Design and Implementation of a Multimedia
Courseware Database

By

All Al-Shammari, B.Sc.

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of
the requirements for the degree of
Master of Computer Science

Ottawa-Carleton Institute for Computer Science
School of Computer Science

Faculty of Science
Carleton University
Ottawa, Ontario, Canada

31/8/1998
© Copyright
1998, Ali Al-Shammari

i~i

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada)
Your file Votre rélérence
Qur file Notra relérance
The author has granted a non- L.’ auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni Ia thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-36878-5

Abstract

Currently, the area of distance education is gaining high interest, especially in regions
where users are geographically scattered and/or influenced by different factors that could
affect their learning demands. Distance education puts emphasis on the separation of the

learner and the educator in space and/or time.

The emergance of new technologies within different disciplines, such as
multimedia, databases and networking, have enriched the learning activities and produced
new trends within the distance education era. Telelearning is one of the distance education

sub-areas that have obtained increased attention and research.

This thesis discusses a Multimedia Interactive Telelearning System that has been
designed and developed at MIRL Laboratory at the University of Ottawa. A new approach
has been taken to build a seamless education environment over the Internet. It is mainly
based on Object-Oriented paradigm and on utilizing leading-edge technologies. Its aim is
to provide real-time interactive multimedia courseware services to a variety of distributed
students, and satisfy their learning needs. The system is comprised of several major
components: courseware authoring site, courseware database server, multimedia database
server, courseware presentation agents, media production ceater, an on-line facilitator, etc.
The accessibility, effectiveness and flexibility are importatnt features of the system that
make it a suitable environment for supporting learning services.

The system architecture, courseware data model, database management issues and
implementation details are discussed. The main contribution of the thesis is the database

modeling, as well as system schema, and the database management architecture.

Acknowledgements

I would like to thank my thesis supervisor - Dr. Ahmed Karmouch for his support,
advice and encouragement, in particular, for his valuable comments and suggestions
throughout the publication stage.

I am grateful to my parents, family members and my wife for all the support and
encouragement given to me throughout the M.C.S. program. It was especially difficult
being away from both of my young daughters during these past few months.

I would also like to thank TeleLearning National Center of Excellence for their

sponsorship.

i

Table of Contents

Chapter 1 INITOAUCHION ...ccouveeeereeieeereieeeeeinreeeeemeeeseeeesmeereesssessnaesessnsaesssesesssssamesnsssessassesssesrssssennnen 1
1.1 Distance Education: History and Background...........c.cccooiommiiniiccnnns L
L.I.1 History and MOUVALOMNccoeeeeierieee et cste e e eas s s sas s s amsn s s eraas 1
1.1.2 Distance Education MOdeIsccvmemeeemiiiiiiiecte et e 3
1.1.3 Distance Education PartiCIPantsceeeeeueueeieiccee ettt 8
L.2 Terminology Related to Thesis WOTK.......ov e 11
1.3 THESIS ODJECHIVE «..ocinieneeecce ettt e et st e e s st et eeame e see s me e sa e eeee e eees 13
1.4 THESIS OULINE <.ttt e st e e e s e oo e 13

Chapter 2 Multimedia Interactive TeleLearning System (MITS)coomieimieiiieieee e 15
2.1 Objectives and REQUITEMENLSoouveueeueeiieeiiee e e 15
2.2 Generic System ATChIECIULE ...uvevureiiriieieiecetecte ettt et se e 17
2.3 MITS Previous APPIoachco oot st e s 23
24 Drawbacks of MHEG-based Model for MIITScooieceieteeece e ceeeeeees 26

Chapter 3 Description of Courseware Data MOGEL.....cc.ueieriremrreecieeeeceeneeeee e e eeeeee e e 28
3.1 Overview of Multimedia Document ATChiteCtUrecoceeuiecreirrreeercercne e erenen 28
32 Teaching ATCRITECIULEScocuvirirmrirreeeieee ettt s e s sse st e sassesasesasaans 31
33 Courseware Data MOlcocoueeieiiieiieie ettt et e 34

Chapter 4 MITS Database Management ISSUEScoovieuiueiercrrerereee e ceeeecsteiee e s e e saeeae 38
4.1 Overview of MEDIABASE SYSIEIMcouveeuiteieaieecceeeee et eee e eceeas st seneee s e e e e seene e 39
4.2 Object-Oriented Database Management SYSIEMcocceeretrcreceereerrecrenerrereeereseeeseenaees 40
42.1 ObjectStore 5.0 ENVIIONMENT ...ovvvirruiiiiiieiiiceeteteeeeteeeeeeese et cre e s ae s e seecesasneceeannes 43
422 PSE-Pro ENVIIONMENL....c..uuviiiiiiierinrreerieriicicsie et re et s sssts s et s et eene 44
423 Class File POStPIOCESSOL tOOLS.....uiivrmerriemiieiiri ittt i iecceie et e e 46
43 MITS Database Modeling and Schema Generation.........cocceeevvernrirnceenicinrrcnecnnnncenns 47
4.3.1 Relational MOEUNGceeuveimrrirmerieeeie ettt ettt s e sa et e ene 49
4.3.2 Object-Oriented MOAEIINGcceemeerrecriieieierireereeerecereesteernseeesessessessaecrmsessssssmeesssens 50
4.4 MITS Database Management ATCRITECIUIE.covveeiemrercerrerrerereenesereeresrasressessersssensees 57
4.4.1 Client-Server BaCKgroundot steteeae e ereese e ssesaesaas e e saens 57
4.4.2 Description of MITS Database Management ArChIteCtUre.......cceeceerureeereteeenrereereuenne 59
4.5 ODbject PErSIStENCY SEALEScoiiiiiiieieie et ccmree e e nc s ceseseene s e smmeneaaeneneeneesonn 62

4.5.1 Hollow Persistent ODJECES. ... uumieeiiieei et et e s cce s e e ne s anessa s nneenes 63
4.52 Active PersiStent ODJECES c...eeciiicieieee ettt ee et s e s ae s snns e e 64
4.5.3 Stale PersiStent ODJECtS .. oot e cce e e e sra s e e na s 64

Chapter 5 System IMplementationt e et ee e e ses e e e e s e see 65
5.1 INETOAUCEION ... et e s e e s e st s e e e emes 65
5.2 JAVA ENVITONIMENE ..ottt ittt te et e e e e s e e e e eeea e s e aeesssmnsassne s nsesnsns 66
5.3 Implementation of MITS Database Schema ... eaee 68
5.3.1 MITS Schema ClasSescoorerriiiiiiimiiiiciii et se et e as e se s ae e e e m e e e s as s me e e eneees 68
5.3.2 Schema EVOIULION ..ottt et ace e st e e et e se s e en e smea e e emenene 72

1ii

54 Implementation of ApPliCatiON-SEIVET «......ovuireeeieeee e 72

54.1 Application-Server MOdUIES....... ..ot 72
54.2 Template for Implemeting Additional Modulescoomimrmioneeieeeeeeeeee 78
5.5 ANNOtating MITS CLASSES ..uecocvereererrrrerrrrrrreremmreriseresseersssesesssessarmssssesssssssessnsesscsenssons 79
5.6 Samples Of RESUILS .c.eomiiiiiieiieectee ettt s 81
577 System INteGration.........ccooiiiimioieerrm et e s e et s et 87
Chapter 6 CONCIUSIONS .. eeeeeceeeeeeeccee e eeeeeer e reerrerrrrerressr s e ssse s rssessessses s s s essnse s seseanaseesmasenneans 90
6.1 SUIITIATY ...eeeeeieeeeeceeeece e et reeeeesaneeeesesesressesessaosssessestesnt e smeesnben mrsmaes st sessaeranesssasssassnsenss 90
6.2 Future Work and SUgZestionsS......cuoceieiireieimimniiiiicece e ce e e nnessesebeseas s neeesnanes 91

WA 20 (= (1 1 = T OO 94
| o1 15) FTo:13 0] OO U SN 98

iv

List of Figures

Figure 2.1 MITS’S major COMPONENLS.coovuireirereienreneeseseesse s arsssssessesneseresaserassnses s serseseaees 17
Figure 2.2 MITS general architeCture........coceemeeeereeeeneerimenensenmeneser s cressaesseesmeaas s snessessesmnses 18
Figure 2.3 MHEG-based model for MITS ...t cee et cre e s e et 25
Figure 3.1 Courseware Data MOdeleoenmeeeiieeeece ettt ettt 36
Figure 4.1 ObjectSroreS5.0 arChiteCtUre.cco ettt vtestssbe e e e sas s s s e 44
Figure 4.2 PSE-Pro arCHILECIUTEeeeeeeeeeeeeeceeeeeeeccecetieeereeeesscreseseasensennteseesasassessssnnnsesssesssrersen 45
Figure 4.3 MITS E-R DIagram.......ccucecoieoireieccecerreeesseeeneceeneseeesse e sersesessnseessesssasssareessasssnensrasecs 50
Figure 4.4 MITS OMT Diagram.......... eeeereeree e oeeaneeeeteiateemne et ane e ne et e s ne e e e nn e e e se e mneean 51
Figure 4.5 Primary MITS OMT DIQZIAMcooeieiriieeeieeerieeeeeeeeeeesaeeeesaeesae st e seneee s asasssssnsasaas 52
Figure 4.6 MITS Database Management ATrChiteCtUIE.......covevrmirmemirvereecrcrerrne oo ceressseeseennes 60
Figure 4.7 Object PErSIStENCY StALES ...couueeereeereerereeccerneeercoreceee e e e cme e emce e seceenee s e s emoseneemseeneas 63
Figure 5.1 MITS Database System Implementationccccceueervcreeermiesemnsrneescescesssesseesscsenas 66
Figure 5.2 Application-Server Engine Modules......c.cceevrueeimnmeniinenieeecece e 73
Figure 5.3 Template for implementing application-server modulescccccccoivirinninnnnnnne. 79
Figure 5.4 Original MITS classes and annotated CIassescccccovceerreirriccenerercetreeceeereeeraens 80
Figure 5.5 A Snapshot for Creating a Database and Constructing a Courseware..........................81
Figure 5.6 A Snapshot for Constructing a COULSEWATEleeercremiruimrmcrciinateceees e e e enseeneeneas 82
Figure 5.7 Different Generated Databases........cccoecieeervrreieereurenerercrecreeeecrseesesesesneesesseessnesnanes 83
Figure 5.8 The Retrieveal of Courseware Meta Datao 84
Figure 5.9a The Updating of Courseware Meta data..........cooeeceeeeruirenieietieneien e ee e e e ce e 85
Figure 5.9b The Updating of Courseware Meta Data.ccoceeeeriernrererenencreeeeeieesecaesesseesenas 85
Figure 5.10 The Retrieval of Courseware After Updating the Database...........ccocooovvvvmenrrnnnnneee. 86
Figure 5.11 The Deletion of an Entire COUMSEWArE ... c.....coiiiiiriicieereccrerccrceeeece e ceres e eeeaas 87
Figure 5.12 MITS System Integration ArChItECIUIE . ccoocreeiieeeeiieeeieceeee e e e eeemeeeee 89

Chapter 1
1 Introduction

1.1 Distance Education: History and Background

1.1.1 History and Motivation

The terms “Distance Education” and “Distance Learning” have been used
interchangeably by various researchers based on their knowledge and backgrounds. “It
puts emphasis on the separation of the leamner and the educator in space and/or time”,
where the volitional control of the learning process is driven by the student rather than

the distant teacher [1].

The earliest attempts of distance education date back to the late 1950’s and early
1960’s, when widely broadcasting TV/Radio classes were transmitted to audiences in
Europe. This form of educational classes did not provide any sort of interaction between
students and teacher, while such interaction is supported in the traditional classrooms.
The broadcasting TV/Radio classes also suffered from the lack of bi-directional
communications between teacher and students. This reduced the importance of TV and
Radio as new resources for educational classes. In the early 1970’s, the emphasis turned
from bringing teachers into the classroom to taking students out of the classroom into the
outside world [1]. This direction was reversed in the late 1970’s, as newly designed and
produced TV series introduced students to new subject matter that was not being taught,

yet was considered to be an important complement to the classroom curriculum [1].

Then, in the 1980’s, the pendulum swung back to the basics. Meanwhile, the distance
learning trend had been affected by communication technologies, such as electronic mail,
to provide some sort of interaction between teacher and students. However, researchers
did not present a computer-based distance education paradigm for several reasons. For
instance, the lack of computer-based distance learning theories and the limitations of
multimedia technologies to support complex applications such as distance leamning

systems.

In the early 1990’s, the extensive research in multimedia information processing
and enhanced achievements within networking technologies produced a new era of
multimedia information applications, which ambitiously aimed to deliver complex
multimedia information to distributed users over networks. One of the areas that
exploited the high technology growth is distance education. Thus, the education process
is shifting from traditional learning style that is based on lecture-and-book model towards
non-traditional learning styles where courses are provided through TV classes, CD-ROM
and distributed computer systems. The non-traditional learning styles might lead to a

totally different way for learners to acquire knowledge in the near future [2].

Currently, distance education is gaining high interest especially in regions where
students are geographically scattered and/or involved by a number of factors that could
affect their learning demands. Specifically, it is necessary to address the needs of small
rural school districts or under-served urban school districts. Also, some university
students may need courses to meet graduation requirements that their own universities are
unable to offer. For instance, some students enroll in vocational courses; so distance

education will be beneficial for them.

1.1.2 Distance Education Models

The traditional education model "lecture-and-book” became widely spread since
the 1900’s. The students are grouped according to their ages and/or experiences, and are
gathered together in a classroom so as to learn a specific topic from the teacher’s
presentation at a specific time. This education model has been efficient for a long period
of time [3]. Nevertheless, it is associated with some constraints that could degrade the
learning process. One of these constraints is “time”, where students have to join a class at
a specific time. Another constraint is “space” where learners are supposed to attend a
lecture at a specific classroom. When students are geographically scattered and require
knowledge transmission this model would fail. In addition, another constraint would be
the high ratio of students to the teachers, which has limited the leamning efficiency for
each individual learner [3]. Thus, the traditional education model "lecture-and-book" is
becoming more and more inefficient. Research has shown that non-linear knowledge
structure is superior to the traditional linear text-based structure in terms of knowledge
diffusion [4]. Therefore, distance education must exploit new models to deliver
knowledge to the leamners, so it is shifting towards non-traditional learning styles where

courses are provided through TV broadcasting, CD-ROM and Telelearning Systems.

In this section, a brief overview about the most important non-traditional learning
models is to be given. These models are classified into Broadcasting model, CD-ROM
Courseware model and Telelearning model, based on the utilized infrastructure, provided
services and level of scalability. The utilized infrastructure encompasses the employed
hardware and software within each distance education model. The provided services

indicate what kind of learning services would be offered to the learners by such a model,

e.g. the interaction between students and teacher. The level of scalability is determined by
number of students that could use the system locally or remotely. We have arranged those
models starting from the simple one “Broadcasting model” to the most complex one
“Telelearning model”. Each one of these models has its’ own advantages and

disadvantages.

Broadcasting Model

Broadcasting model is the first form of distance education systems [1]. It requires
less of an infrastructure of hardware and software. For instance, once you have a TV at
home or in your office, you can easily attend a course by watching the broadcasting
lectures [3]. Some Broadcasting systems have utilized video conferencing technology to
offer lectures to distant learners. However, these systems are affected by some
constraints. For instance, learners have to follow the time schedule of the broadcasting
center and cannot take the class at the most convenient time for them [3]. In addition,
learners could not interact with their teacher(s) nor control the learning process according
to their own abilities and cognitive capabilities. It is a passive learning manner, i.e. it is a
one-way learning process from the teacher to the students without any sort of interaction.
Although, some enhanced broadcasting systems have tried to solve this problem by
adding the telephone service for real-time communication between students and teachers,

it can provide only a very low level of interaction.

CD-ROM Courseware Model
Some researchers have called this model a “PC Model” [3], but the utilization of
computers is not restricted to this model only. The CD-ROM Courseware model has

improved the Broadcasting model in terms of quality and quantity. It has exploited the

4

achievements within multimedia information processing and CD-ROM technologies to
deliver and render a full multimedia courseware presentation. Courses can be stored and
delivered by Compact Disks (CDs) and finally presented on computers. Courseware
materials may comprise a lot of images, graphics, animation, voice and even audio/video
clips in order to enrich the courseware presentation. This model has offered several
advantages, such as courseware material being made available for access by a learner at
any time, thus, the learning speed is controlled by the learmer himself. In addition, a
courseware on a CD-ROM provides some sort of interaction between the learner and

courseware presentation agents “GUIs” to facilitate the leaming process.

