

ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006

ENTRANCE EXAMINATION 2012

Entrance Examination for Admission to B.Sc. (Speech and Hearing

Time	: 50 minutes	Max. Marks
	r zařísti, přem povezámenych přese i Ch	HEMISTRY
	(C)	HOLE TO THE STATE OF THE STATE
1.	The mass ofof a substanc	ce in grams is called its molar mass
	a) 1 mole	c) 1 molecule
	b) 12 moles	Marind) - 12 molecules - 13 / 14 / 14 / 14 / 15 / 15
	\$ 15 May 1 (1997)	· · · · · · · · · · · · · · · · · · ·
	What will be the wavelength of the ball of mas	ss 0.01 kg moving with a velocity of 10 m/s?
	a) 6.626 X 10 ⁻³⁰ m	c) 6.626 X 10 ⁻³⁴ m
Sylvation,) b) > 6.626 X 10 ⁻³² m + 2-4 6-2 4 6-4 (-1) 41.	(g) (d) (e) 6,626 X 10 ⁻³³ m (e) (要用 5年) () ()
		n de la companya de
}.	Which of the following set of orbitals is arrang	
	a) 3d < 4s < 4p < 6s < 4d (%) 15	
	b) 2s < 3d < 4p < 4f < 1s	d) 1s < 2s < 2p < 4d < 3f
	b) 25 < 30 < 40 < 41 < 15	
•	Real gases approach ideal gas behavior at	
	a) Low temperature and low pressure	 c) Low temperature and high pressure
	b) High temperature and low pressure	d) High temperature and high pressure
).	The molecule with zero dipole moment is	
	a) H₂O	c) BF ₃
	b) NH ₃	d) NF ₃
i .	A species with bond order two, that consists of	of both ni bonde is the company of the 4
•	a) C ₂	c) O_2^2
	b) O ₂	d) CO
	51 02	u) 00
7.	Among Si, Mg, Na and P, the increasing orde	er of metallic character is the first the second
	a) Si < Mg < Na < Passage	c) P < Na < Mg < Si # 15.4 h
	b) Na < Mg < Si < P	d) P < Si < Mg < Na 1948 49
<i></i>		dy 1 vor any area
3.	A reaction $A + B \rightarrow C + D + q$, is found to have	ave a positive entropy change. The reaction will be
!	a) Possible only at high temperature	c) Not possible at any temperature
	b) Possible only at low temperature	d) Possible at any temperature
).	The internal energy change (ΔU) of a process	ss does not depend on
	a) Amount of the substance	c) Path of the process
	b) Temperature	d) Nature of the substance
	e three will be four includes an early a second	Tractic of the substance
10.	In which of the following equilibrium reactions	s, the equilibrium would shift to the right, if the tota
i ja	pressure is increased	
		c) H ₂ + Cl ₂ === 2 HCl
1.5	b) H ₂ + I ₂ = 2HI	c) $H_2 + Cl_2 \Longrightarrow 2 HCl$ d) $N_2O_4 \Longrightarrow 2 NO_2$
٠.,		uj 14204 \ 21402
11.	If the equilibrium constant for the reaction, No.	2 + 3 H ₂ = 2 NH ₃ is K, then the equilibrium
• • •	constant for the reaction, $2N_2 + 6H_2 \rightleftharpoons 4$	A NH, would be equal to
	a) K ²	c) 1 /√K
		· · · · · · · · · · · · · · · · · · ·
	b) √K	d) 1 / K ²

12.	Oxidation number of bromine in Br ₃ O ₈ is a) 8/3	**************************************	a in'	. Attorney	
	a) 8/3 16/3 b) 16/3	c) d)	3/8° 3/16		
13.	The composition of water gas is		00 () - N (-)		
	a) CO (g) + O₂ (g) b) CO (g) + H₂O (g)	c) d)	$CO(g) + N_2(g)$ $CO(g) + H_2(g)$	Name of Windows	
14.	Which one of the alkaline earth metal carbon	atoc ic the	armally the most stable		
14.	a) BaCO ₃	C)		ř. .	
	b) SrCO ₃ : A management of the second				
15.	The chemical formula of 'Inorganic benzene'	is	•		
	a) C₃N₃H ₆		$B_3N_3H_6$		
	$b) \in (B_2H_6) \cap (\operatorname{Per}_{\mathcal{A}_1}, \operatorname{Per}_{\mathcal{A}_2}, \operatorname{Per}_{\mathcal{A}_3}, Pe$	d)		No. of the second	
16.	In the reaction CH₃CONH₂ P₂O₅,·Δ CH	H₃CN, the l		carbon atom chan	ges
	a) sp ³ to sp ²	c)	sp to sp ²		
•	b) sp ² to sp	d)	sp ³ to sp	e in the	
				1.5 g = 6.5	nad
17.	In the Lassaigne's test for nitrogen in an organized due to the formation of		oound, the Prussian bit		nea
	a) FoliFe(CN)	c)	FealFe(CN)sla	Andrew State	
7.5	a) Fe ₄ [Fe(CN) ₆] b) Fe ₂ [Fe(CN) ₆]	∘ d)	Fe ₄ [Fe(CN) ₆] ₃	The first	
18.	The number of sigma and pi bonds in benze	ne is	The state of the state of the state of		,
10.	a) 3,12	c)	6,6		
	b) 12,3	ď)	6,3		
40	A.C. C. and a community to anticopies to be a second	!	obstituted becamens in		
19.	A functional group which activates benzene				•
	a) - CHO b) - COOH	c) d)	- COOR		
	b) - COON	u,	* 00010		
20.	The prescribed upper limit concentration of	lead in dri	nking water is about	the second	:,
	a) 50 ppb	c)	100 ppm	Tariff Assert	
	b) 100 ppb	d)	50 ppm		
21.	An fcc cubic cell contains eight X atoms at t What is the empirical formula of the solid?)S
	a) X ₃ Y ₄	c)	11 No. 1 1 140 y 12 13 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
	b) X ₃ Y	d)	X_4Y_3		
22.	According to Raoult's law, the relative lower solute is	ring of var	oour pressure of a solu	tion of a non-vol	atile
	 a) Equal to mole fraction of the solvent 		Directly proportiona of the solute		
) P.	b) Equal to mole fraction of the solute	d)	Equal to the normal	ity of the solution	1
23.	The azeotropic mixture of water and HCl bo	oils at 108	.5ºc. When this mixtur	e is distilled, it is	
	a) Pure HCl	- c)	Neither pure HCl no	or pure water	1 .
	b) Pure water		Both pure HCl and	pure water	

