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VOS is a new mapping technique that can serve as an
alternative to the well-known technique of multidimen-
sional scaling (MDS). We present an extensive compar-
ison between the use of MDS and the use of VOS for
constructing bibliometric maps. In our theoretical anal-
ysis, we show the mathematical relation between the two
techniques. In our empirical analysis, we use the tech-
niques for constructing maps of authors, journals, and
keywords.Two commonly used approaches to bibliomet-
ric mapping, both based on MDS, turn out to produce
maps that suffer from artifacts. Maps constructed using
VOS turn out not to have this problem. We conclude
that in general maps constructed using VOS provide a
more satisfactory representation of a dataset than maps
constructed using well-known MDS approaches.

Introduction

In the fields of bibliometrics and scientometrics, the idea
of constructing science maps based on bibliographic data
has intrigued researchers for several decades. Many differ-
ent types of maps have been studied. The various types of
maps show relations among, for example, authors, docu-
ments, journals, or keywords, and they have usually been
constructed based on citation, co-citation, or bibliographic
coupling data or based on data on co-occurrences of key-
words in documents. Quite different techniques are available
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that can be used for constructing bibliometric maps. With-
out doubt, the most popular technique is the technique of
multidimensional scaling (MDS).1 MDS has been widely
used for constructing maps of authors (e.g., McCain, 1990;
White & Griffith, 1981; White & McCain, 1998), docu-
ments (e.g., Griffith, Small, Stonehill, & Dey, 1974; Small &
Garfield, 1985; Small, Sweeney, & Greenlee, 1985), jour-
nals (e.g., McCain, 1991), and keywords (e.g., Peters &
Van Raan, 1993a,b; Tijssen & Van Raan, 1989). Recently,
a new mapping technique was introduced that is intended
as an alternative to MDS (Van Eck & Waltman, 2007a).
This new mapping technique is called VOS, which stands for
visualization of similarities.VOS has been used for construct-
ing bibliometric maps in a number of studies (Van Eck &
Waltman, 2007b, 2010; Van Eck, Waltman, Noyons, & Buter,
2010; Van Eck, Waltman, Van den Berg, & Kaymak, 2006;
Waaijer, Van Bochove, & Van Eck, 2010, in press).

An extensive comparison between the use of MDS and the
use of VOS for constructing bibliometric maps does not yet
exist. In this paper we present such a comparison. We perform
both a theoretical and an empirical analysis. In our theoret-
ical analysis we discuss the mathematics underlying MDS
and VOS and we point out how the two techniques are math-
ematically related to each other. In our empirical analysis
we compare three approaches for constructing bibliometric
maps. Two approaches rely on MDS, and the third approach
relies onVOS.We use three datasets in our empirical analysis.
One dataset comprises co-citations of authors in the field of
information science, another dataset comprises co-citations
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of journals in the social sciences, and the third dataset com-
prises co-occurrences of keywords in the field of operations
research. Our empirical analysis indicates that maps con-
structed using either of the MDS approaches may suffer from
certain artifacts. Maps constructed using the VOS approach
do not have this problem. Based on this observation we
conclude that, in general, maps constructed using the VOS
approach provide a more satisfactory representation of the
underlying dataset than maps constructed using either of
the MDS approaches.

This paper is organized as follows. First, we discuss the
use of MDS and VOS for constructing bibliometric maps
and we study the mathematical relationship between the
two techniques. Next, we present an empirical compari-
son of three approaches for constructing bibliometric maps,
two approaches relying on MDS, and one approach rely-
ing on VOS. Finally, we summarize the conclusions of our
research.

Multidimensional Scaling

In this section we discuss the way in which MDS is typ-
ically used for constructing bibliometric maps. For more
detailed discussions of MDS we refer to Borg and Groenen
(2005) and Cox and Cox (2001). From now on, we assume
that the construction of bibliometric maps is done based on
co-occurrence data (which includes co-citation data and bibli-
ographic coupling data as special cases).We use the following
mathematical notation. There are n items to be mapped, which
are denoted by 1, . . . , n. The items can be, for example,
authors, documents, journals, or keywords. For i �= j, the num-
ber of co-occurrences of items i and j is denoted by cij (where
cij = cji). The total number of co-occurrences of item i is
denoted by ci. Hence, ci = ∑

j �=i cij .
Below, we first discuss the calculation of similarities

between items, and we then discuss the technique of MDS.

