ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006 ## **ENTRANCE EXAMINATION 2011** ### **Entrance Examination for Admission to BASLP** | inne | ; 50 m | | E 201
VISTR | | |------|-------------------|---|--------------------|--| | 1. | The r
a)
b) | number of molecules present in a drop of wate
10 ²¹
2 x 10 ²¹ | r weig
c)
d) | phing 0.06g is approximately 3x10 ²¹ 4 x10 ²¹ | | 2. | The r
a) | naximum number of 4f electrons having spin o | quantı
c) | ım number – ½ is | | | b) | 5 | d) | 14 | | 3. | | onic radii of N3-, O2-, F-, Na+ follow the order | , | | | | a) | N³-> O²- > F->Na+ | c) | $Na^+ > O^2 > N^3 > F^-$ | | | b) | N³-> Na+>O²->F* | d) | O ² -> F ⁻ >Na ⁺ >N ³ - | | 4. | In or
a) | ne of the following molecules the state of hybri $$ | idizati
c) | on of the central atom is not the same as in the other $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ | | | b) | O in H ₃ O+ | ď) | P in PCl ₃ | | 5. · | lf V₀ i
volun | is the volume of a given mass of gas at 273 K
ne at 10ºC will be | at a c | onstant pressure, then according to Charle's Law, th | | | a) | 10 Vo | c) | Vo + 10/273 | | | þ) | 1/273 (V _o + 10) | d) | (283/273) Vo | | 6. | kJmc | of trespectively. The enthalpy of combustion of | | (4) | | | a) | +1412 kJ mol ⁻¹ | c) | +141.2 JJ mol-1 | | | b) - | -1412 kJ mol ⁻¹ | d) | -141.2 kJ mol ⁻¹ | | 7. | forwa | ard reaction | * | rmic reaction. Which of the following will favour the | | | a) . | Adding $Cl_{2(g)}$ to the equilibrium mixture at a constant volume | c). | Increasing the volume of the gaseous mixture | | | b) | Compressing the gaseous mixture | d) | Decreasing the temperature | | 8 | In the | e reaction 3 Br ₂ + 6 CO ₃ 2 + 3H ₂ O →5 Br + Brt | Э₃* + (| S HCO₃* | | | a) | Bromine is oxidized and carbonate is reduced | c) | Bromine is neither reduced nor oxidised | | | b) | Bromine is reduced and water is oxidised | d) | Bromine is both reduced and oxidised | | 9. | H_2O_2 is always stored in black bottles because a) It is highly unstable | c) | It undergoes auto oxidation on prolonged standing | |-----|--|--------------------|---| | | b) Its enthalpy of decomposition is high | d) | None of these | | 10. | A silvery white metal lighter than water can be prodifficulty. The metal is used as coolant in nuclear (a) K b) Mg | | | | 11. | Which of the following oxides of Nitrogen is obtained a) N_2O_5 b) N_2O | ed who
c)
d) | en copper is heated with conc. HNO₃
NO₂
NO | | 12. | The IUPAC name of the compound | | • | | | CH ₃ – CH (OH) – CH ₂ - CH(OH) – CH ₃ is | | | | | a) 1, 1 – Dimethyl butane – 1,3 - diol
b) 1,3,3 – Trimethyl propane – 1,3-diol | c)
d) | Pentane – 2, 4 - diol
1,3,3 – Trimethyl – 1,3-propane diol | | 13. | Point out the incorrect statement about resonance a) Resonance structures should have equal energy b) In resonance structures the constituent atoms must be in the same position | c)
d) | In resonance structures there should not
be same number of electron pairs
Resonance structures should differ only
in the location of electrons around the
constituent atoms | | 14. | What is X in the following sequence of reactions? Na NaOH/CaO X → Y → CH₁ - ½ H₂ Heat a) Methanoic acid b) Ethanoic acid | c)
d) | Propane
Methane | | 15. | Reagent $R - CH_2 - CCI_2 - R \xrightarrow{\qquad \qquad } R-C \equiv C-R$ The reagent is a) Na b) HCI in H_2O | c)
d) | KOH in C₂H₅OH
Zn in alcohol | | 16. | Which of the following does not contribute toward
a) NO
b) SO ₂ | s the
c)
d) | formation of photo chemical smog
O ₃
Hydrocarbons | | 17. | Which of the following species is paramagnetic a) O_2 b) N_2 | c)
d) | O₂²
H₂ | | 18. | | se according to Bronsted concept is a substan | | | |-----------------|------------------------|--|--------------------------------|---| | | a)
b) | Lose a pair of electrons Donate protons | c)
d) | Gain a pair of electrons Accept protons | | 19. | The r | number of unpaired electrons in Cu+ (Z=29) is | | | | | a) | 1 . | c) | 0 | | • | b) | 2 | d) | 3 | | 20. | Alkví | groups are o- and p- directing because of | | | | | a) | Inductive effect | c) | Electromeric effect | | | b) | Mesomeric effect | ď) | | | 21. | _ | et n- type doped semiconductor, impurity to
nce electrons
2 | be a | dded to silicon should have the following number of | | | b) | 5 | ď) | 1 | | | | | ŕ | | | 22. | | ary solution of ethanol and n-heptane is an ex | | | | | a) | Ideal solution Non ideal solution with +ve deviation | c)