24.	The amount of electricity that can de	•	
	a) 1 Ampere	c)	2 Ampere
	b) 1 Coulomb	d)	1 Faraday
25.	In which cell, the free energy of a che	emical reaction is	directly converted in electricity
	a) Lechlanche cell	c)	Fuel cell
	b) Concentration cell	d)	Lead storage battery
26.	For a first-order reaction, the time re-	nuired for 99 9% (of the reaction to take place is nearly
20.	a) 10 times that required for the ha		10 times that required for one – fourth of
	reaction	.,	the reaction
	b) 100 times that required for the h	alf the d)	100 times that required for one - fourth
	reaction		of the reaction
27.	A Colloidal solution is subjected to a	n electric field. Th	e particles move towards anode. The
6 .7 ·			and AlCl ₃ solutions. Their coagulating power
	should be		
	a) NaCl > BaCl ₂ > AlCl ₃	c)	BaCl ₂ > AlCl ₃ > NaCl
	b) AlCl₃ > BaCl₂ > NaCl	d)	BaCl ₂ > NaCl > AlCl ₃
28.	In the metallurgy of copper, the solid	lified copper obtai	ned has a blistered appearance due to the
	evolution of		,,
	a) CO₂	c)	CO
	b) O ₂	d)	SO ₂
29.	Covalence of nitrogen in N ₂ O ₅		
	a) 4	c)	3
	b) 5	d)	2
30.	Which among the following is neutra	ol ovido?	
30.	a) Al ₂ O ₃	C)	N ₂ O
	b) N ₂ O ₅	d)	CO ₂
	•	•	
31.	Name the gas liberated when chlori	-	
	a) H ₂	c)	NCI ₃
	b) HCI	d)	N ₂
32.	A metal ion has a spin magnetic mo	ment of 3.87 B.M	. The number of unpaired electrons present is
	a) 2	c)	4
	b) 3	d)	5
33.	Which of the following has maximum	n number of upps	vired electrons?
<i>5</i> 5.	a) Co ³⁺	c)	Mn ²⁺
	b) Ti ³⁺	ď)	Fe ²⁺
34.	Hybridisation of Co in [Co(C ₂ O ₄) ₃] ³ -		
	a) $d^2 sp^3$ b) sp^2d^3	c) d)	sp ³ sp ³ d ²
	b) sp ² d ³	uj	sp·u-
35.	The mixture of two organic chlorine	compounds, on t	reating with sodium metal in dry ether gives
	isobutane as one of the products. I		y <u></u>
	a) Methyl chloride and propyl chloride		
	b) Methyl chloride and ethyl chlor	ide d)	Isopropyl chloride and methyl chloride
	•	,	

36.		the reaction l₃CH(Br)CH₃ _alc.KOH A _HBr/peroxide _▶	R	Nal / acatono.
	Pro	oduct C is	≽ U	Mair engine
	a) b)	lodopropane 2-iodopropane	c) d)	1,2-diiodopropane 1-iodopropene
37.	The	e boiling points of methyl bromide (I), ethyl bro	•	
07.	n-b	utyl bromide (IV) decrease in the order	ишис	(ii), ii-propyi bromide (iii),
	a) b)	> > > V V > > >	c) d)	> > > V > = > V
38.	Arn	ange the following in order of decreasing acid	ic stre	ngth.
	2,4 a)	,6-trinitrophenol (I), 2,4-dinitrophenol (II), 4-nit		, , , ,
	b)	V > > >	c) d)	> > > V > > V >
39.	Цν	dration of propene in the presence of dilute su	امامردا	o gold
55.	a)	Propan-1-ol	c)	Propan-2-ol
	b)	Propane-1,2-diol	ď)	Propanone
40.	The	e product obtained when a primary alcohol is h	neated	I with copper at 573 K is
	a)	Alkene Carbovylia asid	c)	Ketone
	b)	Carboxylic acid	d)	Aldehyde
41.		e reagent used in the conversion of CH ₃ CH=C		
	a) b)	Alkaline KMnO ₄ Acidified KMnO ₄	c) d)	Ammoniacal AgNO ₃ CrO ₃
40	,		•	_
42.	a)	PAC name of the compound CH ₃ CH ₂ CH ₂ CH(E 3-bromo-4-methylheptanal	c) c)	
	b)	4-bromo-3-methylheptanal	d)	3-bromo-4-methylheptanone
43.				
	Pro	ducts obtained when formaldehyde is heated	with c	concentrated KOH are
	a)	ducts obtained when formaldehyde is heated Methanol and salt of formic acid	c)	Ethanol and salt of formic acid
44.	a) b) Eth	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw	c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid
44.	a) b) Eth a)	Methanol and salt of formic acid Methanal and salt of formic acid lyl isocyanide is prepared by the reaction betw C₂H₅Br and KCN	c) d) veen c)	Ethanol and salt of formic acid Ethanal and salt of formic acid C_2H_5Br and HCN
44.	a) b) Eth	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw	c) d) veen	Ethanol and salt of formic acid Ethanal and salt of formic acid
44. 45.	a) b) Eth a) b)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is	c) d) veen c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid $C_2H_5Br \ and \ HCN$ $C_2H_5Br \ and \ NH_3$
	a) b) Eth a) b) Am a)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline	c) d) veen c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid $C_2H_5Br \text{ and } HCN$ $C_2H_5Br \text{ and } NH_3$ $N,N-dimethylaniline$
45.	a) b) Eth a) b) Am a)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C₂H₅Br and KCN C₂H₅Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine	c) d) veen c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C_2H_5Br and HCN C_2H_5Br and NH_3 N,N -dimethylaniline Phenylmethanamine
	a) b) Eth a) b) Am a) b) Ga	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre	c) d) veen c) d) c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine
45.	a) b) Eth a) b) Am a)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C₂H₅Br and KCN C₂H₅Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine	c) d) veen c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C_2H_5Br and HCN C_2H_5Br and NH_3 N,N -dimethylaniline Phenylmethanamine
45. 46.	a) b) Eth a) b) Am a) b) Ga a) b)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre Primary aromatic amine Secondary aromatic amine	c) d) veen c) d) c) d) paratio	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine on of Tertiary aliphatic amine
45. 46.	a) b) Eth a) b) Am a) b) Ga a) b) curvy' a)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre Primary aromatic amine Secondary aromatic amine is a disease caused due to the deficiency of Vitamin A	c) d) veen c) d) c) d) paratic c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine on of Tertiary aliphatic amine Primary aliphatic amine Vitamin C
45. 46.	a) b) Eth a) b) Am a) b) Ga a) b)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre Primary aromatic amine Secondary aromatic amine is a disease caused due to the deficiency of	c) d) veen c) d) c) d) paratic c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine on of Tertiary aliphatic amine Primary aliphatic amine
45. 46.	a) b) Eth a) b) Am a) b) Ga b) curvy' b) A b	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre Primary aromatic amine Secondary aromatic amine is a disease caused due to the deficiency of Vitamin A Vitamin B	c) d) veen c) d) paration c) d) c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine on of Tertiary aliphatic amine Primary aliphatic amine Vitamin C Vitamin D
45. 46. 47. 'So	a) b) Eth a) b) Am a) b) Ga a) curvy' a) b)	Methanol and salt of formic acid Methanal and salt of formic acid yl isocyanide is prepared by the reaction betw C ₂ H ₅ Br and KCN C ₂ H ₅ Br and AgCN ong the following, the strongest base is N-methylaniline Methanamine briel phthalimide synthesis is used for the pre Primary aromatic amine Secondary aromatic amine is a disease caused due to the deficiency of Vitamin A Vitamin B	c) d) veen c) d) c) d) paratic c) d)	Ethanol and salt of formic acid Ethanal and salt of formic acid C ₂ H ₅ Br and HCN C ₂ H ₅ Br and NH ₃ N,N-dimethylaniline Phenylmethanamine on of Tertiary aliphatic amine Primary aliphatic amine Vitamin C

