
Design and Implementation of a Multimedia
Courseware Database -

A thesis submitted to
the Faculty of Graduate Studies and Research

in partial fulfillment of
the requirements for the degee of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science
School of Computer Science

Faculty of Science
Carleton Universiy

Ottawa, Ontario, Canada

3 1/8/1998
O Copyright

1998, Ali Al-Shammari

National Library If of Canada
Bibliothéque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
Ottawa ON K1A ON4 Ottawa ON KIA ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loaq distribute or sel
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

Your t i 4 Vorre reférence

Our 15& Notre réference

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fllm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni Ia thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Currently. the area of distance education is gaining high interest, especially in regions

where users are geographically scattered andor influenced by different factors that could

affect their learning demands. Distance education puts emphasis on the separation of the

learner and the educator in space andior time.

The emergance of new technologies within different disciplines, such as

multimedia, databases and networking, have enrïched the learning activities and produced

new trends within the distance education era. Telelearning is one of the distance education

sub-areas that have obtained increased attention and research.

This thesis discusses a Multimedia Interactive Telelearning Systern that has been

designed and developed at MIRL Laboratory at the University of Ottawa. A new approach

has been taken to build a searnless education environment over the Internet. It is mainly

based on Object-Oriented paiadi,gn and on utilizing leading-edge technolagies. Its aim is

to provide real-time interactive multimedia courseware services to a variety of distributed

students, and satisfy their learning needs. The system is compnsed of several major

cornponents: courseware authoring site, courseware database server, rnultimedia database

server, courseware presentation agents, media production center, an on-line facilitator, etc.

The accessibiliry, effectiveness and flexibility are importatnt features of the system that

make it a suitable environment for supporting leaminp services.

The system architecture, courseware data model, database management issues and

implementation details are discussed. The main contribution of the thesis is the database

modeling, as well as system schema, and the database management architecture.

Acknowledgements

1 would like to thank my thesis supervisor - Dr. Ahmed Karmouch for his support,

advice and encouragement, in particular, for his vaiuable comments and suggestions

throughout the publication stage.

1 am grateful to my parents, family menbers and my wife for al1 the support and

encouragement given to me throughout the M.C.S. program. It was especially difficult

being away from both of my young daughters during these past few rnonths.

1 would aiso like to thank TeleLearning National Center of Excellence for their

sponsorship,

Table of Contents

Chapter 1
1.1
1-1.1
1-12
L.1.3
L -2
1-3
1-4

Chapter 2
2.1
2.2
2.3
2.4

Chapter 3
3.1
3 -2
3.3

Chapter 5
5.1
5.2
5.3
5.3.1
5.3.2

l[ntroduction ,, . ., .. 1
Distance Education: History and Background 1

Wistory and Motivation 1
Distance Education Models 3

.. Distance Education Participants 8
Terminology Related to Thesis Work ... 11
ï'hesis Objective ... 13
Thesis Outline ... 13

....... .. Multimedia Interactive TeleLearning System (M I T S) .. 15
Objectives and Requirements .~.. 1 5
Genenc S ystem Architecture 17
MITS Previous Approach 23
Drawbacks of MHEG-based Mode1 for MiTS ... 26

.. Description of Courseware Data Mode1 28
............................. Overview of Multimedia Document Architecture ,,. 28

Teac hing Architectures .. -31
Courseware Data Model,... 34

... MITS Database Management Issues 38
Overview of MEDIABASE S ystem ... 39

.. Object-Oriented Database Management S ystem 40
ObjectS tore 5.0 Environment ... 43
PSE-Pro Environment ... 44
Class File Postprocessor tools ... 46

................................... MITS Database Modeling and Schema Generation 47
Relational Modeling 49
Object-Oriented Modeling 50

.. M T S Database Management Architecture .. 57
Client-Server Bac kground 57

... Description of MITS Database Management Architecture 59
.. Object Persistency States 62

Hollow Persistent Objects ... 63
Active Persistent Objects 64
Stale Persistent Objects ... 64

S ystem hplementation
Introduction ...
JAVA Environment ..

...... Implementation of MITS Database Schema
MITS Schema Classes ..
Schema Evolution ...

...
I l l

... 5 -4 Implementation of Ap plication-Server 72
... 5.4.1 Application-Server Modules 72

5-42 Template for Irnplemeting Additional Modules ... 78
.. 5.5 Annotating MITS Classes 79

5.6 Samples of Results 8 1
.. 5.7 S ystem Integration 87

................... Chapter 6 Conclusions 90
6.1 Summary ... 90

... 6.2 Future Work and Suggestions 9 1

7 References ... 94

... Publications 98

List of Figures

Figure 2.1 MITS's major components ... 17
Figure 2.2 MITS generai architecture 1 8
Figure 2.3 MHEG-based mode1 for MITS .. 25
Figure 3.1 Courseware Data Modei ... 36
Figure 4.1 ObjectSrore5.0 architecture .. 4 4
Figure 4.2 PSE-Pro architecture .. 45
Figure 4.3 MITS E-R Diagram 50
Figure 4.4 MITS OMT Diagram ... 51
Figure 4.5 Primary MITS OMT Diagram 52
Figure 4.6 MITS Database Management Architecture 60
Figure 4.7 Object Persistency States ... 63
Figure 5.1 MITS Database System Implementation ... 66
Figure 5.2 Application-Server Engine Modules .. 73
Figure 5.3 Template for implementing application-server modules ... 79
Figure 5.4 Original MITS classes and annotated classes 80
Figure 5.5 A Snapshot for Creating a Database and Constructing a Courseware 81
Figure 5.6 A Snapshot for Constructing a Courseware : .. 82
Figure 5.7 Different Generated Databases 83
Figure 5.8 The Retneveai of Courseware Meta Data .. 84
Figure 5.9a The Updating of Courseware Meta data ... 85
Figure 5.9b The Updating of Courseware Meta Data .. 85
Figure 5.10 The Retrieval of Courseware After Updatinp the Database 86
Figure 5.1 1 The Deletion of an Entire Courseware ... 87
Figure 5.12 MITS S ystem Integration Architecture ... 89

Chapter 1

1 Introduction

1.1 Distance Education: History and Background

1.1.1 History and Motivation

The terms 'Distance Education" and 'Distance Learningy' have been used

interchangeably by various researchers based on their howledge and backgrounds. ''Tt

puts emphasis on the separation of the learner and the educator in space andor time",

where the volitional control of the learning process is driven by the student rather than

the distant teacher [II.

The earliest attempts of distance education date back to the late 1950's and early

19603, when widely broadcasting TVIRadio classes were transmitted to audiences in

Europe. This f om of educational classes did not provide any S O ~ of interaction between

students and teacher, while such interaction is suppoaed in the traditional classroorns.

The broadcasting TV/Radio classes also suffered from the lack of bi-directional

communications between teacher and students. This reduced the importance of TV and

Radio as new resources for educational classes. In the early 19707s, the emphasis tumed

from bringing teachers into the classroom to taking students out of the classroom into the

outside world Cl]. This direction was reversed in the late 197OYs, as newly designed and

produced TV series introduced students to new subject matter that was not being taught,

yet was considered to be an important complement to the classroorn cumculum [l].

Then, in the 19807s, the pendulum swung back to the basics. Meanwhile, the distance

learning trend had been affected by communication technologies, such as electronic mail,

to provide some sort of interaction between teacher and students. However, researchers

did not present a cornputer-based distance education paradi- for several reasons. For

instance, the lack of cornputer-based distance iearning theories and the limitations of

multimedia technologies to support cornplex applications such as distance learning

s ystems.

In the early 19907s, the extensive research in multimedia information processing

and enhanced achievements within networking technologies produced a new era of

multimedia information applications, which arnbitiously aimed to deliver cornplex

multimedia information to distributed users over networks, One of the areas that

exploited the high technology growth is distance education. Thus, the education process

is shifting from traditional learning style that is based on lecture-and-book mode1 towards

non-traditional learning styles where courses are provided through TV classes, CD-ROM

and distributed computer systems. The non-traditional learning styles might lead to a

totally different way for leamers to acquire knowledge in the near future [2].

Currently, distance education is gaining high interest especially in regions where

students are geographicdly scattered andfor involved by a nurnber of factors that could

affect their leaming demands. Specifically, it is necessary to address the needs of small

rural school districts or under-served urban school districts. Also, some university

students may need courses to meet graduation requirernents that their own universities are

unable to offer. For instance, some students enroll in vocational courses; so distance

education will be beneficial for them.

1.1.2 Distance Education Models

The traditional education model "lecture-and-book" became widely spread since

the 1900's. The students are grouped according to their ages andfor expenences, and are

gathered togeether in a classroom so as to leam a specific topic from the teacher's

presentation at a specific time. This education model has been efficient for a long period

of tirne [3]. Nevertheiess, it is associated with some constraints that could degrade the

leaming process. One of these constraints is "time", where students have to join a class at

a specific time. Another constraint is "space" where learners are supposed to attend a

lecture at a specific classroom. When students are geographically scattered and require

knowledge transmission this model would fail. In addition, another constraint would be

the high ratio of students to the teachers, which has Iimited the learning eficiency for

each individual Iearner [3]. Thus, the traditional education mode1 "lecture-and-book" is

becoming more and more inefficient. Research has shown that non-linear knowledge

structure is superior to the traditional linear text-based structure in terms of knowledge

diffusion [4]. Therefore, distance education rnust exploit new models to deliver

knowledge to the learners, so it is shifting towards non-traditional learning styles where

courses are provided through TV broadcasting, CD-ROM and Telelearning Systems.

In this section, a bnef overview about the rnost important non-traditional learning

models is to be given. These models are classified into Broadcasting model, CD-ROM

Courseware model and Telelearning model, based on the utilized infrastructure, provided

services and level of scalability. The utilized infrastructure encompasses the employed

hardware and software within each distance education model. The provided services

indicate what kind of Iearning services would be offered to the learners by such a model,

e-g. the interaction between students and teacher. The Ievel of scalability is determined by

number of students that could use the system locally or remotely. We have arranged those

models starting from the simple one 'Broadcasting modei" to the most complex one

"Teleleaming mode17'. Each one of these models has its' own advantages and

disadvantages.

Broadcasting Model

Broadcasting mode1 is the first fom of distance education systems [Il. It requires

less of an infrastructure of hardware and software. For instance, once you have a W at

home or in your office, you c m easily attend a course by watching the broadcasting

lectures 131. Some Broadcasting systems have utilized video conferencing technology to

offer lectures to distant learners. However, these systems are affected by some

constraints. For instance, learners have to follow the time schedule of the broadcasting

center and cannot take the class at the most convenient time for thern [3]. In addition,

lemers could not interact with their teacher(s) nor control the leaming process according

to their own abilities and co,gitive capabilities. rt is a passive Ieming mariner, i.e. it is a

one-way learning process from the teacher to the students without any sort of interaction.

Although, some enhanced broadcasting systems have tried to solve this problem by

adding the telephone service for real-time communication between students and teachers,

it can provide only a very low Ievel of interaction.

CD-ROM Courseware Model

Some researchers have called this model a "PC Mode17' [3], but the utilization of

cornputers is not restricted to this mode1 only. The CD-ROM Courseware model has

improved the Broadcasting model in tems of quality and quantity. It has exploited the

achievements within multimedia information processing and CD-ROM technologies to

deliver and render a hl1 multimedia courseware presentation. Courses can be stored and

delivered by Compact Disks (CDS) and finally presented on cornputers. Courseware

materials may comprise a lot of images, graphics, animation, voice and even audiohideo

clips in order to e ~ c h the courseware presentation. This model has offered several

advantages, such as courseware materid being made available for access by a leamer at

any time, thus, the learning speed is controlled by the learner himself. In addition, a

courseware on a CD-ROM provides some sort of interaction between the learner and

courseware presentation agents "GUIsT1 to facilitate the learning process.

On the other band, this model has some constraints other than tirne and space.

First, since the storage capacity of the CD-ROM is limited, so the quantity of knowledge

to be transmitted would be reduced. Second, knowledge delivered by a CD-ROM is static

[3][4], because most of the CDS are of the type "write-once-read-many", so it is diffïcult

to update courseware content or to replace a part of its out-of-date rnaterial with new. The

most suitable way to update the CD's content is to throw away the old one, and order a

new one, which is cost effective. Furthemore, this model did not provide students-to-

teacher or students-to-students interaction. Based on this model, the phenornenon of

educational groups cannot be supported. Therefore, a new mode1 is proposed and

designed to overcome al1 these constraints and offer an enhanced distance education

environment. A Distributed Cornputer-based Mode1 "Teleleaming Systems" forms a new

generation of distance education models. We believe that Telelearning systems must be

designed in a way that supports the learning services, facilitates the education process and

achieves the education goals.

Distributed Cornputer-Based Model

As mentioned earlier, the previous distance education models are affected by

several constraints that would create many obstacles for distant leamers. Although, the

Broadcasting systems and CD-ROM Courseware systems are the most comrnonly used

systems, they do not support scalability, full accessibility and two-way interactivity.

With the emerging infrastructure and enhanced multimedia information

processing technologies, innovative Telelearning Systems can be designed and

implernented to deliver courseware content locally or rernotely to distant learners.

Teleleaming Systems have offered several features to build a seamless education

environment. First, these systems aim at making the education process more accessible

and reachable by large groups of users called educational groups. This provides more

oppoaunities for those who could hardly access education resources through the

traditional learning style [2] . Second, because of the achievement within multimedia

computing and networking infrastructure, cornputer-based learning becomes more

powerhl by integrating multiple media of information into the system and providing

more effective and expressive ways to represent knowledge. Third, Teleleaming Systems

try to present knowledge structure in a form closer to the reality, by using sophisticated

multimedia presentation environments. In addition, students are offered a real-time,

interactive and reusable information interchange through different platforms. For

instance, a student can be easily connected to a teacher or an on-line facilitator to obtain

help on a specific topic using e-mail, chat, telephone connections and video conferencing.

Furthemore, these systems also provide the ability to corne in contact with other students

from different social, cultural, econornic and experiential backgrounds to discuss topics

of similar interests. In other words, sophisticated Teleleaming s ystems involve

interactivity between teacher and students, between students and the leaming

environment, and among students themselves, thus resembling active leaming in the

classroom [1][5]. As a result, snidents gain not only new knowledge but also new social

skills, including the ability to comrnunicate, interact and collaborate with widely

dispersed colleagues whom they may never have seen Cl]. Interactivity represents the

connectivity the students feel with the distant teacher, their colleagues and on-line

facilitators. Without such connectivity, distance education degenerates into the old

correspondence course mode1 of independent sîudy, where students become isolated and

eventually drop out. However, there is still a considerable lack of dialogue in

Telelearning systems when compared with face-to-face classes [LI.