On the other hand, this model has some constraints other than time and space.
First, since the storage capacity of the CD-ROM is limited, so the quantity of knowledge
to be transmitted would be reduced. Second, knowledge delivered by a CD-ROM is static
[3]1[4], because most of the CDs are of the type “write-once-read-many”, so it is difficult
to update courseware content or to replace a part of its out-of-date material with new. The
most suitable way to update the CD’s content is to throw away the old one, and order a
new one, which is cost effective. Furthermore, this model did not provide students-to-
teacher or students-to-students interaction. Based on this model, the phenomenon of
educational groups cannot be supported. Therefore, a new model is proposed and
designed to overcome all these constraints and offer an enhanced distance education
environment. A Distributed Computer-based Model “Teleleaming Systems™ forms a new
generation of distance education models. We believe that Telelearning systems must be
designed in a way that supports the learning services, facilitates the education process and

achieves the education goals.

Distributed Computer-Based Model

As mentioned earlier, the previous distance education models are affected by
several constraints that would create many obstacles for distant learners. Although, the
Broadcasting systems and CD-ROM Courseware systems are the most commonly used
systems, they do not support scalability, full accessibility and two-way interactivity.

With the emerging infrastructure and enhanced multimedia information
processing technologies, innovative Telelearning Systems can be designed and
implemented to deliver courseware content locally or remotely to distant learners.
Telelearning Systems have offered several features to build a seamless education
environment. First, these systems aim at making the education process more accessible
and reachable by large groups of users called educational groups. This provides more
opportunities for those who could hardly access education resources through the
traditional learning style [2]. Second, because of the achievement within multimedia
computing and networking infrastructure, computer—based learning becomes more
powerful by integrating multiple media of information into the system and providing
more effective and expressive ways to represent knowledge. Third, Telelearning Systems
try to present knowledge structure in a form closer to the reality, by using sophisticated
multimedia presentation environments. In addition, students are offered a real-time,
interactive and reusable information interchange through different platforms. For
instance, a student can be easily connected to a teacher or an on-line facilitator to obtain
‘help on a specific topic using e-mail, chat, telephone connections and video conferencing.
Furthermore, these systems also provide the ability to come in contact with other students

from different social, cultural, economic and experiential backgrounds to discuss topics

of similar interests. In other words, sophisticated Telelearning systems involve
interactivity between teacher and students, between students and the leaming
environment, and among students themselves, thus resembling active learning in the
classroom [1][5]. As a result, students gain not only new knowledge but also new social
skills, including the ability to communicate, interact and collaborate with widely
dispersed colleagues whom they may never have seen [1]. Interactivity represents the
connectivity the students feel with the distant teacher, their colleagues and on-line
facilitators. Without such connectivity, distance education degenerates into the old
correspondence course model of independent study, where students become isolated and
eventually drop out. However, there is still a considerable lack of dialogue in

Telelearning systems when compared with face-to-face classes [1].

Nevertheless, Telelearning systems are being restricted by networking capabilities
and information coding methods [3]. Meanwhile, the World Wide Web (WWW), in
particular, opens wide the door for offering courses to distant learners. What makes the
WWW attractive to an educational institute, is a large communication network to
exchange information in two ways; namely, the on-line browser and the courseware
package distribution [6]. In spite of the WWW benefits, it is still a very slow
communication medium. It frustrates students who are accessing outside the university’s

campus, because the current data transfer rates are very low.

Currently, several practical and experimental forms of Telelearning systems are
being developed and placed on the WWW. For example, United Kingdom’s Open

University, Vancouver’s Open Leamning Agency, K-12 programs, Project BIO (7],

Norway’s NKS Distance Education System, etc [1], as well as our Telelearning System

“MITS”, which will be described within the next chapters.

1.1.3 Distance Education Participants

In the traditional education environment, teachers interact directly with their
students, while, in distance learning, the relationship is not only between teacher and
students. A lot of participants are involved in distance education environment; for
example, distance education systems’ designers, courseware authors, teachers, on-line
facilitators, producers, media specialists, database administrators, service providers,
technicians and, of course, students. Each participant has specific roles to play in order to

integrate the distance education environment.

Some participants’ responsibilities have been changed from the ones they were
used to doing in traditional education, to new ones in distance education. In this section,
the most important participants will be addressed, along with their new roles, while

others will be discussed within the next chapters.

Distance Education Designers

Distance education designers have to consider a variety of issues that could affect
the distance education process. The most important issues that need to be considered are:
the learner’s characteristics and needs, the influence of media upon the education process,
strategies to increase interactivity as well as active learning, accessibility, and the new
roles of teacher, on-line facilitator and student. Although, technology is an integral part of
distance education, any successful distance education system must focus on the

instructional needs of the students, rather than on the technology itself [1]. It is also

essential to consider students’ interests and experience, educational levels, instructional
problems and familiarity with Telelearning methods and courseware delivery. Thus,

designers must build distance education systems that should stand on solid ground.

Intelligently designed Telelearning system can make a significant and positive
difference in the way students are learning.

Teacher

In a conventional education environment, teachers interact directly with their
students. It is face-to-face or one-on-one communication. Teachers prepare their
supported materials, lecture notes, assignments and tests. However, the distant teacher’s
role has been changed from the controller of a classroom to a consultant who could help
students. In distance education, teachers have to be allowed to choose, willing to make
choices and qualified to implement their choices effectively {1]. In other words,
flexibility should be granted to teachers to develop their personal teaching approach
utilizing the variety of options offered by technology [8]. In addition, distant teachers are
not in direct classroom contact with their students. Communication is provided through
videoconferencing, chat or e-mail and is mediated by a host of team partners, which may
include editors, designers, producers, technicians, media specialists, site facilitators and
service providers [1]. Therefore, it is essential to prepare a well-set plan and coordinate
staff’s activities to construct a courseware as well as provide enhanced interaction

mechanisms in order to deliver courseware content to distant learners.

On-line Facilitator

The on-line facilitator is an extension of the site teacher, though he/she need not
be a teacher [1]. The on-line facilitator does monitoring and tutoring of students via e-
mail, chat, telephone or video conferencing facilities, as well as providing help when a

student encounters a problem during the learning process.

Courseware Author

Courseware author is responsible for constructing a courseware. It is possible that
there is not just one author but many authors for the courseware, including multiple
secondary-authors. Courseware authoring is based on a courseware data model, which is
generated according to multimedia document model [9][10] and teaching architectures

[5]. The proposed courseware data model will be addressed in chapter 3.

Distant Learners

Distant learners are students who access courseware content and being able to
work on their own, they are the center of the learning process. Moreover, they have
additional duties to do, e.g. they must learn how to discriminate between “junk”
information and “quality” information, to distinguish facts from persuasion, and to
understand how the technology itself shapes the information it carries [1]. In other words,
distant learners must analyze the information that they are reading, listening and viewing,
and then contribute their analysis to distant teachers and/or on-line facilitators. Such
analysis and hard work provide more opportunities for students to understand the

courseware content and improve their learning process.

10

1.2 Terminology Related to Thesis Work

In this section, some important terms that are used in the thesis are going to be
introduced for the convenience of reading.

e Multimedia: A general term indicating the merging of three industries: computing,
communication and broadcasting [11].

e Multimedia system: A software application that supports the integrated processing of
multiple media types such as video, audio, image, text, animation, voice and graphics
with at least one time-dependent medium [11].

¢ Multimedia database: A large collection of media data objects on secondary storage,
associated with a set of programs and operations used to manage, manipulate and
maintain the information in the database [12][13].

e Distance education: It puts emphasis on the separation of the learner and the
educator in space and/or time [1].

o Learning: It refers to “a relatively permanent change in behavior or knowledge,
brought about by practice or experience”. A piece of information is said to be learned
and becomes one's knowledge when it is understood and memorized [4].

e TeleLearning: A learning style that ensures “knowledge diffusion” to distant learners
utilizing distributed systems.

e Courseware: An educational software entity that contains different knowledge
components, yet it resembles the objectives of a traditional course.

¢ Distant learner: A student who could use a distance education system to access

courseware content.

11

On-line facilitator: An educator who provides help when a student encounters a
problem during the learning process.

Courseware authoring: The construction of a courseware that involves choosing the
media objects, applying a teaching architecture, specifying the scenario, and so on
(2](3].

Multimedia document: A single entity that provides an integrated and homogeneous
way to describe, organize and structure multimedia information objects and to
represent their temporal relationships [9]{10].

Database schema: The utilized data structures associated with a database.
Persistency: The ability to store data permanently in a secondary storage [14]. In
other words, it is the ability of data objects to survive through different transactions
and program invocations [12].

Persistent-capable class: The capacity of class’s instances to be stored in a database.
Persistent-aware class: A class can manipulate persistent objects, but cannot itself
have instances stored in the database [15].

Annotation Process: A database management system API “Class File Postprocessor”
automatically inserts the required code into application classes, in order to be
persistent in the database [15].

Linear knowledge structure: Knowledge that is represented linearly for the learners
to perceive. For example, knowledge in books is structured linearly in content, and it
is assumed that learners should perceive them page by page [3].

Non-linear knowledge structure: Knowledge that is represented in a cross-reference

manner. In this structure, learners can perceive knowledge non-linearly, following the

links between related nodes instead of layout pages. Non-linear knowledge structure

is closer to the real world knowledge than linear structure [3].

1.3 Thesis Objective

The main objective of the thesis is to design and develop a Telelearning System
that is intended to be used in a distance learning environment. Specifically, emphasis will
be placed on designing a courseware data model, modeling the database schema and
developing database engine modules as well as courseware presentation agents. These
aspects are considered as the backbone of the system.

Upon completion of the design and development phases, an integrated system
called “MITS” provides an integral view to the distance education era. The system is

developed to deliver courseware content to distant learners over the Internet

1.4 Thesis Outline

The main contributions of the thesis are the proposed courseware data model, the
design and implementation of the database schema, the development of the application-
server modules and samples of the results.

The remaining of the thesis work is organized according to the following outline.
Chapter 2 introduces a Multimedia Interactive Telelearning System “MITS”, which is
developed at the Multimedia Information Research Laboratory (MIRL) at the University
of Ottawa. It presents MITS objectives and requirements. Then, it focuses on the system
architecture and its major components. It also provides a brief overview of the previous

approach of MITS, which is based on MHEG technology and proposed by Wang [3].

13

Finally, it illustrates the drawbacks of such MHEG-based model for MITS. Chapter 3
describes the design of a courseware data model. An overview of the “multimedia
document model” and “teaching architectures” is presented. The object-oriented
paradigm and multimedia document model were employed in order to facilitate the
design of the courseware data model. Then, the generated courseware data model is
presented. Chapter 4 is considered to be one of the major contributing parts of the thesis.
It describes MITS database management issues. First, a brief overview of a multimedia
information system called MEDIABASE will be given. Second, the employed database
tools “ObjectStore environment” will be presented. Then, MITS database schema is
described in major detail. It also presents MITS database management architecture based
on client-server computing. Finally, the persistency states of data will be described from
the ObjectStore point of view. Chapter 5 describes the implementation issues of the
system. It will address, briefly, the exploited programming environment “Java
environment”. Then, the implementation of the database schema and application-server
modules will be described. In addition, the postprocessing or annotation of MITS classes
will be discussed. Sample results of the constructed courses will be presented. Finally, the
system integration will be addressed. Chapter 6 summarizes the thesis work and provides

suggestions for the future research.

14

Chapter 2

2 Multimedia Interactive Telelearning System
(MITS)

This chapter describes our distance education system from several perspectives.
First, it presents the system’s objectives and requirements. Second, it focuses on the
system architecture and its major components. Finally, it provides a brief overview of the
previous version of the system, which is based on less efficient technology - “MHEG
technology”. It presents briefly MHEG-based model that was proposed previously for the

system, and it also addresses the drawbacks of such model.

Our new approach of the system is entirely based on the Object-Oriented
paradigm, new trends at multimedia computing and utilization of advanced technologies.
It is an innovative Telelearning system, which utilizes an object-oriented database for
supporting database capabilities, Java environment for developing the system’s software
modules, the Internet for providing the communication network, enhanced techniques for
capturing as well as coding multimedia information, etc. We have proposed a courseware
data model that describes and represents courseware content in order to facilitate

courseware authoring and ensure its delivery to end-users.

2.1 Objectives and Requirements

The Internet is an exciting new medium for providing courses to distant learners.
It is considered an ideal vehicle for effective courseware delivery to users anywhere in

the world at any time [16]. At our laboratory at the University of Ottawa, we are

15

developing a Multimedia Interactive Telelearning System (MITS). The goal of the system
is to build an environment for delivery of courses over the Internet. Our approach
represents a significant advance over the typical Intemet approach of delivering
educational information using text, static images and a few video clips over hypertext
HTML pages. The new approach aims to deliver courseware elements “objects” to
distributed users smoothly. The strength of the system stems from the proposed
courseware data model as well as database schema, the developed database engine, the
integrated system’s software modules, the generated courseware presentation agents and

the courseware reusability. All these issues will be addressed within the next chapters.

Several aspects have been taken into consideration during the MITS’s design
stages. First, the system should enable students to seek courses-on-demand, which offer
students the flexibility to access multiple scattered database servers from any access point
in a network at a convenient time. Second, the learning process may be controlled
according to the students’ learning styles and cognitive capabilities [2][5]. Third, the
system should provide interaction mechanisms and incorporate a number of multimedia
features, which can give the learning environment a new and refreshing flavor [17].
Fourth, the role of an instructor has been changed from that of controller of a lecture to
the courseware author and/or on-line facilitator, who is responsible for providing help
when a student encounters a problem during the learning process. Thus, a student should
be easily connected to a teacher, or an on-line facilitator to obtain help on a specific topic
using e-mail, chat services, telephone connections and video conferencing. Furthermore,
the system should be capable of handling various student profiles associated with

different learning objectives. It is therefore important that the system should be

16

developed for different courses and/or students demands [2]. In addition, our challenge is
to create an enhanced setting that will be a seamless education environment that will

encourage reflective practice among students and teachers [16].

Briefly, MITS encompasses different major components: courseware authoring
site, courseware database server, multimedia database server, media production center,
courseware presentation agents “Rendering application and GUIs” and an on-line

facilitator (Figure 2.1). A detailed system architecture is illustrated in the next section.

On-line

Multimedia —_—
Database D
E; Media
Production
Center

Courseware
Authors

=
B |t

Courseware

Courseware Users
Database Server

Figure 2.1 MITS’s major components

2.2 Generic System Architecture

Our system “MITS” is a distributed Telelearning system that satisfies the
previously mentioned requirements. MITS is based on the client-server architecture. It is
composed of several basic components (Figure 2.2), where each one of them has specific
roles to perform. These components are: courseware authoring site, courseware database

server, multimedia database server, database schema modules, media production center,

17

media managers, courseware presentation agents, video indexing techniques and real-

time communications system.

_____________________________ , . Courseware

r]
: E Database
: : Q ObjectStore N
; : 5 Q Metadata
H H I =
N . o 2 Logical Str.
Authoring i : {. > E ?ﬁ - <
Java API, E = LU % \ g: _;- o L : | g (P-J. Os)
3D-s vemili | o 3 s | = > o
1 = = o = =2 Multimedia
1 E | 2 > g
: ‘ 0 B = = Database
] 723
E : ":U> 8} Media e
: = o Managers E‘!
18 c;n- >y
JPresentation E = =

Indexing
echniqpe$

Figure 2.2 MITS general architecture

e Courseware Authoring Site is the factory for constructing courses based on a
courseware data model, which will be explained in chapter 3. Object-Oriented
paradigm [18] and multimedia document model {9] have been exploited to design the
courseware data model. The courseware author constructs a courseware within two
basic steps. First, the courseware data model is employed to define the courseware
hierarchy and identify the courseware presentation structure by specifying the
relationships among courseware content “physical media objects”. Second, the
content objects of the courseware are specified either by creating new ones through
the Media Production Center, or by making reuse of those ones that are already stored
in a Multimedia Database server (MM-DB server). Then, the constructed courseware

is stored in the Courseware Database server. The Courseware Authoring Site exploits

18

Java environment and Virtual Reality Modeling Language (VRML2.0) towards the

courseware creation.

ObjectStore is a commercial Object-Oriented Database Management System from
Object Design [19], which is used as the basis for the database capabilities. It is a
product based on making C++ a database programming language. ObjectStore5.0
utilizes Java and C++ as programming environments for implementing client
applications (Authoring and Presentation applications) and the application server. It
provides an interesting combination of full support for database capabilities and
object-oriented programming features. MITS database issues will be addressed in

chapter 4.

