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Unit 8 

Different Models to Explain the Phenomena of Growth and Obsolescence of 
Literature 

I. Objectives 

The objectives of the Unit are to discuss: 

• Different models which are useful to explain the data on growth of literature-- 
exponential, logistic, power, Gompertz, etc. 

• Obsolescence of literature 
• Relation between growth of sources and items, growth rates and obsolescence 

rates, etc. 
 
 
II. Learning Outcome 

It is an important concept and you have now learned it. At the end of this module, you 
have also learnt various growth models and their characteristics; also, the relations 
among the various models; how to identify the trend and how to compute growth 
rates, doubling time, etc. 

 
III. Module Structure 
 
1. Introduction 
2. Different Models of Growth 

2.1 The Exponential Model 
2.2 The Logistic Model 
2.3 The Power Function 
2.4 The Gompertz Model 
2.5 Ware’s Model 

3. Selecting a Trade Type 
3.1 Relationship between Growth of Sources (Journals) and Items (Articles) 

4. Obsolescence of Literature 
4.1 Relation between Growth rate and Obsolescence rate 

5. Summary 
6. References 

1. Introduction 

The numbers of scientific journals including the abstracting periodicals are simple 
indicators of scientific growth. Price in 1963 argued observed that literature doubles 
approximately once in fifteen years. Neelameghan (1963) analyzed the documents on 
the history of medicine in India for the period 1954-61, during which period Indian 
contribution was 65% and foreign was 30%. He studied the growth of Indian medical 



 

societies and medical periodicals between 1780 and 1920. He also studied the 
coverage of Indian medical literature in Index Medicus and Experta Medica and it was 
found that they covered respectively only 38% and 13.5% of the Indian literature. 
Since then a number of articles were published on this topic, particularly the growth 
of literature in different subjects and on various growth models. The number and the 
growth characteristics (of articles, journals, scientists, discoveries, etc.) have been 
matters of some debate for considerable time. For instance, Price (1963) argued that: 

• Once in fifty years the number of universities, labor force, population, etc. 
doubles; 

• Once in twenty years GNP, discoveries, scientists, college entrants/1000 
population doubles; 

• Once in fifteen years the number of scientific journals doubles; 
• Once in ten years the number of articles / literature in a field (particularly in 

science) doubles; and 
• Once in two years the number of web sites doubles 

As observed by many, the growth of publications passes through the following four 
stages (Price (1963), Michael Mabe (2003) and many others): 

• The preliminary period of growth in which the absolute increments are small 
although the rate of increase is large – this is the first stage; 

• During the period of exponential growth, the number of publications in a field 
double at regular intervals as a result of a high rate of growth – this is the stage 
2; 

• The rate of growth declines but the annual increments still remain 
approximately constant, in stage 3; and 

• In the fourth stage, both the rate of increment and the absolute increase decline 
and eventually approach to zero. 

The growth curves which explain the above four steps are also referred to as S-shape 
curve. A typical S-shape curve is given in Figure 1. This Figure clearly shows the four 
different stages – in X – axis, 0 to 3 is the first stage; 3 to 5 is the second stage; 5 to 7 
is the third stage and 7 to 8 is the fourth stage. 

The growth generally adopts an S-shaped pattern and is symmetrical about its point of 
infection. Price in 1963 estimated that the number of scholarly periodical titles being 
published at the end of the twentieth century would exceed one million. This however 
has not come true.  

 

 

 

 



 

Fig. 1: A Typical S-shape Curve. 

He argued that the logistic growth of knowledge over a period of time is a result of a 
number of applications of intellectual innovations. A logistic curve was fitted to the 
cumulative number of new publications appearing every year in science. He has also 
studied the growth of literature covered by Physics Abstracts during 1900-1950. He 
observed that except for the interruptions during the two world wars the literature has 
been increasing at exponential rates with a doubling time of about twelve years. 
Meadows (1993, 1998) on the other hand observed that estimates of the number of 
journals varied from 10,000 in 1951 to 70,000 in 1987. 