Similarity Measures

MDS is usually not applied directly to co-occurrence
frequencies. This is because in general co-occurrence fre-
quencies do not properly reflect similarities between items
(e.g., Waltman & Van Eck, 2007). To see this, suppose that
journals A and B publish very similar articles. Suppose also
that per year journal A publishes 10 times as many articles
as journal B. Other things being equal, one would expect
journal A to receive about 10 times as many citations as
journal B and to have about 10 times as many co-citations
with other journals as journal B. It is clear that the fact that
journal A has more co-citations with other journals than jour-
nal B does not indicate that journal A is more similar to
other journals than journal B. It only indicates that journal
A publishes more articles than journal B. Because of this,
co-occurrence frequencies in general do not properly reflect
similarities between items.

To determine similarities between items, co-occurrence
frequencies are usually transformed using a similarity mea-
sure. Two types of similarity measures can be distinguished,
namely, direct and indirect similarity measures.2 Direct sim-
ilarity measures (Van Eck & Waltman, 2009; also known
as local similarity measures, see Ahlgren, Jarneving, &
Rousseau, 2003) determine the similarity between two items
by applying a normalization to the co-occurrence frequency
of the items. The underlying idea is that co-occurrence fre-
quencies can be interpreted as similarities only after one has
corrected for the fact that for some items the total number
of occurrences or co-occurrences may be much larger than
for other items. Indirect similarity measures (also known as
global similarity measures) determine the similarity between
two items by comparing two vectors of co-occurrence fre-
quencies. This is based on the idea that the similarity of two
items should depend on the way in which each of the
two items is related to all other items. The more two items
have similar relations with other items, the more the two
items should be considered similar. Most researchers inter-
ested in mapping authors or journals based on co-citation data
rely on indirect similarity measures. Other researchers rely
on direct similarity measures. However, direct and indirect
similarity measures can both be applied to any type of co-
occurrence data. There is, for example, no reason to confine
the use of indirect similarity measures to author and journal
co-citation data.

Various direct similarity measures are being used in the
literature. Especially the cosine and the Jaccard index are
very popular. In a recent study (Van Eck & Waltman, 2009),
we extensively analyzed a number of well-known direct
similarity measures. We argued that the most appropriate
measure for normalizing co-occurrence frequencies is the
so-called association strength (e.g., Van Eck & Waltman,
2007b; Van Eck et al., 2006). This measure is also known as
the proximity index (e.g., Peters & Van Raan, 1993a; Rip &
Courtial, 1984) or as the probabilistic affinity index (e.g., Zitt,
Bassecoulard, & Okubo, 2000). The association strength of
items i and j is given by:

ASij = cij

cicj

. (1)

It can be shown that the association strength of items i and
j is proportional to the ratio between on the one hand the
observed number of co-occurrences of i and j and on the other
hand the expected number of co-occurrences of i and j under
the assumption that co-occurrences of i and j are statistically
independent (Van Eck & Waltman, 2009).

For a long time, the Pearson correlation has been
the most popular indirect similarity measure in the literature
(e.g., McCain, 1990, 1991; White & Griffith, 1981; White &
McCain, 1998). Nowadays, however, it is well known that
the use of the Pearson correlation as an indirect similarity
measure is not completely satisfactory (Ahlgren et al., 2003;
Van Eck & Waltman, 2008). A more satisfactory indirect
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similarity measure is the well-known cosine.3 The cosine of
items i and j is given by:

COSij =
∑

k �=i,j cikcjk√∑
k �=i,j c2

ik

∑
k �=i,j c2

jk

. (2)

For a discussion of some other indirect similarity measures,
we refer to an earlier paper (Van Eck & Waltman, 2008).

The Technique of Multidimensional Scaling

After similarities between items have been calculated, a
map is constructed by applying MDS to the similarities. The
aim of MDS is to locate items in a low-dimensional space in
such a way that the distance between any two items reflects
the similarity or relatedness of the items as accurately as
possible. The stronger the relation between two items, the
smaller the distance between the items.