d) | Non ideal solution with –ve deviation Unpredictable behaviour | | | b) | Non ideal solution with the deviation | u) | Officialie benaviour | | 23. | In wh | nich one of the following, One Faraday of elec | tricity | will liberate ½ gram atom of the metal | | | a) | AlCl ₃ | c) | CuSO ₄ | | | b) | FeCl ₃ | d) | NaCl | | 24. | A roc | action is first order when | | | | ۲4 . | a) | The amount of product formed increases | c) | The rate is linearly related to the | | - | u, | linearly with time | •, | concentration of he reactant | | | b) | The rate decreases linearly with time | d) | The concentration of the reactant | | | | · | · | decreases linearly with time | | 25. | | flocculation values of KCI, MgCI $_2$, CrCI $_3$ and S | | | | | a) | KCI < MgCl ₂ <crcl<sub>3<sncl<sub>4</sncl<sub></crcl<sub> | c) | MgCl ₂ < KCl< CrCl ₃ < SnCl ₄ | | | b) | KCI = MgCl ₂ =CrCl ₃ =SnCl ₄ | d) | SnCl ₄ < CrCl ₃ < MgCl ₂ <kcl< td=""></kcl<> | | 26. | Crvo | elite is | | . • | | | | Na ₃ AIF ₆ and is used in the electrolysis of | c) | Na₃AlF₅ and is used in the electrolytic | | | | alumina for decreasing electrical | | purification of alumina | | | | conductivity | | n die die de | | | b) _, | Na ₃ AlF ₆ and is used in the electrolysis of | d) | Na ₃ AlF ₆ and is used in the electrolysis of | | | | alumina for lowering the melting point of alumina | | alumina | | | | aunara | | | | 27. | Wha | at will be the product obtained by heating (NHa |) ₂ Cr ₂ | O ₇ ? | | | a) | $Cr_2O_3+NH_3+H_2O+N_2$ | • | $Cr_2O_3 + N_2 + H_2O$ | | | b) | NH ₃ + Cr ₂ O ₃ | d) | $N_2 O + H_2 + Cr_2O_3$ | | 28. | | n octahedral complex, the value of spin only n
BM. The correct one is | nagne | tic moment for one of the following configurations is | | | 2.0 4
a) | d ⁴ (in strong ligand field) | c) | d³ (in weak as well as strong fields) | | | , | d (in weak ligand field) | d) | d ⁵ (in strong ligand field) | | | , | | , | · · · · · · · · · · · · · · · · · · · | | 29. | One mole of complex compound Co (NH ₃) ₅ Cl ₃ g same complex reacts with two moles of AgNO ₃ s complex is | ives 3 m | oles of ions on dissolution in water. One mole of the o yield two moles of AgCl(s). The structure of the | |---------|---|-----------|---| | | a) [Co (NH ₃) ₃ Cl ₃] .2 NH ₃
b) [Co (NH ₃) ₄ Cl ₂] Cl. NH ₃ | c)
d) | [Co (NH ₃) ₄ Cl] Cl ₂ .NH ₃
[Co (NH ₃) ₅ Cl] Cl ₂ | | 30. | | ent and h | neating with water yields propane. What is the original | | | alkyl halide?
a) Methyl lodide
b) Ethyl iodide | c) | Ethyl bromide
Propyl bromide | | 31. | | | ₂ O ₇ gives a compound Y which reacts with lodine and | | | sodium carbonate to form tri iodo methane. The a) CH ₃ OH | compou | CH3CHO | | | a) CH₃OH
b) CH₃COCH₃ | d) | CH₃CHOH CH₃ | | | b) 0113000113 | u, | 3.130.140.1.01.13 | | 32. | In the following reaction product P is | | | | | $0 \qquad H_2$ | | | | | P | | | | | R-C-Cl Pd-BaSO ₄ | c) | RCHO | | | a) RCH₂OH
b) RCOOH | c) | RCH₃ | | | b) Recorr | u) | 1,013 | | 33. | Which of the following reagents can be used to | convert p | orimary amides into primary amines containing the | | | same number of carbon atoms | | • | | | a) Br ₂ + NaOH | c) | Sn + HCl | | | b) LiAlH ₄ | d) | Na + C ₂ H₅OH | | 34. | Which of the following has a branched chain str | uctura? | | | 34. | a) Amylopectin | C) | Cellulose | | | b) Amylose | d) | Nylon | | | 2) (111) | , | | | 35. | Cellulose is a straight chain polysaccharide con | nposed o | | | | a) D- glucose units joined by α -glycosidic | c) | D-galactose units joined by α -glycosidic | | | linkage | | linkage | | | b) D- glucose units joined by β - glycosidic | d) | D-galactose units joined by β-glycosidic | | | linkage | | linkage | | ,
00 | Among the following a homonolymer is | | | | 36. | Among the following a homopolymer is a) PMMA | c) | Glyptai | | | a) PMMA
b) Bakelite | d) | Dacron | | | b) bakelite | u, | Baoren | | 37. | The antiseptic action of Dettol is due to | : | | | | a) Chloro benzene | c) | Chloroquine | | | b) Chloroxylenol | d) | Chloroamphenicol | | | | | | | 38. | The term fools gold is used for a mineral which sh | | | | | a) iron pyrites | c) | cinnabar | | | h) connor puritos: | 4/ | cadmium culphido | | 39, | Ethyle
a) | ene glycol is added to water as anti-freeze. It water as the freezing point of water in winter and increase the boiling point of water in summer | vill
c) | only increase the boiling point of water | |-------|----------------------|--|------------------|--| | | b) | only decrease the freezing point of water | d) | be used for cleaning the radiator in a car | | 40. | A cat
a)
b) | alyst increases the rate of reaction because it
increases the activation energy
lowers the energy barrier for reaction | c) | decreases the collision diameter increases the temperature coefficient | | 41. | Form
a)
b) | ula of sodium nitro prusside is
Na₂ [Fe(CN)₃ NO]
Na₃ [Fe(CN)₅ ONO] | ç)
d) | Na ₂ [Fe(CN) ₅ NO]
Na ₄ [Fe(CN) ₄ NO] | | 42. | The f
a)
b) | ormation of cyanohydrins from a ketone is an electrophilic addition nucleophilic addition | exam
c)
d) | ple of:
nucleophilic substitution
electrophilic substitution | | 43. | Whic
a)
b) | h of the following on dehydration with conc. Ha
Butan – 2-ol
2-methyl propan-2-ol | 2SO₄
c)
d) | gives 2 -
2-methyl-1-propanol
butanal | | 44. İ | | reaction