Mabe (2003) in his study also observed that journal growth rates have been 
remarkably consistent over time with average rates of 3.46%, since 1800. He has in 
fact observed: 

• From 1900 to 1940, the number of active journal titles grew at an actual rate of 
3.23%, a doubling time of twenty-two years. 

• From 1945 to 1976, the number of journals grew at an annual rate of 4.35%, 
representing a doubling time of sixteen years. 

• Since 1977, the number of journals grew at 3.26%. Growth rates were very 
high; this trend continued until mid 1970s. Mabe pointed out that the slow 
growth rates after the mid 1970s were due to 

• The oil crisis of the 1970s 
• The increasing public awareness of potential ecological disaster and 
• The turning away from nuclear technology in the 1950s.  

These factors, certainly lead to a slow down of government support for research. 
Yamazaki (1998), with the following three assumptions 

i. The number of journals in a given subject is growing exponentially in time, 
ii. Concurrently each journal is also augmenting the number of papers on the 

subject exponentially in time, and 
iii. The rate of growth of articles in individual journal is the same for all journals, 



 

Studied the number and rate of growth of scientific journals. His review critically 
assesses studies based on the 'ecological approach' to journal publishing growth. He 
concluded that the annual rate of growth of scientific journals is 1.85% from the end 
of the Eighteenth century. Naranan (1970) has shown that ‘a frequency distribution 
(J(p)) of the number of journals with p articles is of the form  

  J (p) ∝ p-α  

With α ≈ 2, this model is similar to that of Bradford’s law. The mathematical 
concepts of growth have become popular through the largely circulated report of the 
Club of Rome (Donella and Others (1972)). There are several models which are very 
useful to apply growth of literature. Some of these models are discussed below. 

2. Different Models of Growth 

2.1 The Exponential Model 
An exponential model is associated with the name of Thomas Robert Malthus (1766-
1834) who first realized that any species could potentially increase in numbers 
according to a geometric series. Exponential growth represents an increase with a 
fixed proportion of total population for each unit of time. For example, if a species has 
non-overlapping populations (e.g., annual plants), and each organism produces “b” 
offspring, then, the initial size of the population, say “a”, in time t=0,1,2, is equal to 
(12): 

Yt = a.bt 
In this case, the growth rate is (b-1) * 100. This model is also popularly known as 
exponential model or log-linear model, and often expressed it as: 

ln y = ln α + β x, 

Here β is the slope of curve, and measures proportional changes in y for a given 
absolute change in x. The model not only provides the rate of growth (the exponential 
parameter), but also the rate at which the size of the population doubles. The 
exponential growth has also been linked and compared with the size of compound 
interest.  The exponential function assumes a convex shape in its graphical 
presentation. In exponential growth, the increase is proportional to population size, 
i.e. if the population is y at time t then  

β=
dx
dy

y
.1 ,  

where β is the Malthusian parameter of the population. In terms of differential 
equations,  

if Y is the population, and dy/dx  its growth rate, then its relative growth rate 

is β=
dx
dy

y
.1  If the relative growth rate is constant,  it is not difficult to verify that the 



 

solution to this equation is P(x) = exp(βx). When calculating or discussing relative 
growth rate, it is important to pay attention to the units of time being considered. 

  

Fig. 2: Total # of scientific journals and abstract journals, as a function of date 

(Source: Little Science Big Science) 

If the growth rate is relative to the size of the population, then it is generally referred 
to as relative growth rate. It is also called the exponential growth rate, or the 
continuous growth rate. The exponential function can be applied to both growth 
process as well as decay process (obsolescence studies). The examples of growth 
process are given below (Croxton and Cowden (1966)): 

• Growth of literature – growth of articles, journals, author population, 
universities, etc.; 

• Microbiology (growth of bacteria); 
• Conservation biology (restoration of disturbed populations); 
• Insect rearing (prediction of yield); 
• Plant or insect quarantine (population growth of introduced species); and 
• Fisheries (prediction of fish dynamics). A typical exponential curve is shown 

below: 