Database Schema Modules are dedicated to the management, manipulation and
maintenance of database schema aspects of a courseware. Once an author constructs a
courseware, the courseware meta data (i.e. the courseware logical structure and
presentation structure) are transferred for storage from the client authoring site to the
Courseware Database server as Java classes and VRML objects using reliable TCP. A
CoursewareDB Application Module (CDBAM) is designated to include the definition
of each courseware class as well as its instances, and then to annotate and mark these
volatile classes automatically or manually to be Persistent-Capable Java classes.
These classes are mapped through the Java API module, and are to be stored
persistently applying a CoursewareDB Schema Module (CDBSM), which resides at
the server site. CDBSM includes the definition of each persistent-capable class of
objects and provides a pipe stream to store these courseware classes at the

Courseware Database server. An enhanced database management architecture is

19

described in chapter 4, which defines MITS database modeling and schema
generation that are produced by utilizing different software engineering techniques
and ObjectStore. In addition, students’ requests to the database are supported through
a mediator application layer “Courseware Presentation Agents”. This offers two
advantages: it protects the courseware database from unauthorized accesses, and
hides the details of the database operations. As a result, students are offered the
flexibility to access information repositories. Also, databases are managed,

manipulated and maintained properly.

Media Production Center: is responsible for capturing information from the real-
world and coding them into various types of “physical media objects”, such as video,
audio, image, graphics, animation, and text. These media objects will be employed as
basic multimedia information for the courseware creation and presentations.
Multimedia data can be categorized as static or continuos media. The term “static
media” refers to the media that does not have a temporal dimension, while continuos
media has an implied temporal dimension [20]. Video and audio are the best
examples of continuos media. The rendering of video must satisfy strict temporal
constraints and must also be synchronized with the associated audio [20]. In addition,
the media production center normally contains different equipment for capturing
media information, such as video cameras, VCRs, scanners, speakers, microphones,
and so on. McNabb [1] noted that more experimental studies are needed in the area of

media selection, which is one of the basic steps towards the courseware authoring.

Multimedia Database Server: the multimedia information that is already captured

from the real-word and coded into different types of media objects are indexed by

20

textual references, then stored at a Multimedia Database server (MM-DB server) by
exploiting a set of Media Managers. Meanwhile, the courseware meta data includes
these textual references as pointers that facilitate the retrieval of those media objects
at rendering time is stored at Courseware Database server. One of the most important
issues related to media objects is the storage. Media objects, especially video data,
can be very large in terms of bytes. However, there are several compression standards
that have been designed, implemented and utilized in order to manage, compress and

store those media objects at a MM-DB server.

Media Managers are part of ObjectStore tools. These managers are a set of class
libraries used to facilitate the storage and retrieval of those media objects into a MM-
DB server. A variety of media managers are provided within the ObjectStore
environment {15]. For instance, Text object-manager, Image object-manager, Video

object-manager, Audio object-manager, HTML object-manager, etc.

Courseware Presentation Agents are rendering client applications, which are
responsible for offering distant learmers a variety of multumedia interactive
courseware services through sophisticated Graphical User Interfaces “Rendering
GUIs”. These services enable students to browse all courses that are stored in the
Courseware Database server, or to retrieve the logical structure of a specific
courseware. It is then possible to retrieve a specific section from within such
courseware, enclosed with the pre-defined presentation structure by playing back its
basic media objects. The rendering application modules interact with students through
standard browsers such as Netscape3.0 [21] or Internet Explorer4.0 [22] in order to

ensure the courseware delivery. When a student encounters a problem during the

21

leaming process, he/she can always get help from the on-line facilitator through e-
mail, chat, telephone or video conferencing facilities. Therefore, the power of
multimedia in supporting the learning process is not only in the ability to combine
text, audio and visual data, but it is also evident when combined with rendering
applications to provide interactive functionality for users to navigate for information
at their own pace [4]. The integration of the database engine with the courseware

presentation agents will be addressed briefly at chapter 5.

Video Indexing techniques: MITS is associated with ObjectStore to provide a high
level of indexing techniques based on the content of such media objects as image
content or video frames content. Currently, ObjectStore only offers image-indexing
techniques, such as content-based retrieval [15], which is based on image visual
properties, including color histogram, texture, shape of objects and sketch. Deriving
such features requires automatic analysis of the multimedia information. The primary
methods used for image data are image processing and image understanding [12],
while the primary methods utilized for video data are video shots analysis, video
parsing and video shots abstractions (i.e. selecting key frames to represent each shot)

[23].

Real-time Communications System (RCS) is a part of MITS system, which was
developed at our Laboratory [24]. It was designed to experiment with media-on-
demand issues u;sing Real-time Transport Protocol (RTP) over the network with
emphasis on video and audio media types. The main features of the RCS sub-system
are real-time transmission, scalability, utilization of standard protocols, flexibility and

user interactivity [24]. RTP was used over UDP for real-time transfer of video/audio,

22

rather than reliable TCP, because when packet losses occurred, retransmission and

congestion control methods used in TCP resulted in gaps during media presentation.

All these components are distributed over the Internet to provide real-time
interactive multimedia courseware services to a variety of educational groups in order to

satisfy their learning needs.
2.3 MITS Previous Approach

A previous approach of MITS was proposed and designed at our Laboratory [3].
It is entirely based on MHEG technology. Briefly, the MHEG standard will be described,
and the proposed MHEG-based model for MITS will be introduced, followed by the
illustration of the drawbacks of such model. However, our new approach of MITS does

not use MHEG technology; it is designed based on the courseware data model.

MHEG Technology

MHEG stands for Multimedia and Hypermedia Information Coding Expert
Group. The standard it provides is Coded Representation of Multimedia and Hypermedia
Information, which is commonly called MHEG standard [25]. MHEG is a developing
international standard that is providing a coded representation for multimedia/hypermedia
information to be used, and interchanged in real-time, by applications in a wide range of
areas and on heterogeneous platforms [3][9]. For instance, interactive multimedia

applications and document interchange services.

The MHEG standard is based on the object-oriented notations, but it does not

need an object-oriented system to be implemented [25]. MHEG technology aims to

23

define a “Framework” for several multimedia and hypermedia applications. This
“Framework™ comprises the coded representation of independent and elementary units of
information, which will be specified as “Objects”, and utilized or interchanged by
different applications. In addition, the standard aims at sustaining real-time interchange

and presentation using minimal resources [3].

Research on MHEG began in the late 1980’s, and the standard is developed in a
number of parts [25]. For instance, Part V of the standard is developed to support the
distribution of interactive multimedia applications, based on the client-server architecture
across heterogeneous platforms. However, these parts are out of the scope of our thesis

work.

Basically, MHEG standard contains eight types of classes. These classes are MH-
Object class, Composite class, Content class as well as Multiplexed Content class, Script
class, Action class, Link class, Container class and Descriptor class [25]. In addition,
system designers are able to add new classes into the system. Based on these classes,
MHEG objects can be instantiated by the object designers and interchanged between the
applications. Messages for the communication between MHEG objects, or for the
communication of these objects with client applications, are specified in the MHEG
standard. However, it is up to the applications or services to define the way to utilize or

handle them, and if necessary encode them [3].

MITS Based on MHEG Model for Information Interchange

Wang [2] had proposed an MHEG model for interactive multimedia courseware

delivery system (Figure 2.3). It is a layered model, which contains multiple layers, such

24

as application layer, script layer, MHEG object layer, non-MHEG content object layer
and the communication protocol layer. All these layers are located in three sites:
authoring, storage and presentation. These sites are the key factors for the process of

transmitting knowledge to distant learners.

Coursewal' [Author Courseware Database ('_:Ourse“,are User
~N

:

v

Courseware Editor | ———————— OODBMS f=————=" Courseware Présemation Agent
1 T
Seript |~~~ T T T TS T T T e — Script
i \ 4 T
MHEG Object Modules I~~~ MHEG Object Modules [——— MHEG Object Modules
(CODEC, Interpreter) . (CODEC, etc) (CODEC, Interpreter,etc)
Non-MHEG Content ObjectModules | _ __ ___ _{ _ . _ _| Non-MHEG Content Object Modules
(MPEG, JPEG, ASCII, etc.) (MPEG, JPEG, ASCII, etc.)
_______ Communication | __ _ _ _ _ T
Communication Protocol Protocol Communication Protccol

lk—— authoring & creaﬁdli — <—jetmeval& T"pdl"emnlzation —>

Figure 2.3 MHEG-based model for MITS

At the application layer, the authoring site utilizes a courseware editor, the storage
site exploits a courseware database, and the presentation site uses a courseware navigator.
The second layer of the model is the script layer, which is employed to specify complex
relationships between MHEG objects and run-time objects for the courseware
presentation [2][3]. The next layer of the model is the MHEG object layer, where, at the

authoring site, objects are coded into ASN.1 or SGML format using MHEG Engine and

25

transmitted through the network. When the objects are received at the presentation site by
the courseware navigator, they are decoded and interpreted for rendering using the
MHEG Engine. In addition, this layer is responsible for sustaining other activities that
facilitate the presentation process, e.g. resolution of object references, creation of
runtime-objects, and interpretation of link as well as action objects. The MHEG Engine is
a set of software modules designed and implemented by the system designer to encode,
decode, handle or interpret the MHEG objects [3]. Moreover, the non-MHEG content
object layer is responsible for offering mechanisms to handle various types of coded
media objects. These content objects are captured and coded at the media production
center utilizing different data coding standards, such as MPEG, RealAudio, JPEG and
ASCII, depending on the media types. Finally, the communication protocol layer is
dedicated for exchanging messages and acknowledgments between the applications.
Several networking infrastructures can be used to offer such communication services; a

broadband network had been suggested for the first approach of MITS [2].

2.4 Drawbacks of MHEG-based Model of MITS

In order to use such MHEG-based model for MITS (Figure 2.3), a specific
MHEG flavor application, a user interface, a MHEG engine and a communication

management module are common modules to be installed at every user’s site.

This spawns several obstacles that affect the first approach of MITS in terms of
the scalability and performance. Since each end-user’s site has to install the MHEG-

based presentation application and the MHEG Engine, students are unable to access the

26

system through standard browsers such as Netscape [21] or Internet Explorer [22]. Thus,
the system’s scalability is limited. In addition, as the MHEG-based model has several
layers, so courseware content must go through all these layers in order to be delivered to
end-users. Therefore, the system’s performance is slow. Moreover, MHEG technology
itself is not stable, because there are different versions of the standard. Each one of them
includes new specifications. This makes the implementation process of any system that
utilizes MHEG technology more complicated. In addition, MHEG includes a limited
synchronization specification support. It is suggested that other standards such as
AudioVisual Interactive Scriptware (AVIS), can be used to handle the more complex
synchronization requirements of presentation scheduling [9]. Furthermore, recent
comparisons have revealed that MHEG’s very high conceptual overload makes authoring

MHEG documents cumbersome [26].

27

Chapter 3

3 Description of Courseware Data Model

In chapter 1 and chapter 2, we have pointed out that the courseware author
constructs different courses based on our courseware data model, which is designed
according to the “multimedia document model” [9]{10} and teaching architectures [5].
The Multimedia document is an architecture that aims to describe, model and structure
multimedia objects, while teaching architectures incorporate the learning theory with the
computer capabilities to accomplish one-on-one based teaching and satisfy student
learning needs. The teaching architectures are different from traditional teaching methods
that are used in typical classrooms. Most of these teaching architectures concentrate on
the idea of leaming by doing, which enables distance education developers to create

educationally effective Telelearning systems.

Basically, the courseware data model aims at describing and representing
courseware content in order to simplify the courseware creation and support the content
delivery to distant learners. An overview of the multimedia document model and teaching
architectures is addressed in sections 3.1 and 3.2 respectively. Then, the courseware data

model is described in section 3.3.

3.1 Overview of Multimedia Document Architecture

The first step toward the design of a multimedia information system is to provide

an integrated and homogeneous way to describe, organize and structure multimedia

28

information objects and to represent their temporal relationships in a single entity called
the “multimedia document” [9]. Multimedia documents differ from traditional documents
that are composed of text and graphics [10]. Documents that comprise a combination of
different media types such as video, audio, graphics, animation and text can express or
present ideas more clearly than traditional documents. Multimedia documents are
originated from “Office Document Architecture”(ODA). The ODA [9][27] supports only
static media types such as text, raster graphics and geometric graphics, while, continuous
media such as video and audio cannot be incorporated into the ODA. These media differ
from static media in that they are laid out over time and have temporal properties. Thus,
ODA does not address the temporal relationships between media items within a
document [9]. The emergence of continuous media (e.g. video and audio) imposes new
requirements on document representation and information storage. Therefore, in order to
include continuous media and support temporal representation; ODA must be modified
and extended to a new model called the “Multimedia Document”. 1t is an architecture
aiming to model multimedia objects. The new generation of multimedia documents is
able to integrate new types of information, such as continuos media (e.g. video and
audio) and computer-generated media (e.g. computer graphics and animation) [27].
Examples of multimedia documents are courseware, textbooks, atlases, medical reports,

electronic news, and so on.

There are two types of multimedia documents: passive documents and active
documents. In passive multimedia documents, the author integrates continuous media
simply by representing them in a static visual form such as a frame for video and an icon

for audio [9]. In active multimedia documents another approach is used to integrate

29

continuous media. Each media item must be treated as an object to be presented in time;
each object is rendered for a specific duration of time. Thus, by assigning duration to
every object in the document, the author can create a presentation schedule to describe
when each object in the document should be presented. In contrast to the passive
documents, active multimedia documents play back in a presentation that changes
continuously in time. At our laboratory, a structured description of the multimedia
documents called “Mediadoc” had been proposed [9]. This is an architecture for the
creation of active multimedia documents. It also includes a rendering synchronization
scheme that enables the specification of temporal characteristics for multimedia objects

and relations between them.

However, two major problems that appeared with multimedia document
architectures and authoring systems: are limited functionality and poor authoring
environments [9]. Considering these two problems, few goals were established for the
development of “Mediadoc”. First, the generated architecture must be powerful enough
to describe multimedia documents to the extent required by authors. Specifically, it
should offer a beneficial set of synchronization specification types for creating the
presentation schedule of a multimedia document. Second, the architecture must be simple
enough so that authors can readily create multimedia documents that are clearly and
concisely structured and easily interpreted, understood and modified [9]. In addition, the
procedure of creating presentation schedules for multimedia objects should be easily

driven and not tedious.

The most important issues of the document architecture are the logical structure,

layout structure and rendering scenario, which describe a document’s content and specify

30

how the content will be laid out and played back. The logical structure describes how a
document is organized into major components and sub-components. Thus, a document
can be structured into a number of levels. Each level will contain several sub-documents.
At the lowest level, sub-documents will represent media objects [10]. The layout
structure describes the spatial properties of media objects that will be presented during
play back. The layout process requires assigning each piece of information to a
“rendering area” on a display device. In addition, the layout process will be completed
once the document’s rendering schedule “Scenario” has been specified. A scenario is
defined as a schedule for document play back. These scenarios describe when, and for
how long, each media object will be rendered. In addition, such scenarios specify the
temporal synchronization that coordinates the real-time presentation of a multimedia
document, and maintains the temporal ordering (i.e. time-ordered relations) among the
media objects [10]. In other words, a “scenario” makes it possible to schedule multimedia
events to happen according to specific relationships between media objects. Therefore,
scenarios are essential for multimedia document play back because they provide the
means of integrating static and continuous media. Each multimedia document can have
several scenarios representing different ways it can be rendered. More details of

“Mediadoc” architecture are provided in [9].
3.2 Teaching Architectures

Regardless of the traditional teaching methods, Schank [5] had proposed a
number of teaching architectures that incorporated the learning theory with the computer

capabilities to accomplish one-on-one based teaching and satisfy students’ learning

31

needs. These teaching architectures include simulation-based leaming by doing,
incidental learning, learning by reflection, learning by exploring, case-based teaching and
goal-directed learning. The research and studies throughout the learning theory have
demonstrated that immediate and frequent feedback, cooperative learmning, and well

structured exposition of information and data can improve the leaming process [16].

Simulation-based Learning by Doing

This architecture is usually used when apprenticeship will not work all that easily
or if it is risky. In other words, simulation applications allow users or students to
experience with difficult events or tasks and try to gain experience from them, as for
example in pilot training. It is composed of four parts: a student, a simulator program, a
storytelling program and a language understanding program. A student can receive
training through the simulator program, where a language understanding program will
interpret student questions to languages that the computer can understand. A storytelling
program is activated by a trainer (i.e. teacher) at appropriate times to tell stories from the

experiences of experts in actual situations [3][5].