A + B → 3 C + D , which of the followin | g doe | es not express the reaction rate | | | a) | d[D]
dt | c) | - d [CD]
3 dt | | | b) | - d [A]
2 dt | d) | -d[B]
dt | | 45. | The stru
a)
b) | octure of rock salt is
Simple cubic
bcc | c)
d) | ccp
hcp | | 46. | The a) b) | electrode potential of a half cell depends upon
Nature of metal
Concentration of metal ions is solutions | c)
d) | Temperature
All | | 47. | | formation of O ₂ +[Pt F ₆] is the basis for the for | | | | | a)
h) | O ₂ and Xe have comparable sizes Both O ₂ and Xe are gases | -C) | O ₂ and Xe have comparable ionisation energies | | ٠ | b) | Don Oz and Ne are yases | d) | O ₂ and Xe have comparable electronegativities | | 48. | The | helical structure of proteins is stabilized by | | | | | a) | Dipeptide bonds | c) | Ether bonds | | | b) | Hydrogen bonds | ď) | Peptide bonds | - Which of the following are anti bacterials - Penicillin a) - b) Sulphapyridine - Ofloxacin - ΑII d) - 50. - Which is not true about polymers a) Polymers do not carry any charge b) Polymers have high viscosity - c) - Polymers scatter light Polymers have low molecules weight d) ### ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006 ### **ENTRANCE EXAMINATION 2011** ## **Entrance Examination for Admission to BASLP** Time: 50 minutes Max. Marks 50 #### **JUNE 2011** #### **MATHEMATICS** | 1. | If A a | ind B | have n elements in common | , then the number | of elements | common to AxB and BxA is | |----|--------|-------|---------------------------|-------------------|-------------|--------------------------| | | a) | n | | c) | n² | · | If $x + y = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$ and $x - y = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$ then x is a) $\begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$ b) $\begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}$ d) $\begin{bmatrix} 8 \\ 0 \\ 0 \end{bmatrix}$ If B is a 2x2 matrix and B $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ then B is If $f(x) = x^2+2$, g(x) = 3x then (gof)(x) is 4. a) $9x^2+2$ $3x(x^2+2)$ b). $3x^2+2$ $3(x^2+2)$ 5. Number of elements in the range of the constant function is b) 2 3 The value of $\begin{vmatrix} cos15^{\circ} & sin15^{\circ} \\ sin75^{\circ} & cos75^{\circ} \end{vmatrix}$ is 6, a) b) 2 d) 3 The value of the determinant a7. (x+2a)(x-a) $(x+2a)(x-a)^2$ b) $(x+a)(x-a)^2$ $(x+2a)^2(x-a)$ The principal solution of $\tan x = \frac{1}{\sqrt{3}}$ is 8. | 10. | a)
b) | Reflexive Symmetric | c)
d) | Transitive
Equivalence | |-------|----------|--|----------|--| | 11. | | th one of the following is one-one $f(x) = x^{2}$ $f(x) = \frac{x^{2} - 1}{2}$ | c)
d) | f(x) = 2x + 5
$f(x) = \cos x, (0 \le x \le 2\pi)$ | | 12. | If to | $an^{-1}(3x) + tan^{-1}(2x) = \frac{\pi}{4}$, then x is | | | | | a) | 1,6 | c) | $\frac{1}{6}$ | | | b) | 0,1 | d) | 1 | | ٠ 13. | If c | $os^{2}[tan^{-1}\{\sin(cot^{-1}x)\}] = y then y$ | is: | $x^2 - 1$ | | , | a) | $\frac{x-1}{x+1}$ | o) | $ \frac{x^2 - 1}{x^2 + 2} \\ \frac{x^2 + 1}{x^2 + 2} $ | | | | $x^2 + 1$ | d) | $\frac{x^2+1}{x^2+1}$ | | | | $\frac{x^2-2}{x^2-3i}$ | | $x^2 + 2$ | | 14. | The | conjugate of $\frac{2-3i}{3+4i}$ is | | | | | a) | 6 - 17i | c) | $\frac{-6-17i}{}$ | | | b) | $-25 \\ -6 + 17i$ | d) | 25
6 + 17 <i>i</i> | | | | 25 | | 25 | If $f(x) = \begin{cases} \frac{1-\cos 4x}{16x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0 then k is The large hand of a big clock is 70 cm long. Then the distant covered by the extremity in 6 minutes d) 33~cm 44 cm 16. The solution of the inequality $$\frac{x}{2} + \frac{x}{3} < \frac{1}{4} + \frac{1}{6}$$ is a) $(-\infty, \frac{1}{2})$ b) $(\frac{1}{2}, \infty)$ d) a) $$\left(-\infty, \frac{1}{2}\right)$$ b) 9. 11 cm 22 cm a) b) b) $$\left(\frac{1}{2},\infty\right)$$ d) $$\left(\frac{5}{2}, \infty\right)$$ 17. If $$y = x^{\sqrt{x}}$$ then $\frac{dy}{dx}$ is equal to a) $x^{\sqrt{x}} \left[\frac{1 + \log x}{\sqrt{x}} \right]$ b) $x^{\sqrt{x}} \left[\frac{2 + \log x}{2\sqrt{x}} \right]$ a) $$x^{\sqrt{x}} \left[\frac{1 + \tilde{log}x}{\sqrt{x}} \right]$$ $$|c\rangle = \sqrt{x} x^{\sqrt{x}-1}$$ b) $$x^{\sqrt{x}} \left[\frac{2 + \log x}{2\sqrt{x}} \right]$$ $$d) \quad \frac{1}{\sqrt{x}} x^{\sqrt{x}-1}$$ 18. If $$\sin y = x\cos(a + y)$$ then $\frac{dy}{dx}$ is a) $\frac{\sin^2(a + y)}{\sin a}$ b) $\frac{\sin a}{\cos(a + y)}$ a) $$\sin^2(a+y)$$ c) $$\frac{\sin a}{\sin(a+y)}$$ b) $$\frac{\sin a}{\cos(a+v)}$$ d) $$\frac{\cos^2(a+y)}{\cos^2(a+y)}$$ 19. If $$x = e^{\theta} \left(\theta + \frac{1}{\theta} \right)$$, $y = e^{-\theta} \left(\theta - \frac{1}{\theta} \right)$ then $\frac{dy}{dx}$ at $\theta = 1$ is d) $$\frac{e^2}{1}$$ 20. If $$np_r = 720$$, $nc_r = 120$ then r is c) 3 $9C_{5}$ 7*C*₅ 7*C*₃ b) $9C_3$ a) $$4a^2 = 1$$ b) $4a^2 = -1$ c) $$8a^2 = 1$$ d) $8a^2 = -1$ b) $$4a^2 = -1$$ $$8a^2 = -1$$ $8\sqrt{3}$ sqcm/hr. $4\sqrt{3} \ sqcm/hr$. c) $$\frac{\sqrt{3}}{\frac{8}{8}} sqcm/hr$$. d) $\frac{\frac{8}{8}}{\sqrt{3}} sqcm/hr$. #### Two numbers whose sum is 12 and sum of whose cubes is minimum are 24. 