The doubling time is the period of time required for a quantity to double in size or 
value. It is applied to population growth, library collection, number of universities or 
colleges or students and many other things which tend to grow over time. When the 
relative growth rate (not the absolute growth rate) is constant, the quantity 
undergoes exponential growth and has a constant doubling time or period which can 
be calculated directly from the growth rate. This time can be calculated by dividing 

http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Population_growth
http://en.wikipedia.org/wiki/Inflation
http://en.wikipedia.org/wiki/Exponential_growth


 

the natural logarithm of  2 by the exponent of growth, or approximated by dividing 70 
by the percentage growth rate; that is: 

 

The doubling time helps us to understand the long-term impact of growth than simply 
viewing the percentage growth rate. The doubling time is a characteristic unit (a 
natural unit of scale) for the exponential growth equation and its converse for 
exponential decay is the half life. For example with an annual growth rate of 4.8%, 
the doubling time is 14.78 years and a doubling time of 10 years corresponds to a 
growth rate between 7% and 7.5% (actually about 7.18%). Some doubling times 
calculated with this formula are shown in the following Table: 

 

r% Dt r% Dt r% Dt r% Dt 
0.1 693.49 3.0 23.45 6.0 11.90 9.0 8.04 
0.5 138.98 3.5 20.15 6.5 11.01 9.5 7.64 
1.0 69.66 4.0 17.67 7.0 10.24 10.0 7.27 
1.5 46.56 4.5 15.75 7.5 9.58 15.0 4.96 
2.0 35.00 5.0 14.21 8.0 9.01 20.0 3.80 
2.5 28.07 5.5 12.95 8.5 8.50 20.0 3.80 

Table1: Doubling times Dt given constant r% growth 

 

Given the two measurements of a growing quantity, q1 at time t1 and q2 at time t2, 
and assuming a constant growth rate, you can calculate the doubling time as 

 
The equivalent concept to doubling time for a material undergoing a constant negative 
relative growth rate or exponential decay is the half-life 

The Calculation of Simple Percentage Growth rate 

The percent change from one period to another is calculated from the formula: 

  

http://en.wikipedia.org/wiki/Natural_logarithm
http://en.wikipedia.org/wiki/Characteristic_unit
http://en.wikipedia.org/wiki/Exponential_decay
http://en.wikipedia.org/wiki/Half-life


 

Where: 

GR(%) = Percent Growth Rate 
yt+1 = Value at time (t+1) 
yt = Value at time t 

The annual percentage growth rate is simply the percent growth divided by N, the 
number of years. 

Example 

In 1980, the number of documents in Library A was 250,000. This grew to 280,000 in 
1990. What is the annual percentage growth rate of library collection in Library A? 

yt  =  250,000,    yt+10  = 280,000  and   N = 10 
N = 10 

  

 = 1.2% 

The library collection grew 12 percent between 1980 and 1990 or at a rate of 1.2 
percent annually 

2.2 The Logistic Model 

The Belgian mathematician Pierre Verhulst (1838) developed the Logistic model (17). 
A typical logistic curve is shown in Figure 3. He suggested that the rate of population 
increase might depend on population density: 

tbc
ay =         

 
The algebra of the logistic family is something of a hybrid. It mixes together the 
behaviors of both exponentials and powers (proportions, like rational functions). The 
parameters b and c are simply the y-intercept and the base of the component 
exponential function bc t. The rate at which a logistic function falls from or rises to its 
limiting value is completely determined by the exponential function in the 
denominator, by the parameters b and c. 
 

Here, as observed in exponential function, one notice that logistic function depends on 

the population itself, i.e., .)1( y
k
y

dx
dy

−= λ  Pearl and Reed have independently 

developed and they used the curve to describe the growth of albino rat and tadpole’s 
tail, the number of yeast cells, and most interesting of all, the number of human 
beings in a geographical area. The curve is also known as Pearl and Reed curve.  



 

The curve depicts three things, as explained in section 1: 
i. Show growth in the early stage. 

ii. Intermediate period of rapid growth 
iii. An approach to maturity. 