Incidental Learning

This architecture creates tasks whose end results are inherently interesting and can
be used to offer significant amounts of information. The basic principle of this
architecture is that students can learn easily when doing something fun, e.g. students can
learn geography by utilizing a software called “Road Trip” [5]. It teaches geography to

school students by letting them take simulated car trips around the United States. Upon

32

arrival at a destination, the student can watch exciting video clips spotlighting activities

or events in that location {5].
Learning by Reflection

Sometimes a student does not need to be told something, but rather needs to know
how to ask the right questions. A student can be the best teacher of himself if he has
someone around to listen to the ideas that he generates. In this architecture, the teacher’s
role is to help the students see shortcomings in thinking, and encourage them to

speculate, imagine and create [5].

Learning by Exploring

The learning by exploring architecture provides answers to a student’s questions
at the time they arise. In this architecture, students must be provided the flexibility to
select their own choices and they should have a number of experts available to answer
their questions. Proper organization of expert testimony is of vital importance for

learning by exploring [5].

Case-based Teaching

This architecture depends on two ideas: experts are repositories of cases, and
good teachers are good storytellers. The students are told exactly what they need to know,
when they need to know it. When students realize that they need information to progress,
they will learn fast. This architecture can be combined with the simulation-based
learning-by-doing architecture. The learning-by-doing architecture provides the activity,

and the case-based teaching architecture provides the instruction [5].

33

Goal-directed Learning

In order to leverage the power of the teaching architectures, we need to provide
goals that students will adopt willingly. Also, we need to provide a way for students to
control the environment in which they learn, and give them an opportunity to adapt what
is presented to them, to their exiting learning needs. Schank [5] had proposed several
principles about how to build educational environments in schools and in the workplace.
For instance, learning should concentrate on a task that requires transformation of skills
and knowledge diffusion. The task should be challenging, but within a student’s ability.
In addition, an instructional designer’s job is to make the learning process more

attractive, which means that students will enjoy what they are doing.

3.3 Courseware Data Model

The design of an appropriate data model for a multimedia information system will
ensure smooth navigation and fast access between real-world application entities and

multimedia information objects.

In MITS, we have adopted the multimedia document architecture “Mediadoc™ [9]
and object-oriented paradigm to design our Courseware Data Model (CDM). The
Courseware Data Model describes and represents courseware content by specifying the
logical structure and presentation information, in order to facilitate courseware authoring
and ensure its delivery to distributed educational groups. In other words, CDM aims to
simplify the creation of courses and facilitate their manipulation into database systems. In

addition, the Courseware Data Model incorporates a courseware with a teaching

34

architecture, and guides students through the leaming process by specifying the
presentation information of the courseware content. We have utilized Java environment
as well as VRML tools [28] to accomplish the design and implementation of the

courseware data model.

The Courseware Data Model is composed of logical, spatial, temporal and
behavioral structures. The logical structure describes how a courseware is organized into
major components and sub-components, as regards chapters and sections, respectivély.
The spatial structure describes the layout properties of media objects that will be
presented during play back. It specifies the physical location of each media object on the
rendering terminal, in terms of the horizontal-vertical coordinates and the width-height
measurements [10]. There is a connection between the logical and spatial structures: the
spatial structure facilitates the understanding of the logical structure through typographic
effects [29]. The temporal structure defines when, and for how long, each media object
will be rendered, e.g. displaying a video clip for 60 seconds after a text object has been
displayed. The behavioral structure is used to describe how a courseware should react to
user’s interactions [28], e.g. a student should click on a video object in order to be

rendered.

In our Courseware Data Model, as illustrated in figure 3.1, the courseware logical
structure is organized into several chapters where each chapter consists of multiple
sections, although sometimes a chapter has no section. The sections’ level is the leaf level
of the logical structure hierarchy. While, the presentation information (spatial, temporal
and behavioral structures) are wrapped in one 3D visualization container called 3D-

Scenario Structure (3D-S), which is constructed by applying VRML2.0 authoring tools

35

[28]. Each section in the courseware logical structure is associated with one 3D-S. Even
when a chapter has no section, it can contain a link to a 3D-S (Figure 3.1). A 3D-S
contains multiple 3D-S Components, where each one of them represents a specific media
object, such as video, audio, image and text, within a section or chapter. The spatial
information of a media object is represented on X-Y plane by assigning a “rendering
area” that has width and height values. This specifies the physical location of each media
object. The temporal information of a media object is represented by the Z-axis, which
represents the time-axis; it contains the start time of rendering the media object, the end
time of rendering the media object and the length of the time it will last. The behavioral
information of a media object ié represented by 3D behavior arrows [28], which represent
the behavioral relationship and rendering policy of a specific media object. For instance,
these arrows will determine how a media object K will be rendered before/after another

media object M, and how it will respond to student interaction such as clicking.

— 3D Scenario
Logical
Structure

e Name
e List of all 3D-§S components

[Chapter ll | Chapter 2|
| Section j "'I&zctiou NI l Secuon lI Secuon N] 3D S c enﬁo _[
3o 1| 3o [i|[3D i

3DS

EXBY
NEVE

Scenariol/ | Scenario|/ Scenzmo — g
Presentation 3D-S Component l§>
Hsn_;c_g M Information = ,
V’ vlﬁ v' vlg ’ v[{ ' Vlm- :, ? : 7 "
1 Media
IITﬁ%ﬁ& ‘ng&gﬁ lTé%Eé%gOfvem

Figure 3.1. Courseware Data Model

36

Since the CDM is designed based on object-oriented paradigm, it satisfies
different object-oriented features. For instance, it supports the “reuse” of logical
structures and media objects. The courseware logical structure can be reused to create a
new courseware by using the same chapters and/or sections in constructing different
courses, e.g. section k can be copied in a courseware entitled “Object-Oriented
Programming” and in another courseware called “Java Networking”. In addition, media
objects can be reused within different 3D-Scenarios in the same courseware or even in
different courses. In the next chapter, we will address the issue of how to translate the

courseware data model to be mapped in the MITS database schema.

37

Chapter 4

4 MITS Database Management Issues

Database management is the backbone of any complex computer-based system
that is correlated with large repositories of information. The aim of database management
is to ensure efficient storage, effective manipulation, fast access and beneficial querying
to database users. Database schema is considered as the heart or kernel of that backbone.
Therefore, powerful software engineering techniques must be utilized to design and
generate the database schema. In addition, an appropriate database management system

must be used to support the required capabilities.

In this chapter, we will explore the MITS database management issues. First, a
brief overview of a multimedia information and communication system called
MEDIABASE will be addressed, where our Telelearning system stems from this
platform. Second, the functionality of the multimedia database management system is
described by focusing on the exploited object-oriented DBMS. In addition, major
contributions are presented in sections 4.3 and 4.4. MITS database modeling and schema
generations are accomplished by utilizing powerful software engineering techniques. For
instance, Object Modeling Technique [18] and Use Cases [38] have been employed to
facilitate the schema generation. Then, MITS database management architecture is
described based on client-server computing. Finally, the persistency states of objects

inside the database are presented briefly.

38

4.1 Overview of MEDIABASE System

At our Laboratory, a research project called MEDIABASE that combines key
aspects of multimedia, telecommunications and information processing [29]. The
MEDIABASE platform is a multimedia information and communication system that has
been under development for several years. It has focused on document architectures,
database models, high-level communications as well as synchronization protocols, and
real-time physical storage of multimedia data [9][29]. It has provided the basis for
developing fully distributed and complex applications such as remote delivery of video
entertainment services, real-estate information system, audiovisual interactive
applications, etc [29]. An interactive multimedia newspaper application has been
implemented based on the MEDIABASE platform [30]. Our Telelearning system is also

one of the applications that stem from the MEDIABASE project.

The main compouents of the MEDIABASE platform include Mediadoc
architecture, production information servers (e.g. video, image, text as well as graphics,
and voice servers), communication servers (e.g. cooperative, mail and directory servers),
database server, high-speed network infrastructure and multimedia user interfaces. The
database server provides a set of features used to store, retrieve and manipulate
multimedia documents as a whole, independent of their physical storage [29]. All these

components are distributed over the OCRInet — an R & D ATM network in the Ottawa

region [30].

The first prototype of our multimedia Telelearning system was implemented on

the MEDIABASE system. It aimed to accomplish the implementation of a courseware

39

delivery system by sustaining specific tasks in the next versions of the system [3]. Thus,

in our current approach of MITS, we have fulfilled those tasks through the following:

e A courseware database engine, which stores courseware logical structure,

presentation information and content material.

e A client module(s) that enables users to access, manipulate and update the

database.

e Courseware presentation agents that offer a user-friendly graphical interface

for the learning environment [31].
4.2 Object-Oriented Database Management System

Multimedia information systems deal with huge amounts of data that should be
stored in large repositories of information. Thus, a powerful database management
system is required to provide database capabilities. Traditionally, a database consists of a
controlled collection of data related to a given entity, while a database management
system (DBMS) is a collection of interrelated data with the set of programs and
operations used to define, create, store, access, manage, query and present the
information in the database. The functions of a multimedia DBMS basically resemble
those of a traditional DBMS [12][32]. However, the nature of multimedia information
makes new demands, including determining what is needed and how to provide that
functionality. A multimedia DBMS provides support for multimedia data types, plus
facilites for the creation, storage, access, query, and control of the multimedia database

[12]. In addition, it is the task of the multimedia DBMS to provide format independence

40

to the applications, i.e. to supply each of the formats it needs, while hiding the internal
storage formats that are actually used [13]. For the multimedia DBMS to serve its
expected purpose, it must meet certain special requirements. These requirements are

divided into the following categories [12]{33]:

Traditional DBMS capabilities

e Huge capacity storage management

e Information retrieval capabilities

¢ Media integration, composition and presentation

e Multimedia query support

e Multimedia interface and interactivity

e Performance

Traditionally, a multimedia DBMS is designed by developing a multimedia
presentation layer on top of a pre-existing object-oriented DBMS (which can be truly
object-oriented or relational-based), such that the core of the DBMS was developed
earlier, independent of the design of the multimedia presentation layer [20]. A number of
challenges are faced by the database community to provide a comprehensive solution for
designing and managing multimedia database systems. These include designing new data
models to capture semantics for multimedia objects, storing and accessing multimedia
data, providing high-level indexing techniques for images, video and audio data, version

management for distributed objects, query language development for multimedia data, etc

41

[33]. There are three approaches which can be taken when designing a multimedia
DBMS: (1) relational DBMS + object-oriented interface + multimedia interface; (2)
object-oriented DBMS + multimedia interface; (3) an object-oriented multimedia DBMS
[20][33][34]. Most existing multimedia DBMSs use either approaches [or 2. It is well
known that object-oriented styles are very efficient in supporting the development of

multimedia applications [20][26].

However, the selection of multimedia DBMS depends more precisely on the
application and its own requirements. The emerging multimedia applications range from
multimedia display, data transfer, information retrieval, to distributed multimedia
collaboration. Virtually all commercial and governmental organizations are included,
with applications such as desktop publishing, education, medical, weather, entertainment,
military and so on [20]. Pazandak and Srivatava [35] have addressed the general
requirements of multimedia applications and provided a survey for the most popular

OODBMSs and multimedia DBMS products.

In MITS, we have exploited a commercial OODBMS product (ObjectStore5.0 in
Java) to support the required database capabilities [15]. We have selected an GODBMS
for several reasons. It offers enhanced tools to manage, manipulate and maintain complex
data such as multimedia information. This is perhaps the most important reason why
OODBMSs have attracted the majority of users that have been dissatisfied with
traditional databases [36]. It also sustains rich modeling capabilities that can simulate
real-world environments into sophisticated systems such as MITS. Moreover, object
databases can offer significant reductions in the development cost and provide substantial

improvements in performance for a wide range of new generation applications (e.g.

42

Internet applications) [19]. In other words, the characteristics of the OODBMS can have
significant impact on the performance and flexibility experienced by both application
developers and users [37]. Unfortunately, OODBMSs are still subject to lively
development, and the numerous proposals and prototypes differ in many aspects. It is far

from clear, today, which one of the proposals will finally prevail [13].

As mentioned earlier, we have utilized an OODBMS for supporting database
capabilities that are needed by MITS. Object Design [15] has produced a full object-
oriented database management system “ObjectStore” and light-weight database engine
“PSE-Pro” to offer the required database capabilities. These two database management

systems will be addressed briefly in sub-sections 4.2.1 and 4.2.2 respectively.

4.2.1 ObjectStore 5.0 Environment

ObjectStore emphasizes on client-server architecture and offers a full database
support for multiple clients distributed over the network. It is intended for applications
that require high performance persistent storage for large databases, multi-user
concurrent access, complete DBMS capabilities and queries over large collections of
objects [19]. A library of collection types is provided in order to build database
structures, including vectors, hash tables, sets, bags, lists, dictionaries, etc [15][36]. It
also provides a large number of users with the privileges of accessing various databases
through the ObjectStore client API, which resides on each client’s machine and is
associated with application server at the server side. ObjectStore architecture has 3
layers: the client application, the application server and ObjectStore Server (Figure 4.1).

The client application is implemented in Java or C++ and utilizes ObjectStore client API

43

to dynamically map Java objects into persistent medium for storage. The application
server is implemented in Java or C++, and uses ObjectStore APIs to handle schema
operations and queries. It runs on top of the ObjectStore server, either in a single process
or separate processes [19]. The ObjectStore server is responsible for providing full
database support such as storage management, transaction management, locking,
recovery, security, etc [i5]. In addition, ObjectStore facilitates the creation and
maintenance of multiple versions of data, and provides support for version history. It also
supports object clustering, i.e. for better performance in terms of object access time,
objects that are generally processed together or those that are dependent on each other
can be clustered together. When related objects are clustered, they can be simultaneously

retrieved from secondary storage and cached together [36].

ﬁ Courseware Author ® update thread
] Java Application © retrieve thread
& —— write Object
24 ObjectStore <«—— read Object
Java Client
Java___pp g{ : o Network
-I . A pplication Server “Boundarles
I e Ty
' i ieg™"" fe———
OS Cllent et
foo* : ObjectStore Server
Java App. ., e

“‘2; 2
RN DB1

0S Client (e.g. CoursewareDB){,

Figure 4.1 ObjectSrore5.0 architecture

4.2.2 PSE-Pro Environment

Moreover, a light-weight database engine that is called Persistence Storage

Engine-Pro (PSE-Pro) in Java can be employed to offer database capabilities and

44

facilitate the generation of database schema for medium size applications (Figure 4.2). It
runs separately from the ObjectStore server and is affected by several limitations [19]. It
allows, at most, one user to update the database at one time, which means it locks the
database at the file level once the database is under the action of an “update transaction”.
But, it enables concurrent “lread transactions” by utilizing multiple retrieve threads
(Figure 4.2). PSE-Pro is not intended for a large number of concurrent users. It can
support multiple readers from the database, but writers to the database are serialized since
locks are held at the database level [19]. This means that a database can be updated by, at
most, one application at one time. Multiple applications can read the same database
simultaneously, but only one application can write to the database. It performs well for
databases in the range of tens Mega Bytes. When databases start to exceed 100 Mega
Bytes, PSE-Pro performance starts to degrade [19]. Therefore, in order to obtain high
performance, multi-user concurrent access and indexed queries over a large collections of

objects, you should consider using the full ObjectStore DBMS product.

g Courseware Author
Java <
Application/Applet
PSE Pro API "tveal.. ObjectStore/PSE Pro
..... Java Client
. Single

ava_Ann
I E‘%{ ... %.a PSE Pro Storage Process
e oot 1 — o bbb . Layer
PSE Pro API

PSE Pro API

(e.g- CoursewareDB)
update thread
O retrieve thread
- write Object (store obj)
[oeomreemene read Object (retrieve obj)

Figure 4.2 PSE-Pro architecture

45

4.2.3 Class File Postprocessor

In this sub-section, we will describe briefly an important API that is provided as a
part of ObjectStore tools, which is called “Class File Postprocessor”. It is utilized to
annotate and mark system classes (e.g. MITS database schema) to be persistence-capable
classes or persistence-aware classes. Recalling from chapter 1, persistent-capable class is
the capacity of class instances to be stored in a database, while persistent-aware class is a
class that can manipulate persistent objects, but cannot itself have instances stored in the
database [15]. In chapter 5, which describes the implementation issues, we will meet both

persistence modes.

Basically, in crder to store objects in the ObjectStore database, these objects must
be persistent-capable. For an object to be persistent-capable, it must include code that
allows persistence. ObjectStore provides the Class File Postprocessor to automatically
insert the required code into application classes, which is referred to as annotations.
Under normal circumstances, system developer(s) must postprocess together all class
files in an application that he/she wants to be persistence-capable or persistence-aware.
Failure to do so can result in problems that are difficult to diagnose at the application
execution time [15]. Even if a particular class does not need to be persistence-capable, it
is recommended that it should be postprocessed with all other class files in the
application. The postprocessor has offered multiple options that allow the developer to
indicate which classes must be persistence-capable, and which need to be persistence-
aware, and which need not be annotated [15]. It provides a number of command options

that allow developers to tailor the results to their needs.