Nevertheless, Teleleaming systems are being restricted by networking capabilities

and information coding rnethods (31. Meanwhile, the World Wide Web (WWW), in

partïcular, opens wide the door for ofTering courses to distant learners. What makes the

IWVW attractive to an educational institute, is a large cornmunication network to

exchange information in two ways; namely, the on-line browser and the courseware

package distribution [6]. In spite of the WWW benefits, it is still a very slow

communication medium. It frustrates students who are accessing outside the university's

campus, because the cument data transfer rates are very low.

Currmtly, several practicai and experimental forms of Teleleaming systems are

being developed and placed on the W. For exarnple, United Kingdom's Open

University, Vancouver's Open Learning Agency, K-12 prograrns, Project BI0 [7],

Norway's NKS Distance Education System, etc Cl], as well as our Telelearning System

"MITS", which will be described within the next chapters.

1.1.3 Dis tance Education Participants

In the traditional education environment, teachers interact direct1 y with their

students, while, in distance leaming, the relationship is not only between teacher and

students. A lot of participants are involved in distance education environment; for

example, distance education systems' designers, courseware authors, teachers, on-line

facilitators, producers, media specialists, database administrators, service providers,

technicians and, of course, students. Each participant has specific roles to play in order to

integrate the distance education environment.

Some participants' responsibilities have been changed frorn the ones they were

used to doing in traditional education, to new ones in distance education. In this section,

the most important participants will be addressed, along with their new roles, while

others will be discussed within the next chapters.

Distance Education Designers

Distance education designers have to consider a variety of issues that could affect

the distance education process. The most important issues that need to be considered are:

the leamer's characteristics and needs, the influence of media upon the education process,

strategies to increase interactivity as well as active leaming, accessibility, and the new

roles of teacher, on-line facilitator and student. Although, technology is an integral part of

distance education, any successful distance education system must focus on the

instructional needs of the students, rather than on the technology itself [II. It is also

essentiai to consider students' interests and expenence, educational levels, instructionai

problems and farniliarity with Teleleamhg methods and courseware delivery. Thus,

designers rnust build distance education systems that should stand on solid ground.

Intelligently designed Telelearning system can make a significant and positive

difference in the way students are leaming.

Teacher

In a conventional education environment, teachers interact directly with their

students. It is face-to-face or one-on-one communication. Teachers prepare their

supported materîals, lecture notes, assignments and tests. However, the distant teac her' s

role has been changed from the controller of a classroom to a consultant who could heIp

students. In distance education, teachers have to be allowed to choose, willing to make

choices and qualified to implement their choices effectively [1]. In other words,

flexibility should be granted to teachers to develop their personal teaching approach

utilizing the variety of options offered by technology [8]. In addition, distant teachers are

not in direct classroorn contact with their students. Communication is provided through

videoconferencing, chat or e-mai1 and is mediated by a host of team partners, which may

include editors, designers, producers, technicians, media specidists, site facilitators and

service providers (11. Therefore, it is essential to prepare a well-set plan and coordinate

staff's activities to constmct a courseware as well as provide enhanced interaction

mechanisms in order to deliver courseware content to distant learners.

The on-line facilitator is an extension of the site teacher, though hefshe need not

be a teacher [Il. The on-line facilitator does monitoring and tutonng of students via e-

mail, chat, telephone or video conferencing facilities, as well as providing help when a

student encounters a problem during the learning process.

Courseware Author

Courseware author is responsible for constnicting a courseware. It is possible that

there is not just one author but many authors for the courseware, including multiple

secondary-authors. Courseware authoring is based on a courseware data model, which is

generated according to multimedia document model [9][10] and teaching architectures

[5]. The proposed courseware data model will be addressed in chapter 3.

Distant Learners

Distant learners are students who access courseware content and being able to

work on their own, they are the center of the learning process. Moreover, they have

additional duties to do, e.g. they rnust l e m how to discriminate between "junk"

information and 'quality" information, to distinguish facts from persuasion, and to

understand how the technology itself shapes the information it carries [l]. In other words,

distant Ieamers must anaiyze the information that they are reading, listening and viewing,

and then contribute their analysis to distant teachers andor on-line facilitators. Such

analysis and hard work provide more opportunities for students to understand the

courseware content and improve their learning process.

1.2 Terminology Related to Thesis Work

In this section, some important tems that are used in the thesis are going to be

introduced for the convenience of reading.

Multimedia: A generd term indicating the merging of three industries: computing,

communication and broadcasting [1 11.

Multimedia system: A software application that supports the integrated processing of

multiple media types such as video, audio, image, text, animation, voice and graphics

with at l e s t one time-dependent medium [Il].

Multimedia database: A large collection of media data objects on secondary storage,

associated with a set of progams and operations used to manage, manipulate and

maintain the information in the database 1121 [13].

Distance education: It puts emphasis on the separation of the learner and the

educator in space andor time [Il.

Learning: It refers to "a relatively permanent change in behavior or knowledge,

brought about by practice or experience". A piece of information is said to be learned

and becomes one's knowledge when it is understood and memorized [4].

TeleLearning: A learning style that ensures "knowledge diffusion" to distant leamers

utilizing distrïbuted systems.

Courseware: An educational software entity that contains different knowledge

components, yet it resembles the objectives of a traditional course.

Distant learner: A student who could use a distance education system to access

courseware content.

On-line facilitator: An educator who provides help when a student encounters a

problem during the learning process.

Courseware authoring: The construction of a courseware that involves choosing the

media objects, applying a teaching architecture, specifying the scenarïo, and so on

P l 131-

Multimedia document: A single entity that provides an integrated and homogeneous

way to describe, organize and structure multimedia information objects and to

represent their temporal relationships 191 [10].

Database schema: The utilized data structures associated with a database.

Persistency: The ability to store data permanently in a secondary storage [14]. In

other words, it is the ability of data objects to survive through different transactions

and program invocations [12].

Persistent-capable class: The capacity of class's instances to be stored in a database.

Persistent-aware class: A cIass can manipulate persistent objects, but cannot itself

have instances stored in the database ClSI.

Annotation Process: A database management system APT "Class File Postprocessor"

automatically inserts the required code into application classes, in order to be

persistent in the database [15].

Linear knowledge structure: Knowledge that is represented linearly for the leamers

to perceive. For exarnple, knowledge in books is structured linearly in content, and it

is assumed that learners should perceive them page by page [3].

Non-linear knowledge structure: Knowledge that is represented in a cross-reference

manner. In this structure, learners can perceive knowledge non-linearly, following the

links between related nodes instead of layout pages. Non-Linear knowledge structure

is closer to the real world knowledge than linear structure [3] .

1.3 Thesis Objective

The main objective of the thesis is to design and develop a TeleleamÏnp System

that is intended to be used in a distance learning environment. Specifically, emphasis will

be placed on designing a courseware data model, rnodeling the database schema and

developing database engine modules as well as courseware presentation agents. These

aspects are considered as the backbone of the system.

Upon completion of the design and development phases, an integrated system

called "MITS" provides an integral view to the distance education era. The system is

developed to deliver courseware content to distant leamers over the Intemet

The main contributions of the thesis are the proposed courseware data model, the

design and implementation of the database schema, the development of the application-

semer modules and samples of the results.

The remaining of the thesis work is organized according to the following outline.

Chapter 2 introduces a Multimedia Interactive Telelearning System "MITS", which is

developed at the Multimedia Information Research Laboratory (MIRL) at the University

of Ottawa. It presents MITS objectives and requirements. Then, it focuses on the system

architecture and its major components. It also provides a brief overview of the previous

approach of m S , which is based on MHEG technology and proposed by Wang 131.

Finally, it illustrates the drawbacks of such MHEG-based model for MITS. Chapter 3

describes the design of a courseware data model. An ovemiew of the "multimedia

document model" and "teaching architectures" is presented. The object-oriented

paradigrn and multimedia document model were employed in order to facilitate the

design of the courseware data model. Then, the generated courseware data mode1 is

presented. Chapter 4 is considered to be one of the major contributing parts of the thesis.

It descnbes MiTS database management issues. First, a brief overview of a multimedia

information system called MEDIABASE will be given. Second, the empioyed database

tools "ObjectStore environment" will be presented. Then, EvaS database schema is

descnbed in major detail. It also presents MïïS database management architecture based

on client-semer computing. Finally, the persistency States of data will be descnbed from

the ObjectStore point of view. Chapter 5 describes the implementation issues of the

system. It will address, bnefly, the exploited prograrnming environnent "Java

environment". Then, the implementation of the database schema and application-semer

modules will be descnbed. In addition, the postprocessing or annotation of MlTS classes

will be discussed. Sarnple results of the constructed courses will be presented. Finally, the

systern integration will be addressed. Chapter 6 sumarizes the thesis work and provides

suggestions for the future research.

Chapter 2

2 Multimedia Interactive Telelearning S ys tem
(MITSI

This chapter descnbes our distance education system from several perspectives.

First, it presents the system's objectives and requirements. Second, it focuses on the

system architecture and its major components. Findly, it provides a bnef overview of the

previous version of the system, which is based on less efficient technology - "MHEG

technology". It presents briefly MHEG-based model that was proposed previously for the

system, and it also addresses the drawbacks of such model.

Our new approach of the system is entirely based on the Object-Oriented

paradigm, new trends at multimedia computing and utilization of advanced technologies.

1t is an innovative Telelearning s ystem, which utilizes an object-oriented database for

supporting database capabilities, Java environment for developing the system's software

modules, the Intemet for providing the communication network, enhanced techniques for

capturing as well as coding multimedia information, etc. We have proposed a courseware

data model that describes and represents courseware content in order to facilitate

courseware authonng and ensure its delivery to end-users.

2.1 Objectives and Requirements

The Intemet is an exciting new medium for providing courses to distant learners.

It is considered an ideal vehicle for effective courseware delivery to users anywhere in

the world at any time [16]. At our laboratory at the University of Ottawa, we are

developing a Multimedia Interactive Telelearning System (MIT'S). The goal of die system

is to buiZd an environment for delivery of courses over the Internet. Our approach

represents a significant advance over the typical Intemet approach of delivenng

educationai information using text, static images and a few video clips over hypertext

HTML pages. The new approach aims to deliver courseware elements "abjects" to

distrîbuted users smoothly. The strength of the system stems from the proposed

courseware data mode1 as well as database schema, the developed database engine, the

integrated systern's software modules, the generated courseware presentation agents and

the courseware reusability. Al1 these issues will be addressed within the next chapters.

Several aspects have been taken into consideration during the MITS's design

stages. First, the system should enable students to seek courses-on-demand, which offer

students the flexibility to access multiple scattered database servers from any access point

in a network at a convenient time. Second, the learnïng process may be controlled

according to the students' leaming styles and cognitive capabilities [2] [5] . Thid, the

systern shouId provide interaction mechanisms and incorporate a number of multimedia

features, which can give the learning environment a new and refreshing flavor [17].

Fourth, the role of an instmctor has been changed from that of controller of a lecture to

the courseware author andor on-line facilitator, who is responsible for providing help

when a student encounters a problem during the learning process. Thus, a student should

be easily connected to a teacher, or an on-line facilitator to obtain help on a specific topic

using e-mail, chat services, teiephone connections and video conferencing. Furthemore,

the system should be capable of handling various student profiles associated with

different learning objectives. It is therefore important that the system should be

developed for different courses andior students demands [2]. In addition, our challenge is

to create an enhanced setting that wiil be a seamless education environment that wiIl

encourage reflective practice among students and teachers [16].

Briefly, MITS encompasses different major components: courseware authoring

site, courseware database server, multimedia database server, media production center,

courseware presentation agents "Rendering application and GWs" and an on-line

facilitator (Figure 2.1). A detailed system architecture is illustrated in the next section.

Multimedia
Database

On-line

Production Courseware

Courseware Users Cou rseware
Database Server

Figure 2.1 MITS's major components

2.2 Generic System Architecture

Our system "EVaS" is a distributed Teleleaming systern that satisfies the

previously mentioned requirernents. MISS is based on the client-semer architecture. It is

cornposed of several basic components (Figure 2.2), where each one of them has specific

roles to perform. These components are: courseware authoring site, courseware database

server, multimedia database server, database schema modules, media production center,

media managers, courseware presentation agents, video indexing techniques and reai-

time communications system. -
O bjectS tore
Metadata

Logical Str.

(P- J. Os) C
Media
Managers 4

Courseware

Database

Muttirnedia

Database

-
Figure 2.2 MITS general architecture

Courseware Authoring Site is the factory for constructing courses based on a

courseware data model, which will be explained in chapter 3. Object-Onented

paradigm [18] and multimedia document model [9] have been exploited to design the

courseware data model. The courseware author constructs a coiirseware within two

basic steps. First, the courseware data mode1 is ernployed to define the courseware

hierarchy and identify the courseware presentation structure by specifying the

relationships arnong courseware content "physical media objects". Second, the

content objects of the courseware are specified either by creating new ones through

the Media Production Center, or by making reuse of those ones that are already stored

in a Multimedia Database server (MM-DB server). Then, the constructed courseware

is stored in the Courseware Database server. The Courseware Authonng Site exploits

Java environment and Virtual Reality Modeling Language -2.0) towards the

courseware creation.

ObjectStore is a commercial Object-Oriented Database Management System from

Object Design [19], which is used as the basis for the database capabilities. It is a

product based on making CH- a database programming language. ObjectStore5.O

utilizes Java and C++ as programming environments for Vnplementing client

applications (Authoring and Presentation applications) and the application server. It

provides an interesting combination of full support for database capabilities and

object-oriented programming features. MïïS database issues will be addressed in

chapter 4.

Database Schema Modules are dedicated to the management, manipulation and

maintenance of database schema aspects of a courseware. Once an author constructs a

courseware, me courseware meta data (i.e. the courseware logical structure and

presentatioo structure) are transferred for storage from the client authorhg site to the

Courseware Database semer as Java classes and VRML objects using reliable TCP. A

CoursewareDB Application Module (CDBAM) is designated to include the definition

of each courseware class as well as its instances, and then to annotate and mark these

volatile classes automatically or manually to be Persistent-Capable Java classes.

These classes are mapped through the Java API module, and are to be stored

persistently applying a CoursewareDB Schema Module (CDBSM), which resides at

the server site. CDBSM includes the definition of each persistent-capable class of

objects and provides a pipe Stream to store these courseware classes at the

Courseware Database server. An enhanced database management architecture is

described in chapter 4, which defines MJTS database modeling and scherna

generation that are produced by utilizing different software engineering techniques

and ObjectStore. In addition, students' requests to the database are supported through

a mediator application layer "Courseware Presentation Agents". This offers two

advantages: it protects the courseware database from unauthorïzed accesses, and

hides the details of the database operations. As a result, students are offered the

flexibility to access information repositorïes. Also, databases are managed,

manipulated and maintained properly.