 

Fig. 3: A typical logistic curve 

2.3 The Power Function 

It is a log-log or double log model. It is mathematically represented as: 

 ty  = α β        

i.e., log y = α+ βlog t 

Sometimes, the power model is also represented as  

             yt = α+ βt γ  
 

where α, β > 0. For 0 < γ< 1, the function y takes a concave shape, but without an 
upper limit. For γ = 1, the function y assumes a linear shape. For γ > 1 the function y 
takes a convex shape. A typical Power model is shown in Fig. 4. 
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 Fig. 4: A Typical Power Model 

2.4 The Gompertz Model 

The Gompertz (1825) model describes a trend in which the growth increment of the 
logarithms is declining by a constant percentage. Thus, the natural value of trend 
would show a declining ratio of increment, but the ratio does not decrease by either a 
constant amount or a constant percentage. The equation for the Gompertz curve is  

 
tcaby =      

 i.e., log y = log a + (log b) ct  

The Gompertz and logistic curves are similar in that they both can be used to describe 
an increasing series, which is increasing by a decreasing percentage of growth, or a 
decreasing series, which is decreasing, by a decreasing percentage of declines. They 
differ in that the Gompertz curve involves a constant ratio of successive first 
differences of the log y values, while the logistic curve entails a constant ratio of 
successive first differences of 1/y values.  

2.5 Ware’s Model 

The other equally well-known model is Ware’s model. It is represented as 

 y =  δ (1-φ-t)        δ, φ > 1. 

The Figure 5 shows a typical Ware’s model. 

Fig. 5: A Typical Ware’s Model 

3. Selecting a Trade Type 

There are many trend types. It is difficult to decide which one to use. Following are 
the simple guidelines to select the appropriate model (Croxton and Cowden): 
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i. If the approximate trend, when plotted on semi-logarithmic paper is strait line 
or if the first differences of logarithms are constant, use an exponential model. 

ii. If the first differences resemble a skewed frequency curve, or if the first 
differences of logarithms are changing by a constant percentage, use a 
Gompertz model. 

iii. If the first difference resembles a normal frequency curve or if the first 
differences of reciprocals are changing by a constant percentage, use logistic 
model. Also, it the approximate trend value (or the original data), when 
expressed, as percentage of a selected asymptote, appears linear on arithmetic 
probability paper, use a logistic model. 

Egghe and Rao (1992) have suggested an innovative methodology for identification 
and classification of growth models. They have classified the growth models based on 
growth functions, i.e. α1 and α2. They have denoted the growth function as C(t) 
(theoretical or concrete data). These growth rate functions may be defines as: 

α1(t) = C(t+1)/C(t)  and  α2 (t) = C (2t)/C(t)  
                                                                             t = 1,2,3, …. 

α1 is called the first growth rate function and α2 is called the second growth rate 
function. The basic idea here is that the graph of α1 and α2 are much more different 
than the corresponding graphs of other growth models. The theoretical relationship 
between α1 and α2 has been worked out to be: 

 α2(t) = α1(2t-1) α1(2t-2) …. α1(t)  

According to them, the method of determining the growth goes back to the intrinsic 
growth rate properties of the data for a good understanding of what is really going on. 
The authors have also suggested that in order to get a simple clue for the selection of 
the best model, the plot of two growth rate functions for different mathematical 
models (namely; exponential, power, linear, logistic and Gompertz) may be drawn 
and visualized. These graphs can be classified as: Type 1 – increasing, Type 2 – 
Constant, type 3 – decreasing, Type 4 – increasing and then decreasing, as shown in 
Table 2. 