10, 2 a) c) . 4,8 6, 6 b) d) 5, 7 25. The term not containing x in the expansion of $$\left(\sqrt{x} - \frac{2}{x^2}\right)^{20}$$ is a) 3 c) 15 d) 5 b) The value of $c_0-c_1+c_2-c_3+\cdots+\cdots+(-1)^n$ c_n is a) 0 c) 2^{n-1} b) 2^n d) 2^{n+1} 26. b) 2^n 27. If $$f'(x) = \frac{1}{x} + x$$ and $f(1) = \frac{5}{2}$ then $f(x)$ is a) $-\frac{1}{x^2} + 1$ b) $\log x + \frac{x^2}{2} + 4$ | 28. | $\int \frac{\cot(\log x)}{\cos(\log x)}$ | dx is equal to | |-----|--|----------------| | | J | an is square | a) $$\hat{l}ogsin(logx) + c$$ c) $$logsec(logx) + c$$ b) $$logcos(logx) + c$$ d) $$logtan(logx) + c$$ a) $$\frac{7}{9} \left[\frac{10}{9} (10^n - 1) - n \right]$$ b) $\frac{70}{81} (10^n - 1) - n$ c) $$\frac{7}{9}[10^n - 1 - n]$$ b) $$\frac{70}{81}(10^n - 1) - n$$ c) $$\frac{7}{9}[10^n - 1 - n]$$ d) $\frac{700}{81}(10^n - 1) - n$ 30. The sum to 10 terms of the series $$1 + 4 + 9 + 16 + \cdots$$ is 31. $$\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx \text{ is}$$ a) $\frac{a}{-}$ a) $$\frac{a}{2}$$ d) $$\frac{a}{4}$$ 32. $$\int_{-1}^{1} |x| \, dx \, is$$ b) $$\frac{1}{2}$$ 34. Sum of the focal distances of any point on the ellipse $$25x^2 + 9y^2 = 225$$ is a) $$tan^{-1}\left(\frac{3}{4}\right)$$ c) $$tan^{-1}$$ (5) b) $$tan^{-1} \left(\frac{3}{5}\right)$$ d) $$tan^{-1}\left(\frac{1}{5}\right)$$ 36. The area bounded by $$y=4x^2$$, $x=0$, $y=1$, $y=4$ is b) $$\frac{3}{2}$$ a) $$\pm 1, \pm 1, \pm 1$$ c) $$\pm\sqrt{3}, \pm\sqrt{3}, \pm\sqrt{3}$$ b) $$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$$ | 39. | The solution of the differential equation $\frac{dy}{dx} = (1 + y^2)$
a) $tan^{-1}y = x + \frac{x^3}{3} + c$ | $(1+x^2) is tan^{-1}x = y + \frac{y^3}{2} + c$ | |-----|--|---| | • | b) $tan^{-1}x = tan^{-1}y + c$ d) | $tan^{-1}x = y + \frac{y^3}{3} + c$ $log(1 + y^2) = x + \frac{x^3}{3} + c$ | | 40. | The value of $\lim_{x\to 2} \frac{x^n-2^n}{x-2} = 80$, then n is | | | | a) 2 c)
b) 3 d) | 5 | | 41. | The value of $\lim_{x\to 0} \frac{\sin 5x}{\tan 3x}$ is | | | | a) 0 c) b) $\frac{5}{2}$ d) | . 3
5
1 | | 42. | $\overline{3}$. If the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $-4\hat{i} - 6\hat{j} + \lambda \hat{k}$ is | | | | of λ is
(a) 26 (c)
(b) -26 (d) | 10
-10 | | 43. | A vector which is perpendicular to the two vectors $\vec{a}=$ a) $5\hat{\imath}+5\hat{\jmath}+5\hat{k}$ c) b) $-5\hat{\imath}+5\hat{\jmath}+5\hat{k}$ d) | $\hat{\imath} - \hat{\jmath} + 2\hat{k} \text{ and } \vec{b} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k} \text{ is}$ $5\hat{\imath} - 5\hat{\jmath} + 5\hat{k}$ $-5\hat{\imath} - 5\hat{\jmath} - 5\hat{k}$ | | 44. | The variance of 20 observations is 5. If each observation a) 5 c) b) 8 d) | ons is multiplied by 3, then the new variance is 15 45 | | 45. | The coordinates of the point which divides the line segrethe ratio 3:2 internally is | ment joining the points (2, 1, 4) and (5, -2, 3) in | | | .) (10 4 45) | $\left(\frac{19}{5}, \frac{4}{5}, \frac{1}{5}\right)$ $\left(\frac{11}{5}, \frac{-4}{5}, \frac{1}{5}\right)$ | | 46. | The distance from the point (1, 2, 3) to the plane x+2y+ | \3 <i>3 3</i> / | | | a) $\sqrt{21}$ c) b) $\frac{11}{\sqrt{21}}$ | 21
11 | | 47. | If A and B are two events such that $P(A) \neq 0$ and $A = 0$ | is subset of B then $P\left(\frac{B}{a}\right)$ is equal to | c) d) P(B) P(A) The order and degree of the differential equation $y = x \left(\frac{dy}{dx}\right)^3 + \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ 38. a) 1,3 b) 1,6 a) - 48. A random variable X has the following probability distribution - X -2 -1 0 1 2 P(X) 0.1 k 0.2 2k 0.3 - a) 0.1 c) 0.3 b) 0.2 d) 0.4 - 49. If the binary operation * on the set of integers Z, is defined by a*b=a+3b² then 2*3 is - a) 29 c) 11 b) 83 d) 14 - The probabilities of solving a problem independently by A & B are $\frac{1}{4}$ and $\frac{1}{5}$ respectively. If both try to solve the problem, then the probability that the problem to be solved is a) $\frac{1}{5}$ - (a) $\frac{1}{20}$ (b) $\frac{3}{5}$ (c) $\frac{7}{20}$ (d) $\frac{2}{5}$ @@@@@@ # ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006 ## ENTRANCE EXAMINATION 2011 ## Entrance Examination for Admission to BASLP Time: 50 minutes Max. Marks 50 ## JUNE 2011 ### **BIOLOGY** | 1. | Phyo
a)
b) | genetic classification system is based on
Fossils
Evolution | c)
d) | Morphology
Physiology | | |-----|--------------------------------|--|---------------------|---|---| | | · | | | ,,c.o.o.ogy | | | 2. | Smal
a)
b) | lest living cell that can survive without oxyge
Viroid
Mycoplasma | n is -
c)
d) | Bacillus
Anabaena | | | 3. | Kelps
a)
b) | s are
Fresh Water algae
Marine algae | c)
d) | Terrestrial algae
Amphibians | : | | 4. | Whic
a)