Let sij denote the similarity between items i and j given
by some direct or indirect similarity measure. For each pair
of items i and j, MDS requires as input a proximity pij

(i.e., a similarity or dissimilarity) and, optionally, a weight
wij (wij ≥ 0). In the bibliometric mapping literature the prox-
imities pij are typically set equal to the similarities sij . The
weights wij are typically not provided, in which case MDS
uses wij = 1 for all i and j. To determine the locations of
items in a map, MDS minimizes a so-called stress function.
The most commonly used stress function is given by:

σ(x1, . . . , xn) =
∑

i<j wij(f(pij) − ‖xi − xj‖)2

∑
i<j wijf(pij)2

, (3)

where f denotes a transformation function for the proximities
pij and xi denotes the location of item i.4 Typically, biblio-
metric maps have two dimensions and rely on the Euclidean
distance measure. This means that xi = (xi1, xi2) and that:

‖xi − xj‖ =
√

(xi1 − xj1)2 + (xi2 − xj2)2. (4)

As can be seen from Equation 3, MDS determines the loca-
tions of items in a map by minimizing the (weighted) sum
of the squared differences between on the one hand the
transformed proximities of items and on the other hand
the distances between items in the map. For this idea to make
sense, the transformation function f has to be increasing
when the proximities pij are dissimilarities and decreasing
when the proximities pij are similarities.

Depending on the transformation function f, different
types of MDS can be distinguished. The three most impor-
tant types of MDS are ratio MDS, interval MDS, and ordinal
MDS. Ratio and interval MDS are also referred to as metric
MDS, while ordinal MDS is also referred to as nonmetric
MDS. Ratio MDS treats the proximities pij as measurements
on a ratio scale. Likewise, interval and ordinal MDS treat the
proximities pij as measurements on, respectively, an interval
and an ordinal scale.5 In ratio MDS, f is a linear function
without an intercept. In interval MDS, f can be any linear

function, and in ordinal MDS, f can be any monotone func-
tion. We note that it makes no sense to use ratio MDS when
the proximities pij are similarities. This is because f would
then have to be a linearly decreasing function through the
origin, which means that all transformed proximities would
be negative or zero. In the bibliometric mapping literature,
researchers often do not state which type of MDS they use.
The proximities pij are typically set equal to the similarities
sij , which means that ratio MDS cannot be used. There are
a few well-known studies in which the use of ordinal MDS
is reported (McCain, 1990; White & Griffith, 1981; White &
McCain, 1998).

The stress function in Equation 3 can be minimized using
an iterative algorithm. Various different algorithms are avail-
able. A popular algorithm is the SMACOF algorithm (e.g.,
Borg & Groenen, 2005). This algorithm relies on a technique
known as iterative majorization. The SMACOF algorithm is
used by the PROXSCAL program in SPSS (Chicago, IL).

VOS

In this section we discuss the use of VOS for constructing
bibliometric maps. The aim of VOS is the same as that of
MDS. Hence, VOS aims to locate items in a low-dimensional
space in such a way that the distance between any two items
reflects the similarity or relatedness of the items as accurately
as possible. As discussed below, VOS differs from MDS in
the way in which it attempts to achieve this aim.

For each pair of items i and j, VOS requires as input a
similarity sij (sij ≥ 0). VOS treats the similarities sij as mea-
surements on a ratio scale. The similarities sij are typically
calculated using the association strength defined in Equa-
tion 1 (e.g., Van Eck & Waltman, 2007b; Van Eck et al.,
2006). VOS determines the locations of items in a map by
minimizing

V(x1, . . . , xn) =
∑
i<j

sij‖xi − xj‖2 (5)

subject to:
2

n(n − 1)

∑
i<j

‖xi − xj‖ = 1. (6)

Hence, the idea of VOS is to minimize a weighted sum of
the squared distances between all pairs of items. The squared
distance between a pair of items is weighted by the similarity
between the items. To avoid trivial solutions in which all
items have the same location, the constraint is imposed that
the average distance between two items must be equal to one.

There are two computer programs in which the VOS map-
ping technique has been implemented. Both programs are
freely available. A simple open source program is available
at www.neesjanvaneck.nl/vos/, and a more advanced program
called VOSviewer (Van Eck & Waltman, 2010) is available
at www.vosviewer.com. The two programs both use a variant
of the SMACOF algorithm mentioned above to perform the
minimization of Equation 5 subject to Equation 6.
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We note that the objective function in Equation 5 has an
interesting property.6 To show this property, we introduce
the idea of the ideal location of an item. We define the ideal
location of item i as:

x∗
i =

∑
j �=i sijxj∑
j �=i sij

. (7)

