId;
-- What is the samplingId and latitude of the northernmost bird-sighting in February, and who did
the observation, and what birds were sighted?

-- SELECT COUNT(*) FROM Sampling WHERE observerId = (SELECT observerId FROM
Observer LIMIT 1) AND MONTH(s.date) = 1;
-- How many bird watching sessions have the first person in the observer-table reported in during
January?

-- SELECT s.observerId, s.date, s.time, MAX(c.numbersSighted), l.state, l.country FROM
Birds_sighted AS c, Sampling AS s, Location AS l WHERE l.state = 'Kentucky' AND
c.samplingId=s.samplingId AND s.latitude = l.latitude AND s.longitude = l.longitude;
-- When was the maximum amount of birds observed in Kentucky (numbersSighted)?