b) | h of the following is a cnidarian
Ancylostoma
Aplysia | c) | Ascidia
Adamsia | | | 5. | Multi _l
a)
b) | ple root cap is found in
Maize
Raddish | c) | Pandanus
Solanum | • | | 6. | Bicoll
a)
b) | lateral vascular bundles are present in
Cucurbita
Sunflower | e)
d) | Maize
Dracaena | | | 7. | The l
a)
b) | Plasma protein, which maintain the esmotic p
Albumin
Heparin | oressur
c)
d) | e of blood is
Fibrinogen
Prothrombin | | | 8. | The c
a)
b) | contral core of cilium or flagellum is called
Axon
Axoplasm | c)
d) | Axoneme
Acrosome | | | 9. | Nucle
a)
b) | solide is
Adenosine
Adenylic acid | c)
c) | Arachidonic acid
Utidine | | | 10. | The a) | enzyme involved in crossing over of melotic
Ribonuclease
Recombinase | cell di
c) | vision
Pedia
Postorijon endonijolease | | | 11. | a) | oot endodermis is impervious to water due to
Starch sheath
Keratin | c)
d) | Casparian strip None of these | |-----|--------------------|---|---------------------|---| | 12. | a) | ification is carried out by bacteria
Thiobacillus
Nitrosomonas | c) | Nitrobacter
Nitorcoccus | | 13. | Chlord
a)
b) | oplast without grana are known to occur in
Bundle sheath cells of C3 plants
Mesophyll cells of C4 plants | c) | Bundle sheath cells of C4 plants Mesophyll cells of all plants | | 14. | In Kre
a)
b) | eb's cycle FAD participates as electron accep
Succinyl COA to succinic acid
α Ketoglutarate to succinyl CoA | otor du
c)
d) | ring the conversion of Succinic acid to Malic acid Malic acid to oxaloacetic acid | | 15. | Succi
a)
b) | us entericus is the name given to
A junction between ileum and large intestin
Intestinal juice | e c) | Swelling in the gut Appendix | | 16. | The v
a)
b) | volume of air involved in breathing movemen
Sphygmomanometer
Anemometer | ts can
c)
d) | be estimated by Spirometer Auxanometer | | 17. | The (a) | part of human ear concerned with hearing is
Tympanic membrane and tectorial
membrane
Tympanic membrane and basilar
membrane | c)
d) | Basilar membrane and tectorial membrane
Ampulia | | 18. | Erytl
a)
b) | hroblastosis foetalis can happen if
Mother Rh –ve and foetus Rh +ve
Mother Rh+ve and foetus Rh -ve | c)
d) | Father and foetus Rh+ve
Mother and foetus Rh-ve | | 19. | Pate
a)
b) | ella is a cup shaped bone that covers the
Knee ventrally
Knee dorsally | c)
d) | Ankle laterally
Elbow | | 20. | A pa
a)
b) | eptide harmone secreted by gastrointestinal
Cortisol
estradiol | tract
c)
d) | · · · · · | | 21. | Оея
a)
b) | | ď, | | | 22. | Exi
a)
b) | | c)
d | | | 23. | Doub
a)
b) | ie fertilization occurs in
Pinus
Selaginella | c)
d) | Funaria
Dalbergia | |-----|--------------------|--|-------------------|--| | 24. | The r
a)
b) | residual persistent nucellus in seeds is
Perisperm
Pericarp | c)
d) | Endosperm
Scutellum | | 25. | Site o
a)
b) | of fertilization in human female is
Ovary
Uterus | c <u>)</u>
d) | Placenta
Fallopian tube | | 26. | In ute
a)
b) | erus, endometrium increases in thickness in re
Oxytocin
Estrogen | spons
c)
d) | se to
Prolactin
Relaxin | | 27. | Pills a)
b) | are very effective contraceptive as
They block fallopian tube
Inhibit ovulation | c)
d) | Stimulate release of FSH and LF Degenerate sperms | | 28. | Geno
a)
b) | otype of A- blood group father of O-group child
 A A
 A i | woul
c)
d) | d be
 A B
 i | | 29. | Dihyl
a)
b) | brid ratio is connected with principle of
Purity of gametes
Segregation | c)
d) | Independent assortment Incomplete dominance | | 30. | RNA
a)
b) | codon for DNA sequence ATG will be
AUG
UTG | c)
d) | UAC
TAC | | 31. | Whic
a)
b) | ch one does not cause cancer
Activation of proto oncogenes
Viral oncogenes | c)
d) | Protooncogenes
Both A and B | | 32. | A ge
a)
b) | ne of operon which forms the repressor protein
Operator
Promoter | n
c)
d) | Regulator Structural
Structural gene | | 33. | a) | iller's experiment, the raw materials were
H₂O, HCN, H₂ and CH₄
CH₄, NH₃, H₂ and H₂O | c)
d) | CH ₄ , HCN, N₂and H₂
CH ₄ , H₂O, N₂, and H₂ | | 34. | Thora)
a)
b) | rn of bougainvillea and tendril of cucurbita are
Vestigeal organs
Convergent evolution | exam
c)
d) | ples of
Homologous organs
Analogous organs | | 35. | lmm
, a)
b) | unity acquired after an infection is
Active immunity
Passive immunity | c) | Innate immunity
Both B and C | | 36. | Antibodies are complex a) Proteins b) Lipids | c)
d) | Steroids
Prostaglandins | |-----|--|---------------------|--| | 37. | Selection of homozygous plant is a) Mass selection b) Mixed selection | c)
d) | Pureline selection
None of these | | 38. | Himgiri is a disease resistant variety of a) Rice b) Wheat | c)
d) | Maize
Cauliflower | | 39. | Pickout the microbe that form mycorrhiza
a) Glomus
b) Nostoc | c)
d) | Oscillatoria
Azospirillum | | 40. | Group of bacteria used in biogas production is
a) Eubacteria
b) Organotrophs | c)
d) | Methanotrophs
Methanogens | | 41. | "Molecular scissors" used in genetic engineerir