That is, the ideal location of item i is defined as a weighted
average of the locations of all other items, where the location
of an item is weighted by the item’s similarity with item i.
(Notice the analogy with the concept of center of gravity in
physics.) The ideal location of an item seems to be the most
natural location an item can have. Because of this, it seems
desirable that items are located as close as possible to their
ideal location. This is exactly what the objective function in
Equation 5 seeks to achieve. To see this, suppose that the
locations of all items except item i are fixed, and ignore
the constraint in Equation 6. Minimization of the objective
function can then be performed analytically and results in xi

being equal to xi* defined in Equation 7. Hence, if the loca-
tions of all items except item i are fixed and if the constraint is
ignored, minimization of the objective function causes item
i to be located exactly at its ideal location. Of course, items
do not have fixed locations, and solutions are determined not
only by the objective function but also by the constraint. For
these reasons, items will in general not be located exactly at
their ideal location. However, due to the objective function,
items at least tend to be located close to their ideal location.

Relationship Between Multidimensional Scaling
and VOS

In this section we study the mathematical relationship
between MDS and VOS. We show that, under certain con-
ditions, MDS and VOS are closely related.

As discussed above, when researchers use MDS for con-
structing bibliometric maps, they typically rely on ordinal or
interval MDS. However, when MDS is applied to similarities
calculated using the association strength defined in Equation
1, the use of ordinal or interval MDS is not completely sat-
isfactory. This can be seen as follows. Suppose that items i
and j have twice as many co-occurrences as items i and k.
Suppose also that the total number of co-occurrences of item
j equals the total number of co-occurrences of item k. Cal-
culation of similarities using the association strength then
yields sij = 2sik. Based on this, it seems natural to expect
that in a map that perfectly represents the co-occurrences
the distance between items i and j equals half the distance
between items i and k. Of course, due to the inherent limita-
tions of a low-dimensional Euclidean space, a map in which
co-occurrences are perfectly represented usually cannot be
constructed. However, ordinal and interval MDS do not even
try to construct such a map. This is because in some sense
the transformation function f has too much freedom in these
types of MDS. In ordinal MDS, for example, f can be any
monotonically decreasing function, which means that any
map in which the distance between items i and j is smaller

than the distance between items i and k may serve as a perfect
representation of the equality sij = 2sik. Hence, ordinal MDS
may be indifferent between, for example, a map in which the
distance between items i and j equals exactly half the dis-
tance between items i and k and a map in which the distance
between items i and j is just slightly smaller than the distance
between items i and k.

We now propose an alternative way in which MDS can
be applied to similarities calculated using the association
strength (or to any other similarities that can be treated as
measurements on a ratio scale). Our alternative approach
does not have the above-mentioned disadvantage of ordinal
and interval MDS. In our approach, we choose the transfor-
mation function f to be simply the identity function, which
means that f (pij) = pij . Using this transformation function,
it is easy to see that minimization of the stress function in
Equation 3 is equivalent with minimization of:

σ̂(x1, . . . , xn) =
∑
i<j

wij‖xi − xj‖2 − 2
∑
i<j

wijpij‖xi − xj‖.
(8)

Equation 8 makes sense only if the proximities pij are dis-
similarities. Because of this, we cannot set the proximities pij

equal to the similarities sij . Instead, we first have to convert
the similarities sij into dissimilarities dij . Converting similar-
ities into dissimilarities can be done in many ways. We use
the conversion given by dij = 1/sij . This conversion has the
natural property that if in a perfect map the distance between
one pair of items is twice as large as the distance between
another pair of items, the similarity between the first pair of
items is twice as low as the similarity between the second pair
of items. Substitution of pij = dij = 1/sij in Equation 8 yields:

σ̂(x1, . . . , xn) =
∑
i<j

wij‖xi − xj‖2 − 2
∑
i<j

wij

1

sij
‖xi − xj‖.

(9)

If two items i and j do not have any co-occurrences with each
other, Equation 1 implies that sij = 0. This results in a division
by zero in Equation 9. To circumvent this problem, we do
not set the weights wij equal to one, but we instead define
the weights wij as an increasing function of the similarities
sij . More specifically, we define wij = sij .7 Equation 9 then
becomes:

σ̂(x1, . . . , xn) =
∑
i<j

sij‖xi − xj‖2 − 2
∑
i<j

‖xi − xj‖. (10)

Interestingly, there turns out to be a close relationship
between on the one hand the problem of minimizing Equa-
tion 10 and on the other hand the problem of minimizing
Equation 5 subject to Equation 6. This is stated formally in
the following proposition.