Media Production Center: is responsible for capturing infomation from the reai-

world and coding them into various types of "physical media objects", such as video,

audio, image, graphics, animation, and text. These media objects will be empioyed as

basic multimedia information for the courseware creation and presentations.

Multimedia data can be categonzed as static or continuos media. The t e m "static

media" refers to the media that does not have a temporal dimension, while continuos

media has an implied temporal dimension [20]. Video and audio are the best

exarnples of continuos media. The rendenng of video must satisfy strict temporal

constraints and must also be synchronized with the associated audio [20]. In addition,

the media production center normally contains different equipment for capturing

media information, such as video cameras, VCRs, scanners, speakers, rnicrop hones,

and so on. McNabb [l] noted that more expenmental studies are needed in the area of

media selection, which is one of the basic steps towards the courseware authoring.

Multimedia Database Semer: the multimedia infomation that is already captured

from the real-word and coded into different types of media objects are indexed by

textual references, then stored at a Multimedia Database server (MM-DB server) by

exploiting a set of Media Managers. Meanwhile, the courseware meta data includes

these textual references as pointers that facilitate the retrieval of those media objects

at rendering time is stored at Courseware Database semer. One of the most important

issues related to media objects is the storage. Media objects, especially video data,

can be very large in terms of bytes. However, there are severai compression standards

that have been designed, implemented and utilized in order to manage, cornpress and

store those media objects at a MM-DB server.

Media Managers are part of ObjectStore tools. These managers are a set of class

libraries used to facilitate the storage and retrieval of those media objects into a MM-

DB server. A variety of media managers are provided within the ObjectStore

environment [15]. For instance, Text object-manager, h a g e object-manager, Video

object-manager, Audio object-manager, ETINIL object-manager, etc.

Courseware Presentation Agents are rendering client applications, which are

responsible for offering distant leamers a variety of multimedia interactive

courseware services through sophisticated Graphical User Interfaces "Rendering

GUIS". These services enable students to browse ali courses that are stored in the

Courseware Database server, or to retrieve the logicd structure of a specific

courseware. It is then possible to reîrieve a specific section from within such

courseware, enclosed with the pre-defined presentation structure by playing back its

basic media objects. The rendering application modules interact with students through

standard browsers such as Netscape3.0 [21] or hternet ExpIorer4.0 [22] in order to

ensure the courseware delivery. When a student encounters a problem during the

learning process, he/she c m always get help from the on-line facilitator through e-

mail, chat, telephone or video conferencing facilities. Therefore, the power of

multimedia in supporting the learning process is not only in the ability to combine

text, audio and visual data, but it is also evident when combined with rendering

applications to provide interactive functionality for users to navigate for information

at their own Pace [4]. The integration of the database engine with the courseware

presentation agents will be addressed briefly at chapter 5.

Video Indexhg techniques: MES is associated with ObjectStore to provide a high

Ievel of indexing techniques based on the content of such media objects as image

content or video fraznes content. Currentl y, ObjectStore on1 y offers image-indexing

techniques, such as content-based retrieval [15], which is based on image visual

properties, including color histogram, texture, shape of objects and sketch. Denving

such features requires automatic analysis of the multimedia information. The pnmary

rnethods used for image data are image processing and image understanding [l2].

while the pnmary methods utilized for video data are video shots analysis, video

parsing and video shots abstractions (Le. selecting key frames to represent each shot)

Real-time Communications System (RCS) is a part of MITS system, which was

developed at our Laboratory [24]. It was designed to experiment with media-on-

dernand issues using Real-time Transport Protocol (RTP) over the network with

emphasis on video and audio media types. The main features of the RCS sub-system

are real-time transmission, scalability, utilization of standard protocols, flexibility and

user interactivity [24]. RTP was used over UDP for reai-time transfer of video/audio,

rather than reliable TCP, because when packet losses occurred, retransmission and

congestion control methods used in TCP resulted in gaps dunng media presentation.

Al1 these components are distnbuted over the Internet to provide real-time

interactive multimedia courseware services to a variety of educational groups in order to

satisfy their Iearning needs.

2.3 MIT§ Previous Approach

A previous approach of JS4ITS was proposed and designed at our Laboratory [3].

It is entirely based on MHEG technology. Briefly, the MHEG standard will be descnbed,

and the proposed MHEG-based model for MITTS will be introduced, followed by the

illustration of the drawbacks of such model. However, our new approach of MITS does

not use MHEG technology; it is designed based on the courseware data rnodel.

MHEG Technology

MHEG stands for Multimedia and Hypermedia Information Coding Expert

Group. The standard it provides is Coded Representation of Multimedia and Hypermedia

Information, which is cornrnonly called MHEG standard [25]. MHEG is a developing

international standard that is providing a coded representation for multimedia/hypermedia

information to be used, and interchanged in real-time, by applications in a wide range of

areas and on heterogeneous platforms [3] [9] . For instance, interactive multimedia

applications and document interchange services.

The MHEG standard is based on the object-oriented notations, but it does not

need an object-oriented system to be implemented [25]. MHEG technology aims to

define a "Fmmavork" for several multimedia and hypermedia applications. This

"Framework" comprises the coded representation of independent and elementary units of

information, which will be specified as "Objects", and utilized or interchanged by

different applications. in addition, the standard aims at sustaining real-time interchange

and presentation using minimal resources [3].

Research on MHEG began in the late 19807s, and the standard is developed in a

number of parts [25]. For instance, Part V of the standard is developed to support the

distribution of interactive multimedia applications, based on the client-server architecture

across heterogeneous platforrns. However, these parts are out of the scope of our thesis

work.

B asically, MHEG standard contains eight types of classes. These classes are MH-

Object class, Composite class, Content class as well as Multiplexed Content class, Script

class, Action class, Link class, Container class and Descriptor class [25]. In addition,

system designers are able to add new classes into the system. Based on these classes,

MHEG objects c m be instantiated by the object designers and interchanged between the

applications. Messages for the communication between MHEG objects, or for the

communication of these objects with client applications, are specified in the MHEG

standard. However, it is up to the applications or services to define the way to utilize or

handle them, and if necessary encode them [3] .

MITS Based on MHEG Model for Information Interchange

Wang [2] had proposed an MHEG mode1 for interactive multimedia courseware

delivery system (Figure 2.3). It is a layered modet, which contains multiple layers, süch

as application layer, script layer, MHEG object layer, non-MHEG content object layer

and the communication protocol layer. AI1 these layers are located in three sites:

authoring, storage and presentation. These sites are the key factors for the process of

transrnitting laowledge to distant Iearners.

Courseware Author

Script ---- n

Courseware Database Courseware User

Couneware Presentation Agent

t

MHEG Object Moduies
(CODEC, hterpretqetc)

4
Non-MHEG Content Object ModuIes

(MPEG, JTEG, ASCII, etc.) (MPEG, PEG, ASCII, etc.)

Communication I ------
Communication Pro twol

Figure 2.3 MHEG-based model for MlTS

At the application layer, the authoring site utilizes a courseware editor, the storage

site exploits a courseware database, and the presentation site uses a courseware navigator.

The second layer of the model is the script layer, which is employed to specify complex

relationships between MHEG objects and run-time objects for the courseware

presentation [2] [3] . The next layer of the model is the MHEG object layer, where, at the

authorhg site, objects are coded into ASN.1 or SGML format using MHEG Engine and

transrnitted through the network. When the objects are received at the presentation site by

the courseware navigator, they are decoded and interpreted for rendenng using the

MHEG Engine. In addition, this layer is responsible for sustaining other activities that

facilitate the presentation process, e.g. resolution of object references, creation of

runtime-objects, and interpretation of link as well as action objects. The MHEG Engine is

a set of software modules designed and implemented by the system designer to encode,

decode, handle or interpret the MHEG objects [3]. Moreover, the non-MHEG content

object layer is responsible for offering mechanisms to handle various types of coded

media objects. These content objects are captured and coded at the media production

center utilizing different data coding standards, such as MPEG, RealAudio, P E G and

ASCII, depending on the media types. Finally, the communication protocol layer is

dedicated for exchanging messages and acknowledgment~ between the applications-

Severd networking infrastructures can be used to offer such communication services; a

broadband network had been suggested for the first approach of MIT3 [2].

2.4 Drawbacks of MHEG-based Model of MITS

In order to use such MHEG-based mode1 for h a S (Figure 2.3), a specific

MHEG flavor application, a user interface, a MHEG engine and a communication

management module are cornmon modules to be installed at every user's site.

This spawns several obstacles that affect the first approach of MITS in terms of

the scaiability and performance. Since each end-user's site has to install the MHEG-

based presentation application and the MHEG Engine, students are unable to access the

system through standard browsers such as Netscape [21] or htemet Explorer [22]. Thus,

the system's scalability is Iimited. In addition, as the MHEG-based mode1 has several

layers, so courseware content must go through al1 these layen in order to be delivered to

end-users. Therefore, the system7s performance is slow. Moreover, MHEG technology

itself is not stable, because there are different versions of the standard, Each one of them

includes new specifications. This makes the implementation process of any system that

utilizes MHEG technology more complicated. In addition, MHEG includes a limited

synchronization specification support. It is suggested that other standards such as

AudioVisual Interactive Scriptware (AVIS), c m be used to handle the more complex

synchronization requirements of presentation scheduling [9]. Furthemore, recent

cornparisons have revealed that MHEG7s very high conceptual overload makes authoring

MHEG documents curnbersome [26].

Chapter 3

3 Description of Courseware Data Mode1

In chapter 1 and chapter 2, we have pointed out that the courseware author

constmcts different courses based on Our courseware data model, which is designed

according to the "multimedia document model" [9] [101 and teaching architectures [SI.

The Multimedia document is an architecture that aims to descnbe, model and structure

multimedia objects, while teaching architectures incorporate the learning theory with the

computer capabilities to accomplish one-on-one based teaching and satisQ student

learning needs. The teaching architectures are different from traditional teaching methods

that are used in typicd classrooms. Most of these teaching architectures concentrate on

the idea of learning by doing, which enables distance education developers to create

educationaiZy effective Telelearning systerns.

Basicaily, the courseware data model aims at describing and representing

courseware content in order to simplify the courseware creation and support the content

deiivery to distant leamers. An overview of the multimedia document model and teaching

architectures is addressed in sections 3.1 and 3.2 respectively. Then, the courseware data

model is descnbed in section 3.3.

3.1 Overview of Multimedia Document Architecture

The first step toward the design of a multimedia information system is to provide

an integrated and homogeneous way to describe, organize and structure multimedia

information objects and to represent their temporal relationships in a single entity called

the "multimedia documenty' [9], Multimedia documents differ from traditional documents

that are composed of text and graphics [10]. Documents that comprise a combination of

different media types such as video, audio, graphics, animation and text can express or

present ideas more clearly than traditional documents. Multimedia documents are

originated from "Clfice Document Architecture"(0DA). The ODA [9] [27] supports only

static media types such as text, raster graphics and geometric graphics, while, continuous

media such as video and audio cannot be incorporated into the ODA. These media differ

h-om static media in that they are laid out over tirne and have temporal properties. Thus,

ODA does not address the temporal reiationships between media items within a

document [9]. The emergence of continuous media (e-g. video and audio) imposes new

requirements on document representation and information storage. Therefore, in order to

include continuous media and support temporal representation; ODA must be modified

and extended to a new model called the "Multimedia Docunzent". It is an architecture

aiming to model multimedia objects. The new generation of multimedia documents is

able to integrate new types of information, such as continuos media (e g . video and

audio) and cornputer-generated media (e.g. cornputer graphics and animation) [27].

Exarnples of multimedia documents are courseware, textbooks, atlases, medical reports,

electronic news, and so on.

There are two types of multimedia documents: passive documents and active

documents. In passive multimedia documents, the author integrates continuous media

simply by representing them in a static visual form such as a frame for video and an icon

for audio [9]. In active multimedia documents another approach is used to integrate

continuous media. Each media item must be treated as an object to be presented in time;

each object is rendered for a specific duration of time. Thus, by assigning duration to

every object in the document, the author can create a presentation schedule to describe

when each object in the document should be presented. In contrast to the passive

documents, active multimedia documents play back in a presentation that changes

continuously in time. At Our laboratory, a stmctured description of the multimedia

documents called "Mediadoc" had been proposed [9]. This is an architecture for the

creation of active multimedia documents. It also includes a rendering synchronization

scheme that enables the specification of temporal characteristics for multimedia objects

and relations between them.

However, two major problems that appeared with multimedia document

architectures and authonng systems: are Limited functionality and poor authoring

environments [9]. Considering these two probkms, few goals were established for the

development of "Mediadoc". First, the generated architecture must be powerful enough

to describe multimedia documents to the extent required by authors. Specifically, it

should offer a beneficial set of synchronization specification types for creating the

presentation schedule of a multimedia document. Second, the architecture must be simple

enough so that authors can readily create multimedia documents that are clearly and

concisely stmctured and easily interpreted, understood and modified [9]. In addition, the

procedure of creating presentation schedules for multimedia objects should be easily

dnven and not tedious.

The most important issues of the document architecture are the logical structure,

layout structure and rendering scenario, which describe a document's content and specify

how the content will be laid out and played back. The logical structure describes how a

document is organized into major components and sub-components. Thus, a document

can be stnictured into a number of levels. Each level w i l contain severd sub-documents.

At the lowest level, sub-documents will represent media objects [10]. The layout

structure describes the spatial properties of media objects that will be presented during

play back. The layout process requires assigning each piece of information to a

"rendering area" on a display device. In addition, the layout process will be completed

once the document's rendering schedule "Scenarïo" has been specified. A scenario is

defined as a schedule for document play back. These scenarios describe when, and for

how long, each media object will be rendered. In addition, such scenarios specify the

temporal synchronization that coordinates the reai-time presentation of a multimedia

document, and maintains the temporal ordering (Le. time-ordered relations) arnong the

media objects [IO]. In other words, a "scenario" makes it possible to schedule multimedia

events to happen according to specific relationships between media objects. Therefore,

scenarios are essential for multimedia document play back because they provide the

means of integrating static and continuous media. Each multimedia document can have

several scenarios representing different ways it can be rendered. More details of

"Mediadoc" architecture are provided in [9].

3.2 Teaching Architectures

Regardless of the traditional teaching methods, Schank [5] had proposed a

nurnber of teaching architectures that incorporated the learning theory with the compter

capabilities to accomplish one-on-one based teaching and satisfy students' leaming

needs. These teaching architectures include simulation-based learning by doing,

incidental learning, learning by reflection, learning by exploring, case-based teaching and

goal-directed learning. The research and studies throughout the learning theory have

demonstrated that irnmediate and frequent feedback, cooperative leaming, and well

structured exposition of information and data c m improve the learning process [16].