a) DNA ligase
b) DNA polymerase | ng is c)
d) | Helicase
Restriction endonuclease | | 42. | PCR is required for
a) DNA proof reading
b) DNA amplification | " c)
d) | Protein synthesis
Amino acid synthesis | | 43. | Bio-piracy is related to which of the following: a) Traditional knowledge b) Biomolecules | c)
d) | Genes isolated from bic-resources All the above | | 44. | The Bt toxin gene which controls cotton boll water a) Cry II Abb) Cry IAb | vorm is
c)
d) | | | 45 | Decomposition rate is slower if detritus is rich a) Nitrogen b) Sugars | ı in
c
d | | | 46 | Animals of colder areas have shorter ears ara) Allen's Lawb) Bergman's Law | C | It is
c) Dollo's Law
d) Cope's Law | | 47 | 7. Once bare rocky area is supporting a forest. a) Shrubs, herbs, mosses and lichens b) Lichens mosses, shrubs and herbs | { | quence of vegetation types would have been (c) Mosses, lichens, herbs and shrubs (d) Lichens, mosses, herbs and shrubs | | 48. | The a
a)
b) | earth summit held at Rio de Jane
to compile red list
discuss effects of global warmir | c) | pon all nations to
Conserve biodiversity
Control emission of CFC | |------------------|-------------------|---|---------------------|--| | 4 9 . | Gove | ernment of India has passed the E | invironment protec | tion Act in the year | | | a) | 1989 | c) | 1974 | | | b) | 1986 | d) | 1971 | | 50. | Paric | ulate matter from a thermal powe | r plant exhaust car | n be removed by | | | a) | Scrubber | c) | Incinerators | | | b) | Catalytic converter | d) | Electrostatic precipitator | @@@@@@@ ## ALL INDIA INSTITUTE OF SPEECH AND HEARING MANASAGANGOTHRI, MYSORE 570 006 ### **ENTRANCE EXAMINATION 2011** ## Entrance Examination for Admission to BASLP Time: 50 minutes Impulse Max. Marks 50 | 7 | 11 | " | 10 | `` | |---|----|---|----|----| | _ | ы. | • | 11 | • | | | | | | | | | 11110100 | | | |-----|---|-------|---| | 1. | Conversion of S.I. value of universal gravitation const a) $6.67 \times 10^{11} Nm2 \ kg^{-2}$ c) |) | 6.67 x 10 ⁻¹¹ dyne cm ² g ⁻² | | | b) $6.67 \times 10^8 dyne cm^2 g^{-2}$ | } | 6.67 x 10 ⁻⁸ gcm ² s- ² | | 2. | A car covers first half the distance between two place 60 kmh ⁻¹ . What is the average speed of the car? a) 48 kmh ⁻¹ c b) 50 kmh ⁻¹ | ;) | a speed of 40 kmh ⁻¹ and the second half at 20 kmh ⁻¹ 100 kmh ⁻¹ | | 3. | What do the following velocity-time graph represent? | | | | | V ↑ A B | | | | | Body has uniform velocity throughout the motion | c) | Both (a) and (b) | | | | d) | None of the above | | 4. | Which of the following is not essential for the three v | vect | ors to produce zero resultant? | | • • | a) They should lie in the same plane | c) | They should act along the sides of parallelogram | | | b) It should be possible to represent them by
three sides of triangle taken in the same
order | d) | The resultant of any two vectors should be equal and opposite to the third vector | | 5. | How much high above the ground, can a boy throw maximum horizontal distance of 50m? | i the | e ball if he is able to throw the same ball up to a | | | a) 100 m | c) | | | | b) 10 m | d) | 25 m | | 6. | The physical quantity which is equal to the change | e in | momentum of a body is known as | | 0. | a) force | Ċ | • | reaction Three blocks of masses, m1, m2 and m3 kg are placed in contact with each other on a frictionless 7. table. A force F is applied on the heaviest mass m1, the acceleration of m3 will be 8. | | , | | • | - | m i | m2 | m3 | , | | | . ' | | |-----|-------------------------|-------------------------|---|-------------------------|------------------------------|-----------------------------|-----------------------------------|----------------------------|--|-------------------------------|---------------------|-------| | | | | | | | | | | | | | | | | a)
b) | F/m
F/m | l ₁
l _{1 +} Πl ₂ | | | | c) i
d) i | | 2+ M3
1+ M2+ M3 | | | | | В. | Two I | bodie | es with kine | etic energi | es in the r | atio of 4:1 | are mo | ving | with same line | ar moment | um. The | | | | ratio
a)
b) | or in
1:4
1:1 | | ale | | | c) | 1:2
4:1 | | | .' | | | 9. | A ba
a) | Th | s a floor ar
ne total mo
conserved | mentum o | ds after an
f the ball a | inelastic
ind earth | collision
c) | col
col | e momentum o
lision is same a
llision | as the just t | efore the | | | | b) | | otal energy
onserved. | of the ba | ll and earti | n is | d) | Th | e mechanical or
mains the same | energy of the
e during the | e ball
collision | | | 10. | Acc
in e
a)
b) | equa
} | ng to Keplo
I intervals o
Angular spo
Angular mo | of time. 11
eed | nd law, the | radius ve
consequ | ector to a
ence of
c)
d) | tiis
Li | net from the si
conservation o
near momentu
inetic energy | 1 | out equal areas | • | | 11. | su | rface | t depth, be
e of the ear
4800 km
1600 km | low the su
th. Radiu | urface of th
s of the ea | ne earth, ti
arth is 640 | he value
10 km.