Types of model 
Growth rate function 
α1 α2 

(1) (2) (3) 
Exponential Type 2 Type 1 
Logistic or Gompertz (0<b, c<1) Type 3 Type 4 
Gompertz (b, c>1) Type 1 Type 1 
Power (α >0, 0< γ ≤ 1) Type 3 Type 1 

Power (α >0, γ >1) Type 4 Type 1 
Power (α > 0) Type 3 Type 2 



 

Table 2: Classification of growth models using growth rate function 

 

Wolfram et.al (1990) explored the Linear, Exponential and Power model to the 
growth of publications in a period of 20 years, as reflected in the databases belonging 
to science, technology, social science and humanities. They found that, in most cases, 
the mathematical model that provided the best fit to the observed data was a power 
model, rather than an exponential, logistic or a linear model; and they concluded, 
“The breakdown in exponential growth is well underway. The power model was in 
particular best, because it has the advantages of modeling the growth behavior of both 
the linear and exponential models.  

Egghe and Rao (1992) clarified the formal distinctions between the four models that 
Wolfram et al. examined, pointing out that any linear model should more properly be 
recognized as a power model of a special kind, and introducing two other comparable 
models, the Gompertz and Ware functions, that Wolfram et al. did not consider. 
Revisiting the data collected in the earlier study, Egghe and Rao observed that an 
exponential model was never the best fit. Indeed, they have shown that such a model 
could never have been expected to provide the best fit, given that the rate of growth in 
every database declined steadily over the years studied.  They also found that a power 
model fitted best in cases of convex growth and that a Gompertz model generally 
fitted best in cases of S-shaped growth. Egghe and Rao’s findings suggested that, in 
modeling the growth of literature, the choice between an exponential and a logistic 
function may have always been a false one, and that we should instead be asking 
whether growth is best described by a power law or a Gompertz function.  

3.1 Relationship between Growth of Sources (Journals) and Items (Articles) 

Egghe (2005) observed that growth rates of sources (journals) usually are different 
from growth rates of items (articles); further he argued, “The references in 
publications grow with a rate that is different (usually higher) from the growth rate of 
the publications themselves.” His study showed that Naranan’s model (exponential 
model: y=act) hardly fits the empirical data. He showed that the "simple" 2-
dimensional informetrics models of source-item relations are not able to explain this. 
He has further shown that a linear 3-dimensional informetrics (i.e. adding a new 
source set) is capable to model disproportionate growth. The explanation consists of 
“defining” a set of “super sources” which produce the original sources but which also 
attach the items into the original sources. In this way, disproportionate growth of 
references versus articles can be explained by looking at authors. In the same way, 
disproportionate growth of articles versus journals (a new dataset is compiled from 
the database Econlit) can be explained by considering journal publishers.  Formulae of 
such different growth rates are presented using Lotkaian informetrics and new and 
existing data sets are presented and interpreted in terms of the used linear 3-
dimensional mode. 



 

 

y = 1E-42e0.051x

R² = 0.950

0
200
400
600
800

1000
1200
1400

1940 1960 1980 2000 2020# 
o

f 
Jo

u
rn

al
s

Year

# Jour

Expon. (# 
Jour)

Sahoo (2006) in his thesis compared the growth of the journals with that of the 
articles, in the area of software studies. He observed that the correlation coefficient (r) 
between the number of journals and the articles is 0.9811. That is, 96% of the 
variation in y (articles) is due to the variation in x (journals) – higher the number of 
journals, the higher the number of articles. However, for the case of World 
literature he has observed that the correlation coefficient between number of journals 
and the number of articles published is only 0.8517. Unlike India, the correlation is 
not so high for the world literature. Figures 6 and 7 shows the growth rate curves for 
journals and articles published by the journals for India and World literature 
respectively from 1990 to 2003. It has been observed that the growth rates of journals 
have been decreased with the decrease of growth rate of articles. However, for the 
‘India data for the years 1995 and 2001, it has been observed that when there is a 
negative growth in journals, it does not show any negative growth for the article. 
From these observations, Sahoo concluded that only in some cases the growth of 
journals affect the growth of the number of articles. The growth rate of journals and 
articles are not same;  for the Indian literature average growth rate is 9% for both 
journals and the articles and  for the world literature the average growth rate of 
journals is 3% and average growth rate of articles is  9%. 

