
Retrieving and Processing PubMed Records via
easyPubMed (pdf)

Damiano Fantini, Ph.D.
February 25, 2017

PubMed is an online repository of references and abstracts of publications in the fields of medicine and life
sciences. PubMed is a free resource that is developed and maintained by the National Center for Biotechnology
Information (NCBI), at the U.S. National Library of Medicine (NLM), located at the National Institutes of
Health (NIH). PubMed homepage is located at the following URL: https://www.ncbi.nlm.nih.gov/pubmed/.
Alternatively, PubMed can be programmatically queried via the NCBI Entrez E-utilities interface.

easyPubMed is an R interface to the Entrez Programming Utilities aimed at allowing an easy and
smooth programmatic access to PubMed. The package is suitable for batch downloading large volumes of
records (via the batch_pubmed_download() function) and also comes with a set of functions to perform basic
processing of the PubMed query output. easyPubMed can request and handle PubMed records in either XML
or TXT format. This vignette covers the key functions of the package and provides informative examples.

Retrieving data from PubMed

The first section of this tutorial covers how to use easyPubMed for querying Entrez and how to retrieve or
download the desired PubMed records from the Entrez History Server.

A simple PubMed query via easyPubMed

Performing a standard PubMed search via easyPubMed is a two-step process: 1) the PubMed query step and
2) the data retrieval step. PubMed is queried via the get_pubmed_ids() function, that only takes one Query
string as argument. The standard PubMed synthax applies, i.e. you can use the same tags-filters as in the
This has two results. 1) the query results are posted on the Entrez History Server ready for retrieval and 2)
the function returns a list containing all information to access and download these resuts from the server.
Data can be retrieved from the History Server via the fetch_pubmed_data() function. The records can be
requested in either XML or TXT format. Here following you can find a very simple example.
my_query <- "Damiano Fantini[AU]"
my_entrez_id <- get_pubmed_ids(my_query)
my_abstracts_txt <- fetch_pubmed_data(my_entrez_id, format = "abstract")
my_abstracts_txt[1:10]

[1] ""
[2] "1. Oncotarget. 2017 Dec 16;9(4):4537-4548. doi: 10.18632/oncotarget.23344."
[3] "eCollection 2018 Jan 12."
[4] ""
[5] "APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved"
[6] "survival, mutations in DNA damage response genes, and immune response."
[7] ""
[8] "Glaser AP(1)(2), Fantini D(1)(2), Wang Y(1)(2), Yu Y(1)(2), Rimar KJ(1)(2),"
[9] "Podojil JR(3), Miller SD(3), Meeks JJ(1)(2)."
[10] ""

1

https://www.ncbi.nlm.nih.gov/pubmed/

Here, the PubMed records were retrieved in the Abstract format. The formats supported by Entrez and
easyPubMed are the following: “asn.1”, “xml”, “medline”, “uilist”, “abstract”. The following example
shows how to retrieve PubMed records in XML format. In this case, the resulting output will be a
XMLInternalDocument and XMLAbstractDocument class object. To access such XML object, we recommend
using the functions included in the XML package. For example, it is possible to extract the title of each
Article as follows.
my_abstracts_xml <- fetch_pubmed_data(my_entrez_id)
class(my_abstracts_xml)

[1] "XMLInternalDocument" "XMLAbstractDocument"

#
apply "saveXML" to each //ArticleTitle tag via XML::xpathApply()
my_titles <- unlist(xpathApply(my_abstracts_xml, "//ArticleTitle", saveXML))
#
use gsub to remove the tag, also trim long titles
my_titles <- gsub("(^.{5,10}Title>)|(<\\/.*$)", "", my_titles)
my_titles[nchar(my_titles)>75] <- paste(substr(my_titles[nchar(my_titles)>75], 1, 70),

"...", sep = "")
print(my_titles)

[1] "APOBEC-mediated mutagenesis in urothelial carcinoma is associated with..."
[2] "A Carcinogen-induced mouse model recapitulates the molecular alteratio..."
[3] "DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer."
[4] "The evolving genomic landscape of urothelial carcinoma."
[5] "Chromatin association of XRCC5/6 in the absence of DNA damage depends ..."
[6] "The prion protein is critical for DNA repair and cell survival after g..."
[7] "Rapid inactivation and proteasome-mediated degradation of OGG1 contrib..."
[8] "Understanding different functions of mammalian AP endonuclease (APE1) ..."
[9] "Critical lysine residues within the overlooked N-terminal domain of hu..."
[10] "APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the..."
[11] "APE1/Ref-1 regulates PTEN expression mediated by Egr-1."