49. Dacron is the polymer of ethylene glycol and
a) Caproic acid c) Phthalic acid
b) Ethylenediamine d) Terephthalic acid
50. A drug used in cancer chemotherapy is
a) Cisplatin c) Seldane
b) Zantac d) Dimetapp

ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006

ENTRANCE EXAMINATION 2012

Entrance Examination for Admission to B.Sc. (Speech and Hearing)

Time:	50 minutes		Max. Marks 50
	BIOLO	GY	
1.	The asexual reproductive structure of sponge is a) Conidia b) Buds	c) d)	Gemmules Basidia
2.	What is the other name of pollensac ? a) Microsporangia b) Microsporangiophore	c) d)	Microspores None of the above
3.	Name the hormone which maintains endometrium a) Oestrogen b) Progesterone	n c) d)	HCG Relaxin
4.	The Central Drug Research Institute (CDRI)is loc a) New Delhi b) Bangalore	cated in c) d)	Mumbai Lucknow
5.	Progestasert belongs to which category of contra a) Periodic abstinence b) Natural method	ceptive c) d)	measures? Barrier method IUD's
6.	How many linkage groups are found in man? a) 46 b) 23	c) d)	7 None of the above
7.	Name the multiple expression of a gene a) Multi allelism b) Pleiotropy	c) d)	Epistasis Co-dominance
8.	Find the distance between two nucleotide of a D a) 0.34 nm b) 0.43 nm	NA hel c) d)	ix 0.034 nm 34 nm
9.	The total number of base pairs present in an E.c. a) 4.6X10 ⁶ bp b) 66X10 ⁹ bp	oli cell c) d)	6.6X10 ⁹ bp 46X10 ⁶ bp
10.	What are the gases were present on Earth abou a) Water vapour, Oxygen, Methane b) Water vapour, Methane, Carbondioxide	t 4.5 bil c) d)	llion years back? Water vapour, Methane, Carbondioxide and Ammoni Water vapour, Methane, Carbondioxide and Oxygen
11.	Trichophyton is a fungal genera, which causes a a) Worm trouble b) Ringworm	diseas c) d)	se called Botulism Taeniasis
12.	For how long inbreeding is done without causing a) At least 4-7 generations b) At least 4-6 generations	j inbree c) d)	eding depression At least 2-3 generations At least more than 8 generations

13.		loes following organisms are related aphids illar & Bacillus thuringiensis	& mos	equitoes, lady bird & Dragonfly. Butterfly
	a) .	Biological control of insect pest Animal breeding programmes	c) d)	Endangered species Chemical control of insect pests
4.6	,	the name of micro organism which produce	,	zume ?
14.		Aspergillius niger	c)	Clostridium botulinum
	b)	Acetobactor aceti	d)	Strepto coccus
15.		a sugar cane variety that is native to South	India	
	,	Saccharum barberi Saccharum Saccharum	c) d)	Saccharum officinarum none of the above
16.	Which	technique is employed to separate the DNA	\ fragn	nent after treating with restriction enzyme?
	a)	Polymorase chain reaction (PCR)	c)	Autoradiography Agarose gel electrophoresis
	b)	X-Ray	d)	Agarose gerelectrophoresis
17.		s a transgenic tobacco plant protected agair		oidegyne incognitia
	a) b)	By the principle of DNA profile By the principle of RNA-interferase	.c) d)	By the principle of mutation None of the above
	,		,	
18.		he term for Recombinant DNA technology,	PCR a c)	nd ELISA have common value As tools of molecular diagnosis
	a) b)	Gene amplification Gene therapy	d)	Genetic engineering
19.	DNA	fragments are stained with		
10.	a)	Ethidium bromide	c)	Meyhylene blue stain
	b)	Cesium chloride	d)	Ethidium chloride
20.	What	is the role of gene cry Ab		
	a)	Control Aphids	c) d)	Control corn borer Control cotton bollworm & corn borer
	b)	Control cotton bollworm	uj	Control Cotton Bolletin & com 2000.
21.		h of the following is a regulator with respect		neostasis
	a) h)	Earth worm Fish	c) d)	Cat Frog
	-	·	/	3
22.		e an annelid that act as detrivore	c)	Earth worm
	a) b)	Neris Leech	d)	Peacock worm
23.	How	many Biosphere reserves have been notifie	ed in In	dia
	a)	89	c)	115
	b)	492	d)	14
24.	Wha	at is the forest area for plains as per NFP?	,	000/
	a)	36%	c) d)	
	b)	30%	u)	O1 70