Proposition 1.

(i) If X = (x1,. . ., xn) is a globally optimal solution to the
problem of minimizing Equation 10, then there exists a
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positive real number c such that cX is a globally optimal
solution to the problem of minimizing Equation 5 subject
to Equation 6.

(ii) If X = (x1, . . ., xn) is a globally optimal solution to the
problem of minimizing Equation 5 subject to Equation 6,
then there exists a positive real number c such that cX is
a globally optimal solution to the problem of minimizing
Equation 10.

The proof of this proposition is provided in the Appendix.
It follows from the proposition that, under certain condi-
tions, MDS and VOS are closely related. More specifically,
the proposition indicates that VOS can be regarded as a kind
of weighted MDS with proximities and weights chosen in a
special way.

Empirical Comparison

We now present an empirical comparison of three
approaches for constructing bibliometric maps. Two
approaches rely on MDS, and the third approach relies on
VOS. The two MDS approaches differ from each other
in the similarity measure they use. One MDS approach
uses a direct similarity measure, namely, the association
strength defined in Equation 1. The other MDS approach uses
an indirect similarity measure, namely, the cosine defined
in Equation 2. From now on, we refer to the two MDS
approaches as the MDS-AS approach and the MDS-COS
approach. Like the MDS-AS approach, the VOS approach
also uses the association strength similarity measure. Because
VOS has been developed to be used specifically in combina-
tion with this similarity measure, we do not study the use of
VOS in combination with other similarity measures.

Below, we first discuss the datasets that we use in our
empirical comparison, and we then discuss the results of
the comparison. We also briefly consider the phenomenon
of circular maps.

TABLE 1. Set of journals used to delineate the field of information science.

ACM Transactions on Information Systems Knowledge Organization
Annual Review of Information Science and Technology Law Library Journal
Aslib Proceedings Learned Publishing
Bulletin of the Medical Library Association Library and Information Science Research
College and Research Libraries Library Collections Acquisitions and Technical Services
Computers and the Humanities Library Journal
Electronic Library Library Quarterly
Information Processing and Management Library Resources and Technical Services
Information Research-An International Electronic Journal Library Trends
Information Retrieval Libri
Information Technology and Libraries Online
Interlending and Document Supply Online Information Review
Journal of Academic Librarianship Portal-Libraries and the Academy
Journal of Documentation Proceedings of the ASIS Annual Meeting
Journal of Information Science Program-Electronic Library and Information Systems
Journal of Librarianship and Information Science Reference and User Services Quarterly
Journal of Scholarly Publishing Research Evaluation
Journal of the American Society for Information Scientometrics

Science and Technology Serials Review

Datasets

We use three datasets in our empirical comparison. One
dataset comprises co-citations of authors in the field of
information science, another dataset comprises co-citations
of journals in the social sciences, and the third dataset
comprises co-occurrences of keywords in the field of oper-
ations research. We refer to the datasets as, respectively,
the authors dataset, the journals dataset, and the keywords
dataset. All three datasets were obtained from the Web of
Science database. We have made the datasets available at
www.neesjanvaneck.nl/comparison_mds_vos/.

The authors dataset was collected as follows. We first
delineated the field of information science. To do so, we
selected the 36 journals that, based on co-citation data, are
most closely related to the Journal of the American Society
for Information Science and Technology (JASIST).8 These
journals and JASIST itself constituted our set of information
science journals. This set of journals is shown in Table 1.
Next, we selected all articles with at least four citations
(excluding self citations) that were published in our set of
information science journals between 1999 and 2008. We
then counted for each author the number of selected articles.9

All authors with at least three selected articles were included
in the authors dataset. There were 405 authors that satisfied
this criterion. Finally, we counted the number of co-citations
of each pair of authors in the authors dataset. The co-citation
frequency of two authors takes into account all articles pub-
lished by the authors in our set of information science journals
between 1999 and 2008.

To collect the journals dataset, we first selected all jour-
nals in the Web of Science database that belong to at least one
social science subject category. We then counted the number
of co-citations of each pair of journals. We took into account
all citations from articles published between 2004 and 2008
to articles published at most 10 years earlier. Finally, we
included in the journals dataset all journals with more than
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TABLE 2. Stress values calculated using Equation 3 for the MDS-AS and
MDS-COS approaches.