Simulation-based Learning by Doing

This architecture is usually used when apprenticeship will not work al1 that easily

or if it is risky. In other words, simulation applications allow users or students to

experience with diEcult events or tasks and try to gain experience from them, as for

exarnple in pilot training. It is composed of four parts: a student, a simulator program, a

storytelling program and a Ianguage understanding program. A student can receive

training through the simulator program, where a language understanding program will

interpret student questions to languages that the cornputer can understand. A storytelling

program is activated by a trainer (Le. teacher) at appropriate times to tell stories from the

experiences of experts in actual situations [3] 151.

Incidental Learning

This architecture creates tasks whose end results are inherently interesting and can

be used to offer significant arnounts of information. The basic principle of this

architecture is that students can l e m easily when doing something fun, e.g. students c m

learn geography by utilizing a software called "Road Trip" [SI. It teaches geography to

school students by letting them take simulated car trips around the United States. Upon

arriva1 at a destination, the student can wztch exciting video clips spotlighting activities

or events in that location 151.

Learning by Reflection

Sometimes a student does not need to be told something, but rather needs to know

how to ask the right questions. A student can be the best teacher of himself if he has

someone around to listen to the ideas that he generates. In this architecture, the teacher's

role is to help the students see shortcornings in thinking, and encourage them to

speculate, imagine and create [SI.

Learning by Exploring

The learning by exploring architecture provides answers to a student's questions

at the time they arïse. In this architecture, students must be provided the Rexibility to

select their own choices and they should have a number of experts available to answer

their questions. Proper organization of expert testimony is of vital importance for

learning by explonng [5].

Case-based Teaching

This architecture depends on two ideas: experts are repositories of cases, and

good teachers are good storytellers. The students are told exactiy what they need to know,

when they need to know it. When students realize that they need information to progress.

they will l e m fast. This architecture can be combined with the simulation-based

learning-by-doing architecture. The learning-by-doing architecture provides the activity,

and the case-based teaching architecture provides the instruction [5].

Goal-directed Learning

In order to leverage the power of the teaching architectures, we need to provide

goals that students will adopt willingly. Also, we need to provide a way for students to

control the environment in which they learn, and give them an oppominity to adapt what

is presented to them, to their exiting learning needs. Schank [5] had proposed several

principles about how to build educational environments in schools and in the workplace.

For instance, learning should concentrate on a task that requires transformation of skills

and knowledge diffusion. The task should be challenging, but within a studentys ability.

In addition, an instructional designer's job is to make the leaming process more

attractive, which means that students will enjoy what they are doing.

3.3 Courseware Data Model

The design of an appropriate data mode1 for a multimedia information system will

ensure smooth navigation and fast access between real-world application entities and

multimedia information objects.

In MITS, we have adopted the multimedia document architecture "Mediadoc" [9]

and object-onented paradigm to design Our Courseware Data Model (CDM). The

Courseware Data Model describes and represents coursewax content by specifying the

logcal structure and presentation information, in order to facilitate courseware authoring

and ensure its delivery to distributed educational groups. In other words, CDM aims to

simplify the creation of courses and facilitate their manipulation into database systems. In

addition, the Courseware Data Model incorporates a courseware with a teaching

architecture, and guides students through the learning process b y specifying the

presentation information of the courseware content. We have utilized Java environment

as weU as VRML tools [28] to accomplish the design and implemeniation of the

courseware data model.

The Courseware Data Mode1 is composed of logical, spatial, temporal and

behavioral structures. The logical structure describes how a courseware is organized into

major components and sub-components, as regards chapters and sections, respectively.

The spatial structure describes the layout properties of media objects that will be

presented during play back. It specifies the physical location of each media object on the

rendenng terminal, in terms of the horizontal-vertical coordinates and the width-height

rneasurements [IO]. There is a connection between the logical and spatial structures: the

spatial structure facilitates the understanding of the logical structure through typographic

effects 1291. The temporal structure defines when, and for how long, each media object

will be rendered, e.g. displaying a video clip for 60 seconds after a text object has been

displayed. The behaviorai structure is used to describe how a courseware should react to

user's interactions [28], e.g. a student should click on a video object in order to be

rendered.

In Our Courseware Data Model, as illustrated in figure 3.1, the courseware logical

structure is organized into several chapters where each chapter consists of multiple

sections, although sometimes a chapter has no section. The sections' level is the leaf level

of the logical structure hierarchy. While, the presentation information (spatial, temporal

and behavioral structures) are wrapped in one 3D visualization container cdled 3D-

Scenario Structure (3D-S), which is constructed by applying VRML2.0 authoring tools

[28]. Each section in the courseware Iogical structure is associated with one 3D-S. Even

when a chapter has no section, it can contain a Link to a 3D-S (Figure 3.1). A 3D-S

contains multiple 3D-S Components, where each one of them represents a specific media

object, such as video, audio, image and text, within a section or chapter. The spatial

information of a media object is represented on X-Y plane by assigning a "rendering

area" that has width and height values. This specifies the physical location of each media

object. The temporal information of a media object is represented by the 2-mis, which

represents die time-axis; it contains the start time of rendering the media object, the end

tirne of rendering the media object and the lengh of the time it will last. The behavioral

information of a media object is represented by 3D behavior arrows [28], which represent

the behavioral relationship and rendering policy of a specific media object. For instance,

these arrows will determine how a media object K will be rendered before/after another

media object M, and how it will respond to student interaction such as clicking.

C~unrwarr -
Structure

Section --- Section N &p-,','&;&,
I I I 1 I

/ / 7
. w V

3D 3D
Scenario/ Scenar io j Scenario >

1 \

- 3D Scenario
Name

List of all3D-S components

Figure 3.1. Courseware Data Mode1

Chapter 4

4 MITS Database Management Issues

Database management is the backbone of any complex cornputer-based system

that is correlated with large repositories of information. The aim of database management

is to ensure efficient storage, effective manipulation, fast access and beneficiai querying

to database users. Database schema is considered as the hean or kernel of that backbone,

Therefore, powefil software engineering techniques must be utilized to design and

generate the database schema In addition, an appropriate database management s ystem

must be used to support the required capabilities.

In this chapter, we will expiore the NIlTS database management issues. First, a

brief overview of a multimedia information and communication system called

MEDIABASE will be addressed, where our Telelearning system stems from this

platform. Second, the functionality of the multimedia database management system is

descnbed by focusing on the exploiteci object-oriented DBMS. In addition, major

contributions are presented in sections 4.3 and 4.4. MITS database modeling and schema

generations are accomplished by utilizing powerful software engineering techniques. For

instance, Object Modeling Technique [18] and Use Cases [38] have been employed to

facilitate the schema generation. Then, MlTS database management architecture is

described based on client-server computing. Finally, the persistency States of objects

inside the database are presented briefly.

4.1 OveMew of MEDIABASE System

At Our Laboratory, a research project called MEDIABASE that combines key

aspects of multimedia, telecommunications and information processing [29]. The

MEDIABASE platform is a multimedia information and communication system that has

been under developrnent for several years. It has focused on document architectures,

database models, high-level communications as well as synchronîzation protocols, and

real-time physical storage of multimedia data [9][29]. It has provided the basis for

developing fully distributed and complex applications such as remote delivery of video

entertainment services, real-estate information system, audiovisual interactive

applications, etc [29]. An interactive multimedia newspaper application has been

implemented based on the MEDIABASE platform [30]. Our Teleleamhg system is also

one of the applications that stem from the MEDIABASE project.

The main components of the MEDIABASE platform include Mediadoc

architecture, production information servers (e.g. video, image, text as well as graphies,

and voice servers), cornmmication servers (e.g. cooperative, mail and directory servers),

database server, high-speed network infrastructure and multimedia user interfaces. The

database server provides a set of features used to store, retrieve and manipulate

multimedia documents as a whole, independent of their ph ysical storage [29]. Al1 these

components are distributed over the OCRInet - an R & D ATM network in the Ottawa

region [30].

The first prototype of Our multimedia Telelearning system was implemented on

the MEDIABASE system. It airned to accomplish the implementation of a courseware

delivery system by sustaining specific tasks in the next versions of the system [3]. Thus,

in Our current approach of h a S , we have fulfilled those tasks through the following:

A courseware database engine, which stores courseware logical structure,

presentation information and content material.

A client module(s) that enables users to access, manipulate and update the

database,

Courseware presentation agents that offer a user-fnendly graphical interface

for the learning environment [3 11.

4.2 Object-Oriented Database Management System

Multimedia information systems deal with huge amounts of data that should be

stored in large repositories of information. Thus, a powerful database management

system is required to provide database capabilities. Traditionally, a database consists of a

controlled collection of data related to a gïven entity, while a database management

system (DBMS) is a collection of interrelated data with the set of progarns and

operations used to define, create, store, access, manage, query and present the

information in the database. The functions of a multimedia DBMS basically resemble

those of a traditional DBMS [12][32]. However, the nature of multimedia information

makes new demands, including determining what is needed and how to provide that

functionality. A multimedia DBMS provides support for multimedia data types, plus

facilities for the creation, storag, access, query, and control of the multimedia database

[12]. In addition, it is the task of the multimedia DBMS to provide format independence

to the applications, i.e. to supply each of the formats it needs, while hiding the intemal

storage formats that are actually used [13]. For the multimedia DBMS to serve its

expected purpose, it must meet certain special requirernents. These requirements are

divided into the following categories Cl21 [33]:

Traditionai DBMS capabilities

Huge capacity storage management

Information reuieval capabilities

Media integration, composition and presentation

Multimedia query support

Multimedia interface and interactivity

Performance

Traditionally, a multimedia DBMS is designed by developing a multimedia

presentation layer on top of a pre-existing object-oriented DBMS (which can be tmly

object-oriented or relationai-based), such that the core of the DBMS was developed

earlier, independent of the design of the multimedia presentation layer [20]. A number of

challenges are faced by the database cornrnunity to provide a comprehensive solution for

designing and managing multimedia database systems. These include designing new data

models to capture semantics for multimedia objects, storing and accessing multimedia

data, providing high-level indexing techniques for images, video and audio data, version

management for distributed objects, query language development for multimedia data, etc

[33]. There are three approaches which can be taken when designing a multimedia

DBMS: (1) relational DBMS + object-oriented interface + multimedia interface; (2)

object-onented DBMS + multimedia interface; (3) an object-orïented multimedia DBMS

[20] [33] [34]. Most existing multimedia DBMSs use either approaches 1 or 2. It is well

known that object-oriented styles are very efficient in supporthg the development of

multimedia applications [201[26].

However, the selection of multimedia DBMS depends more precisely on the

application and its own requirements. The emerging multimedia applications range from

multimedia display, data transfer, information retrïeval, to distributed multimedia

collaboration. Virtually al1 commercial and govemmental organizations are included,

with applications such as desktop publishing, education, medical, weather, entertainment,

military and so on [20]. Pazandak and Srivatava [35] have addressed the general

requirements of multimedia applications and provided a survey for the most popular

OODBMSs and multimedia DBMS products.

In h a S , we have exploited a commercial OODBMS product (ObjectStore5.0 in

lava) to support the required database capabilities [15]. We have selected an OODBMS

for several reasons. It offers enhanced tools to manage, manipulate and maintain complex

data such as multimedia information. This is perhaps the most important reason why

OODBMSs have attracted the majority of users that have been dissatisfied with

traditional databases 1361. It also sustains nch modeling capabilities that can simulate

real-world environments into sophisticated systems such as MITS. Moreover, object

databases can offer significmt reductions in the development cost and provide substantial

improvements in performance for a wide range of new gneration applications (e.g.

Internet applications) [19]. In other words, the characteristics of the OODBMS can have

siadficant impact on the performance and flexibility experienced by both application

developers and users [37]. Unfortunately, OODBMSs are still subject to lively

development, and the numerous proposals and prototypes differ in many aspects. It is far

from clear, today, which one of the proposals will finally prevaii [13].

As rnentioned earlier, we have utilized an OODBMS for supporting database

capabilities that are needed by MITS. Object Design [15] has produced a full object-

oriented database management system "ObjectStore" and Light-weight database engine

"PSE-Pro" to offer the required database capabilities. These two database management

systems will be addressed btiefly in sub-sections 4.2.1 and 4.2.2 respectively.

4.2.1 ObjectStore 5.0 Environment

ObjectStore emphasizes on client-server architecture and offers a full database

support for multiple clients distributed over the network. It is intended for applications

that require high performance persistent storage for large databases, multi-user

concurrent access, complete DBMS capabilities and queries over large collections of

objects [19]. A library of collection types is provided in order to build database

structures, including vectors, hash tables, sets, bags, lists, dictionaries, etc [15][36]. It

also provides a large number of users with the privileges of accessing various databases

through the ObjectStore client API, which resides on each client's machine and is

associated with application server at the server side. ObjectStore architecture has 3

layers: the client application, the application server and ObjectStore Semer (Figure 4.1).

The client application is implemented in Java or C++ and utilizes ObjectStore client API

to dynamically rnap Java objects into persistent medium for storage. The application

server is implemented in Java or CH, and uses ObjectStore APIS to handle schema

operations and queries. It runs on top of the ObjectStore server, either in a single process

or separate processes [19]. The ObjectStore server is responsible for providing full

database support such as storage management, uansaction management, locking,

recovery, security, etc C S] . In addition, ObjectStore facilitates the creation and

maintenance of multiple versions of data, and provides support for version history. It also

supports object clustering, Le. for better performance in terms of object access time,

objects that are generaily processed together or those that are dependent on each other

can be clustered together. When related objects are clustered they can be simultaneously

retrieved frorn secondary storage and cached together [36].

Figure 4.1 ObjectSroreS.0 architecture

4.2.2 PSE-Pro Environment

Moreover, a light-weight database engine that is called Persistence Storage

Engine-Pro (PSE-Pro) in Java cari be employed to offer database capabilities and

facilitate the pneration of database schema for medium size applications (Figure 4.2). It

runs separately from the ObjectStore server and is affected by several limitations [19]. It

allows, at most, one user to update the database at one time, which means it locks the

database at the file level once the database is under the action of an "update transaction".

But, it enables concurrent "read transactions" by utilizing multiple retrieve threads

(Figure 4.2). PSE-Pro is not intended for a large number of concurrent users. It can

support multiple readers from the database, but writers to the database are serialized since

iocks are held at the database level [19]. This means that a database can be updated by, at

most, one application at one time. Multiple applications can read the same database

simultaneously, but only one application can write to the database. It performs weU for

databases in the range of tens Mega Bytes. When databases start to exceed 100 Mega

Bytes, PSE-Pro performance starts to degrade [19]. Therefore, in order to obtain high

performance, multi-user concurrent access and indexed queries over a Iarge coIIections of

objects, you should consider using the full ObjectStore DBMS product.