In another study, Ravichandra Rao and Divya (2010) studied the growth of literature 
in Malaria Research. They also studied the relation among journals, articles and 
authors. Their study suggests that the journals, articles, and authors increase 
approximately exponentially. The number of articles has increased from 3,996 to 57, 
627 from 55-65 to 96-05. Also the number of journals has been increased 503 to 3,072 
from 55-65 to 96-05. The R2 value for the trend for journals, articles, and authors are 
0.9502, 0.9475 and 0.9651 respectively; the low R2 value are perhaps due to the less 
number of data sets; the Figures 8-10 are much more convincing that the data on 
journals, articles, and authors increase exponentially. Under the assumption that the 
data confirm to exponential model, the growth rates have been computed; the growth 
rates of the journals, articles and authors are 5.31%, 7.38%, and 10.06% respectively. 
The most important observation is that the number of least productive journal has 
been increased to 2,951 from 463. This perhaps due to  

• Interdisciplinary nature of research in Malaria and related topics 
• May be an incomplete bibliography 
• High growth rates (exponential in nature!) of journals and articles 
 
 
 
 
 
 
 
 



 

Fig. 8: Growth curve of journals 

 

 

 

 

 

 

Fig. 9: Growth curve of articles 

Fig. 10: Distribution of author 

An attempt was also made to analyze the chemical literature based on the data from 
Chemical Abstracts. The Fig. 11 shows the growth trend with its R2. The growth rate 
is 5.98. 

 

Fig. 11: Growth of chemical literature 
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4. Obsolescence of Literature 

‘Obsolete’ generally means out of date or no longer in use. The process of being 
obsolete is known as obsolescence. It is also often referred to as ‘phenomenon of 
replacement.’ The term obsolescence is used for the first time by Gross and Gross in 
1927. The authors analyzed the references in the 1926 volume of the journal of 
chemical literature and observed that the number of references falls to one-half in  

fifteen years. Obsolescence is thus a characteristic of scientific and technical 
literature.  Burton and Kebler (1960) are the first to use the term ‘half-life’ in 1960. It 
is defined as ‘the time during which one-half of all the currently active literature 
published.’ It is the period of time needed to account for one-half all the citations 
received by a group of publications. The concept of half-life is always discussed in the 
context of diachronous studies. More precisely, Line and Sandison (1974) refer to 
diachronous studies in those that follow the use of particular items through successive 
observations at different points in time, whereas synchronous studies are concerned 
with the plotting the age distribution of material used at one point in time.  

However, there is no reason suppose that the half-life for some subject is the same as 
the median citation age in that subject. Half-life in the context of synchronous data is 
referred to as median age of the citations / references. The use of literature may 
decline much faster with data of ephemeral relevance, if it is in the form of reports, 
thesis, advance communication or pre-print and in the context of advancing 
technology. However, the use of literature may decline slowly when it is descriptive 
(e.g., taxonomic botany) and critical (e.g., literary criticism); it may also decline if it 
deals with concepts (e.g., philosophy). 

Brookes in one of his articles (1970) argued that if growth rates of literature and 
contributors are equal then the obsolescence rate remain constant. In this sense growth 
and obsolescence are related. Ravichandra Rao and Meera (1991) have studied the 
relation between growth and obsolescence of literature, particularly in mathematics. 
Gupta (1998) studied the relationship between growth rates and obsolescence rates 
and half-life of theoretical population genetics literature. He explored the application 
of lognormal distribution to the age distribution of citations over a period of time. 

In the analysis of obsolescence, Brookes argued that the geometric distribution 
expresses the idea that when a reference is made to particular periodical of age t years. 
The geometric distribution is given by  

 (1-a) at-1 , 

‘a (< 1)’ is a parameter – the annual aging factor; it is assumed to be constant over all 
values of t.  

Let  U  =  1 + a2 + a3 + a4 + …. + at + ….   

 i.e., U  = 1/(1-a).   
Similarly if U(t)  =  at + at+1 +  at+1 +  at+2 +  ……   =  at (U(0),  



 

then   U(t)/U(0)   =  at.  
Using this relation, by graphical method, we can compute half-life as well as ‘a’. 