25.	Whice a)	ch of the following metals used in catalytic co Platinum, Palladium, Rhodium	nverte c)	r to reduce automobile pollution Chromium, Tungston, Iron
	b)	Platinum, Chromium, Radium	d)	Palladium, Chromium, Copper
26.	The	first step of taxanomy is		
	a)	Naming	c)	Description
	b)	Identification	ď)	Classification
27.	The	bacterial cell wall made up of a non-cellulosi	c mate	rial called as
	a)	Manitol	c)	Laminarin
٠	b)	Peptidoglycan \ murein	d)	Starch
28.		phytes are dependent on water because		
	a)	Archegonium has to remain filled with water for fertilization	c)	Water is essential for their vegetative
	b)	Water is essential for fertilization for their	۵١	propagation
	٠,	homosporous nature	d)	The sperms can easily reach upto egg in the archogonium
29.		mmon trait in earth worm, Leech and cockro	ach	
	a)	Lack of legs	c)	Ventral nerve cord
	b)	Hermaphroditism	d)	Malpighian tubules
30.	Anim	als without respiratory, circulatory and excre		stems are
	a)	Planaria	c)	Sponges
	b)	Ascaris	d)	Tapeworm
31.	In wh	ich of the following plant oil is stored in endo	sperm	?
	a)	Groundnut	c)	Coconut
	b)	Seasame	d)	Soyabean
32.	With S	nd around each endodermal cell in which the suberin.	radial	and transverse cell walls are impregnated
	a)	Bordered pit	c)	Plasmodesmata
	b)	Annual ring	d)	Casparian strip
33.	How	many segments are present in the abdomen	of coc	kroach?
	a)	10	c)	11
	b)	12	. d)	15
34.	The p	property of a plant cell to develop into a full p	lant is	called
	a)	Tissue culture	c)	Pluripotency
	b)	Totipotency	d)	Gene cloning
35.	Name	the most abundant components of cell/tissu	ue/orga	anism
	a)	Proteins	c)	Lipids
	b)	carbohydrates	d)	Water
36.	Cross	sing over in a diploid organism is responsible	for	
	a)	Dominance of genes	c)	Segregation of alleles
	b)	Linkage between genes	d)	Recombinations of linked genes
37.		mosome counting is best done during		
	a)	Late anaphase	c)	Metaphase
	b)	Late prophase	d)	Telophase

38.	Name	a competitive inhibitor of succinic dehydroge	nase i	s:
	a)	Malonate	c)	Oxaloacetate
	b)	Malate	d)	L-Ketoglutavate
				1 to alasma
39.		e an animal, in which, Hemoglobin is found di		
	a)	Planaria	q) c)	Sepia Earth worm (Pheretima)
·	b)	Cockroach	d)	Latti Worth (Frictional)
40.	The r	parts of the periderm,		
40.	a)	Phellem, cortex, and cambium	c)	Phellogen, phellem and pith
	b)		d)	Phellem, phellogen and phelloderm
	,	•	·	.,
41.	A cel	I when placed in a solution gets plasmolysed.	. What	is largely present in between the cellwall
		he plamolysed content?		
	a)	Cell sap	c)	Hypertonic solution
	b)	Hypotonic solution	d)	Water
		u turing language and a second and a		
42.		e the mineral required for pollen germination	c)	Calcium
	a)	Boron	d)	Iron
	b)	Manganese	uj	11011
43.	May	elength of PAR		
4Q.	a)	340-450 nm	c)	500-600 nm
	b)	400-700nm	ď)	450-950nm
	•			
44.	Nan	ne an ETC poison which prevents transfer of ϵ	electro	ns from cytochrome a3 to oxygen
	a)	Phosphide	c)	Cyanide
	b)	Carbide	d)	Endosulphon
45	Man	ne a natural plant hormone isolated from com	korne	l and coconut milk
45.			c)	Auxin
	a) b)	Florigen GA3	d)	Zeatin
	D)	ON0	,	
46.	Whi	ich ones are sister cells		
	a)	Tracheids and vessels	c)	Sieve tube cells & companion cells
	b)	Xylem paren chyma and xylem fibres	d)	Phloem parenchyma and companion
	,			cells
47.		ive sites are part of structure of protein		T
	a)		c)	Tertiary
	b)	Secondary	d)	Quarternary
40	Λ	enzyme is made up of a protein and a non-pr	otein r	part. The protein portion of the enzymes is
48.		led the	O(CHI F	sait. The protein person of the one,
	cai a		c)	Apoenzyme
	b b	, _	d)	Cofactor
	ָט	j od drizymo	,	
49	. Pa	pilionaceous corolla is seen in the following p	lants	
	а		c)	Asparagus
	b	•	d)	Tobacco
50		oluminescence is the characteristic feature of		Distribution in the sain
		n) Cnidaria	c)	
	r	Ctenophora	d)	Sponges

ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006

ENTRANCE EXAMINATION 2012

Entrance Examination for Admission to B.Sc. (Speech and Hearing)

Time: 50 minutes

PHYSICS

Max. Marks 50

1. The dimension of surface tension is

a) [MLT⁻²]

c) [ML⁰T⁻²]

b) [ML-1T-2]

d) [MºLT-1]

2. The ratio of 1 light year to 1 astronomical unit in metre is

a) 6.32x10⁶

c) 632

b) 0.632x10⁴

d) 6.32x104

3. There are two forces, one 6 N due east and other 8 N due north. Find the magnitude of resultant of two forces in N.

a) 1 b) 10 c) 100

d) 0.1

4. The given graph shows the variation of velocity with displacement. Which one of the given graph represents the variation of acceleration with displacement?

a)

cY.

p)

5. A body of mass 'm' moves along X - axis such that its position coordinate at any instant 't' is $x = at^4 - bt^3 + ct$, where a, b and c are constants. The force acting on the particle at any instant 't' is,

a) m (6at2 - 12bt)

c) m (6bt² - 12at)

b) m / (12at² - 6bt)

d) m (12at² - 6bt)

6. A ball moving with a momentum of 5 kgms⁻¹ strikes against a wall at an angle of 45° and is reflected at the same angle. Calculate the change in momentum.