Courseware A uthor -
lava i] Appi ica t ionlApple t

-.
PSE Pro A P I --.

PS E Pro S torage
Laye r

PSE Pro A P I

-
Single
P rocess

PSE Pro A P I
(C.E. Courscw arcD B 1

upda t e thread
retr ieve thread
w r i t e O b j e c t (s t o r e o b j)
read O b j e c t (re t r ieve ob j)

Figure 4.2 PSE-Pro architecture

4.2.3 Class File Postprocessor

In this sub-section, we will describe briefly an important API that is provided as a

part of ObjectStore tools, which is called "Class File Postprocessor". It is utilized to

annotate and mark system classes (e.g. hILTS database schema) to be persistence-capable

classes or persistence-aware classes. Recalling from chapter 1, persistent-capable class is

the capacity of class instances to be stored in a database, while persistent-aware class is a

class that can manipulate persistent objects, but cannot itself have instances stored in the

database [15]. In chapter 5, which describes the implementation issues, we will meet both

persistence modes.

Basically, in crder to store objects in the ObjectStore database, these objects rnust

be persistent-capable. For an object to be persistent-capable, it rnust include code that

allows persistence. ObjectStore provides the Class File Postprocessor to automatically

insert the required code into application classes, which is referred to as annotations.

Under nomal circumstances, systern developer(s) must postprocess together d l class

files in an application that helshe wants to be persistence-capable or persistence-aware.

Failure to do so can result in problems that are difficult to diagnose at the application

execution time [15]. Even if a particula. class does not need to be persistence-capable, it

is recommended that it should be postprocessed with al1 other class files in the

application. The postprocessor has offered multiple options that allow the developer to

indicate which classes must be persistence-capable, and which need to be persistence-

aware, and which need not be annotated [15]. It provides a number of cornmand options

that allow developers to tailor the results to their needs.

Description of the Annotation Process

Before running the Class File Postprocessor, system developer(s) must compile al1

source files at the same time.

Create a destination directory other than the source directory.

Run the Postprocessor according to specific persistence modes.

After running the Postprocessor, there are two versions of the application class files:

1- The unannotated class files in the source directory,

2- The annotated class files in the destination directory.

It is important to keep these versions separate, because when a developer runs the

application, helshe must ensure that ObjectStore finds the annotated class files before it

finds the unannotated class files [15]. There are several technical rules for postprocessing

classes, for more details refer to [15].

4.3 MITS Database Modeling and Schema Generation

One of the most important problems that the database community has tried to

solve is the development of a powerful data rnodel. Data models are essential to

multimedia database systems. The data model c m be used for the management of

multimedia information in a way similar to the actual management of factual data by the

traditional database models, such as the relational rnodel, However, traditional data

models and database systems are affected by several drawbacks for handling complex

applications such as multimedia information systems. This refers to the unique nature of

multimedia information that imposes new dernands, and incorporates special

characteristics, such as temporal-ordering and synchronization.

Various data models such as network, relational, semantic and object-oriented

models are already available for the traditional databases, and a few have been proposed

for multimedia databases [12]. Some researchers have gone so iar as to daim that the

data rnodel for a multimedia DBMS cm only be fully achieved by object-onented

technology [12][13]. Object-Oriented paradigm aims at resolving the drawbacks and

offerhg the flexibility to tackle the requirements of the complex systems without being

restricted by the data types and query languages that exist in traditional database systerns.

In addition, Object-Oriented paradigm offers systems designers the power to specify the

structure of complex objects and the operations that can be perforrned on these objects

[20]. Therefore, Object-Oriented technology is suitable for building a multimedia data

model (e-g. Courseware Data Model), which aims at describing and presenting data that

is associated with their relationships in more cornplex systems such as MITS. It also

enables database designers to model, create and store these cornplex types of data without

the need for translation from complex data structures to simple table format. As a result,

we have utilized object-onented modeling techniques in designing MITS database

schema.

Based on Object-Oriented paradigm, the database schema is the description of

classes associated with a database. It includes al1 Java or CU types of objects that have

ever been stored into the database [15]. In MITS, we have adopted the Object-Oriented

model because of its richness and capabilities that support the analysis, design and

implementation of MLTS database schema.

4.3.1 Relational Modeling

Prior to the usage of the Object-Oriented model, we mapped Our Couneware Data

Mode1 to the Relational-Mode1 and produced h a S ' s Entity-Relationship diagram

(Figure 4.3). It hcilitates the designing process of MITS database schema. First, as

shown in Figure 4.3, an author creates several courses, each one of them is assigned with

its attributes (title, crcode, keywords, creation-date, short_description and so on), the

key attribute is cr-code. Second, each courseware has many chapters, where a chapter is

a strong entity and independent of a courseware entity. A chapter is defined by such

attributes as (titIe, chp-code, keywords, creation-date, etc), the key atbibute is chp-code.

Third, each chapter may contain multiple sections, where each one of them is defined by

various attributes namely (title, sec-code, keywords, creation-date. etc), the key attribute

is seccode. Fourth, a 3D-S entity is representing the presentation information of a

chapter or a section, where each 3D-S has a name and contains a list of 3D-S

Components. Fifth, 3D-S Component entity is defined by several attributes such as

(name, x-y coordinates and width-height values). Sixth, each 3D-S Component is linked

to only one media object, which is defined by a reference narne. Seventh, al1 courses are

stored in a coursewareDB entity, which is defined by coursewareDB-Narne. Eighth, a

registered student who is associated with a profile can search or access coursewareDB for

a specific courseware using a textual query. Each student is defined by several attributes

(e.g Narne, SIN and S t-Num).

Title, Çr Code. Keyword, .- prame

Namc
L N

SZCL Author ' Courseware CrsewareD B

,

M

.rime
-lin k-,-

Hght
M ediaO b j

W idth

Figure 4.3 h a S E-R Diagram

4.3.2 Object-Oriented Modeling

Because of the shoacomings of the Relational-Mode1 to represent the temporal

characteristics and behaviord information of each media object in the E-R diagram, we

have exploited Object Modeling Technique (OMT) "Rumbaugh7s notations" 1181. The

reason being that the OMT notations are capable in presenting both hierarchical and

aggregation relationships, and in enhancing the design stage of database schema, as well

as generating MM'S's OMT classes. Therefore, we have translated the preliminary E-R

diagram (Figure 4.3) to M ï ï S Y s OMT diagram (Figure 4.4), and described MITS's meta

data, based on the OMT model. The OMT diagram shows various classes plus their

associations, where each box in figure 4.4 represents a class associated with its attributes

and methods. It contains various classes such as Doc-Base, Courseware, Chapter,

Section, 3D-S, 3D-SC, StudentActor, CoursewareDB, MM-DB, MediaObj and GUI. It

shows the relative association between classes. For example, class StudentActor

interacts with class GUI and class Courseware contains instances of class Chapter. It

also represents the class cardinality, as is the case when a Courseware contains one or

more chapters, a Chapter has zero or more sections, a Chapter is linked to zero or one

3D-S only, and one 3D-SC is associated with only one MediaObj.

Doc-Base
Etle
Codc
Kcywords
CmationDztte
ShoriDescrp
Author. ...-
Methods

sedeg

StudentActor

St_Nurn
Profile

Figure 4.4 MITS OMT Diagram

In addition, hKïS's OMT diagram illustrates how MIT3 exploited the advantages

of reuse and inheritance of object-oriented model and OMT notations to share cornrnon

attributes (title, code, keyword, creation-dare, shooescription, . . .) (Figure 4.4), which

are defined at Doc-Base class and inherited in its successor classes (Courseware, Chapter

and Section). The OMT model considers Courseware, Chapter and Section classes are

extensions of Doc-Base cIass and have additional attributes such as ListofSections and

Ref-to-3D-S. The MediaObj class is a generalization of its descendant classes (VideObj,

ImgObj, TxtObj, ...), which are not overlapped. The MainGUI class is an aggregation of

classes (Cw-GUI, 3D-GUI and MM-Player). It identifies the "whole-part" relationship,

where the MainGUI class represents the "whole" side, while Crw-GUI, 3D-GUI and

MM:-Player classes represent the "part" side of the relationship. StudentActor is a class,

which simulates an end-user and is defined by St-Narne, St-Num and is associated w

S t-Profile,

ith

I I I I
A u l h o r C o u r s e w a r e C rsew a reD B U s e r

CourrcD 6-Nimc I

N i m c T rtlc Nsme

-
G U I

Chap ter

Sect ion

M cthods

Figure 4.5 Primary MlTS OMT Diagram

It is not required that each OMT ciass at the analysis stage (Figure 4.5) must exist

at the design stage (Figure 4.4), or each 0MT class must be implemented as a separate

class. For instance, class Author at the analysis stage (Figure 4.5) becarne a multi-vdued

attribute at the design stage, where such attribute is included within Courseware, Chapter

and Section classes that are inherited from Doc-Base class (Figure 4.4). This represents

how the Object-Oriented model could offer reduction in the implementation and how it

enhanced the designing stage.

Moreover, we have exploited lacobson's Use Cases notations [38] to produce

h a S Use Cases. This airns to simplify the creation of MES classes and to clarify their

definition (e-g. attributes, role of each method and message passing). Use Cases enable us

to understand how classes could communicate and exchange messages. Use Cases are

correlated with their actors, where each use case has a narne and steps. A use case can be

defined as a typical sequence of events that can occur when an actor is interacting with

the system being modeled. An actor c m be defined as a human or machine that will

interact with the system being modeled [38!. We have constructed the following use

cases:

Use Case 1: Capturing and Preparing Multimedia Information

Actors: Media Production Center, Media Specialist, Information Sources, Servers

S teps:

1- Media Production Center captures real-world information

2- Media Production Center analyzes data type (e.g video, audio, image and text)

3- Media Specialist uses MPEG compression format for video data

4- Media Specialist uses .RA, .WAVE and .AU compression format for audio

data

5- Media Specialist uses P E G compression format for image data

6- Media Production Center codes captured information into appropriate media

objects

7- Media Specialist assigns each media object with a reference name

8- Saving Media Objects in MM-DB Sewer (use case)

Use Case 2: Saving Media Objects in MM-DB Server

Actors: Media Production Center, ~atabase Administrator, MM-DB Server, Media

Managers

Steps:

1- DB Administrator selects a specific MM-DB server or segment

2- DB Administrator selects a suitable Media Manager

3- DB Administrator stores media objects into MM-DB server

4- System error in MM-DB semer (use case)

5- DB Administrator releases resources (Le. close MM-DB semer)

Use Case 3: Creating Courseware Data Mode1

Actors: Author, Courseware-DE! Semer, MM-DB Server, Rendering Tools, Browsers

S teps:

1- Creating courseware logical structure

2- Linking each section in the logical structure with 3D-S

3- Specifying the presentation information in 3D-S

4- Each 3D-S is manged into many 3D-SC, each 3D-SC represents the layout,

temporal and behavior structures of a media object

5- Each 3D-SC is linked to only one media object

6- 3D-S wraps presentation information and interaction behaviors

Use Case 4: Creating Courseware

Actors: Author, Courseware-DB Server, MM-DB Server

S teps:

1- Author analyzes characteristics of courseware users, courseware content and

teaching architecture

2- Author specifies courseware logical structure

3- Author accesses M W D B server and selects appropriate media objects

4- Author specifies the presentation information of logical structure leaf level

5- Author integrates meta data and the selected media objects into a courseware

6- Author specifies the state and behavior of a courseware

7- Saving courseware in Courseware-DB server (Use Case)

Use Case 5: Saving courseware in Courseware-DB server

Actors: Database Adrninistrator, Courseware-DB Server, DBMS

S teps:

1- Courseware meta data declared as persistent-capable classes

2- Database Adrninistrator selects a specific Courseware-DB server

3- Courseware-DB seament is selected

4- Courseware-DB segment's root is fetched

5- DB Administrator uses update transaction that holds courseware meta data

6- Courseware meta data stored in a segment

7- Transaction commit

8- ObjectStore DBMS releases the update locks related to such segment

9- Database Adrninistrator closes Courseware-DB segment

Use Case 6: System Error in Courseware-DB Server

Actors: Database Administrator, Courseware-DB Server, DBMS

S teps:

1- Courseware meta data declared as Persistent Capable Classes

2- Database Administrator selects a specific Courseware-DB server

3- Courseware-DB segment is selected

4- Courseware-DB segment's root is fetched

5- DB Administrator generates update transaction that holds courseware metadata

6- Exception is thrown

7- Transaction abort

8- Courseware-DB segment is rolled back

Use Case 7: Retrieving a Courseware

Actors: User, Courseware-DB Server, MM-DB Server, DBMS

Steps:

1- User accesses Courseware-DB server to browse courses hierarchy

2- User selects a specific courseware

3- An appropriate transaction is used

4- Courseware logical structure cashed to the user

5- Specific section is selected

6- Related presentation information of such section accessed

7- Presentation information cached to the user

8- Transaction commit

9- DB Administrator closes Courseware-DB segment

Furthemore, for each concrete use case we c m draw an Interaction diagram. The

Interaction diagrams describe how each use case is offered by communicating objects

(i.e. use case acton). The diagram shows how the participating objects realize the use

case through their interaction [38]. The advantage of using an Interaction diagram is that

it is easier to read messages passing in relative order. Thus, Interaction diagrarns could be

used to reveal how M ï ï S use cases' actors are communicating and exchanging messages

in order to improve the designing stage and to produce the actual irnplemented classes.

Finally, we have translated MITS OMT diagram, Use Cases and Interaction diagrams to

actual Java classes, which represent MXS database schema. Once the schema is

identified, the developer or database adrninistrator can use the DBMS to create a database

and populate it. Therefore, OMT classes and Use Cases have been helpful in

accomplishing the design stage and generatinp database schema of MITS system.

4.4 WTS Database Management Architecture

Before describing MlTS database management architecture, let's first step back

and introduce a brief overview for client-server architecture. At sub-section 4.4.1, we

present a brief overview for client-semer technology. Then, we decribe MITS database

management architecture because it is based on this technology.

4.4.1 Client-Server Background

Client-server computing is the technology that helps developers and users to

achieve several objectives, as follows: to allow organizations to use networks connecting

different kinds of machines, to lower computing costs by running more of the business on

low-cost platforms, and to increase the productivity through user-preferred graphies,

interfaces and tools [37].