c)
d) | 3 | g' becomes 25
200 km
1200 km | % of its val | ∄e on the | | | 12. | F
C | o-ord
a) | oarticles of
dinates of t
(a/2, 2a)
(a/2,a) | he centre | n, m, 2m a
of mass a | re | , C |) | he four corners
(a/2,2a/3)
(a, a/3) | s of a squar | e of side 'a'. Th | ne | | 13 | | a)
b) | 24 hr
48 hr | | | | Ç | i)
!) | nass, the dura
13 hr
6 hr | | , | ٠ | | 1 | 4. | The
redu
a)
b) | Youngs maded to L/2
Y/2
2 Y | odulus of
and radiu | a wire of le
s r/2 its yo | ength L ar
lungs mod | iuus Wi | s r is
l be
c)
d) | Y newton per
Y
4 Y | square me | ter. If the lengt | th is | A drop of olive oil is introduced in a mixture of alcohol and water. The density of the mixture is the c) d) Less than the weight of the drop Equal to the weight of the drop same as that of olive oil. The upward thrust on the drop is More than the weight of the drop a) b) | • | | | | | |---|-----|----------|---------------------------|---------------------------|---------------------------------------|------------------|---|-------------------|------------------|------------------|------------------------|--|-------------------------|-----------------------------------|----------------------------------|-------------------|-----------------|----------------|-------------------|---------------|-----------------|------------------|--------|--|---| | • | 16. | ter
a | mpe | ratu
San | re of t
ne in l | hese
ooth b | l, one
balloon
alloon
lium fil | ns are
s | sam | e the | n gas
n the | and ot
numbe
c)
d) | r o | of mo
More | olecul | es pe
e air | er un
filled | iit vo | the polume | is | ure ar | nd | | | | | | 17. | pr
; | roce
a) | ss, t
Mo | of 140
he ter
no ato
itomic | npera
omic | s perfo
ture o | rmed
f the g | in org | der to
creas | comp
ses by | oress o
7°C.
c)
d) | Th | ne ga
Trial | is is (
omic | R=8: | 3 Jn | nol-1 | K-1) | | and in | | | | | | | 18. | | n ai
a)
b) | Gr | adual | ly dec | g throu
reases
eases | \$ | ater k | ept ir | n⁻a lor | ng glas
c)
d) | | Ren | nains | the s | same | ė | ubble
lecre: | | | | | | • | | | 19. | } | f th | e ot
uenc
40 | serve | er alsord | mitting
o mov
the ob | res a | way f | frequ
from | iency
the s | 400 H:
ource
c)
d) | wit | th th
200 | es tow
ne sa
) Hz
) Hz | vards
ame | an d | obs
city | erver
v, th | with
en th | a velo
ne ap | ocity v
paren | :
t | | | | ٠ | 20. | , | A pa
take
a)
b) | en by
T | e exe
/ the
/2
//12 | cutes
particl | SHM
e to tra | with a
avel h | in am
alf of | plitud
the a | le 'a'.
ımplitu | The pude from control distribution the properties of propertie | m t
) | od o
the e
T/- | equilit
4 | llatio | n'is
pos | T. Titior | The m | ninim | um tin | ne . | | | | | | 21. | | the
a
b
Th
wh | x -
) l
) ;
nree | axis a
_/4
2L
capac
conne | et which | ch the | net el
al cap | ectric
acita | : field
nce v | due t
when c | connec
ance C | e tv
c)
d)
ted | wo p
4!