46

Description of the Annotation Process

e Before running the Class File Postprocessor, system developer(s) must compile all

source files at the same time.
e (Create a destination directory other than the source directory.
e Run the Postprocessor according to specific persistence modes.
e After running the Postprocessor, there are two versions of the application class files:
I- The unannotated class files in the source directory,
2- The annotated class files in the destination directory.

It is important to keep these versions separate, because when a developer runs the
application, he/she must ensure that ObjectStore finds the annotated class files before it
finds the unannotated class files [15]. There are several technical rules for postprocessing

classes, for more details refer to [13].
4.3 MITS Database Modeling and Schema Generation

One of the most important problems that the database community has tried to
solve is the development of a powerful data model. Data models are essential to
multimedia database systems. The data model can be used for the management of
multimedia information in a way similar to the actual management of factual data by the
traditional database models, such as the relational model. However, traditional data

models and database systems are affected by several drawbacks for handling complex

47

applications such as multimedia information systems. This refers to the unique nature of
multimedia information that imposes new demands, and incorporates special

characteristics, such as temporal-ordering and synchronization.

Various data models such as network, relational, semantic and object-oriented
models are already available for the traditional databases, and a few have been proposed
for multimedia databases [12]. Some researchers have gone so far as to claim that the
data model for a multimedia DBMS can only be fully achieved by object-oriented
technology [12][13]. Object-Oriented paradigm aims at resolving the drawbacks and
offering the flexibility to tackle the requirements of the complex systems without being
restricted by the data types and query languages that exist in traditional database systems.
In addition, Object-Oriented paradigm offers systems designers the power to specify the
structure of complex objects and the operations that can be performed on these objects
[20]. Therefore, Object-Oriented technology is suitable for building a multimedia data
model (e.g. Courseware Data Model), which aims at describing and presenting data that
is associated with their relationships in more complex systems such as MITS. It also
enables database designers to model, create and store these complex types of data without
the need for translation from complex data structures to simple table format. As a result,
we have utilized object—oriented modeling techniques in designing MITS database

schema.

Based on Object-Oriented paradigm, the database schema is the description of
classes associated with a database. It includes all Java or C++ types of objects that have

ever been stored into the database [15]. In MITS, we have adopted the Object-Oriented

48

model because of its richness and capabilities that support the analysis, design and

implementation of MITS database schema.

4.3.1 Relational Modeling

Prior to the usage of the Object-Oriented model, we mapped our Courseware Data
Model to the Relational-Model and produced MITS’s Entity-Relationship diagram
(Figure 4.3). It facilitates the designing process of MITS database schema. First, as
shown in Figure 4.3, an author creates several courses, each one of them is assigned with
its attributes (title, cr_code, keywords, creation_date, short_description and so on), the
key attribute is cr_code. Second, each courseware has many chapters, where a chapter is
a strong entity and independent of a courseware entity. A chapter is defined by such
attributes as (title, chp_code, keywords, creation_date, etc), the key attribute is chp_code.
Third, each chapter may contain multiple sections, where each one of them is defined by
various attributes namely (title, sec_code, keywords, creation_date, etc), the key attribute
is sec_code. Fourth, a 3D-S entity is representing the presentation information of a
chapter or a section, where each 3D-S has a name and contains a list of 3D-S
Components. Fifth, 3D-S Component entity is defined by several attributes such as
(name, x-y coordinates and width-height values). Sixth, each 3D-S Component is linked
to only one media object, which is defined by a reference name. Seventh, all courses are
stored in a coursewareDB entity, which is defined by coursewareDB_Name. Eighth, a
registered student who is associated with a profile can search or access coursewareDB for
a specific courseware using a textual query. Each student is defined by several attributes

(e.g. Name, SIN and St_Num).

49

Title, Cr_Code, Keyword, .

3 N
s | Autnor Courseware

CDB Name

CrsewareDB

N
o,l1)
Chapter Keyword
1
- 1 Name
St Profile Student SIN
R sl’ !IIII]
N

Name 1 L 1 S_Tiu
3D-S epresen Section S_EL"QCQ_“_
C- Keyward

1

<>

M
Name . 1 ’.
X-Y 3p-SC MediaObj | Nane
Hght MM-DB_Name

Figure 4.3 MITS E-R Diagram

4.3.2 Object-Oriented Modeling

Because of the shortcomings of the Relational-Model to represent the temporal
characteristics and behavioral information of each media object in the E-R diagram, we
have exploited Object Modeling Technique (OMT) “Rumbaugh’s notations” [18]. The
reason being that the OMT notations are capable in presenting both hierarchical and
aggregation relationships, and in enhancing the design stage of database schema, as well
as generating MITS’s OMT classes. Therefore, we have translated the preliminary E-R
diagram (Figure 4.3) to MITS’s OMT diagram (Figure 4.4), and described MITS’s meta
data, based on the OMT model. The OMT diagram shows various classes plus their
associations, where each box in figure 4.4 represents a class associated with its attributes
and methods. It contains various classes such as Doc_Base, Courseware, Chapter,

Section, 3D-S, 3D-SC, StudentActor, CoursewareDB, MM-DB, MediaObj and GUI. It

50

shows the relative association between classes. For example, class StudentActor

interacts with class GUI and class Courseware contains instances of class Chapter. It

also represents the class cardinality, as is the case when a Courseware contains one or

more chapters, a Chapter has zero or more sections, a Chapter is linked to zero or one

3D-S only, and one 3D-SC is associated with only one MediaObj.

MM-DB
CrsewareDB getMedia VIV StudentActor
Doc_Base CourseDB_Name Obi See
Seg <8 Name
Title [sclDBName | St_Num
Code setDBName getDBName Profile
Keywords getDBName setSeg 11 @ -
CreationDate setSeg getSeg
StoriDescrp eses b— | [=S [Methods
Author, .c..... | | . int ¢
Methods store access interac
é;extends MainGUI
[T | access
Section Chapter Courseware | stqre f ?)
List_Of_Sections -
Ref_i D-S
Rel-to.3 Ref_to_3D-S Lisi Of Chapters keev_cui] bo_cur | prayer
SerTitle containg———— +1 SerTide CrTitle CrTide Name
SetKeyword SetKeyword SetKeyword Keywards ChTitle Method
setAuthor CrcalcySc:(inn has CreateChptr SecTie JlMEthods
getAuthor PMethods 3D_Name
- __. Keywords
. MediaObj Methodsk
as . Name
3D-S 3D-SC associated Type
Name Tethods
- Name
. 3D-SC_List Type /\ ic
link X-Y _Corr | I]
Metheds Hght_Width VideObi
i R v .
Methods I} | ImgObj TxtObj
uranen Position dize

Figure 4.4 MITS OMT Diagram

In addition, MITS’s OMT diagram illustrates how MITS exploited the advantages

of reuse and inheritance of object-oriented model and OMT notations to share common

attriputes (title, code, keyword, creation_date, short_description, ...} (Figure 4.4), which

are defined at Doc_Base class and inherited in its successor classes (Courseware, Chapter

and Section). The OMT model considers Courseware, Chapter and Section classes are

extensions of Doc_Base class and have additional attributes such as List_of_Sections and

51

Ref_to_3D-S. The MediaObj class is a generalization of its descendant classes (VideObj,
ImgObj, TxtObj,...), which are not overlapped. The MainGUI class is an aggregation of
classes (Crw_GUI, 3D_GUI and MM_Player). It identifies the “whole-part” relationship,
where the MainGUI class represents the “whole” side, while Crw_GUI, 3D_GUI and
MM_Player classes represent the “part’” side of the relationship. StudentActor is a class,

which simulates an end-user and is defined by St_Name, St_Num and is associated with

St_Profile.
MITS
MM-DB Author Courseware CrsewareDB User
CourseDB_Name

Name (Name Title store Name

SIN Keyword - I

BC;E\SS\—‘ ——— CreauonDate access \
g ShortDescrp
create .
| e interact
Methods GUI
. Chapter
contains 1
. + Ch_Titl .
contains Keyword Section
CreationD ate

ShortDescrp has S_Tule

'_—'. Keyword
Methods
link I M cthods
; link
| Mediaobj | 3Ssociated 3D-S i |
3D-SC has
q ¥;;“: attributes attributes
M ethods Methods

Figure 4.5 Primary MITS OMT Diagram

It is not required that each OMT class at the analysis stage (Figure 4.5) must exist
at the design stage (Figure 4.4), or each OMT class must be implemented as a separate
class. For instance, class Author at the analysis stage (Figure 4.5) became a multi-valued
attribute at the design stage, where such attribute is included within Courseware, Chapter
and Section classes that are inherited from Doc_Base class (Figure 4.4). This represents
how the Object-Oriented model could offer reduction in the implementation and how it

enhanced the designing stage.

52

Moreover, we have exploited Jacobson’s Use Cases notations [38] to produce
MITS Use Cases. This aims to simplify the creation of MITS classes and to clarify their
definition (e.g. attributes, role of each method and message passing). Use Cases enable us
to understand how classes could communicate and exchange messages. Use Cases are
correlated with their actors, where each use case has a name and steps. A use case can be
defined as a typical sequence of events that can occur when an actor is interacting with
the system being modeled. An actor can be defined as a human or machine that will
interact with the system being modeled [38]. We have constructed the following use

cases:

Use Case 1: Capturing and Preparing Multimedia Information

Actors: Media Production Center, Media Specialist, Information Sources, Servers

Steps:
L- Media Production Center captures real-world information
2- Media Production Center analyzes data type (e.g. video, audio, image and text)
3- Media Specialist uses MPEG compression format for video data
4- Media Specialist uses .RA, .WAVE and .AU compression format for audio
data
5- Media Specialist uses JPEG compression format for image data
6- Media Production Center codes captured information into appropriate media
objects
7- Media Specialist assigns each media object with a reference name

8- Saving Media Objects in MM-DB Server (use case)

53

e Use Case 2: Saving Media Objects in MM-DB Server
Actors: Media Production Center, Database Administrator, MM-DB Server, Media
Managers
Steps:
1- DB Administrator selects a specific MM-DB server or segment
2- DB Administrator selects a suitable Media Manager
3- DB Administrator stores media objects into MM-DB server
4- System error in MM-DB server (use case)

5- DB Administrator releases resources (i.e. close MM-DB server)

e Use Case 3: Creating Courseware Data Model
Actors: Author, Courseware_DB Server, MM-DB Server, Rendering Tools, Browsers
Steps:
1- Creating courseware logical structure
2- Linking each section in the logical structure with 3D-S
3- Specifying the presentation information in 3D-S
4- Each 3D-S is arranged into many 3D-SC, each 3D-SC represents the layout,
| temporal and behavior structures of a media object
5- Each 3D-SC is linked to only one media object

6- 3D-S wraps presentation information and interaction behaviors

e Use Case 4: Creating Courseware

54

Actors: Author, Courseware_DB Server, MM-DB Server
Steps:
1- Author analyzes characteristics of courseware users, courseware content and
teaching architecture
2- Author specifies courseware logical structure
3- Author accesses MM_DB server and selects appropriate media objects
4- Author specifies the presentation information of logical structure leaf level
5- Author integrates meta data and the selected media objects into a courseware
6- Author specifies the state and behavior of a courseware

7- Saving courseware in Courseware_DB server (Use Case)

e Use Case 5: Saving courseware in Courseware_DB server

Actors: Database Administrator, Courseware_DB Server, DBMS

Steps:
1- Courseware meta data declared as persistent-capable classes
2- Database Administrator selects a specific Courseware_DB server
3- Courseware_DB segment is selected
4- Courseware_DB segment’s root is fetched
5- DB Administrator uses update transaction that holds courseware meta data
6- Courseware meta data stored in a segment
7- Transaction commit
8- ObjectStore DBMS releases the update locks related to such segment

9- Database Administrator closes Courseware_DB segment

55

e Use Case 6: System Error in Courseware_DB Server

Actors: Database Administrator, Courseware_DB Server, DBMS

Steps:
1- Courseware meta data declared as Persistent Capable Classes
2- Database Administrator selects a specific Courseware_DB server
3- Courseware_DB segment is selected
4- Courseware_DB segment’s root is fetched
5- DB Administrator generates update transaction that holds courseware metadata
6- Exception is thrown
7- Transaction abort

8- Courseware_DB segment is rolled back

e Use Case 7: Retrieving a Courseware

Actors: User, Courseware_DB Server, MM-DB Server, DBMS

Steps:
1- User accesses Courseware_DB server to browse courses hierarchy
2- User selects a specific courseware
3- An appropriate transaction is used
4- Courseware logical structure cashed to the user
5- Specific section is selected
6- Related presentation information of such section accessed
7- Presentation information cached to the user

8- Transaction commit

56

9- DB Administrator closes Courseware_DB segment

Furthermore, for each concrete use case we can draw an Interaction diagram. The
Interaction diagrams describe how each use case is offered by communicating objects
(i.e. use case actors). The diagram shows how the participating objects realize the use
case through their interaction [38]. The advantage of using an Interaction diagram is that
it is easier to read messages passing in relative order. Thus, Interaction diagrams could be
used to reveal how MITS use cases’ actors are communicating and exchanging messages
in order to improve the designing stage and to produce the actual implemented classes.
Finally, we have translated MITS OMT diagram, Use Cases and Interaction diagrams to
actual Java classes, which represent MITS database schema. Once the schema is
identified, the developer or database administrator can use the DBMS to create a database
and populate it. Therefore, OMT classes and Use Cases have been helpful in

accomplishing the design stage and generating database schema of MITS system.
4.4 MITS Database Management Architecture

Before describing MITS database management architecture, let’s first step back
and introduce a brief overview for client-server architecture. At sub-section 4.4.1, we
present a brief overview for client-server technology. Then, we decribe MITS database

management architecture because it is based on this technology.
4.4.1 Client-Server Background

Client-server computing is the technology that helps developers and users to

achieve several objectives, as follows: to allow organizations to use networks connecting

57

different kinds of machines, to lower computing costs by running more of the business on
low-cost platforms, and to increase the productivity through user-preferred graphics,

interfaces and tools [37].

Client-server computing has both hardware and software implications. The
hardware implications are that the computing environment includes desktop machines,
networking, and multiple servers, which can be a general-purpose machine or dedicated
to specific tasks, e.g. database server, e-mail server or video server etc. While, the
software implications are that the contained programming components that can be
distributed across machines, e.g. a client software component that invokes the services of

one or more server software components [37].

Generally, there is a clear functional separation between a client and a server.
Each has a specific functional role, but they interact seamlessly from an application
perspective. The application does not have to deal with the processes separately. Client
functionality focuses on user interaction; while server functionality makes a system
resource available to many clients. A server is able to support multiple clients
concurrently. This characteristic implies that servers are shared resources that can be

leveraged across applications and users [37].

The different commercial OODBMS products on the market today were
architectured with a client-server model to provide data to users, applications and tools in
distributed computing environments. However, not all OODBMSs implement the same
kind of client-server approach. The several approaches have significant variance in their

resulting database performance, flexibility, and computing costs.

58

There are three basic architectural alternatives for implementing client-server
functionality in a database manager: the object server approach, the page server approach
and the database server approach [37]. They vary in the level of responsibility assigned to
the client and server components of the system. In all cases, the client part of the DBMS
is linked with the client application process, while the server part of the DBMS is located

on the machine where the physical database resides [37].

The OOBDMS products available today use either the object server approach or
page server approach. Both architectures take advantage of desktop processing power and
storage capacities. While, the relational database management system (RDBMS) products
use the database server approach, because they were originated in the mainframe and
minicomputer eras. Of the three approaches, the object server approach is the most
compatible with cooperative, object-to-object processing, where objects are distributed

over networks and send messages to each other to invoke each other’s services [37].

This is a brief overview for the client-server architecture that is used in OODBMS

products.
4.4.2 Description of MITS Database Management Architecture

Telelearning systems impose database management system to handle full database
support for their users by providing efficient storage, effective manipulation, fast
querying, rendering courseware media objects and support sharing of courseware
components by authors (i.e. techers) and students. MITS database management system
uses 3-tier architecture: client application, application server and the ObjectStore server

as illustrated in figure 4.6.