a) 7.07 kgms⁻¹

c) - 7.07 kgms⁻¹

b) 70.7 kgms⁻¹

d) 0.707 kgms⁻¹

7.		l of mass m is dropped from a height 'h' or orm is depressed by a distance x. The spri		
	a)	$2mgx^2$	c)	
	,	${h+x}$,	$\frac{(h+x)x^2}{2mg}$
	b)	2mg	d)	(h+x)
	,	$\overline{(h+x)x^2}$,	$\frac{(h+x)}{2mgx^2}$
8		n skating on the ground gets straight up a during the process is,	nd stand.	The force of reaction of the ground on the
	a)	Constant and equal to mg in magnitude	c)	Constant and greater than mg in magnitude
	b)	Variable but always greater than mg	. d)	At first greater than mg and later becomes equal to mg
9.		late the angle through which a cyclist ben mference 34.3 m in $\sqrt{22}$ s. Take g = 9.8 i		ne vertical, when he crosses a circular path of
	a)	30°	c)	45°
	b)	60°	d)	90 •
10.	Wher	n a disk rotates with uniform angular veloc	ity, which	of the following is not true?
	a)	The sense of rotation remains the same	c)	The speed of rotation is non-zero and remains the same
	b)	The orientation of the axis of rotation	d)	The angular acceleration in non-zero and
		remains the same		remains the same
11.	is eje time		escapes fi ect is,	ar orbit about the earth. An object of mass 'm' rom the gravitational pull of the earth. At the
	a)	$\frac{1}{2}mv^2$	c)	$\frac{3}{2}mv^2$
	b)	$m v^2$	d)	$2mv^2$
12.	thrice			is 11.2 kms ⁻¹ . A body is projected out with y from the earth? Ignore the presence of sun
	a)	31.68 ms ⁻¹	c)	31.68 kms ⁻¹
	b)	3168 kms ⁻¹	d)	316.8 kms ⁻¹
13.		e's law is applicable for an		
	a) b)	Adiabatic process Isothermal process	c) d)	Isobaric process Isochoric process
14.	Δνε	ssel 'A' contains hydrogen and another	vessel 'R'	whose volume is twice of 'A' contains same
, ,,	mas Give	s of oxygen at the same temperature. Co n: molecular weights of hydrogen and ox	mpare the gen are 2	e root mean square speeds of the molecules 2 and 32 respectively.
	a)	1:4 1:2	,	4:1 2:1
	b)	1,4	u) i	(.)
15.	The	temperature of a wire is doubled. The You	ıng's mod	ulus of elasticity
	a)	Will also double	-	Will remain same
	b)	Will become four times		Will decrease

16.	2.5 cr	eal fluid flows through a pipe of circular n and 3.75 cm. the ratio of the velocities in 9:4	the tv	7_ Y
	a) b)	3:2	c)	$\sqrt{3}$: $\sqrt{2}$
	U)	3.2	a)	$\sqrt{2}$: $\sqrt{3}$
17.	ln a gi	ven process of an ideal gas, dW = 0 and d	Q < 0	Then for the gas,
	a)	The temperature will decrease	c)	The pressure will remain constant
	b)	The volume will decrease	d)	The temperature will increase
18.	reject	s 400 cal to the sink during each cycle. Wh	27 ºC. nat is t	It takes 500 cal of heat from the source and he temperature of the sink?
	a)	47 K	c)	400 K
	b)	320 °C	d)	47 °C
19.	Motion	n of an oscillating liquid column in a U-tube	is	
	a)	Periodic but not simple harmonic	c)	Simple harmonic and time period is
	LA	Many and St. P.		independent of the density of the liquid
	b)	Non-periodic	d)	Simple harmonic and time period is directly
				proportional to the density of the liquid
20.	A strin	g of mass 2.5 kg is under the tension of 20	00 N.	The length of the stretched string is 20.0 m, If
		ansverse jerk is struck at one end of the st		
	a) b)	1.0 s 0.5 s	c)	2.0 s
	b)	0.5 \$	d)	0.1 s
21.	V. And batter that the	other capacitor of capacitance 2C is simila y is now disconnected and the capacitors	arly ch are co	n battery and is charged to a potential difference arged to a potential difference 2V. The charging connected in parallel to each other in such a wa egative terminal of the other. The final energy o
	a)	Zero	_ c)	$\frac{25}{6}CV^2$ $\frac{9}{2}CV^2$
	h)	3 cir2	ų,	9 0112
	υ,	$\frac{3}{2}CV^2$	u,	$\frac{1}{2}CV^2$
22.	An α-	particle is situated in an electric field of 1.5	√1∩5 h	NC-1. The force everted on it in newton is
f= (=)	a)	2.4 x 10 ⁻¹⁴	C)	
	b)	4.8 x 10 ¹⁴	ď	
00	TL	-14 - F 1641, 14 F F		
23.	ine ui a)	hit of permittivity of free space (ε_0) is ${\sf CN}^{-1}{\sf m}^{-1}$	ο'	C ² N- ¹ m- ²
	b)	C-1Nm ²	c) d	
	•		'	
24.		nysical quantity having the dimensions of [-
	a)	Resistance	,	Electrical conductivity
	b)	Resistivity	ď	Electromotive force
25.	A piec	e of copper (Cu) and another of germaniu	m (Ge) are cooled from room temperature to 80 K.
	a)	Each of them increases	c)	Cu increases and Ge decreases
	b)	Each of them decreases	d)	Cu decreases and Ge increases