Client-server computing has both hardware and software implications. The

hardware implications are that the computing environment includes desktop machines,

networking, and multiple servers, which can be a generai-purpose machine or dedicated

to specific tasks, e-g. database server, e-mail server or video server etc. While, the

software implications are that the contained prograrnming components that c m be

distributed across machines, e.g. a client software component that invokes the services of

one or more server software components [37].

Generally, there is a clear functional separation between a client and a server.

Each has a specific hnctional role, but they interact seamlessly from an application

perspective. The application does not have to deal with the processes separately. Client

functionality focuses on user interaction; while server functionality makes a system

resource available to many clients. A server is able to support multiple clients

concurren~ly. This characteristic irnplies that servers are shared resources that can be

leveraged across applications and users [37].

The different commercial OODBMS products on the market today were

architectured with a client-server mode1 to provide data to users, applications and tools in

distributed computing environments. However, not al1 OODBMSs implement the same

kind of client-server approach. The several approaches have significant variance in their

resul ting database performance, flexi bility, and computing costs.

There are three basic architectural alternatives for implementing client-server

functionality in a database manager: the object server approach, the page server approach

and the database server approach [37]. They Vary in the level of responsibility assigned to

the client and server components of the system. Ln al1 cases, the client part of the DBMS

is linked with the client application process, while the server part of the DBMS is located

on the machine where the physical database resides [37].

The OOBDMS products available today use either the object server approach or

page server approach. Both architectures take advantage of desktop processing power and

storage capacities. While, the relational database management system (RDBMS) products

use the database server approach, because they were originated in the mainframe and

minicornputer eras. Of the three approaches, the object server approach is the most

compatible with cooperative, object-to-object processing, where objects are distributed

over networks and send messages to each other to invoke each other's services [37].

This is a brief overview for the ciient-server architecture that is used in OODBMS

products.

4.4.2 Description of MITS Database Management Architecture

Teleleaming systems impose database management system to handle full database

support for their users by providing efficient storage, effective manipulation, fast

querying, rendering courseware media objects and support sharing of courseware

components by authors (Le. techers) and students. h a S database management system

uses 3-tier architecture: client application, application server and the ObjectStore server

as illustrated in figure 4.6.

Figure 4.6 MlTS Database Management Architecture

It shows two parts of database management, the upper one describes the

courseware creation database management, while the lower one descnbes the courseware

rendering database management.

Courseware creation: The authoring database management contains client

application and application server as two separate entities that are developed, based

on Java environment and ObjectStore 5.0. MJTS authorhg database management is

composed of several steps. First, the client application is originated from MïTS's

database schema as explained in section 4.3. It is called Creation Application Client

(CAC), which includes the logical structure classes and 3D-Scenario Structures as

volatile Java classes and VRML objects that are transferred to the Application Server

(AppSr) for storage using reliable TCP. Second, an ObjectStore API (Class File

Postprocessor) will annotate and mark those volatile cIasses as persistent-capable

classes, which means the capacity of classes to be stored in a database [15][19].

Third, AppSr is responsible for handling schema operations and queries. It

instantiates diose persistent-capable classes and generates persistent-capable objects

based on schema definitions. Then, it stores them as persistent objects in one

CoursewareDB segment or multiple segments, which are managed by the ObjectStore

server. Fouah, each persistent 3D-Scenario Structure contains many references to

basic media objects. Fifth, these media objects and their references are stored into a

MM-DB semer using a customized application server called MM Server, which is a

component of the lower part of the database management. It works on top of

ObjectStore server and exploits the built-in ObjectStore Media Managers (Figure

4.6). In addition, an author c m retrieve a courseware for fuaher update or reuse of its

components to constnict a new courseware, then stores it back at the CoursewareDB

server using "update transactions". Furthermore, database administrators or authors

are able to retrieve the database schema for further update or to constructe a new

schema. Then, annotate al1 classes using the ObjectStore API "Class File

Postprocessor" and utilize the existing database or create a new one, more details of

the annotating process will be aven at chapter 5.

Courseware rendering: The lower part of figure 4.6 represents the rendering

database management. A Rendering Application Client (RAC) is developed using

Java environment. T t is independent from Creation Application Client (CAC) rhat

satisfied the database schema creation. PAC will ensure courseware delivery to

students by communicating with AppSr based on ObjectStore server APIS, Media

Managers and RTP. When a student wants to access the CoursewareDB server to

retrieve a courseware, RAC informs AppSr through a request. Then, AppSr retrieves

the courseware meta data (logical structure classes and presentation information) and

stores them into Client Cache Manager in order to make courseware rneta data

accessible by a student. The Cache Manager is responsible to ensure concurrent

access to data by handling cdlback messages from the server to client applications

[15]. Media Managers will retrieve the associated media objects and start rendering

them according to the spatial, temporal and behavioral structures predefined in the

3D-Scenarïos. RAC is able to access the AppSr for processing quenes. RAC sends a

request through rnethod-invocations to the AppSr. Method-invocation will exchange

messages between the client and the server by using Java APIS and sockets. A

message will convey a student's request for a specific courseware. Then, it is the tum

of AppSr to interpret the request, locate the database segment, fetch the required

courseware, retrieve its objects and locate the associated media objects. Finally,

AppSr will send over al1 related courseware meta data and presentation information

to RAC using TCP and RTP. The system must ensure the concurrent access of

multiple readers to the same courseware.

Al1 implernentation issues related to MZTS database schema and application-

server modules will be descri bed in chapter 5.

4.5 Object Persistency States

So far, we have examined MITS database management issues; including the

utiIized OODBMS, the database modeling as well as schema generation using object-

oriented technology, the h a S database management architecture. Finally, we conclude

this chapter by presenting the persistency States of objects from ObjectStore point of

view. This clanfies how objects are manipulated inside ObjectStore database. As a basic

rule in order to store objects in ObjectStore database, these objects must be persistent-

capable. This means that they are already have been annotated and contain the required

annotation code as expiained in sub-section 4.2.3.

Once objects are stored in the database, they are called persistent objects. A

persistent object always exists in one of three States: hollow persistent object, active

persistent object and stale persistent object as illustrated in figure 4.7 [15].

Figure 4.7 Object Persistency States

4.5.1 Hollow persistent object

A hollow persistent object contains fields that are identical to the fields of the

object in the database that the persistent object represents, but the fields have default

values. When an application acquires a reference to an object that has not yet been read in

from the database, ObjectStore generates a hollow object as a placeholder for that object.

ObjectStore does not actually read in the contents of the object until the application tries

to access the object. When the application reads or updates a hollow object, ObjectStore

tums it into an active persistent object [15].

4.5.2 Active persistent object

An active persistent object starts as an exact copy of the object that it represents in

the database. The contents of an active object are available to be read by the application

and might be available to be modified. If an active object is updated by the application, it

is no longer identical to the object in the database that it represents. An application can

read or update an active persistent object, a persistent object must be active for an

application to read or update it by utilizing appropriate transactions [15].

4.5.3 Stale persistent object

A stale persistent object is no longer valid. It fields have default values and should

not be used. A persistent object becomes stale after the application calls specific APIS;

for instance: ObjectStore.destroy(), Transaction.comrnit(), Transaction.abort(). There are

several rules for utilizing such APIS. If an application tries to read or update a stale

object, an approptiate exception will be thrown. There is an important rule for using

ObjectStore "any application must not invoke any ObjectStore operation on a stale

object" [15]. Therefore, main operations such as update and retneve are performed on

active objects.

Chapter 5

System Implementation

S. 1 Introduction

In this chapter, we will tackle the irnplementation issues of h a S database

system, First, a brief overview of the utilized Object-Oriented programming environment,

"Java environment", as well as its important features will be addressed. Then, MITS

database system implernentation is described. This implementation is divided into two

major tasks: the implementation of database schema and the implementation of

application-semer engine as shown in figure 5.1. The implementation of application-

semer is the main contribution of the chapter, and it covers a11 concepts that have been

described so far. The application-server has been developed as a set of modules. It

imposes the utilization of database schema implementation, thus, the database schema

implementation will be described prior to the description of the application-semer

implementation.

A proposed template for implementing additional modules will be described in

section 5.4. In addition, the generated schema classes and application-server modules

must be annotated using an ObjectStore APL The annotation process for MITS classes

will be described in section 5.5. Section 5.6 presents samples of the results and shows

how these modules are utilized to constmct, retrieve as well as update the meta data of

several courses. Finally, as we have pointed out that h a S consists of several major

components, we will address the integration issue of the database engine with other MITS

system's components such as rendering application and system's GUIs.

P e r s i s t e n t - c a p a b l e e rs is ten t -aware

Figure 5.1 MlTS Database S ystem lmplementation

Therefore, in order to fulfill the implementation tasks, we have exploited the

state-of-the-art technologies by utilizing Java JDK 1.1.2 [39] and ObjectStore 5.0 in Java

interface 1.05 [40] that operate on Windows NT 4.0 [22].

Although, the database schema classes and application-server modules can be

implemented in Ci+ in order to provide a high performance, Java was used for the

prototype to make system modules platforrn-independent, accessible through the Intemet

by a number of educational groups and executable on Web browsers across the network.

5.2 Java Environment

Iava is an Object-Onented prograrnrning language that is created by Sun

Microsystems [39]. Sun itself describes Java as follows: "Java is a simple, object-

oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high-

performance, multithreaded and dynamic language" [41]. Java is simple in the sense that

it is easy and quick to leam compared to other programming languages. It resembles Ci+

but omits many confusing features of Ctt- that bnng more grief than benefit, such as

pointers and operator overloading [41]. In addition, Java was designed to be object-

orïented from the beginning. It emphasizes on a basic object-onented principle "PIE

principle", which stands for polyrnorphism, inhentance and encapsulation [42]. These

concepts are fundamental ones for Object-Oriented programming environments. One of

the benefits of the PIE principle is to sustain code reuse by allowing software components

to grow from existing components, which reduces the required time to create new

components. Moreover, one of the aims is to make Java support distribution. It is

designed to run applications on networks. Thus, it provides different libraries and classes

for network connectivity, such as sockets [41]. Since, the network environment has been

kept in mind when standard Java libraries have been developed, so progamming client-

server applications with Java is easier than with any other prograamming laquage [43].

Furthemore, Java compiler generates byte-codes instead of native machine code [42]. A

Java interpreter is exploited to run the byte-code. A Java program can run on any

platform that has a Java interpreter and mn-tirne system, known togther as "Java Virtuai

Machine" [44], which makes Java platform-independent. What makes Java perfect for the

Intemet programming is the relatively srnall size of the compiled byte-codes.

Another important feature of Java is "multithreading". It is a way of building

applications with multiple processes or threads [41]. Unfortunately, writing prograins that

deal with many things happening at the sarne time c m be more difficult than writing in

the traditional single-threaded C and CH- style. Java has

synchronization primitives that support multithreading.

a sophisticated set of

Other advantages of

multithreading are better interactive responsiveness and real-time behavior. However,

this is restricted by the underlying platform [41].

Java contains different packages thaî could facilitate programming tasks such as

I/O, networking, graphical-user-interface components, etc. Other advanced tools, such as

lava-enabled-browsers, applets and Servlets are causing Java to become a standard for

Intemet programming [41][44]. These tools have been utilized in Our system's

development and integration as will be addressed brïefly in section 5.6.

5.3 Implementation of MITS Database Schema

So far, as we have seen in chapter 4, we have exploited Object-Oriented

paradigm to mode1 and design MITS database schema (Figure 4.4). OMT notations and

Use Cases have been used to design the schema. In this section, we describe the

translation of the database schema to actud Java classes and address the schema

evolution in sub-sections 5.3.1 and 5.3.2 respectively.

5.3.1 MITS Schema Classes

The implementation of database schema consists of several Java classes:

Doc-Base, Courseware, îhupter, Section, Scenario, SComponent, Head, Body and Tail.

Each one of them contains severd public as well as pnvate attributes. In addition,

multiple public methods are included within each class. We have implemented scherna

classes by utilizing regular Java librarïes plus importing the necessary ObjectStore APIS,

which are essential for the annotation process, as will be explained in section 5.5.

Class Doc-Base: is an abstract class that contains several attributes and

methods inherited in its successor classes (Courseware, Chapter and Section).

These attributes include title, code, author, creationDate, modDate,

keywordsn, and shoaDescnption. It also includes several set-methods (e.g.

setTitZe, set Code, setAu th or, inser tKy0 rds, deleteKeywo rds, etc) and

get-methods (e-g. getTitle, getCode, getAuthor, getKeywords, getDescription,

etc). This class illustrates how Object-Oriented languages support the reuse of

the code and offer reduction in the implementation (reduce the cost of

implementation).

Class Courseware: is an extension of Doc-Base class. It is intended to create

persistent instances of such class, which are stored in the Courseware

Database server, Class Courseware includes the above mentioned attributes

and methods that are inherited from the super class Doc-Base. It also includes

List-of-Chapters as an attribute. In addition, it contains multiple methods such

as inseaNewChapter, setchapter, deletechapter, getchapter, getchapters and

getChapterPosition.

Class Chapter: is an extension of Doc-Base class. It is intended to create

persistent instances of such class that are stored within each courseware

instance, then store courseware instances in the Courseware Database server.

Class Chapter includes the above mentioned attributes as well as rnethods and

also includes the following attributes: status, list-of-Sections and a3D-S. If

chapter's status equals false, this means that a Chapter instance has no section

and it has a link to an instance of Scenario class, which is a3D-S. In addition,

class Chapter contains several methods, such as insertNewsection, setsection,

deletesection, setstatu, insert3DS, delete3D-S, getsection, getsections,

getS tatus, get3D-S and getSectionPosition.

Class Section: is an extension of DocBase class. It is intended to create

persistent instances of such class that are stored within each persistent chapter

instance, which are contained at a courseware instance in the Courseware

Database server. Class Section includes the above mentioned attributes and

methods. It also includes the following attributes: refList and dD-S. In

addition, it contains several methods such as insertMediaRef, setMediaRef,

insert3D-S, delete3D-S, getMediaRef and getRefList.

Class Scenario: represents a 3D-S that wraps the presentation information of

different media objects as we have designed in Our Coueeware Data Model. It

is intended to create a persistent instance of such class linked with a

sectiodchapter instance in order to structure the presentation information of

its media objects. It contains private attributes such as narne and scmplist.

The attribute scrnpList is a list of 3D-SComponents that are wrapped in a

Scenario instance. In addition, it includes multiple methods such as setName,

getName, insertScmpList, deleteScmpList and getScmpList.

Class SComponent: represents a 3D_SComponent, where each instance of this

class models a physical media object. It includes different attributes such as

name, layout information of each media object (e.g. x-y values, height-width

measurements), head, body, tai 1 and mediaName. In addition, it contains

several methods such as setName, ses-Vdue, setY-Value, setHeight,

setwidth, setMediaName, getName, getX_Vdue, getY-Value, gemeight,

getwidth, getMediaName, getHead, getBody and getTail.