59

Store Logical Structure Objects using TCP
Authoring
. Java,3D-S pP.J.Os, 3-D
reation\ oy
O\t
Client App.
Retrieve [Lpgical Str. Objeat Server Cou are
PR Ly —— Database Server
- Network OS.
\ Server MM-DB
Rendering server
MM
@ Server
Media Objects . . Media Objects
! Rendering using RTP edia O

Figure 4.6 MITS Database Management Architecture

It shows two parts of database management, the upper one describes the
courseware creation database management, while the lower one describes the courseware

rendering database management.

e Courseware creation: The authoring database management contains client
application and application server as two separate entities that are developed, based
on Java environment and ObjectStore 5.0. MITS authoring database management is
composed of several steps. First, the client application is originated from MITS’s
database schema as explained in section 4.3. It is called Creation Application Client
(CAC), which includes the logical structure classes and 3D-Scenario Structures as
volatile Java classes and VRML objects that are transferred to the Application Server
(AppSr) for storage using reliable TCP. Second, an ObjectStore API (Class File
Postprocessor) will annotate and mark those volatile classes as persistent-capable

classes, which means the capacity of classes to be stored in a database [15][19].

60

Third, AppSr is responsible for handling schema operations and queries. It
instantiates those persistent-capable classes and generates persistent-capable objects
based on schema definitions. Then, it stores them as persistent objects in one
CoursewareDB segment or multiple segments, which are managed by the ObjectStore
server. Fourth, each persistent 3D-Scenario Structure contains many references to
basic media objects. Fifth, these media objects and their references are stored into a
MM-DB server using a customized application server called MM Server, which is a
component of the lower part of the database management. It works on top of
ObjectStore server and exploits the built-in ObjectStore Media Managers (Figure
4.6). In addition, an author can retrieve a courseware for further update or reuse of its
components to construct a new courseware, then stores it back at the CoursewareDB
server using “update transactions”. Furthermore, database administrators or authors
are able to retrieve the database schema for further update or to constructe a new
schema. Then, annotate all classes using the ObjectStore API “Class File
Postprocessor” and utilize the existing database or create a new one, more details of

the annotating process will be given at chapter 5.

Courseware rendering: The lower part of figure 4.6 represents the rendering
database management. A Rendering Application Client (RAC) is developed using
Java environment. It is independent from Creation Application Client (CAC) that
satisfied the database schema creation. RAC will ensure courseware delivery to
students by communicating with AppSr based on ObjectStore server APIs, Media
Managers and RTP. When a student wants to access the CoursewareDB server to

retrieve a courseware, RAC informs AppSr through a request. Then, AppSr retrieves

61

the courseware meta data (logical structure classes and presentation information) and
stores them into Client Cache Manager in order to make courseware meta data
accessible by a student. The Cache Manager is responsible to ensure concurrent
access to data by handling callback messages from the server to client applications
[15]. Media Managers will retrieve the associated media objects and start rendering
them according to the spatial, temporal and behavioral structures predefined in the
3D-Scenarios. RAC is able to access the AppSr for processing queries. RAC sends a
request through method-invocations to the AppSr. Method-invocation will exchange
messages between the client and the server by using Java APIs and sockets. A
message will convey a student’s request for a specific courseware. Then, it is the turn
of AppSr to interpret the request, locate the database segment, fetch the required
courseware, retrieve its objects and locate the associated media objects. Finally,
AppSr will send over all related courseware meta data and presentation information
to RAC using TCP and RTP. The system must ensure the concurrent access of

multiple readers to the same courseware.

All implementation issues related to MITS database schema and application-

server modules will be described in chapter 5.

4.5 Object Persistency States

So far, we have examined MITS database management issues; including the

utilized OODBMS, the database modeling as well as schema generation using object-

oriented technology, the MITS database management architecture. Finally, we conclude

this chapter by presenting the persistency states of objects from ObjectStore point of

62

view. This clarifies how objects are manipulated inside ObjectStore database. As a basic
rule in order to store objects in ObjectStore database, these objects must be persistent-
capable. This means that they are already have been annotated and contain the required

annotation code as explained in sub-section 4.2.3.

Once objects are stored in the database, they are called persistent objects. A
persistent object always exists in one of three states: hollow persistent object, active

persistent object and stale persistent object as illustrated in figure 4.7 [15].

Persiste

Figure 4.7 Object Persistency States

4.5.1 Hollow persistent object

A hollow persistent object contains fields that are identical to the fields of the
object in the database that the persistent object represents, but the fields have default
values. When an application acquires a reference to an object that has not yet been read in
from the database, ObjectStore generates a hollow object as a placeholder for that object.
ObjectStore does not actually read in the contents of the object until the application tries
to access the object. When the application reads or updates a hollow object, ObjectStore

turns it into an active persistent object [15].

63

4.5.2 Active persistent object

An active persistent object starts as an exact copy of the object that it represents in
the database. The contents of an active object are available to be read by the application
and might be available to be modified. If an active object is updated by the application, it
is no longer identical to the object in the database that it represents. An application can
read or update an active persistent object, a persistent object must be active for an

application to read or update it by utilizing appropriate transactions [15].

4.5.3 Stale persistent object

A stale persistent object is no longer valid. It fields have default values and should
not be used. A persistent object becomes stale after the application calls specific APIs;
for instance: ObjectStore.destroy(), Transaction.commit(), Transaction.abort(). There are
several rules for utilizing such APIs. If an application tries to read or update a stale
object, an appropriate exception will be thrown. There is an important rule for using
ObjectStore “any application must not invoke any ObjectStore operation on a stale
object” [15]. Therefore, main operations such as update and retrieve are performed on

active objects.

64

Chapter 5

5 System Implementation

5.1 Introduction

In this chapter, we will tackle the implementation issues of MITS database
system. First, a brief overview of the utilized Object-Oriented programming environment,
“Java environment”, as well as its important features will be addressed. Then, MITS
database system implementation is described. This implementation is divided into two
major tasks: the implementation of database schema and the implementation of
application-server engine as shown in figure 5.1. The implementation of application-
server is the main contribution of the chapter, and it covers all concepts that have been
described so far. The application-server has been developed as a set of modules. It
imposes the utilization of database schema implementation, thus, the database schema
implementation will be described prior to the description of the application-server

implementation.

A proposed template for implementing additional modules will be described in
section 5.4. In addition, the generated schema classes and application-server modules
must be annotated using an ObjectStore API. The annotation process for MITS classes
will be described in section 5.5. Section 5.6 presents samples of the results and shows
how these modules are utilized to construct, retrieve as well as update the meta data of

several courses. Finally, as we have pointed out that MITS consists of several major

65

components, we will address the integration issue of the database engine with other MITS

system’s components such as rendering application and system’s GUIs.

MITS Database System
Implementation

Persistent-aware

Persistent-capable

Database
Schema

Server Engine

Figure 5.1 MITS Database System Implementation

Therefore, in order to fulfill the implementation tasks, we have exploited the
state-of-the-art technologies by utilizing Java JDK 1.1.2 [39] and ObjectStore 5.0 in Java

interface 1.05 [40] that operate on Windows NT 4.0 [22].

Although, the database schema classes and application-server modules can be
implemented in C++ in order to provide a high performance, Java was used for the
prototype to make system modules platform-independent, accessible through the Internet

by a number of educational groups and executable on Web browsers across the network.

5.2 Java Environment

Java is an Object-Oriented programming language that is created by Sun
Microsystems [39]. Sun itself describes Java as follows: “Java is a simple, object-
oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high-

performance, multithreaded and dynamic language™ [41]. Java is simple in the sense that

66

it is easy and quick to learn compared to other programming languages. It resembles C++
but omits many confusing features of C++ that bring more grief than benefit, such as
pointers and operator overloading {41]. In addition, Java was designed to be object-
oriented from the beginning. It emphasizes on a basic object-oriented principle “PIE
principle”, which stands for polymorphism, inheritance and encapsulation [42]. These
concepts are fundamental ones for Object-Oriented programming environments. One of
the benefits of the PIE principle is to sustain code reuse by allowing software components
to grow from existing components, which reduces the required time to create new
components. Moreover, one of the aims is to make Java support distribution. It is
designed to run applications on networks. Thus, it provides different libraries and classes
for network connectivity, such as sockets [41]. Since, the network environment has been
kept in mind when standard Java libraries have been developed, so programming client-
server applications with Java is easier than with any other programming language [43].
Furthermore, Java compiler generates byte-codes instead of native machine code [42]. A
Java interpreter is exploited to run the byte-code. A Java program can run on any
platform that has a Java interpreter and run-time system, known together as “Java Virtual
Machine” [44], which makes Java platform-independent. What makes Java perfect for the

Internet programming is the relatively small size of the compiled byte-codes.

Another important feature of Java is “multithreading”. It is a way of building
applications with multiple processes or threads [4.1]. Unfortunately, writing programs that
deal with many things happening at the same time can be more difficult than writing in
the traditional single-threaded C and C+4+ style. Java has a sophisticated set of

synchronization primitives that support multithreading. Other advantages of

67

multithreading are better interactive responsiveness and real-time behavior. However,

this is restricted by the underlying platform [41].

Java contains different packages that could facilitate programming tasks such as
I/O, networking, graphical-user-interface components, etc. Other advanced tools, such as
Java-enabled-browsers, applets and Servlets are causing Java to become a standard for
Internet programming [41][44]. These tools have been utilized in our system’s

development and integration as will be addressed briefly in section 5.6.
5.3 Implementation of MITS Database Schema

So far, as we have seen in chapter 4, we have exploited Object-Oriented
paradigm to model and design MITS database schema (Figure 4.4). OMT notations and
Use Cases have been used to design the schema. In this section, we describe the
translation of the database schema to actual Java classes and address the schema

evolution in sub-sections 5.3.1 and 5.3.2 respectively.
5.3.1 MITS Schema Classes

The implementation of database schema consists of several Java classes:
Doc_Base, Courseware, Chapter, Section, Scenario, SComponent, Head, Body and Tail.
Each one of them contains several public as well as private attributes. In addition,
multiple public methods are included within each class. We have implemented schema
classes by utilizing regular Java libraries plus importing the necessary ObjectStore APIs,

which are essential for the annotation process, as will be explained in section 5.5.

68

Class Doc_Base: is an abstract class that contains several attributes and
methods inherited in its successor classes (Courseware, Chapter and Section).
These attibutes include title, code, author, creationDate, modDate,
keywords[], and shortDescription. It also includes several set_methods (e.g.
setTitle, setCode, setAuthor, insertKeywords, deleteKeywords, etc) and
get_methods (e.g. getTitle, getCode, getAuthor, getKeywords, getDescription,
etc). This class illustrates how Object-Oriented languages support the reuse of
the code and offer reduction in the implementation (reduce the cost of

implementation).

Class Courseware: is an extension of Doc_Base class. It is intended to create
persistent instances of such class, which are stored in the Courseware
Database server. Class Courseware includes the above mentioned attributes
and methods that are inherited from the super class Doc_Base. It also includes
list_of_Chapters as an attribute. In addition, it contains multiple methods such
as insertNewChapter, setChapter, deleteChapter, getChapter, getChapters and

getChapterPosition.

Class Chapter: is an extension of Doc_Base class. It is intended to create
persistent instances of such class that are stored within each courseware
instance, then store courseware instances in the Courseware Database server.
Class Chapter includes the above mentioned attributes as well as methods and
also includes the following attributes: status, list_of_Sections and a3D_S. If
chapter’s status equals false, this means that a Chapter instance has no section

and it has a link to an instance of Scenario class, which is a3D_S. In addition,

69

class Chapter contains several methods, such as insertNewSection, setSection,
deleteSection, setStatus, insert3D_S, delete3D_S, getSection, getSections,

getStatus, get3D_S and getSectionPosition.

Class Section: is an extension of Doc_Base class. It is intended to create
persistent instances of such class that are stored within each persistent chapter
instance, which are contained at a courseware instance in the Courseware
Database server. Class Section includes the above mentioned attributes and
methods. It also includes the following attributes: refList and a3D_S. In
addition, it contains several methods such as insertMediaRef, setMediaRef,

insert3D_S, delete3D_S, getMediaRef and getRefList.

Class Scenario: represents a 3D_S that wraps the presentation information of
different media objects as we have designed in our Courseware Data Model. It
is intended to create a persistent instance of such class linked with a
section/chapter instance in order to structure the presentation information of
its media objects. It contains private attributes such as name and scmpList.
The attribute scmpList is a list of 3D_SComponents that are wrapped in a
Scenario instance. In addition, it includes multiple methods such as setName,

getName, insertScmpList, deleteScmpList and getScmpList.

Class SComponent: represents a 3D_SComponent, where each instance of this
class models a physical media object. It includes different attributes such as
name, layout information of each media object (e.g. x-y values, height-width

measurements), head, body, tail and mediaName. In addition, it contains

70

several methods such as setName, setX _Value, setY_Value, setHeight,
setWidth, setMediaName, getName, getX Value, getY_Value, getHeight,

getWidth, getMediaName, getHead, getBody and getTail.

Classes Head, Body and Tail: represent the temporal-ordering plus the
synchronized list of media objects with a specific media object. Class Head
contains the startTime and syncList as private attributes. The startTime
attribute represents the starting time for rendering a specific media object.
While, the syncList attribute represents a list of references for all media
objects that are synchronized with the current media object. In addition, it
contains some methods to handle these attributes such as setStartTime,
insertSyncList, deleteSyncList, getStartTime and getSyncList. Moreover,
Class Body contains the duration and syncList as private attributes. The
duration attribute specifies the actual time for rendering a media object and
how synchronized its playback with other media objects. Furthermore, Class
Tail contains endTime and syncList attributes. The endTime attribute
represents the ending time for rendering a specific media object, while, the
syncList attribute identifies all media objects that are synchronized with the
current media object. Thesé media objects have the same endTime, which
means that they stop rendering at a specific time. Appropriate methods are

implemented in both classes Body and Tail to handle these attributes.

71

5.3.2 Schema Evolution

In general, a database schema is specified during database design and is not
expected to change frequently, but the actual data in a database may change relatively
frequently [14]. In other words, the schema does not change so often because it describes
the structure of persistent-capable classes. While, the persistent objects may change by
updating their meta data values and/or adding or removing persistent objects to the

database.

As the number of applications that access a given class of objects grows, there is
usually a need to modify the structure of the objects to better meet the needs of the
applications. If the structure of a class of persistent objects is changed, all instances of
such class are affected. Such process of changing the structure or the behavior of

persistent classes is called Schema Evolution [36].

Therefore, ObjectStore is one of those OODBMSs that support schema evolution.
It provides a number of APIs for migrating old objects from old databases to conform to
the newer schema, and it also provides some facilities by which applications compiled

with the newer class definitions could access existing databases [15][36].

5.4 Implementation of Application-Server

5.4.1 Application-Server Modules

The main contribution of this chapter is the implementation of the application-

server (Figure 5.1). It aims at creating, populating, accessing and updating the database.

72

It also supports retrieving and deleting persistent objects from the database. In order to
satisfy such tasks, we have classified them into several modules. Each one is responsible
for performing a particular task. Since, we have designed and implemented our system
based on Object-Oriented paradigm, so we have implemented the application-server as a
set of modules, where each independent module is dedicated for achieving a specific task.
These modules include the CourseDB module, updateDB module, retrieve DB module
and deleteDB module (Figure 5.2). These modules perform their tasks on a collection of
courses. In our case, we have used ObjectStore_Vector to contain the collection of
persistent courses. Therefore, we have developed a class called theCollection as a
wrapper class, which provides the required methods to handle the management of

persistent courseware instances.

Application Server

Courseware

Database Server

MM-DB
server

Rendering

Manager

Figure 5.2 Application-Server Engine Modules

73

TheCollection class is employed as a data structure to wrap courseware
instances and store them permanently (Figure 5.2). It uses ObjectStore_Vector
as the actual data structure. We have developed several methods to make such
class as the container of courseware objects based on Java environment and

ObjectStore APIs. These methods include:
- public Courseware getCourse (String aCode);
- public void addCourse (Courseware cr);
- public Enumeration getAllCourses ();
- public void removeCourse (String aCode);

The CourseDB module is a part of the application-server. This module is
responsible for initializing, creating and populating the database. It uses
ObjectStore APIs to initialize ObjectStore server and start a database session.
Then, it creates the database according to a particular mode of reading as well
as writing to the database. If any system error happens or something goes
wrong, an appropriate exception handler will be employed, and the database
will be closed. Otherwise, a suitable transaction “update transaction” is started
in order to create courseware instances and populate the database. The
constructed courses are instances of one of the database schema classes, i.e.
“Courseware class”. These instances are stored in the wrapper class
“theCollection” (Figure 5.2). It is up to the database administrator to decide

how many courses to be created. Once he/she accomplishes the creation

74

process, ObjectStore API “Database.createRoor” is used to create a Root,
which is a reference that points to theCollection inside the constructed
database. This root is essential to access the persistent objects by using other
modules. Finally, the transaction is committed and those courseware objects
are permanently stored. This brings the database into a consistent state. In this
module, we have implemented several methods to facilitate the creation of the
database and satisfy the instantiation of courseware objects. These methods

include newCourse(), acceptData(), etc.