Downloading and saving records as XML or TXT files

Instead of retrieving PubMed records as character- or XML-class objects, it is also possible to download all
records of a PubMed query and save them as txt or xml files on the local computer. Downloaded records will
be saved locally as one or more files with the same prefix followed by a sequential number and the txt or xml
extension. If a destination folder is not specified, the current directory will be used as target directory for
the download. The batch_pubmed_download() function is suitable for downloading very large volumes of
PubMed records.
new_query <- "(APE1[TI] OR OGG1[TI]) AND (2012[PDAT]:2016[PDAT])"
out.A <- batch_pubmed_download(pubmed_query_string = new_query,

format = "xml",
batch_size = 150,
dest_file_prefix = "easyPM_example")

[1] "PubMed data batch 1 / 2 downloaded..."
[1] "PubMed data batch 2 / 2 downloaded..."

out.A # this variable stores the name of the output files

[1] "easyPM_example01.xml" "easyPM_example02.xml"

2

Manipulating PubMed records

The second section of this tutorial covers those easyPubMed functionalities aimed at transforming and
analyzing PubMed records. While using the functions from the XML package is usually the recommended
approach to deal with data stored in XML format, there are some exceptions where it may be convenient to
coerce these records to Strings. easyPubMed comes with a set of dedicated functions that perform this task
and manipulate the results. These functions will be covered in this section.

Extracting Affiliation data from a single PubMed record

TO convert XML PubMed records to strings, the articles_to_list() function is used. This function converts
an an XML object containing PubMed records (identified by the \\PubmedArticle tag) into a list of individual
records from or an XML file obtained as shown above. Each record in the list is a string (character-class
vector of length 1) that still includes XML tags.
my_PM_list <- articles_to_list(my_abstracts_xml)
class(my_PM_list[[4]])

[1] "character"

cat(substr(my_PM_list[[4]], 1, 984))

<PubmedArticle>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">28169993</PMID>
<DateRevised>
<Year>2017</Year>
<Month>06</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-4820</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Nature reviews. Urology</Title>
<ISOAbbreviation>Nat Rev Urol</ISOAbbreviation>
</Journal>
<ArticleTitle>The evolving genomic landscape of urothelial carcinoma.</ArticleTitle>
<Pagination>
<MedlinePgn>215-229</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nrurol.2017.11</ELocationID>
<Abstract>
<AbstractT

Affiliations or other fields of interest can be extracted from a specific record using the custom_grep() function,
that combines regular expressions (regexpr, gsub) and substring extraction (substr). The fields extracted from

3

the record will be returned as elements of a list or a character vector.
curr_PM_record <- my_PM_list[[4]]
custom_grep(curr_PM_record, tag = "DateCompleted")

list()

custom_grep(curr_PM_record, tag = "LastName", format = "char")

[1] "Glaser" "Fantini" "Shilatifard" "Schaeffer" "Meeks"

easyPubMed implements out of the box a tool for extracting data from a PubMed record: the article_to_df()
function. This function accepts a string as input (typically, an element of the list outputted by an arti-
cles_to_list() call) and returns a data.frame. Each row corresponds to a different author; columns include
values extracted from the following fields: c(“pmid”, “doi”, “title”, “abstract”, “year”, “month”, “day”,
“jabbrv”, “journal”, “lastname”, “firstname”, “address”, “email”). One of these fields corresponds to the
Article Abstract text (column n. 2). If the full text Abstract is not required, it is possible to limit the number
of chars retrieved from this field by setting the max_chars argument to a small integer (>= 1).
my.df <- article_to_df(curr_PM_record, max_chars = 18)
#
Fields extracted from the PubMed record
colnames(my.df)

[1] "pmid" "doi" "title" "abstract" "year"
[6] "month" "day" "jabbrv" "journal" "lastname"
[11] "firstname" "address" "email"

#
Trim long strings and then Display some content: each row corresponds to one author
my.df$title <- substr(my.df$title, 1, 15)
my.df$address <- substr(my.df$address, 1, 19)
my.df$jabbrv <- substr(my.df$jabbrv, 1, 10)
my.df[,c("pmid", "title", "jabbrv", "firstname", "address")]

pmid title jabbrv firstname address
1 28169993 The evolving ge Nat Rev Ur Alexander P Northwestern Univer
2 28169993 The evolving ge Nat Rev Ur Damiano Northwestern Univer
3 28169993 The evolving ge Nat Rev Ur Ali Northwestern Univer
4 28169993 The evolving ge Nat Rev Ur Edward M Northwestern Univer
5 28169993 The evolving ge Nat Rev Ur Joshua J Northwestern Univer

When affiliation info are identical for multiple authors, they are usually omitted as in the example above.
Addresses may be imputed for all authors in the dataframe by setting the “autofill” argument to TRUE.
my.df2 <- article_to_df(curr_PM_record, autofill = TRUE)
my.df2$title <- substr(my.df2$title, 1, 15)
my.df2$jabbrv <- substr(my.df2$jabbrv, 1, 10)
my.df2$address <- substr(my.df2$address, 1, 19)
my.df2[,c("pmid", "title", "jabbrv", "firstname", "address")]

pmid title jabbrv firstname address
1 28169993 The evolving ge Nat Rev Ur Alexander P Northwestern Univer
2 28169993 The evolving ge Nat Rev Ur Damiano Northwestern Univer
3 28169993 The evolving ge Nat Rev Ur Ali Northwestern Univer
4 28169993 The evolving ge Nat Rev Ur Edward M Northwestern Univer
5 28169993 The evolving ge Nat Rev Ur Joshua J Northwestern Univer