 26. A resistance of 2 Ω is connected across one gap of a metre – bridge and an unknown resistance greater than 2 Ω is connected across another gap. When these resistances are interchanged, the balance point shifts by 20 cm. The unknown resistance is a) 3 Ω c) 5 Ω d) 6 Ω 27. A proton, deuteron and an α-particle having the same kinetic energy are moving in a circular trajectories in a constant magnetic field. If τ_p, τ_a and τ_α denote respectively the radii of the trajectories of these particles then a) τ_α = τ_p < τ_q < 0 c) τ_α = τ_q > τ_p < τ_p <			
trajectories in a constant magnetic field. If r _p , r _q and r _α denote respectively the radii of the trajectories of these particles then a) r _α = r _q < r _q	26.	greater than 2 Ω is connected across another gap. When these resistances are interchanged, the balance point shifts by 20 cm. The unknown resistance is a) 3 Ω c) 5 Ω	
 A circular coil of wire consisting of 100 turns each of radius 8.0 cm carries a current of 0.40 A. The magnitude of magnetic field in tesla (T) at the centre of the coil is a) 3.1 x 10² b) 3.1 x 10⁴ d) 3.1 x 10² e) 3.1 x 10² d) 3.1 x 10² 29. The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. The horizontal component of earth's magnetic field in 0.34x10⁴ T is along the plane of the coil. The magnetic field intensity in tesla (T) is a) 1.96 x 10⁴ b) 1.96 x 10⁴ c) 1.96 x 10⁵ 30. In a coil when current changes from 10 A to 2 A in time 0.1 s, induced emf is 3.28 V. The self-inductance of the coil in H (Henry) is a) 4 b) 0.4 c) 0.04 d) 5 31. Transformer is a device which is used to change the magnitude of a) D C voltage c) Both (a) and (b) b) A C voltage d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads¹. At resonance, the voltage in V across 'L' is a) 40 c) 4 x 10³ b) 250 d) 2.5 x 10² 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X - rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit	27.	trajectories in a constant magnetic field. If r_p , r_d and r_α denote respectively the radii of the trajector of these particles then a) $r_\alpha = r_p < r_d$ c) $r_\alpha = r_d > r_p$	ılar ies
 magnitude of magnetic field in tesla (T) at the centre of the coil is a) 3.1 x 10² c) 3.1 x 10² b) 3.1 x 10⁴ d) 3.1 x 10⁴ 29. The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. The horizontal component of earth's magnetic field 0.34x10⁴ T is along the plane of the coil. The magnetic field intensity in tesla (T) is a) 1.96 x 10⁴ c) 1.96 x 10⁵ b) 1.96 x 10⁴ d) 1.96 x 10⁵ c) 1.96 x 10⁴ d) 1.96 x 10⁵ d) 1.96 x 10⁴ d) 1.96 x 10⁵ self-inductance of the coil in H (Henry) is a) 4 c) 0.04 b) 0.4 d) 5 31. Transformer is a device which is used to change the magnitude of a) D C voltage c) Both (a) and (b) b) A C voltage d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads '. At resonance, the voltage in V across 'L' is a) 40 c) 4 x 10³ b) 250 d) 2.5 x 10² 33. Electromagnetic waves are produced by a) Accelerated charged particle c) Charge in uniform motion b) Charge at rest d)) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X - rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour Equal but not 30° for both the colours b) Greater for the violet colour d) Equal but not 30° for both the colours a) 45° c) 30° 30° A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 		b) $r_{\alpha} > r_{d} > r_{p}$ d) $r_{\alpha} = r_{p} = r_{d}$	
 The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. The horizontal component of earth's magnetic field 0.34x10° T is along the plane of the coil. The magnetic field intensity in tesla (T) is a) 1.96 x 10° d) 1.96 x 10	28.	magnitude of magnetic field in tesla (T) at the centre of the coil is a) 3.1 x 10 ⁻² c) 3.1 x 10 ²	
horizontal component of earth's magnetic field 0.34x10-4 T is along the plane of the coil. The magnetic field intensity in tesla (T) is a) 1.96 x 10-4 b) 1.96 x 10-5 d) 1.96 x 10-5 30. In a coil when current changes from 10 A to 2 A in time 0.1 s, induced emf is 3.28 V. The self-inductance of the coil in H (Henry) is a) 4 b) 0.4 c) 0.04 d) 5 31. Transformer is a device which is used to change the magnitude of a) D C voltage c) Both (a) and (b) b) A C voltage d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads-1. At resonance, the voltage in V across 'L' is a) 40 c) 4 x 10-3 b) 250 d) 2.5 x 10-2 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X - rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours b) Greater for the violet colour d) Equal but not 30° for both the colours A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°		b) 3.1 x 10 ⁻⁴ d) 3.1 x 10 ⁴	
 b) 1.96 x 10⁴ d) 1.96 x 10⁵ 30. In a coil when current changes from 10 A to 2 A in time 0.1 s, induced emf is 3.28 V. The self-inductance of the coil in H (Henry) is a) 4 b) 0.4 c) 0.04 d) 5 31. Transformer is a device which is used to change the magnitude of a) D C voltage b) A C voltage c) Both (a) and (b) d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads ¹. At resonance, the voltage in V across 'L' is a) 40 c) 4 x 10³ b) 250 d) 2.5 x 10² 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d)) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X – rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 	29.	horizontal component of earth's magnetic field 0.34x10-4 T is along the plane of the coil. The	
self-inductance of the coil in H (Henry) is a) 4 b) 0.4 c) 0.04 b) 0.4 d) 5 31. Transformer is a device which is used to change the magnitude of a) D C voltage c) Both (a) and (b) b) A C voltage d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads-1. At resonance, the voltage in V across 'L' is a) 40 b) 250 c) 4 x 10-3 b) 250 d) 2.5 x 10-2 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d)) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X – rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours b) Greater for the violet colour c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°		3,	
 b) 0.4 d) 5 31. Transformer is a device which is used to change the magnitude of	30.	self-inductance of the coil in H (Henry) is	The
 a) D C voltage b) A C voltage c) Both (a) and (b) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads¹. At resonance, the voltage in V across 'L' is a) 40 b) 250 c) 4 x 10³ d) 2.5 x 10² 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 			
 b) A C voltage d) None of these 32. In a series LCR circuit, the voltage across 'R' is 100 V, R = 1 kΩ and C = 2 μF. The resonant frequency ω is 200 rads 1. At resonance, the voltage in V across 'L' is a) 40 b) 250 c) 4 x 10 3 b) 250 d) 2.5 x 10 2 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest c) Charge in uniform motion d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 	31.		
frequency ω is 200 rads 1. At resonance, the voltage in V across "L' is a) 40			
a) 40 b) 250 c) 4 x 10 ⁻³ d) 2.5 x 10 ⁻² 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X – rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°	32.		
 33. Electromagnetic waves are produced by a) Accelerated charged particle b) Charge at rest c) Charge in uniform motion d) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet b) Infrared c) X – rays d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 		a) 40 c) 4 x 10 ⁻³	
a) Accelerated charged particle c) Charge in uniform motion b) Charge at rest d)) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X – rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°		b) 250 d) 2.5 x 10 ⁻²	
b) Charge at rest d)) Both (a) and (c) 34. Earth's atmosphere is richest in which one of the following radiation a) Ultraviolet c) X – rays b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°	33.		
 a) Ultraviolet b) Infrared c) X – rays d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30° 		,	
b) Infrared d) Microwaves 35. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°	34.	· · · · · · · · · · · · · · · · · · ·	
is 60°). In the position of minimum deviation, the angle of refraction will be a) 30° for both the colours c) Greater for the red colour b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°			
b) Greater for the violet colour d) Equal but not 30° for both the colours 36. A slit of 4.0 cm wide is irradiated with microwaves of 2.0 cm. Find the angular spread of the central maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°	35.	is 60°). In the position of minimum deviation, the angle of refraction will be	rism
maximum, assuming incidence normal to the plane of the slit. a) 45° c) 30°			
, , , , , , , , , , , , , , , , , , ,	36.	maximum, assuming incidence normal to the plane of the slit.	al
		, , , , , , , , , , , , , , , , , , ,	