The updateDB module is the largest module of the application-server. It is
responsible for updating the database by modifying the meta data of persistent
courseware objects. In addition, it is responsible for inserting new objects
such as courseware, chapter and section instances into the database. This
module follows the same sequence of events that the CourseDB module has
followed in order to accomplish the task. These events include initializing
ObjectStore server and starting the session, and then opening the database
according to a specific mode of “Database.open()’. A proper transaction is
started to access the database root and navigate from such root to locate
persistent objects. If any system error happens an appropriate exception will
be thrown and the database will be rolled back in order to be retained in a
consistent state. As pointed out in chapter 4, at the beginning, ObjectStore
server sends hollow versions of the persistent objects. Once an object is under
an update action, ObjectStore will provide an active object to be updated.

Thus, the updateDB module works within a transaction on active objects.

5

Finally, either the transaction is committed and those updates will be reflected
in the database, or the transaction is abortted and the database will be rolled
back in order to remain in a consistent state. In this module, we have
developed several methods to handle updating and accessing operations on the

persistent objects within a transaction. These methods include:

- public static void options (theCollection dbColl);
- public static void workOnCourse (theCollection dbColl);

- public static void addCourseColl (theCollection dbColl, Courseware cr);

- public static void updateCourseware (Courseware cr);

- private static void acceptData ();

In addition, other methods are also implemented to accomplish the complex task

of the updateDB module.

The retrieveDB module is a part of the application-server, which is
responsible for accessing and retrieving persistent objects inside the database
by navigating through the database root using a suitable transaction mode. We
have implemented several methods to accomplish the retrieving task, e.g.
showData (theCollection dbColl). This module works on the persistent
collection to browse courses, retrieve a specific courseware and retrieve a
particular section. It can be extended to serve other kinds of queries by

developing new methods to perform other kinds of retrieve.

76

e The deleteDB module is a part of the application-server. It is responsible for
deleting a particular courseware from the database collection and ensuring the
deletion of all of its internal objects to avoid accessing unreachable objects or
stale objects that are explained in chapter 4. This module follows the same
framework of the previous modules. It will initialize ObjectStore, start a
session, open the database using an update transaction, fetch the database root,
access the required courseware to be deleted, remove all courseware internal
objects by utilizing an appropriate method removeCourse() from theCollection
class, remove the courseware reference from theCollection using ObjectStore
API, commit the transaction and then close the database. Once a system error
happens a proper exception will be thrown and the database will be brought to
a consistent state. We have implemented several methods to manage this task,

such as:

- public static void deleteFromColl (theCollection dbColl, String aCode);
- public static void deleteCourselnternal (Courseware cr);

These modules represent the MITS database system engine, which is transparent
to end-users. All these modules are accessed by the database administrator and listen to
students’ requests through a mediator module called “Access Manager”, which is
responsible for accepting students’ requests, then accessing the database to retrieve the
required courses and caching them to end-users’ machines. It cooperates with another
module “Rendering Manager” to support the delivery of actual media objects to end-

users. These two mediator modules are described and developed by [31] at our

77

laboratory. We will address the integration issue of the database engine with these

mediator modules at section 5.6.

5.4.2 Template for Implementing Additional Modules

Since, we have designed and implemented our system based on Object-Oriented
paradigm and because of its flexibility to add new components without affecting the
previous ones, so it is possible to develop a new module(s) that achieves a specific task,
which is not tackied by our existing modules. Therefore, we present a template for
implementing such additional modules if they are needed. The implementation of any
module follows a particular sequence of events (Figure 5.3). First initialize ObjectStore
server and start a session, specific exception handlers must be applied to handle system
errors or ObjectStore failure. Second, open or create the database depending on the task
that is supposed to be accomplished. Third, start an appropriate transaction to perform
specific actions utilizing a proper transaction mode. Fourth, fetch the database root. Fifth,
implement the main task that is required. Sixth, create the database root if not already
created or set. Seventh, commit the transaction and then close the database. Among all
those events proper exceptions must be thrown to avoid system errors and to retain the

database in a consistent state.

78

Start Session

ObjectSrore.initialize (null, null) ; ﬂ

db.create (..............)

db.open (.occcoeeee.):

Transaction.begin (....

db.getRoor (..............

db. setRoot(-cceeeeee.c...

)'.
)

DB create,
open

1l

): Start Trans

DB Root
et, set

ObjectStore.shutdown () ;

db.close () ;

tr.commit() ;

>

Close Session

=

DB close,
destroy

T

Commit
Trans

I

DB Root

create

db.creareRoot (...) ;

Figure 5.3 Template for implementing application-server modules

5.5 Annotating MITS Classes

As we have pointed out in chapter 4, in order to store objects in ObjectStore

database, these objects must be persistent-capable. Thus, MITS classes, both schema

classes and application-server modules must be postprocessed according to appropriate

modes using “Class File Postprocessor” in a process called annotation process. All our

schema classes are postprocessed to be persistent-capable including theCollection class,

because these classes will be instantiated and stored in the database. The application-

server modules are postprocessed to be persistent-aware, because they can manipulate

persistent objects of the schema, but themselves are not persistent objects in the database.

We have annotated MITS classes using the following Java as well as ObjectStore

command:

7> osjcfp —dest .\ osjcfpout\Mits —pc schema.class —pa modules.class

79

This postprocessing command creates two separate directories; one contains the

source code classes, while the other one is the destination directory “Mits Directory”,

which contains the annotated classes (Figure 5.4).

@ ® @ N @ A

Body.class Bodyjave Chaptercl . Chaptarja.. CourseDB.. CourseDB..

@ B @ B @ B

Coursewa.. Coursewe . daletaDB_ deleteDB._. Dac_Bas.. Dac_Bas._

@ ¥ @ ¥ @ =

Heead.class Heedjeve retieveD.. retieveD.. Scensno.. Scensnoj.

@ B @ ® @ 1

SCompon_. SCampan... Saction.cl.. Sectionje. Taldaess Tailjava

@ B @

theCollecti... heCaollecti... updateDB.. updstaDB...

Body.class BodyClas.. Chapter.d.. CheptarQl. CourseDB.. CaursaDB_.

@ @ @ a @

Coursewe.. Coursewa... daleteDB.. deleteDE.. Dac_Bas.. Dac_Bes..

%@%@o@a

Head dass HeadClas_. (ggigweD

@ D2 @

[SCompon_. SCompon.. Seciond.. SectianCl.. Taldass TailClassl. B

@ Q@ @ @

AR ST T AT AT R A AR e

theCollect.. theCollect.. updateDB.. updateDB_
taleDB.adb

newTasta...

Figure 5.4 Original MITS classes (right), and the annotated classes (left)

As illustrated in figure 5.4, the annotated classes are shown in the left screen shot.
It also contains two databases that are created by using the CourseDB module, and can be

updated by utilizing other modules such as the updateDB module.

Prior to this process, class path and system configuration must be set properly to

include ObjectStore as well as Java JDK, and utilize the Class File Postprocessor.

80

5.6 Samples of Results

The application-server modules have been used to create, populate and update
different databases. For instance, teleDB.odb, tele3.odb and newTest.odb demonstrate the

execution of such modules, as shown in figures 5.4 and 5.7.

We have constructed several courses, where their meta data has been stored in
teleDB.odb. The teleDB.odb contains various courses, such as “Multimedia Database™
and “Logic Programming”. Also, the tele3.odb is created by using the CourseDB module.
A courseware entitled “History of First Nations” has been constructed as shown in

figures 5.5 and 5.6.

_.(.nrnmund Prompt
D:\ODINOSJI\NCOM\odi\demo\osjcfpout\MITS>java CourseDB

Enter DB Neme to create a new BB

DB Name must be in form of ‘aString.odb’

tele3.odb s

Constructing a neu Courseware

Enter Courseware’'s attributes

History of First Nations

Enter a code '

crsSe-112

Enter an author name

John Simth

Enter a shortDescrp N
This course provides 1ntroduct10n to 1ot npations traditions -
Enter a keyword)

Indians . s

Enter creation Date Ln form dd/mm/gggg

create a chapter
create a section
Exit

Enter a title
Indian Tribes
Enter a code
crse-112-1- -
Entor an author name
"Kely.:
Ent@r a shortDe«crp ’
An -introduction to Indlan Tribes
Enter a keyword ’

[¥]lx

YT

|

CRERAARARDER QYA YN) b oo

Figure 5.5 A Snapshot for Creating a Database and Constructing a Courseware

81

in 9rhf:c_w[<m-ﬁ79‘y§i_4”

_———— e - _—— -

1 to create -a chapter
2 to .create a section
3 to Exit .

e ——-

Enter.'a chortnescrp
The Indian - Languages
Enter. a keyword.
Indian Language . . ’ R
Enter -¢reation Date in Form dd/mm/gggg
11/9/97
g) chapter
Jto.create a section
3to Exit.. -
: gour Cho;ce

To aqd a néu Course to the Collection
Enter V. for' yes, To exit Enter N for No

IVl fe 2 e S e T e T e T e T e T T e TR

A L TSR M T T

Figure 5.6 A Snapshot for Constructing a Courseware

All the courseware attributes as well as logical structure have been specified and
persistently stored. The courseware attributes such as title, code, author, shortDescription,
etc, are provided as ObjectStore Java strings. In addition, the courseware hierarchy is
defined by specifying its various chapters and sections. Each section contains several
textual references to media objects besides the other attributes that define each specific

section.

Several databases can be created using CourseDB module, as shown in figure 5.7.
Each database is populated by multiple courses, and then, committed and brought to

consistent state.

82

e

-.!-,B I < + 3@:’*@
v o > v = S

Fei

Q2 e

B .cless BodyClas.. Chapter.ci.. ChaptarCl... CourseDB.. Co DB...
ratriaveDBClassInfo.class ody.cle prar =0 “r urse

Java Class File

2717798 4:59 PM @ @ @ @ @ @

Caursewa... Coursewe... deleteDB... deleteDB... Doc_Bas.. Doc_Sas.
Siza: 940 bytes

@ @ ool -] s

Head.class HeedClas.. ratrieveD_. ratieveD._.. Scenana.
Scanano.. SCompon.. SCi Cl.. Taildass

2 @ & @ @

TailClassl... theCollecti... theCallect... updateDB... updateDB...
=) £
tele3.odb teleDB.odb newTesta..

b S T S R B D i {990 e s i

e £ i Y Computer T

Figure 5.7 Different Generated Databases

As shown in figure 5.8, the execution of the retrieve DB module demonstrates how
many courses can be retrieved from the teleDB.odb. The logical structure of such courses
is cached in order to be delivered to students through the presentation GUIs, which are

developed by other member in our laboratory [31].

The retrieveDB module delivers the entire logical structure to a bridge-application
that responds to students’ requests. This improves the database performance by reducing
the retrieval time for the related data, since the meta data are read with one instead of

several disk reads.

33

s Cummund Pvump!_ O
0: \ODI\OSJI\COH\odl\demo\OﬁJchout\MIT >Jaua retrleueDB.>
Course, title : cr101 .. and has codé : cri1@l

ali . and has Discription -: this is- the t t -courseware

introduction chapter . -and has code : cr16171
Chapter 2 in Course 1 . and has code : crilol-z -
chapter 3 DB . and has ceode : ¢ri1@1-3 -

: VUideo Inde%lng ,.and has code :: cr1ol-4 ..
DB Modellng . and has code 5_cr191*54

_Mu1t1med1a DB. . and has code £ chiz - .

Kakmouch . and . EY Dlecrlptlon T Thls lS advanced DB course'“

chapter title irlntroductzon to DB . and hab,code :_cr§J2 1 f-‘

Chapter t:tle : Multimedia Synchronization ,” and has code : crSizg-2 .
: MM Communication . and has code : ctS12-2 ' :

t t Logic Programmlng . and has code : <r240
Course Author : Logard . and has . Discription : THis 1s a new testing course,

Chapter tztle»- Logic Operatlons . and has code : cra2ue-1’

Course title : Logic Programming . and has code : criii
Course RAuthor in , and has Discription : this is prolog programm1ng

Chapter title : i . and has code : cri4i-1
: . \

R e e =t P

Figure 5.8 The Retrieveal of Courseware Meta Data

The updateDB module is resposible for updating the database by creating a new
courseware or modifying an existing one. A new courseware can be created and stored in
the current database (i.e. teleDB.odb). In addition, the database administrator could
specify the code of a specific courseware that needs to be updated. There are several
options for updating an existing courseware, for example adding a new chapter or
section, modifying an existing chapter or section, and deleting an existing chapter or
section, as shown in figures 5.9a and 5.9b. We have added a new chapter to an existing
courseware, which is called “Multimedia Database”. The new added chapter is entitled
“Mobile Agent”. The entire attributes of such new chapter are specified and successfully

stored in the teleDB.odb, as shown in figure 5.10.

84

"4 Command Prmpt - uvu ud(DB
D \ODI\OSJI\COM\od1\demo\os;cfpout S>java updateDB

crecte a new Caurﬂewaré .
update an exxgtxng Courseuware

Exit-

Choice '

Enter Courseware’s Code that you want to-
update its meta data inside the ‘dbCollection

Enter Courseuare s attriputes that you uant to update
The fllowing Courseware's attributes:are optional .
to ‘update. If Vou Do Not.-Prefer to update any one

1, Just press ‘Enter’ .to keep the old ualue"f

a code

v an author name

- a shortDescrp .

a keyuord
a8 Date in form dd/mm/yyuy

‘to create a new chapter
Enter 2 to create a new section

ety

create a new chapter
‘create a new. section
update an existing chapter
update an existing section
delete an existing chapter
deloteo an existing section
Exit . : .
Choice

the new Chapter s attributes
Enter-a title
Mobile Agent
Entor a code
crS12-4 - .
Enter an author name
Uy ’
Enter @ chortDeccrp

create a new chapter
croato a now section
update am exisoting chapter
update an existing section
delete an existing chapter
delete an exicsting section
CExit :

Figure 5.9b The Updating of Courseware Meta Data

85

The new chapter “Mobile Agent” is stored in the database and can be retrieved as

shown figure 5.10.

D:\ODI\OS COM\odl\demo\ob)cfpout\MITS\JaUa retrleueDB
Course tatle H crlO! . and has code ': crie} k i .
Course. Author ;. i . and hsg Dis crlptlon : this is the 1 £ courseuare

ntroduction chapter . and has code :-crle1

"Chapter 2 in Course 't ', and has. code :-cr101 2

“chapter 3 DB ., and has ‘code : cri181-3"
: Uideo Indexing , and has code : cr101’H

. and-has code : ¢ri@i-5

: Multimedia DB , and tias codé : c©r512 o)
Karmouch . and has Dlscr;ptlon : This is advanced DB course -

‘;ntroduct1on to DB . and hes code : crSiz-t
Multinedia Synthronization , and has code : crS12-2
: MM Communication . -and has code . crsi12-2 . :
: Mobile figent ., and has code : crSi2-4%

Course t1t19\ Loglc Programming . and has ‘code : cr240
Cour e Author : Logard . and has Dlocr1ptxon : THis is & now testing course. it is

Chapter title : Logic Operations . and has code : crz24e<1

Course title.g_Logic Programming ., and has code : criiy)
: Amin . and has Discription : this is prolog- programming

crayy-1

Figure 5.10 The Retrieval of Courseware After Updating the Database

The deleteDB module is responsible for deleting an entire courseware. The
database administrator specifies the code of the courseware that needs to be deleted.
Since each courseware contains several persistent objects, so these objects must be
deleted prior to the deletion of the courseware attributes. In this module, we have
provided the necessary methods that ensure the deletion of courseware objects (i.e.
chapters and sections) before the deletion of the courseware, in order to avoid accessing
Stale Objects. We have decided to delete a courseware that had code “cr444”, as shown

in figure 5.11, such courseware had been deleted.