4

Automatic Data Extraction from XML PubMed Records

To retrieve author information and publication data from multiple XML records at once, it is possible to use
the table_articles_byAuth() function. This function relies on the funcions discussed above and returns a
dataframe including all the fields extracted in the previous example. The function accepts five arguments. *
pubmed_data: an XML file or an XML object with PubMed records
* max_chars and autofill: same as discussed in the previous example * included_authors: one of the
following options c(“first”, “last”, “all”). The function can return data corresponding to the first, the last or
all the authors for each PubMed record. * dest_file: if not NULL, the function attempts writing its output
to the selected file. Existing files will be overwritten.
new_PM_query <- "(APEX1[TI] OR OGG1[TI]) AND (2010[PDAT]:2013[PDAT])"
out.B <- batch_pubmed_download(pubmed_query_string = new_PM_query, dest_file_prefix = "apex1_sample")

[1] "PubMed data batch 1 / 1 downloaded..."

Retrieve the full name of the XML file downloaded in the previous step
new_PM_file <- out.B[1]
new_PM_df <- table_articles_byAuth(pubmed_data = new_PM_file, included_authors = "first", max_chars = 0)
Alternatively, the output of a fetch_pubmed_data() could have been used
#
Printing a sample of the resulting data frame
new_PM_df$address <- substr(new_PM_df$address, 1, 28)
new_PM_df$jabbrv <- substr(new_PM_df$jabbrv, 1, 9)
print(new_PM_df[1:10, c("pmid", "year", "jabbrv", "lastname", "address")])

pmid year jabbrv lastname address
1 24190502 2015 Arch. Tox Bach Grup de Mutagènesi, Departam
2 24186001 2014 Tumour Bi Yan Department of Clinical Labor
3 24175791 2014 Asian Pac Li Cancer Center, Daping Hospit
4 24121118 2014 Mech. Age Lillenes Centre for Molecular Biology
5 24101388 2014 J. Physio Antushevich The Kielanowski Institute of
6 24075420 2014 DNA Repai Gu State Key Laboratory of Repr
7 23999824 2014 Tumour Bi Chen Department of Hepatobiliary
8 23959014 2014 Biol. Res Alanazi Genome Research Chair, Depar
9 23909557 2014 Genet Tes Wang Department of Oncology, Shan
10 23892003 2014 Exp. Cell Yan State Key Laboratory of Repr

References

• Sayers, E. A General Introduction to the E-utilities (NCBI) https://www.ncbi.nlm.nih.gov/
books/NBK25497/

• PubMed Help (NCBI) https://www.ncbi.nlm.nih.gov/books/NBK3827/
• Howto: basic usage of easyPubMed - an example Tutorial/Blog Post
• Howto: using easyPubMed for a targeting campaign Tutorial/Blog Post

Feedback and Citation

Thank you very much for using easyPubMed and/or reading this vignette. Please, feel free to contact me (au-
thor/maintainer) for feedback, questions and suggestions: my email is <damiano.fantini(at)gmail(dot)com>.

easyPubMed Copyright (C) 2017 Damiano Fantini. This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software Foundation;

5

https://www.ncbi.nlm.nih.gov/books/NBK25497/
https://www.ncbi.nlm.nih.gov/books/NBK25497/
https://www.ncbi.nlm.nih.gov/books/NBK3827/
http://www.biotechworld.it/bioinf/2016/01/05/querying-pubmed-via-the-easypubmed-package-in-r/
http://www.biotechworld.it/bioinf/2016/01/21/scraping-pubmed-data-via-easypubmed-xml-and-regex-in-r-for-a-targeting-campaign/

either version 2 of the License, or any later version. This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

If you are using easyPubMed for a scientific publication, please name the package in the Materials and
Methods section of the paper. Thanks! Also, I am always open to collaborations. If you have an idea you
would like to discuss or develop based on what you read in this Vignette, feel free to contact me via email.
Thank you.

SessionInfo

sessionInfo()

R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.3 LTS
##
Matrix products: default
BLAS: /usr/lib/libblas/libblas.so.3.6.0
LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
other attached packages:
[1] easyPubMed_2.5 XML_3.98-1.9
##
loaded via a namespace (and not attached):
[1] compiler_3.4.3 backports_1.1.2 magrittr_1.5 rprojroot_1.3-2
[5] htmltools_0.3.6 tools_3.4.3 yaml_2.1.16 Rcpp_0.12.15
[9] stringi_1.1.7 rmarkdown_1.8 knitr_1.19 stringr_1.3.0
[13] digest_0.6.15 evaluate_0.10.1

6

	Retrieving data from PubMed
	A simple PubMed query via easyPubMed
	Downloading and saving records as XML or TXT files

	Manipulating PubMed records
	Extracting Affiliation data from a single PubMed record
	Automatic Data Extraction from XML PubMed Records

	References
	Feedback and Citation
	SessionInfo