37.	Spherical aberration, in a thin lens can be reduced a) Using a monochromatic light b) Using a doublet combination	ced by c) d)	Using a circular annular mask over the lens Increasing the size of the lens
38.	In Young's double slit experiment, the separation the slits and screen is doubled. The fringe widt a) Unchanged b) Halved		een the slits in halved and distance between Doubled Quadrupled
39.	Two coherent monochromatic light beams of in minimum possible intensities in the resulting be a) 5I and I b) 9I and I		
40.	The work function of a substance is 4 eV. The I photoelectron emission from this substance is a) 540 b) 400		
41.	Particle nature of light is exhibited by a) Polarization b) Interference	c) d)	
42.	If 13.6 eV energy is required to ionize the hydroelectron from n = 2 state is, a) 10.2 b) 0	ogen at c d	3.4
43.	The hydrogen atom can give spectral lines in the following statement is correct? a) Lyman series is in the infra-red region b) Balmer series is in the visible region (partly)	ne Lym c d) Paschen series is in the visible region
44.	Tritium has a half-life of 12.5 years undergoing remain undecayed after 25 years a) 1/8 b) 1/2	β - de c d	•
45.	The energy band gap is maximum in a) Metals b) Superconductors	C) Insulators) Semiconductors
46.	In a common-base mode of a transistor, the co 5.60 mA. The value of the base current amplif a) 49 b) 50	ication c	
47.	An oscillator is nothing but an amplifier with a) Negative feed back b) Large gain		c) No feed back

48.	Three resistors of 2 (2) each are connected in a triangle. The resistance in ohm, between two vertice is							
	a)	3 Ω	c)	6Ω				
	b)	4 Ω	d)	4/3 Ω				
49.	The waves used by artificial satellite for communication purposes are							
	a)	Microwaves	c)	FM radio waves				
	b)	AM radio waves	d)	X - rays				
50.	Which one of the following is used in optical fibres							
	a)	Diffraction	c)	Total internal reflection				
	b)	Scattering	d)	Refraction				

ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006

ENTRANCE EXAMINATION 2012

Entrance Examination for Admission to B.Sc. (Speech and Hearing)

Max. Marks 50

Time: 50 minutes

MATHEMATICS

1.	For any three sets A, B and C, $A \times (B^c \cup C^c)^c$ is equal to a) $(A \times B^c) \cup (A \times C^c)$ b) $(A \times B) \cup (A \times C)$ c) $(A \times B) \cap (A \times C)$ d) $(A \times B) \cap (A \times C)$
2.	The domain of the function $f(x) = \frac{1}{\sqrt{x-3}}$ is a) R b) $[0, \infty)$ c) $(3, \infty)$ d) $[3, \infty)$
3.	The value of $\sin 15^{\circ}$ is a) $\frac{\sqrt{6} + \sqrt{2}}{4}$ b) $\frac{\sqrt{6} - \sqrt{2}}{4}$ c) $\frac{\sqrt{3} + \sqrt{2}}{4}$ d) $\frac{\sqrt{3} - \sqrt{2}}{4}$
4.	The function $f:[0,\infty) \to R$ given by $f(x) = \frac{x}{x+1}$ is a) One-one and on to b) Onto but not one-one c) One-one but not onto d) Neither one-one nor onto
5.	If $z = \frac{2-3i}{4-i}$, then $Re(z)$ is a) $\frac{11}{17}$ b) $\frac{-11}{17}$ c) $\frac{10}{17}$ d) $\frac{-10}{17}$
6.	The polar form of the complex number $Z = 1 + i\sqrt{3}$ is a) $2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ b) $2(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3})$ d) $4(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3})$
7.	Divya obtained 70 and 75 marks in first two unit tests. The minimum marks she should get in the third test to have an average of atleast 60 marks is a) 25 b) 30 c) 35 d) 60
8.	The number of ways can the letters of the word "PERMUTATIONS" be arranged such that vowels are together is $60.41 \times 71 \times 51$

 $7 \times 4! \times 5!$

 $4 \times 7! \times 5i$

 $4! \times 7! \times 5!$

 $4 \times 7 \times 5$

- If $f(x) = (a x^n)^{\frac{1}{n}}$, then fof(x) is

 - b) χ^2

- χ^n
- $\chi \overline{n}$
- 10. If $A = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$ then $A \cdot A^T$ is

- In a single throw of three dice, find the probability of not showing the same number on all the dice is 11.
 - 36
 - b)

- 1
- 6 5 6 d)
- If α,β,γ are the direction angles of a line, then the value of $\sin^2\alpha+\sin^2\beta+$ sin² y is
 - a)

b) 2

- d)
- How many diagonals are there in a polygon of n sides?

n(n-3)

a) n(n-1)b) $\frac{n(n-1)}{2}$

- $\frac{n(n-3)}{2}$
- The value of $\lim_{x\to 0} \frac{1-\cos 4x}{1-\cos 6x}$ is

- If $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be a matrix such that X is equal to

 a) $\frac{1}{2} \begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ b) $\frac{1}{2} \begin{bmatrix} -2 & 4 \\ 4 & 5 \end{bmatrix}$ d) $\begin{bmatrix} -2 & 4 \\ 3 & 5 \end{bmatrix}$

- $\int_0^1 x (1-x)^{99} dx$ is equal to a) 1.
 - 10100

c) 10010

10100

11 11100

17. If
$$\overrightarrow{OA} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$$
, $\overrightarrow{OB} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ and $\overrightarrow{OC} = 2\hat{\imath} - 3\hat{\jmath} + \hat{k}$ then $\overrightarrow{AB} \cdot \overrightarrow{AC}$ is equal to

a) 25

b) 15

The probability that a student will pass the final examination in both Mathematics and Physics is 0.5 and the probability of passing neither is 0.1. If the probability of passing Mathematics examination is 18. 0.75, the probability of passing Physics examination is

0.5 a)

0.65

0.6 b)

0.75

The co-ordinate of the foot of perpendicular from the point (2,3)on the line 19.

y = 3x + 4 is(a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ $\left(\frac{10}{37}, -10\right)$

d) $\left(\frac{2}{3}, \frac{-1}{3}\right)$

The eccentricity of the ellipse $16x^2 + 25y^2 = 400$ is
a) $\frac{1}{5}$ 20.