8
d in s
vhat | oint o
-
L
series | :harg | es is
e a r | s zei
net d | ro, is
capac | itanc | | f . | | | | | | 2 | 23. | l
A
ca | o)
para | itor a
Chai | re mo
ge or | apacito
ved fu
the ca
cross t | rther a
apacit | apart
or inc | by m
reas | eans
es | | d)
ng l | batte
ing h | 9/1
ery is
nandle
The c | es
:apac | citan | ce ir | ncrea | ses | ne pla | | the | | | | * | | 24. | | , | electri
Dire | c pote | | t a po | int or
o dist | n the
ance | equito | | · | on ar
In | relec | tric d
ly pro | lipole
oport | e is
tiona | | | | tance | , | | | | | | 25. | • | Just
resis
a)
b) | as ele
tance
R/4
R/2 | of the | y is su
e 60W | ipplie
bulb | d at 2
for us | 20V f
se in l | for do
India i
: | mestic
is R, th | at o | se in
of 60
c)
d) | India
)W bu
R
2R | , it is
ulb fo | sup
or US | plied
SA w | d at 1
vill be | 10V i | in US. | A. If th | ie | | | | 26. In a wheat stone bridge, three resistances P, Q and R formed by tow resistance S1 and S2 connected in part | aller. The condition for the bridge to be | |---|--| | balanced will be a) $P = R(S1 + S2)$ c) | $P = \frac{(S1+S2)}{}$ | | $\frac{d}{Q} = \frac{1}{S1 S2}$ | Q = 2S1S2 | | Q 51 102 | $\frac{P}{Q} = \frac{(S1 + S2)}{2 S1 S2}$ $\frac{P}{Q} = \frac{R}{S1 + S2}$ | | 27. If an ammeter is to be used in the place of voltmeter, | then we must connect with the ammeter a | | -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | c) High resistance in series
d) Low resistance in series | | • - | magnetic flux through the surface is | | 28. If the magnetic field is parallel to a surface then the a | C) (fillinge | | a) Zero
b) Small but not zero | d) Large but not infinite | | 29. Two long conductors, separated by a distance 'd' ca
exert a force F on each other. Now the current in or
direction is reversed. The distance is also increase | | | is a) F/3 | c) - 2F/3 | | b) - 2F | d) - F/3 | | A small rod of bismuth is suspended freely between to arrange it self at right angel to the magnetic field a) Ferro magnetic Dia magnetic | en the poles of a strong electromagnet. It is found d. The observation establishes that bismuth is c) Anti ferromagnetic d) paramagnetic | | 31. The dip angle at the equators is | c) 0 ⁰ | | a) 45 ⁰ | c) 0 ⁰ | | b) 90° | , | | In a transformer number of turns in the primary
current in the primary coil is 4A, them that in the | coil are 140 and that of secondary coil are 280. If the secondary coil is c) 6A | | a) 4A | c) 6A
d) 2A | | b) 10A | · | | 33. The potential difference and current in the LCR V = 5 sinwt the power dissipated in the circuit | it
circuit are | | 1 = 4 sinwt
a) 40 W | c) 10 W | | b) 4 W | d) 20 W | | 34. In an inductive coil, current | c) Lags behind emf by π | | a) Lags behind emf by $\frac{\pi}{2}$ | Land vallage are in phase | | b) Leads emf by $\frac{\pi}{2}$ | d) Both current and voltage are in pridate | | 35. Which part of electromagnetic spectrum is us | ed for viewing objects through haze and fog? | | 35. Which part of electromagnetic spectrum is as
a) γ – rays | 0) 11/-10/2 | | b) X - rays | d) UV rays | When an unpolarised light of intensity lo is incident on a polarising sheet, the intensity of the light 36. which does not get transmitted is Ιo a) 4 b) zero In a certain double shit experimental arrangement, interference fringes of width 1 mm each are observed when light of wavelength, 5000 Ao is used keeping the set up unaltered, if the source is replaced by another of wavelength 60000 then the fringe width will be 1 mm a) 0.5 mm c) 1.2 mm d) 1.5 mm b) If the refractive index for water and glass are 4/3 and 5/3 respectively and the light is tending to go from glass to water, what is the value of critical angle sin^{-1} (3/5) 4/5 sin^{-1} (4/5) d) 3/5 b) Two lenses of power - 15D and + 5D are in contact with each other. The local length of the combination is a) + 10 CM -10 CM -20 CM d) + 20CM b) If the behavior of the light rays through a convex looking lens is shown in the figure then 40. c) $\mu_1 < \mu_2$ a) $\mu_1 = \mu_2$ d) $\mu_1 \leq \mu_2$ $\mu_1 > \mu_2$ The work functions for metals A, B and C are respectively 1.92 ev, 2 ev and 5ev. Accordingly to einstein's equation the metals which will emit photo electrons for a radiation of wave length 4100 Ao are a) A and C A and B only All the three metals None of the above d) R₁ and R₂ are the radii of atomic nuclei of mass numbers 64 and 27 respectively the ratio of R₁/R₂ is 42. 4/3 c) 64/27 a) 27/64 d) b) 1 When it disintegrates, a certain radioactive nuclide P-emists, γ - radiation and a single α – particle, 43. forming a daughter product Q, which one of the following statements are correct P and Q are isotopes of the same element c) The mass number of P is one less than that of Q P has more protons in its nucleus than Q The mass number of P is one more than d) b) that of Q | 44. | a) F | clear fission process is always accompanied
Positron
Neutron | by er
c)
d) | nission of
Electron
Meason | |-------|--------------------|---|--------------------|--| | 45. | A proto
Broglie | on and an $lpha$ - particle are accelerated through wave length of the proton to that the $lpha$ - par | h the :
ticle v | same potential difference. The ratio of de
vill be | | | , | 2:1
1:1 | d) | $1:2$ $2\sqrt{2}:1$ | | 46. | | i conductor is known to have an electron con
ntration of 5 x 1012 the semiconductor is | ncentr | ation of 8 X 10 ¹³ cm ³ and hele | | | a)
b) | n – type semiconductor
p– type semiconductor | c)
d) | Intrinsic semiconductor None of the above | | 47. | If the a) b) | forward voltage in a diode is increased, the Increases Fluctuates | width
c)
d) | of the depletion layer Decreases Does not change | | .48. | that t | nsistor is operated in common emitter confique the change in the base current from 100 µA on from 5mA to 10 mA. The current gain is | guration
to 150 | on at constant collector voltage V _c = 1.5 V suc
) µA produces a change in the collector | | | a)
b) | 67
75 | c)
d) | 100
50 | | - 49. | What a) b) | should be the length of the dipole antenna f
0.5 M
0.75 M | or a c
c)
d) | 1 M | | 50 | | hould be the frequency of carrier wave with lation? | refere | nce to message signal for the process of | | | | $f_c < fs$
$f_c > fs$ | c
d |) $f_0 = fs$
) None of the above | | | | | | | @@@@@@