86

5 Command Prompt

'\ODI\OSJI\COM\odi\demo\osjédeut\MITS$jaua déleteDB'&
Enter Courseware’s Code that you want to delete '

D \ODI\OSJI\COH\odl\demo\oa]cfpout\MITS>Jaua retrleueDB
Course txtla : er101. | and has code : cri@l S ¢
ali-. and has Dis cr1pt1on : thls is the lst cqukseuaré'

Chapter tltle :_lntroductlon chapter . and has code :erl6i-1
' 'A'title;‘,Chapter 2.in Course 1 . and has code .: ¢rt@l- 2
titlé % chapter 3. DB . and has code Terieti-3
title : Uideo Indexing ,-&nd has code : cr181-4
title : DB. Hodel1ng ;.and has .code : cri@1-5§

..__--__-..-.......:._'__

le. : Multimedia DB , and has code : ch12 :
Course-ﬂuthor = Karmouch . and has Discription : ThlS is aduanced DB course

introduction to BB . and has code : cr5t2-1 .
;" Multimedia Synchronization . and has code : cr512-2
i MM Communication , and has code : cr512-2
: Mobile Agent . and has code : cr5i2-%

Cburse title : Logic Programming , and has code : cr2y0 . :
Course nuthor :-Logard , and has Discription : THis is a3 new testing course. it i

: Loglc 0perat1ons ;vaﬁd has code": cr246-1

Figure 5.11 The Deletion of an Entire Courseware

The previous snapshots present samples of the results that are stored in different
databases. These courses are delivered to students by using graphical presentation user-
interfaces, which are developed by [31]. In the next section we will address the

integration of the database engine modules with the presentation GUTs.
5.7 System Integration

As we have indicated in chapter 2, the goal of the system is to build a seamless
education environment that supports the delivery of courses to distributed users over the

network. The challenge is to develop a successful Teleleamning system that should be

87

available to multiple distributed educational groups on the network, regardless of the
utilized platforms. Thus, the increased popularity of the Internet and its usage as a
communication technology have offered an appropriate chance to develop such

Telelearning system to help students to access courses from any access point at any time.

As mentioned earlier, our system consists of several implemented modules and
components such as database schema classes, application-server modules, rendering
application manager, GUIs, authoring components, etc. Therefore, these components
must be integrated to achieve the goal of the system. Since, we have exploited the latest
technologies and open programming environment “Java platform”, so we have integrated
these components utilizing advanced features and tools such as Java-enabled browsers,

applets and Servlets (Figure 5.12).

We have utilized Java environment to implement database schema and
application-server modules. In addition, a sub-system of MITS called Multimedia
Interactive Courseware Rendering System (MICRS) is developed using Java applets and
Servlets [31]. It is responsible for rendering multimedia courseware material over the
Internet and offers students the required GUISs to access courseware database without the
need for installing any additional software packages on their machines. Students need to
have only standard browsers to access MITS using the rendering application over the

Internet. The only requirements are Java-compatible interpreter and network connections.

This supports the distribution feature of the system. However, a completely
distributed system is not possible, because of the networking restrictions and software

compatibility.

88

Client side Courseware Server

1

8 Logical.structu r
]

T i)

i
]

i

i : -

i |Courseware A

]

; Controller |}

3 K

: RSN R R

;]

;]

; —]

: 3

] i

] .

; Browser |i .

i i Rendering
i H

{ i Manager
: H

‘ o

i

iCourseware Contenti_;/

Figure 5.12 MITS System Integration Architecture

In summary, the whole world is moving in the direction of computers and the
Internet, and we are in the stage of an information revolution, unparalleled even with the
advent of the television and the telephone. Sooner or later like many other areas in life,
even educational styles have to update some of their traditions and jump onto the Internet

bandwagon if it has to keep pace with changing technologies and life styles [17].

89

Chapter 6

6 Conclusion

6.1 Summary

In summary, distance education is a highway to 21 century learning styles, which
might be entirely different from those of today. The Multimedia Interactive Telelearning
System that is presented in this thesis, aims to build a seamless education environment
that supports the delivery of electronic courses to distributed users over the network. The
system also aims to combine the learning theory and the emerging technology for
facilitating the education process of scattered students. The challenge was to develop a
successful Telelearning system that should be available to multiple distributed
educational groups on the network regardless of the utilized platforms. Thus, the
increased popularity of the Internet and its usage as a communication technology has
offered a suitable opportunity to develop such a Teleleaming system in order to help

students to access courses from any access point at any time.

However, simply putting computers in classrooms, wiring a school, and providing
an Internet connection is not sufficient. The effective use of this technology will occur
when the educator understands how to integrate it into everyday practice and want to use
it. Acceptance of technology in the classroom will be achieved when it is both relevant to
educational goals and comfortable to use [45]. Hence, we do not expect that distance
education will replace the traditional learning styles, but at least it will obtain a2 more

prevalent position in modermn education activities.

90

We have designed and developed a Teleleamning system, keeping in mind the
constraints of time, space, location and system compatibility. The strength of the system
stems from the proposed courseware data model as well as database schema, the
developed database engine, the integrated system’s software modules, the generated

courseware presentation agents and the courseware reusability.

The courseware data model aimed at describing and representing courseware
content in order to facilitate the courseware creation and support the content delivery to
distant learners. The produced database schema was designed based on powerful software

engineering techniques, which offer the opportumnity for future extendibility.

Leading-edge technologies have been utilized to satisfy the implementation of the
system schema and the needed database engine modules. Specifically, Java environment
and an Object-Oriented database management system have been exploited to accomplish

the implementation tasks.

Since the development of the system software components was based on Object-
Oriented paradigm and platform-independent programming environment, so the

integration of the system modules was achieved smoothly.

6.2 Future Work and Suggestions

Distance education is a dynamic area of research that involves the participation of
several disciplines in order to meet the designed goals and satisfy users’ needs.

Therefore, a lot of beneficial work can be contributed in the area of distance education.

91

Since the data modeling is one of the most important issues in designing a
sophisticated multimedia information system, so a focused attention must be given to the
proposed data model. The courseware data model can be modified to include new

features at the presentation information level, or can be enhanced to be more effective.

In addition, the Object-Oriented nature of the database schema provides the
chance for schema evolution. It is possible to add or modify the state as well as the
behavior of the schema classes by inserting or deleting attributes, and updating method
definitions. New Object-Oriented software engineering methodologies such as Unified
Modeling Language “UML” can be used to revisit the analysis and design stages of the

system, in order to evolve the schema and enhance the system’s functionalities.

New tools such as Dynamic HTML can be employed to add new interaction
features to the system, or to improve the appearance of the rendering application and
enhance the courseware presentation. Dynamic HTML allows developers and Web page
designers to offer more creativity, control and sophistication to their Web sites [46]. It is
based on the Object-Oriented model and extends HITML static nature by allowing scripts
or programs to change styles and attributes of page ¢lements, or even to replace existing
elements with new ones. It also offers the developers the ability to dynamically change
the style, content and structure of Web-based content, while providing them with a
detailed control over the appearance, interactivity and multimedia objects required for a

modified and exciting application [46].

The system can exploit Dynamic HTML features (e.g. dynamic styles, absolute

positioning, dynamic contents and multimedia controls) to enhance the presentation

92

appearance. First, dynamic styles allow authors to change the size, color or other font
properties of a text object within a Courseware-Section. Second, media object position
can be changed using absolute positioning features, for instance, moving an image object
on top of text object or placing an object in different x,y,z-planes. Thus, students will
retrieve a courseware, where its media objects are moving or overlapping using rich
multimedia and layout effects. Third, by manipulating object coordinates and other
dynamic styles using scripts [46], designers can move media objects around courseware
page, thus animating the page. In addition, courseware content can be modified
dynamically on the fly in response to student interaction or author updates. This feature
enables designers to insert or delete a media object as well as modify text object
properties using script languages (e.g. Java, Visual Basic and others). Moreover,
multimedia controls can be used to apply visual effects to media objects on a Section
page or Chapter page or entire Courseware page. These controls support filters, animation
and transition of media objects, e.g. audio object can fade in and out to correspond with
the characters’ movements. However, Dynamic HTML was launched at the fourth

quarter of 1997 and needs time to be experimented with.

Although, the current approach of MITS is implemented, based on the client-
server architecture, another major area of research is to investigate the adoption of
mobile-agent architecture in designing and developing an enhanced version of the

system, in order to serve a large number of distributed users.

Finally, since Java has been utilized to develop the system, and with the new
release of the Java core that contains CORBA APIs, so it is possible to develop a new

fully distributed version of the system.

93

(1]

(2]

(3]

[4]

(3]

[6]

(7]

(8]

(]

(10]

[11]

[12]

[13]

(14]

References

L. Sherry, “Issues in Distance Learning”, International Journal of Distance
Education, Volume 1, Number 4, September 1996, pp. 337-365.

R. Wang, and A. Karmouch, “A Broadband Multimedia Telelearning System”,
Proceedings of 5™ Int. IEEE Symposium on HPDCMCE, August 1996, Syracuse,
USA.

R. Wang, “A Broadband Multimedia Telelearning System ", Master Thesis, June
1996, Ottawa, Canada.

A. Grace, "Can Multimedia Help People Learn Faster", Proceedings of the IEEE
International Conference on Multimedia Computing and Systems, May 1995.

R. C. Schank, "Active Leaming through Multimedia", IEEE Multimedia, Volume
1, Number 1, Spring 1994, pp. 69-78.

C. Vieville, “Organising Distance Learning Process tharks to Asynchronous
Structured Conversations”, Proceedings of WebNet’97, November 1997, Toronto,
Canada.

T. Ingebritsen, G. Brown, and J. Pleasants, “Teaching Biology on the Internet”,
Proceedings of WebNet’97, November 1997, Toronto, Canada.

Office of Technology Assessment, “Power on New Tools for teaching and
Learning”, US. Congress Library, OTA-SET-379, Washington DC, USA.

J. Emery, and A. Karmouch, “A Playback Schedule Model for Multimedia
Documents”, IEEE Multimedia, Volume 3, Number 1, Spring 1996, pp50-61.

N. Hirzalla, O. Megzari, and A. Karmouch, “An Object-Oriented Data Model and
A Query Language for Multimedia Database”, IEEE [CECS, December 1995,
Amman, Jordan.

B. Furht, “Multimedia Systems: An Overview”, [EEE Multimedia, Volume 1,
Number 1, Spring 1994, pp47-59.

D. Adjeroh, and K. Nwosu, “Multimedia Database Management - Requirements
and Issues”, I[EEE Multimedia, Summer 1997, Volume 4, Number 3, pp24-33.

K. Meyer-Wegener, “Database Management for Multimedia Applications”,
Springer-Verlag, Spring 1994, Berlin, Germany, pp105-119.

Elmastd R., and Navathe S., "Fundamentals of Database Systems", the Benjamin
Cummins, 1994, Redwood City, CA., USA.

94

(15]
[16]

(17]

[L8]

[19]

[20]

[21]

£22]

(23]

[24]

[25]

[26]

[27]

(28]

Object Design, “ObjectStore Manuals”, Object Design, 1996, Boston, USA.

A. Seffah, and R. Bouchard, “The Intranet as a Cognitive Architecture for
Training and Education: Basic Assumptions and Development Issues”,
Proceedings of WebNet’97, November 1997, Toronto, Canada.

S. Radhskrishnan, and J. Bailey, “Web-Based Educational Media: Issues and
Empirical Test of Leaming”, Proceedings of WebNet’97, November 1997,
Toronto, Canada.

J. Rumaugh, and others, “Object-Oriented Modeling and Design”, 1991,
Englewood Cliffs: Prentice Hall, USA.

PO. Bmen, “Making Java Objects Persistent”, Object Design
http://iwww.odi.com/, White paper, November 1996, USA.

C. Chen, D. Meliksetian, M. Chang, and L. Liu, “Design of a Multimedia Object-
Oriented DBMS”, Multimedia Systems, Press ACM, Volume 3, Number 5-6,
November 1995, pp 217-227.

“Netscape”, http://home.netscape.com/.

“Internet Explorer”, http://www.microsoft.com/.

H. Zhang, S. and Smoliar, "Content-Based Video Indexing ard Retrieval”, [EEE
Multimedia, Volume 1, Number 2, August 1994, pp 62-74.

S. Palacharla, A. Karmouch, and S. Mahmoud, “Design and Implementation of a
Real-time Multimedia Presentation System using RTP”, [International
Proceedings of IEEE COMPSAC ’97, August 1997, Washington DC, USA.

T. Meyer-Boudnik, and W. Effelsberg, “MHEG Explained", [EEE Multimedia,
Volume 2, Number 1, Spring 1995, pp 26-38.

M. Muhlhauser, and J. Gecsei, “Services, Frameworks, and Paradigm for
Distributed Multimedia Applications", IJEEE Multimedia, Volume 3, Number 3,
Fall 1996, pp 48-61.

H. Khalfallah, and A. Karmouch, “An Architecture and a Data Model for
Integrated Multimedia Documents and Presentational Applications”, Multimedia
Systems, ACM Press, Volume 3, Number 5-6, November 1995, pp 238-250.

N. Poon, and A. Karmouch, “3 Dimentional Multimedia Interactive Courseware
Authoring in Telelearning System”, Proceedings of CCECE’'97, May 1997, St.
John, Canada.

95

[29]

[30]

[(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]
[40]

[41]

(42]

[43]

[44]

A. Karmouch, "A Multimedia Information and Communication System:
MEDIABASE," Proceedings of the ICCC Multimedia Communications’ 93
Conference, April 1993, Banff, Alberta, Canada.

B. Falchuk, and A. Karmouch, "A Multimedia News Delivery System Over an
ATM Network", Proceedings of IEEE International Conference on Multimedia
Computing & Systems, May 1995, Washington D.C, USA.

Z.Zhang, and A. Karmouch, “Multimedia Internet Platform for Distance Learning
Applications”, Proceedings of 19th Biennial Symposium on Communications,
May 1998, Kingston, Canada.

K. Nwosu, B. Thuraisingham, and P. Berra, “Multimedia Database Systems — A
New Frontier”, IEEE Multimedia, Summer 1997, Volume 4, Number 3, pp 21-23.

A. Ghafoor, “ Special Issue on Multimedia Database Systems”, Multimedia
Systems, ACM Press, Volume 3, Number 5-6, November 1995, pp 179-181.

T. Shih, and R. Davis, “ IMMPS: A Multimedia Presentation Design System”,
IEEE Multimedia, Spring 1997, Volume 4, Number 2, pp 67-78.

P. Pazandak, and J. Srivastava, “Evaluating Object DBMSs for Multimedia”,
IEEE Multimedia, Summer 1997, Volume 4, Number 3, pp 34-49.

B. Rao, "Object-Oriented Database Technology Applications and Products”,
McGraw-Hill., 1994, New York, USA.

M. Loomis, "Client-Server Architecture”, Journal of Object Oriented
Programming, Volume 4, Number 9, February 1992, pp75-79.

I. Jacobson, and others, “ Object-Oriented Software Engineering”, Addison-
Wesley, 1993, Englewood Cliffs: Prentice Hall, USA.

“JavaSun”, http://java.sun.conv.

“ObjectStore™ http://www.odi.com/.

“JavaSun”, “The Java Language An Overview”, Java Sun,
hutp:/fiava.sun.com/docs/overviews/java /, White paper, 1996, USA.

E. Anuff, “Java Source-Book™, Wiley Computer Publishing, 1996, NewYork,
USA.

P. Hakkinen, “Possibilities of Java Technology is Distance Learning”, White
paper, http:/matwww.ee.tut.fit/kamu/distancedocs/pasth.html/, 1997.

D. Kramer, “The Java Platform”, Java Sun, White paper,
http:/fjava.sun.com/docs/overviews/jiava /, 1996, USA.

96

[45] S. Taylor, and D. Mckay, “The Online Learning Academy”, Proceedings of
WebNetr’97, November 1997, Toronto, Canada.

f46] K. Stremel, and S. Lindsey, “Dynamic HITML: The Next Generation of User
Interface Design Using HTML”, Microsoft Corporation
http://www.microsoft.com/, White paper, February 1997.

97

8 Publications:

1- A. Al-Shammari, and A. Karmouch, “Designing and Modeling a Multimedia
TeleLeaming Database”, Proceedings of IEEE Canadian Conference on Electrical and

Computer Engineering 98, Waterloo, Canada, May 24-28, 1998.

2- A. Al-Shammari, and A. Karmouch, “Multimedia Interactive Telelearning Prototype”,
Proceedings of International Conference on Computers and Advanced Technology in

Education (CATE98), Cancun, Mexico, May 27-30, 1998.
3- A. Al-Shammari, and A. Karmouch, “On-Demand Multimedia Courseware Delivery

over the Network”, Proceedings of INDC’98 - 7th I[FIP/ICCC Conference on Information

Networks and Data Communications, Portugal, Junel5-17, 1998.

98

18

I

150mm

IMAGE EVALUATION
TEST TARGET (QA—3)

Street
Y 14609 USA

hone: 716/482-0300
-5989

[}

653 East Main

- Rochester,

APPLIED = IMAGE . Inc

Z3 o 4

~ o w H