MDS-AS MDS-COS

Authors 0.12 0.04
Journals 0.14 0.05
Keywords 0.16 0.07

25 co-citations. There were 2,079 journals that satisfied this
criterion.

The keywords dataset has already been used in an ear-
lier paper (Van Eck et al., 2010). The dataset includes 831
keywords that were automatically identified in the abstracts
(and titles) of 7,492 articles published in 15 operations
research journals between 2001 and 2006. The co-occurrence
frequency of two keywords was obtained by counting the
number of abstracts in which the keywords both occur.

Results

For each of the three datasets that we consider, three
maps were constructed, one using the MDS-AS approach,
one using the MDS-COS approach, and one using the
VOS approach. All maps are two-dimensional. MDS was
run using the PROXSCAL program in SPSS. Both MDS
approaches used ordinal MDS.10 One hundred random
starts of the optimization algorithm were used in all three
mapping approaches.11 For the MDS approaches, stress
values calculated using Equation 3 are reported in Table 2.

FIG. 1. Global structure of nine maps. Each row corresponds with a dataset. Each column corresponds with a mapping approach.

The nine maps that were obtained are available online
at www.neesjanvaneck.nl/comparison_mds_vos/, where they
can be examined in detail using the VOSviewer software
(Van Eck & Waltman, 2010). The global structure of each
of the maps is shown in Figure 1. In this figure, circles
are used to indicate the location of an item. The size of a
circle reflects an item’s total number of co-occurrences. In
order to facilitate the interpretation of the maps, items were
clustered using a clustering technique. We used the cluster-
ing technique proposed by Waltman, Van Eck, and Noyons
(2010). Colors are used to indicate the cluster to which an item
belongs.

To evaluate the maps shown in Figure 1, our criterion is the
accuracy with which distances in a map reflect the similarity
or relatedness of items. Sometimes other criteria are consid-
ered important as well, such as a roughly equal distribution
of items in a map or a clearly visible separation between
clusters of items. It is argued that maps satisfying such ‘aes-
thetic’criteria are easier to interpret. Clearly, different criteria
can be conflicting with each other. For example, having well-
separated clusters of items may conflict with having distances
that accurately reflect the similarity or relatedness of items.
In this paper, our choice is to focus exclusively on the lat-
ter criterion. This is consistent with the objective for which
techniques such as MDS and VOS were originally devel-
oped. Other techniques, often referred to as graph-drawing
techniques (e.g., Fruchterman & Reingold, 1991; Kamada &
Kawai, 1989), were developed with a different objective in
mind and give more weight to aesthetic criteria such as the
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ones mentioned above. However, these techniques, although
valuable in their own right, are not the subject of study of this
paper.

As can be seen in Figure 1, the MDS-AS, MDS-COS,
and VOS approaches produce quite different maps. Although
all three approaches succeed to some extent in separating
items belonging to different clusters, the global structure of
the maps produced by the three approaches is very different.
The MDS-AS approach produces maps with the shape of an
almost perfect circle. The distribution of items within a cir-
cle is more or less uniform, in particular when the number of
items is large, as in the case of the journals and keywords
datasets. The maps produced by the MDS-COS approach
also seem to have a tendency to be somewhat circular, but
this effect is much weaker than in the case of the MDS-AS
approach. A notable property of the maps produced by the
two MDS approaches is that important items (i.e., items with
a large number of co-occurrences) tend to be located toward
the center of a map. This is especially clear in the case of the
authors and keywords datasets. Many relatively unimportant
items are scattered throughout the periphery of a map. In
the maps produced by the VOS approach, no effects are vis-
ible similar to those observed in the case of the two MDS
approaches. Hence, the VOS approach does not seem to have
a tendency to produce circular maps. It also does not seem to
locate important items toward the center of a map. Instead,
theVOS approach seems to produce maps in which important
and less important items are distributed fairly evenly over the
central and peripheral areas.

FIG. 2. Map of the authors dataset constructed using the MDS-AS approach.