Classes Head, Body and Tail: represent the temporal-ordering plus the

synchronized list of media objects with a specific media object. Class Head

contains the startTime and syncList as private attributes. The startTime

attribue represents the startkg time for rendering a specific media object.

While, the syncList attribute represents a list of references for d l media

objects that are synchronized with the current media object. In addition, it

contains some rnethods to handle these attributes such as setStartTime,

insertsynclist, deletesynclist, getStartTime and getSyncList. Moreover,

Class Body contains the duration and syncList as private attributes. The

duration attribute specifies the actual time for rendering a media object and

how synchronized its playback with other media objects. Furthemore, Class

Tai1 contains endTime and syncList attributes. The endTime attribute

represents the ending time for rendering a specific media object, while, the

syncList attribute identifies al1 media objects that are synchronized with the

current media object. These media objects have the same endTime, which

means that they stop rendering at a specific time. Appropnate methods are

implemented in both classes Body and Tai1 to handle these attributes.

5.3.2 Schema Evolution

In general, a database schema is specified during database design and is not

expected to change frequently, but the actual data in a database may change relatively

frequently [14]. In other words, the schema does not change so often because it descnbes

the structure of persistent-capable classes. While, the persistent objects rnay change by

updating their meta data values andfor adding or removing persistent objects to the

database-

As the number of applications that access a aven class of objects grows, there is

usually a need to modify the structure of the objects to better meet the needs of the

applications. If the structure of a class of persistent objects is changed, al1 instances of

such class are affected. Such process of changing the structure or the behavior of

persistent classes is called Schema Evolution [36].

Therefore, ObjectStore is one of those OODBMSs that support schema evolution.

It provides a number of APIS for migrating old objects from old databases to conform to

the newer schema, and it aiso provides some facilities by which applications compiled

with the newer class definitions could access existing databases 1151 [36].

5.4 Implementation of Application-Server

5.4.1 Application-Server Modules

The main contribution of this chapter is the implementation of the application-

server (Figure 5.1). It aims at creaûng, populating, accessing and updating the database.

It d s o supports retrieving and deleting persistent objects from the database. In order to

satisQ such tasks, we have classified them into severa! modules. Each one is responsible

for perfonning a particular task. Since, we have designed and implemented Our system

based on Object-Orïented paradigm, so we have implemented the application-semer as a

set of modules, where each independent module is dedicated for achieving a specific task.

These modules include the CourseDB module, updateDB module, retrïeveDB module

and deleteDB module (Figure 5.2). These modules perform their tasks on a collection of

courses. In our case, we have used ObjectStore-Vector to contain the collection of

persistent courses. Therefore, we have developed a class called theCollection as a

wrapper class, which provides the required methods to handle the management of

persistent courseware instances.

Application Server

Courseware

Database Se

MM-DB
server

Figure 5.2 Application-Server Engine Modules

TheCollection class is ernpIoyed as a data structure to wrap courseware

instances and store them permanently (Figure 5.2). It uses ObjectStoreJector

as the actual data structure. We have developed several methods to make such

cIass as the container of courseware objects based on Java environment and

ObjectStore APIS. These methods include:

- public Courseware getCourse (String aCode);

- public void addCourse (Courseware cr);

- public Enurneration getAlECourses ();

- public void removeCourse (String aCode);

The CourseDB module is a part of the application-semer. This module is

responsible for initializing, creating and populating the database. It uses

ObjectStore APIS to initialize ObjectStore server and start a database session.

Then, it creates the database according to a particular mode of reading as well

as writing to the database. If any system error happens or something goes

wrong, an appropriate exception handler will be employed, and the database

will be closed. Othenvise, a suitable transaction "update transaction" is started

in order to create courseware instances and populate the database. The

constructed courses are instances of one of the database schema classes, Le-

"Courseware class". These instances are stored in the wrapper class

"theCollection" (Figure 5.2). It is up to the database administrator to decide

how many courses to be created. Once he/she accompiishes the creation

process, ObjectStore API "Database.createRoot" is used to create a Root,

which is a reference that points to thecollection inside the constructed

database. This root is essential to access the persistent objects by using other

modules. Finally, the transaction is committed and those courseware objects

are permanently stored. This brings the database into a consistent state. In this

module, we have irnplernented several rnethods to facilitate the creation of the

database and satisfy the instantiation of courseware objects. These methods

include newCourse(), acceptData(), etc.

The updateDB module is the largest module of the application-server. It is

responsible for updating the database by modifying the meta data of persistent

courseware objects. In addition, it is responsible for inserting new objects

such as courseware, chapter and section instances into the database. This

module follows the same sequence of events that the CourseDB module has

followed in order to accomplish the task. These events include initializing

ObjectStore server and starting the session, and then opening the database

according to a specific mode of "Database.open()". A proper transaction is

started tu access the database root and navigate from such root to locate

persistent objects. If any system enor happens an appropriate exception will

be thrown and the database will be rolled back in order to be retained in a

consistent state. As pointed out in chapter 4, at the begnning, ObjectStore

server sends hollow versions of the persistent objects. Once an object is under

an update action, ObjectStore will provide an active object to be updated.

Thus, the updateDB module works within a transaction on active objects.

Finally, either the transaction is committed and those updates will be reflected

in the database, or the transaction is abortted and the database will be rolled

back in order to remain in a consistent state. In this module, we have

developed several methods to handle updating and accessing operations on the

persistent objects within a transaction. These methods include:

- public static void options (theCollection dbCol1);

-public static void workOnCourse (theCollectian dbColl);

- public static void addCourseCol1 (theCollection dbCoil, Courseware cr);

- public static void update Corrrseware (Courseware cr);

- private static void acceptData ();

In addition, other

of the updateDB module.

methods are also irnplemented to accomplish the complex task

The retrieveDB module is a part of the application-server, which is

responsible for accessing and retrieving persistent objects inside the database

by navigating through the database root using a suitable transaction mode. We

have implemented several methods to accornplish the retrieving task, e.g

showData (tlzeCollection dbColl). This module works on the persistent

collection to browse courses, retrieve a specific courseware and retrieve a

particular section. 1t can be extended to serve other kinds of queries by

developing new methods to perform other kinds of retrieve.

The deIeteDB module is a part of the application-semer. It is responsible for

deleting a partïcular courseware from the database collection and ensuring the

deletion of all of its intemal objects to avoid accessing unreachable objects or

stak objects that are explained in chapter 4. This module follows the same

framework of the previous modules. It will initialize ObjectStore, start a

session, open the database using an update transaction, fetch the database root,

access the required courseware to be deleted, remove al1 courseware intemal

objects by utilizing an appropriate method removeCourse() from thecollection

class, remove the courseware reference from theCoUection using ObjectStore

API, commit the transaction and then close the database. Once a system error

happens a proper exception will be thrown and the database will be brought to

a consistent state. We have implernented several methods to manage this task,

such as:

- public static void deleteFromCol1 (theCollection dbColl, String aCode);

- public static void deleteCo~irseIntema1 (Courseware cr);

These modules represent the MITS database system engine, which is transparent

to end-users. All these modules are accessed by the database adrninistrator and listen to

students' requests through a mediator module called "Access Manager", which is

responsible for accepting students' requests, then accessing the database to retrïeve the

required courses and caching them to end-users' machines. It cooperates with another

module "Rendering Manager" to support the delivery of actual media objects to end-

users. These two mediator modules are descnbed and developed by 1311 at our

laboratory. We will address the integration issue of the database engine with these

rnediator modules at section 5.6.
*

5.4.2 Teniplate for Irnplementing Additional Modules

Since, we have designed and implemented Our system based on Object-Oriented

paradigm and because of its flexibility to add new components without affecting the

previous ones, so it is possible to develop a new module(s) that achieves a specific task,

which is not tackled by Our existing modules. Therefore, we present a tenzplate for

implementing such additional modules if they are needed. The implementation of any

module follows a particular sequence of events (Figure 5.3). First initialize ObjectStore

server and start a session, specific exception handlers must be applied to handle system

errors or ObjectStore failure. Second, open or create the database depending on the task

that is supposed to be accomplished. Third, start an appropriate transaction to perform

specific actions utilizing a proper transaction mode. Fourth, Rtch the database root. Fifth,

implement the main task that is required. Sixth, create the database root if not already

created or set. Seventh, commit the transaction and then close the database. Among al1

those events proper exceptions must be thrown to avoid system errors and to retain the

database in a consistent state.

1 Start Session I
I 1

0bjecrSrore.initialize (null. null) .-

db-creare (- - -m.-------- - j .- DB create,
db-open (-.----..-.-...) .-

Transaction. beg in (... .., .., ..-

db.close () : DB close, 1 destroy 1

Figure 5.3 Ternplate for implementing application-server modules

5.5 Annotating MITS Classes

As we have pointed out in chapter 4, in order to store objects in ObjectStore

database, these objects must be persistent-capable. Thus, MITS classes, both schema

classes and application-server modules rnust be postprocessed according to appropnate

modes using "Class File Postprocessor" in a process called annotation process. Al1 our

schema classes are postprocessed to be persistent-capable including theCollectïon class,

because these classes will be instantiated and stored in the database. The application-

server modules are postprocessed to be persistent-aware, because they c m manipulate

persistent objects of the schema, but themselves are not persistent objects in the database.

We have annotated MïïS classes using the following Java as well as ObjectStore

This postprocessing command creates two separate directories; one contains the

source code classes, while the other one is the destination directory "Mits Directory",

which contains the annotated classes (Figure 5.4).

lodydass Bodyaas- Chapterd- Chap<erCI- CcurseDB- CourseOB-

- 3 @ @ @ J
Q a a Couorewh C h ~ m e * r h deleleOB- deletell8 -. DO=B=.- o ~ ~ B ~ -

bumewu.- Cours- delete06 - deIeteD6- Oac-am- Dac-Bar-

Heacidass Head lavu reinaveO- remme0 . Scensno - Scenmo 1 a @ @ ! !
lead d-s i-feedaas- mmwe0 - re,,,trve~ - S-nmo- sanano a m a m

SCompon- SCompan . Secnon d - S e ~ n o n i b Tai dass Tail fava

r;a @ a e e
Compon- Shmpan- Semon ~ecnona-. TEII dass TailaassL.

81-,-Bs.o îeleOB odb

Figure 5.4 Original NE'ïS classes (nght), and the annotated classes (left)

As illustrated in figure 5.4, the annotated classes are shown in the left screen shot.

It also contains two databases that are created by using the CourseDB module, and can be

updated by utilizing other modules such as the updateDB module.

Pnor to this process, ciass path and system configuration must be set properly to

include ObjectStore as well as Java JDK, and utilize the Class File Postprocessor.

5.6 Samples of Results

The application-semer modules have been used to create, populate and update

different databases. For instance, teleDB.odb, tele3.odb and newTest.odb demonstrate the

execution of such modules, as shown in figures 5A and 5.7.

We have constructed several courses, where their meta data has been stored in

teleDB.odb. The te1eDB.odb contains various courses, such as "Multimedia Database"

and "Logic Prograrnming". Also, the teIe3.odb is created by using the CourseDB modicle.

A courseware entitled ''History of First Nations" has been constructed as shown in

figures 5.5 and 5.6.

Figure 5.5 A Snapshot for Creating a Database and Constructing a Courseware

Figure 5.6 A Snapshot for Constructing a Courseware

Al1 the courseware attributes as well as logicd structure have been specified and

persistently stored. The courseware attributes such as title, code, author, shortDescription.

etc, are provided as ObjectStore Java strings. In addition, the courseware hierarchy is

defined by specifying its various chapters and sections. Each sectioo contains several

textual references to media objects besides the other attnbutes that define each specific

section.

Several databases cm be created using CourseDB module, as shown in figure 5.7.

Each database is populated by multiple courses, and then, cornmitted and brought to

consistent state.

Modified:
2 / L 7 / ¶ 8 4:Sg P M

Caurs-. Caursewa- deleteDe- deleteDe- Doc-Bas- Doc-Bas-
Sire: 8«) bytes

Figure 5.7 Different Generated Databases

As shown in figure 5.8, the execution of the retrieveDB module demonstrates how

many courses can be retrîeved from the teleDB.odb. The logical structure of such courses

is cached in order to be delivered to students through the presentation GUIç, which are

developed by other member in Our iaboratory [3 11.

The retrieveDB module delivers the entire logical structure to a bridge-application

that responds to students' requests. This improves the database performance by reducing

the retrïeval tirne for the related data, since the meta data are read with one instead of

several disk reads,

Figure 5.8 The Retrieveal of Courseware Meta Data

The updateDB module is resposible for updating the database by creating a new

courseware or modifying an existing one. A new courseware can be created and stored in

the current database (i.e. teleDB.odb). In addition, the database administrator could

specify the code of a specific courseware that needs to be updated. There are several

options for updating an existing courseware, for example adding a new chapter or

section, modifjring an existing chapter or section, and deleting an existing chapter or

section, as shown in figures 5.9a and 5.9b. We have added a new chapter to an existing

courseware, which is called "Multimedia Database". The new added chapter is entitled

"Mobile Agent". The entire attributes of such new chapter are specified and successfully

stored in the teleDB.odb, as shown in figure 5.10.

Figure 5.9a The Updating of Courseware Meta Data

Figure 5.9b The Updating of Courseware Meta Data

The new chapter "Mobile Agent" is stored in the database and can be retrieved as

shown figure 5.10.

Figure 5.10 The Retrieval of Courseware After Updating the Database

The deleteDB module is responsible for deleting an entire courseware. The

database administrator specifies the code of the courseware that needs to be deleted.

Since each courseware contains several persistent objects, so these objects must be

deleted prior to the deletion of the courseware attributes. In this module, we have

provided the necessary methods that ensure the deletion of courseware objects (Le.

chapters and sections) before the deletion of the courseware, in order to avoid accessing

Stale Objects. We have decided to delete a courseware that had code "cr444", as shown

in figure 5.2 1, such courseware had been deleted.

Figure 5- 1 1 The Deletion of an Entire Courseware

The previous snapshots present samples of the results that are stored in different

databases. These courses are delivered to students by using graphical presentation user-

interfaces, which are developed by [31]. In the next section we will address the

integration of the database engine modules with the presentation GUIS.

5.7 System Integration

As we have indicated in chapter 2, the goal of the system is to build a searnless

education environment that supports the delivery of courses to distributed users over the

network. The challenge is to develop a successful Teleleaming system that should be

available to multiple distributed educational groups on the network, regardless of the

utilized platforms. Thus, the increased popularity of the Intemet and its usage as a

communication technology have offered an appropnate chance to develop such

Teleleaming system to help students to access courses from any access point at any time.