 $\frac{1}{5}$

b)

The value of k if $f(x) = \begin{cases} kx + 1, & x \le 5 \\ 3x - 5, & x > 5 \end{cases}$ is continuos at x = 5 is

 $\frac{1}{3}$

If $y = \sec(\tan^{-1} x)$ then $\frac{dy}{dx}$ is a) $\frac{1}{1+x^2}$

- b) $x\sqrt{1+x^2}$ The middle term in the expansion of $(x-\frac{1}{2y})^{10}$ is

 a) $\frac{-63x^5}{5}$ c) $\frac{105x^6}{8y^4}$ d) $\frac{-105x^6}{8y^4}$

 $\int e^{3logx} \cdot x^4 dx$ is equal to

 x^8 h)

 $x^4 + log x + c$

- 25.

a) $e^x + e^y = c$ b) $e^{-x} + e^y = c$

- The range of the principal branch of $\sec^{-1} x$ defined on the domain R (-1,1) is

 $\left(0,\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right)$

- d) $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$
- Two numbers whose arithmetic mean is 34 and the geometric mean is 16 are 27.
 - a) 17 and 8

64 and 4 c)

25 and 4 b)

- d) 18 and 2
- The sum of n terms of the series $1.2 + 2.3 + 3.4 + \cdots$ is

 $\frac{n(n+1)(n+2)}{6}$

- d) $\frac{n(n+1)(2n+1)}{6}$
- If $\sigma^2 x$ is the variance of the observations $x_1, x_2, x_3, \dots, x_n$, then the variance of 29. $5x_1 + 3, 5x_2 + 3, 5x_3 + 3, \dots \dots 5x_n + 3$ is

 $25\sigma x$

a) $5\sigma^2 x + 3$ b) $25\sigma^2 x + 3$

- $25\sigma^2x$
- Three bags contain 5 white, 8 red, 7 white, 6 red and 6 white, 5 red balls respectively. 30. one ball is drawn from each bag at random the probability that all the three balls drawn are of the same colour is
 - 410 1859

250 1859

- 450
- The radius of the circle which passes through the center of the circle $x^2 + y^2 + y^2$ 8x + 10y - 7 = 0 and is concentric with the circle $2x^2 + 2y^2 - 8x - 12y - 9 = 0$ is
 - a) 10

c)

b)

- d
- The value of $\sin 420^{\circ} \cos 390^{\circ} + \cos (-660^{\circ}) \sin (-390^{\circ}) is$

 $\frac{-}{4}$

- The slope of the normal to the curve $x = 1 a\sin\theta$, $y = b\cos^2\theta$ at $\theta = \frac{\pi}{2}$ is
 - 2b<u>-</u>--

 $\frac{-a}{2b}$ c)

d) 2*a*

	b)	$\frac{P(B^C)}{1 - P(A \cup B)}$ $\frac{1 - P(B^C)}{P(B^C)}$	d)	$1 - P(A^c/B)$	
37.	10/ 10	$\frac{-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k} \text{ and } \frac{x-2}{k}$ or -3 or -1		•	
38.	a) $\frac{1}{5\sqrt{3}}(-\frac{1}{5\sqrt{3}})$	$-5\hat{\imath} - \hat{\jmath} + 7\hat{k}$ $5\hat{\imath} - \hat{\jmath} + 7\hat{k}$	d)	$-\hat{j} - 2\hat{k} \text{ and } \vec{b} = 2\hat{i} + 3\hat{j} - \hat{k} \text{ is}$ $-\frac{1}{5\sqrt{3}} (5\hat{i} + \hat{j} + 7\hat{k})$ $-\frac{1}{5\sqrt{3}} (5\hat{i} + \hat{j} - 7\hat{k})$	
39.	and axis al	y = 0	c)	arabolas having vertex at the origin is $x \frac{dy}{dx} + y = 0$ $x \frac{dy}{dx} - y = 0$	7.
40.	a) $\frac{8}{3}$ b) $\frac{4}{3}$	nclosed between the cr	d)	$\frac{3}{1}$	f
41.	If d is the its adjoint a d^n d^{n-1}	t is	nre matrix A 0) d)	of order n , then the determinent of d^{n+1} d	

The maximum value of the function sinx + cosx is

 $P(A^C)$

 $\overline{P(B^C)}$

If A is a square matrix of order 3 and |A| = 2, then A(adjA) is

 $\sqrt{3}$

 $\frac{1}{2}$ $\sqrt{3}$

[2 2

2 2

l2 2

٢1 1 1]

2]

2

1 1 1

c)

d)

d)

A and B are two events such that P(A) > 0 and $P(B) \neq 1$, then $P(A^c/B^c)$ is equal to

c)

34.

35.

36.

a)

b)

b)

a)

 $\sqrt{2}$

[2 0

0 2

0

0

0 1 0 Lo

0 Lo

The value of $sin(cot^{-1}x)$ is equal to

a)
$$\frac{x}{1+x^2}$$

$$\frac{1}{\sqrt{1+x^2}}$$

b)
$$\frac{1}{1+x^2}$$

$$d) \quad \frac{x}{\sqrt{1+x^2}}$$

43. The value of
$$|\vec{a} \times \hat{\imath}|^2 + |\vec{a} \times \hat{\jmath}|^2 + |\vec{a} \times \hat{k}|^2$$
 is

a)
$$\overrightarrow{|a|^2}$$

c)
$$3\overrightarrow{|a|^2}$$

b)
$$2|a|^2$$

d)
$$4|a|^2$$

44. The derivative of
$$x^x$$
 with respect to x is

c)
$$x^x \log x$$

b)
$$x^x(1 + \log x)$$

d)
$$log(x^x)$$

45. The angle between the planes
$$2x + 3z = 4$$
 and $3x - y - 2z = 0$ is

a)
$$\frac{\pi}{\lambda}$$

c)
$$\frac{\pi}{3}$$

b)
$$\frac{4\pi}{2}$$

d)
$$\frac{\pi}{6}$$

46. If sets A and B are defined as
$$A = \{(x, y) : y = \frac{1}{x}, 0 \neq x \in R\}$$
,

$$B = \{(x, y) : y = x, x \in R\} \text{ then }$$

a)
$$A \cap B = A$$

c)
$$A \cap B = \emptyset$$

b)
$$A \cap B = B$$

$$d) \quad A \cup B = A$$

47. If
$$\int_0^1 f(x)dx = 1$$
, $\int_0^1 x f(x)dx = a$, $\int_0^1 x^2 f(x)dx = a^2$ then $\int_0^1 (a-x)^2 f(x)dx$ is equal to

a)
$$4a^2$$

d)
$$3u^2$$

a) Symmetric matrix

- Diagonal matrix
- Skew symmetric matrix
- Scalar matrix d)

49. The angle made by the line
$$x\cos 30^\circ + y\sin 30^\circ + \sin 120^\circ = 0$$
 with positive direction of $x - axis$ is

30° a)

90°

60° b)

120° d)

- a) If 8 is greater than 6, then 7 is greater than 5
- not greater than 5
- If 8 is not greater than 6, then 7 is greater than 5
- If 8 is greater than 6, then 7 is not greater than 5