4.1 Relation between Growth rate and Obsolescence rate 

If we assume the literature is growing exponentially at an annual rate of g, we then 
have 

R(T)  = R(0)egT,  

where R(T) is the number of references made to the literature during the year T.   
We also have 

U(0)  =  R(0)/(1-a0)  and U(T)   =   R(T) )/(1-aT)   
where a0 and aT are the annual aging factors corresponding to the years 0 and T 
respectively. Under the assumption that utility remains constant (U(0) = U(T)) , we 
then have 

R(0)/(1-a0)  =  R(T) )/(1-aT) 
By substituting the value of R(T), we thus have a relation between the growth and the 
obsolescence:   

egT  =  (1-aT)/(1- a0) 

However, Egghe and Ravichandra Rao (1992) showed that the obsolescence factors 
(aging factors) ‘a’ is not a constant, but merely a function of time. The authors have 
also shown that the function ‘a’ has a minimum which is obtained at a time t later than 
the time at which the maximum of the number of citations is reached. 

Egghe (1993) also developed a model to study influence of growth on obsolescence. 
He found different results for the synchronous and diachronus study. He argued that 
for an increase of growth implies an increase of the obsolescence for the synchronous 
case and for the diachronous case, it is quite opposite. In order to derive the relation, 
he also assumed the exponential models for growth as well as for obsolescence. In 
another paper, for the diachronous aging distribution and based on a decreasing 
exponential model, Egghe derived first citation distribution. In his study he assumed 
the distribution of the total number of citations received confirms to a classical 
Lotka’s function. The first citation distribution is given by 

φ (t1)  = γ (1- a t1)α-1  

where γthe fraction of papers is that eventually get cited; t1 is the time of the citation, 
‘a’ is the aging rate and α is Lotka’s exponent.  Egghe and Ravichandra Rao in their 
study in 2002 observed that the cumulative distribution of the age of the most recent 
reference distribution is the dual variant of the first citation distribution. This model is 
different from the first citation distribution. In another study, Egghe and Rao have 
shown the general relation between the first citation distribution and the general 
citation age distribution. They have shown that if Lotka’s exponent α = 2, both 
distributions are the same. In the same study, they have argued that the distribution of 



 

nth citation is similar to that of the first citation distribution. Egghe, Rao and Rousseau 
(1995) studied the influence of production on utilization function. Assuming an 
increasing exponential function for production and a decreasing one for aging, the 
authors have shown that in the synchronous case, the larger the increase in production, 
the larger the obsolescence; however, for the diachronous case it is quite opposite. 
This proof is different from the earlier one derived by Egghe (1993). 

5. Summary 

Most of the studies on growth of literature or obsolescence of literature are empirical 
in nature. Once we identify a suitable model to explain the empirical data on growth 
of literature or obsolescence of literature, we can apply regression analysis (to fit 
either the linear or non-linear model to the observed data). Then, by applying the 
appropriate statistical tests (usually, by considering the R2 value), we may choose a 
model to explain the data.  

Any study in scientometrics must be based on certain guidelines/ methodologies; in 
order to accept its validity as well as its generalization of the result. The general 
guidelines are: 

• Identify the general problem(s) 
• Conduct literature search 
• Decide the design methodology 
• Collect the data either for the population or for a sample 
• Analyze the data 
• Report the result 
• Refine the hypotheses 

In Step 5, to analyze the data we may adopt one of the models which are discussed in 
this Unit. Scientometric techniques have evolved over time and are continuing to do 
so. The counting of papers with attribution (by country, by institution, by author, etc.) 
is a part of the scientometrics. 

It has been argued that the growth of entities (such as journals, articles, authors, etc.) 
follows exponential model; however, it has been observed that it is not always true; so 
there is need for to identify a suitable model to explain the data related to growth of 
scientometric entities in general and also to study the data on obsolescence of 
literature. 
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