As mentioned earlier, our system consists of several impiemented modules and

components such as database schema classes, application-server modules, rendering

application manager, GUIs, authoring components, etc. Therefore, these components

must be integrated to achieve the goal of the systern. Since, we have exploited the latest

technologies and open programming environment 'Tava platform", so we have integrated

these components utilizing advanced features and tools such as Java-enabled browsers,

applets and Servlets (Figure 5.12).

We have utilized Java environment to implement database schema and

application-semer modules. In addition, a sub-system of MUS called Multimedia

Interactive Courseware Rendering Systern (MICRS) is developed using Java applets and

Servlets [31]. Tt is responsible for rendering multimedia courseware material over the

Intemet and offers students the required GUIs to access courseware database without the

need for installing any additional software packages on their machines. Students need to

have only standard browsers to access MlTS using the rendering application over the

Intemet. The only requirements are Java-compatible interpreter and network connections.

This supports the distribution feature of the system. However, a compktely

distributed system is not possible, because of the networking restrictions and software

compatibility.

Client side Courseware Server

Figure S. 12 MITS S ystern Integration Architecture

In summary, the whole world is moving in the direction of cornputers and the

Internet, and we are in the stage of an information revolution, unparaileled even with the

advent of the television and the telephone. Sooner or later Iike many other areas in Iife,

even educational styles have to update some of their traditions and jump ont0 the Internet

bandwagon if it has to keep pace with changing technologies and life styles [17].

Chapter 6

6 Conclusion

In surnmary, distance education is a highway to 21n century Ieaming styles, which

rnight be entïrely different from those of today. The Multimedia Interactive Telelearning

System that is presented in this thesis, aims to build a seamless education environment

that supports the delivery of electronic courses to distributed users over the network. The

system also aims to combine the learning theory and the emerging technology for

facilitating the education process of scattered students. The challenge was to develop a

successful TelelemLing system that should be available to multiple distributed

educational p u p s on the network regardless of the utiiized platforms. Thus, the

increased popularity of the Intemet and its usage as a communication technology has

offered a suitable opportunity to develop such a Telelearning system in order to help

students to access courses from any access point at any time.

However, simply putting computers in classrooms, wiring a school, and providing

an Internet connection is not sufficient. The effective use of this technology will occur

when the educator understands how to integrate it into everyday practice and want to use

it. Acceptance of technology in the classroom will be achieved when it is both relevant to

educational goals and cornfortable to use [45]. Hence, we do not expect that distance

education will replace the traditional learning styles, but at least it will obtain a more

prevalent position in modem education activities.

We have designed and developed a Telelearning system, keeping in mind the

constraints of time, space, location and systern compatibility. The strength of the system

stems from the proposed courseware data model as well as database schema, the

developed database engine, the integrated systernTs software modules, the generated

courseware presentation agents and the courseware reusability.

The courseware data model aimed at describing and representing courseware

content in order to facilitate the courseware creation and support the content delivery to

distant learners. The produced database schema was designed based on powerful software

engineering techniques, which offer the opporturiity for future extendibility.

Leading-edge technologies have been utilized to satisfy the implementation of the

system schema and the needed database engine modules. Specifically, Java environment

and an Object-Orïented database management system have been exploited to accomplish

the implementation tasks.

Since the development of the sysiem software components was based on Object-

Oriented paradigm and p!atform-independent progamrning environment, so the

integration of the system modules was achieved smoothly.

6.2 Future Work and Suggestions

Distance education is a dynamic area of research that involves the participation of

several disciplines in order to meet the designed goals and satisfy users' needs.

Therefore, a lot of beneficial work can be contributed in the area of distance education.

Since the data modeling is one of the most important issues in designing a

sophisticated multimedia information system, so a focused attention must be aven to the

proposed data rnodel- The courseware data rnodel can be modified to include new

features at the presentation information level, or c m be enhanced to be more effective.

In addition, the Object-Onented nature of the database schema provides the

chance for schema evolution. It is possible to add or modify the state as well as the

behavior of the schema classes by inserting or deleting attributes, and updating method

definitions. New Object-Oriented software engineering methodologïes such as Unified

Modeling Language "UML'' can be used to revisit the analysis and design stages of the

systern, in order to evolve the schema and enhance the system's functionalities.

New tools such as Dynamic HTML c m be employed to add new interaction

features to the system, or to improve the appearance of the rendenng application and

enhance the courseware presentation. Dynarnic HïML allows developers and Web page

designers to offer more creativity, control and sophistication to their Web sites [46]. It is

based on the Object-Oriented model and extends HTML static nature by allowing scripts

or programs to change styIes and attributes of page elements, or even to replace existing

elements with new ones. It also offers the developers the ability to dynamically change

the style, content and structure of Web-based content, while providing them with a

detailed control over the appearance, interactivity and multimedia objects required for a

modified and exciting application [46].

The system can exploit Dynamic fITML features (e-g. dynarnic styles, absolute

positioning, dynarnic contents and multimedia controls) to enhance the presentation

appearance. First, dynarnic styles allow authors to change the size, color or other font

properties of a text object within a Courseware-Section. Second, media object position

can be changed using absolute positioning features, for instance, moving an image object

on top of text object or placing an object in different x,y,z-planes. Thus, students will

retrïeve a courseware, where its media objects are moving or overlapping using rich

multimedia and layout effects. Third, by rnanipulatïng object coordinates and other

dynamic styles using scripts [46], designers can move media objects around courseware

page, thus animatirg the page. In addition, courseware content can be modified

dynamically on the fIy in response to student interaction or author updates. This feature

enables designers to insert or delete a media object as well as rnodify text object

properties using script languages (e.g. Java, Visual Basic and others). Moreover,

multimedia controls c m be used to apply visual effects to media objects on a Section

page or Chapter page or entire Courseware page. These controls support filters, animation

and transition of media objects, e.g. audio object can fade in and out to correspond with

the characters' rnovements. However, Dynamic HTML was Iaunched at the fourth

quarter of 1997 and needs time to be experirnented with.

Although, the current approach of MITS is implemented, based on the client-

server architecture, another major area of research is to investigate the adoption of

mobile-agent architecture in desiaping and developing an enhanced version of the

system, in order to serve a large number of distributed users.

Finaily, since Java has been utilized to develop the system, and with the new

release of the Java core that contains CORBA APIS, so it is possible to develop a new

fully distributed version of the system.

References

L. Sherry, "Issues in Distance Learning", International Journal of Distance
Education, Volume 1, Number 4, September 1996, pp. 337-365.

R. Wang, and A. Karmouch, "A Broadband Multimedia Telelearning System7',
Proceedings of 51h ht . IEEE Symposium on HPDCMCE, August 1996, Syracuse,
USA-

R. Wang, "A Broadband Multimedia Teleleamïng S ystem ", Master Thesis, June
1996, Ottawa, Canada.

A. Grace, "Can Multimedia Help People L e m Faster", Proceedings of the IEEE
International Conference on Multimedia Cornputing and Systems, May 1995.

R. C. Schank, "Active Learning through Multimedia", IEEE Multimedia, Volume
1, Number 1, Spring 1994, pp. 69-78.

C. Vieville, "Organising Distance Leaming Process thariks to Asynchronous
Stmctured Conversations", Proceedings of WebNet '97, November 1997, Toronto,
Canada.

T. Ingebrïtsen, G. Brown, and J. Pleasants, 'Teaching Biology on the Internet",
Proceedings of WebNet'97, Novernber 1997, Toronto, Canada.

Office of Technology Assessment, "Power on New Tools for teaching and
Learning", US. Congress Library, OTA-SET-379, Washington DC, USA.

I. Emery, and A. Karmouch, "A Playback Schedule Model for Multimedia
Documents", IEEE Mzdtimedia, Volume 3, Number 1, Spring 1996, pp50-6 1.

N. Hirzalla, O. Megzari, and A. Karmouch, "An Object-Onented Data Model and
A Query Language for Multimedia Database", IEEE ICECS, December 1995,
Amman, Jordan.

B. Furht, ccMuItimedia S ystems: An Overview", IEEE Mdtiniedia, Volume 1,
Number 1, Spring 1994, pp47-59.

D. Adjeroh, and K. Nwosu, "Multimedia Database Management - Requirements
and Issues", IEEE Multimedia, Summer 1997, Volume 4, Number 3, pp24-33.

K. Meyer-Wegener, "Database Management for Multimedia Applications",
Springer-Vehg, Spring 1994, Berlin, Germany, pp105-119.

Elmasri R., and Navathe S., "Fundamentals of Database Systems", the Benjamin
Czmrnins, 1994, Redwood City, CA., USA.

Object Design, "ObjectStore Manuals", Object Design, 1996, Boston, USA.

A. Seffah, and R. Bouchard, 'The htranet as a Cognitive Architecture for
Training and Education: Basic Assumptions and Development I~sues"~
Proceedings of WebNet'97, November 1997, Toronto, Canada.

S. Radhskrishnan, and I. Bailey, 'Web-Based Educational Media: Issues and
Empirical Test of Leaming", Proceedings of WebNet'97. November 1997,
Toronto, Canada.

J. Rurnaugh, and others, "Object-Oriented Modeling and Design", 199 1,
Englewood Cliffs: Prentice Hall, USA.

P.O. Brien, "Making Java Objects Persistent", Object Design
Izttp://www. odi.cod, White paper, November 1996, US A.

C. Chen, D. Meliksetian, M. Chang, and L. Liu, "Design of a Multimedia Object-
Oriented DBMS", Multimedia Sysrems, Press ACM, Volume 3, Number 5-6,
November 1995, pp 217-227.

"Internet Explorer", http://www.microsoft.comL

H. Zhang, S. and Smoliar, "Content-Based Video Indexing md Retrieval", IEEE
Multimedia. Volume 1, Number 2, August 1994, pp 62-74.

S. Palacharla, A. Kannouch, and S. Mahmoud, "Design and Implementation of a
Real-time Multimedia Presentation System using RTP", lnternational
Proceedings of IEEE COMPSAC '97, August 1997, Washington DC, USA.

T. Meyer-Boudnik, and W. Effelsberg, "MHEG Explained", IEEE Multimedia,
Volume 2, Number 1, Spring 1995, pp 26-38.

M. Muhlhauser, and I. Gecsei, "Services, Frameworks, and Paradi,- for
Distributed Multimedia Applications", ZEEE Multimedia. Volume 3, Number 3,
Fall 1996, pp 48-61.

H. Khalfallah, and A, Kannouch, "An Architecture and a Data Mode1 for
Integrated Multimedia Documents and Presentational Applications", Multimedia
Systems. ACM Press, Volume 3, Number 5-6, November 1995, pp 238-250.

N. Poon, and A. Karmouch, "3 Dimentional Multimedia Interactive Courseware
Authoring in Teleleaniing S ystem", Proceedings of CCECE '97, May 1997, S t.
John, Canada.

[29] A. Kannouch, "A Multimedia Information and Communication System:
MEDIABASE," Proceedings of the ICCC Multimedia Cornrniinications' 93
Conference, April 1993, Banff, Alberta, Canada.

B. Falchuk, and A. Karmouch, "A Multimedia News Delivery System Over an
ATM Network, Proceedings of IEEE International Conference on Multimedia
Cornputing & Systems, May 1995, Washington D.C, USA.

Z.Zhang, and A. Kamouch, "Multimedia Intemet Platform for Distance Leaming
Applications", Proceedings of 19th Biennial Symposium on Communications,
May 1998, Kingston, Canada.

K. Nwosu, B. Thuraisingharn, and P. Berra, "Multimedia Database Systems - A
New Frontier7', IEEE Multimedia, Summer 1997, Volume 4, Number 3, pp 21-23.

A. Ghafoor, " Special Issue on Multimedia Database Systems", Multimedia
Systems, ACM Press, Volume 3, Number 5-6, November 1995, pp 179-181.

S. Shih, and R. Davis, " IMMPS: A Multirnedia Presentation Design System",
IEEE Multimedia, Spring 1997, Volume 4, Number 2, pp 67-78.

P. Pazandak, and J. Snvastava, "Evaluating Object DBMSs for Multimedia",
IEEE Multimedia, Summer 1997, Volume 4, Number 3, pp 34-49.

B. Rao, "Object-Oriented Database Technology Applications and Products ",
McGraw-Hill., L994, New York, USA.

M. Loornis, "Client-Server Architecture", Journal of Object Oriented
Programming, Volume 4, Number 9, February 1992, pp75-79.

1. Jacobson, and others, " Object-Oriented Software Engineering", Addison-
Wesley, 1993, Englewood Cliffs: Prentice Hall, USA.

"JavaSun", http://iava.sun.com/.

"ObjectS tore" http://www .odi .corn/.

"Javas un", 'The Java Language An Overview ", Java Sun,
http://iava.szin.com~docs/overviews/java /, White paper, 1996, USA.

E. Anuff, "lava Source-Book", Wiley Cornputer Publishing, 1996, NewYork,
USA.

P. Hakkinen, "Possibilities of Java Technology is Distance Learning", White
paper, http:/h?tarnuw.ee.hit. fit/x.a~~zzddistancedocs/pasiz., 1997.

[44] D. Krmer, 'The Java Platfomy', Java Sun, White paper,
http://iavn.sur~.conddocs/overviei.vs/~avn /, 1996, USA,

1451 S. Taylor, and D. Mckay, 'The Online Leaming Academy", Proceedings of
WebNet'97, November 1997, Toronto, Canada.

[46] K. Stremel, and S. Lindsey, "Dynarnic HTML: The Next Generation of User
Interface Design Using HTML", Microsoft Corporation
http://www.rnicrosoft.com~, White paper, February 1997.

8 Publications:

1- A. Al-Shammari, and A. Karmouch, "Designing and Modeling a Multimedia

TeleLearning Database", Proceedings of IEEE Canadian Conference on Electrical and

Conlp~cter Engineering 98, Waterloo, Canada, May 24-28, 1998.

2- A. Al-Shamrnarï, and A, Karrnouch, "Multimedia Interactive Telelearning Prototype",

Proceedings of International Conference on Cornputers and Advanced Technology in

Education (CATE'98), Cancun, Mexico, May 27-30, 1998.

3- A. A l - S h m a r i , and A. Karmouch, "On-Demand Multimedia Courseware Delivery

over the Network", Proceedings of INDC'98 - 7th IFIPLCCC Conference on Information

Networks and Data Communications, Portugal, June15-17, 1998.

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED IMAGE. lnc - = 1653 East Main Street - -. - - Rochester. NY 14609 USA -- -- - - Phone: 71 6/482-0300 -- -- - - Fax: 71 61288-5989

0 1993. Applied Image. Inc. All Rights Resewed