We emphasize that the results shown in Figure 1 are quite
robust. The results do not change much when interval MDS
is used rather than ordinal MDS. Using MDS combined
with direct similarity measures other than the association
strength also does not have much effect on the results.
Furthermore, the results shown in Figure 1 are relatively inde-
pendent of the datasets that we use.We investigated numerous
other datasets, and this yielded very similar results. How-
ever, the almost perfectly circular structure of maps produced
by the MDS-AS approach was not observed in the case of
datasets with only a relatively small number of items (e.g.,
less than 100 items). In the bibliometric mapping literature,
a clear example of a circular map produced by MDS can be
found in a study by Blatt (2009). Blatt used a dataset of almost
5,000 items. Most bibliometric mapping studies reported in
the literature rely on datasets with a much smaller number of
items. In such studies, MDS typically does not produce cir-
cular maps, although a tendency toward a circular structure
sometimes seems visible.12

We now focus on one dataset in more detail. This is the
dataset of authors in the field of information science. We note
that somewhat similar datasets have also been analyzed in a
paper by Persson (1994), in a well-known study by White
and McCain (1998), and more recently in the work of Zhao
and Strotmann (2008a–c) and Chen, Ibekwe-SanJuan, and
Hou (2010). Maps of the authors dataset constructed using
the MDS-AS, MDS-COS, and VOS approaches are shown in
Figures 2, 3, and 4, respectively. These are the same maps as
the ones shown in the top row of Figure 1.
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FIG. 3. Map of the authors dataset constructed using the MDS-COS approach.

FIG. 4. Map of the authors dataset constructed using the VOS approach.

In various studies of the field of information science (e.g.,
Åström, 2007; White & McCain, 1998; Zhao & Strotmann,
2008a–c), it has been found that the field consists of two quite
independent subfields. We adopt the terminology of Åström
(2007) and refer to the subfields as information seeking and
retrieval (ISR) and informetrics. Comparing the maps in Fig-
ures 2, 3, and 4, it can be observed that the separation of the
subfields is clearly visible in the VOS map, somewhat less

visible in the MDS-COS map, and least visible in the MDS-
AS map.13 In the VOS map the right part represents the
informetrics subfield (e.g., Egghe, Glänzel, & Van Raan) and
the left part represents the ISR subfield (e.g., Baeza-Yates,
Jansen, Robertson, Spink, Tenopir, & Wilson). There is only
a relatively weak connection between the subfields. In the
MDS-COS map the middle right part represents the infor-
metrics subfield and the rest of the map represents the ISR
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subfield.A striking property of the map is that the ISR subfield
is rather scattered, with the most prominent authors (in terms
of the number of co-citations) appearing in the center of the
map and many somewhat less prominent authors appearing
in the periphery. In the MDS-AS map the middle right part
represents the informetrics subfield and the rest of the map
represents the ISR subfield. As noted earlier, the map has the
shape of an almost perfect circle. The informetrics subfield
is partly surrounded by the ISR subfield, with some empty
space indicating the separation of the subfields. Prominent
authors in the ISR subfield are located toward the center of
the map. Less prominent authors tend to be located in the
top and bottom parts of the map. This is quite similar to the
MDS-COS map.

A distinction is sometimes made between ‘hard’ and ‘soft’
ISR research (e.g., Åström, 2007; Persson, 1994; White &
McCain, 1998). Hard ISR research is system-oriented and
is, for example, concerned with the development and the
experimental evaluation of information retrieval algorithms.
Soft ISR research, on the other hand, is user-oriented and
studies for example users’ information needs and informa-
tion behavior. The distinction between hard and soft ISR
research is visible in all three maps. In theVOS map the lower
left part represents hard ISR research (e.g., Baeza-Yates &
Robertson) and the middle left and upper left parts represent
soft ISR research (e.g., Jansen, Spink, Tenopir, & Wilson). In
the MDS-COS and MDS-AS maps, the lower part represents
hard ISR research and the middle and upper parts represent
soft ISR research. As can be seen from all three maps, there
is much more soft ISR research than hard ISR research. This is
similar to what was found by Åström (2007).

The above comparison of the three maps of the authors
dataset indicates that the MDS-AS, MDS-COS, and VOS
approaches all three succeed reasonably well in locating
similar authors close to each other. However, the compar-
ison also makes clear that the MDS-AS and MDS-COS
approaches suffer from serious artifacts. Both approaches
have a tendency to locate the most prominent authors in the
center of a map and less prominent authors in the periphery.
Due to this tendency, the separation of subfields becomes
more difficult to see. The MDS-AS approach also has a
strong tendency to locate authors in a circular structure. This
tendency further distorts the way in which a field is repre-
sented. Unlike the two MDS approaches, the VOS approach
does not seem to suffer from artifacts. That is, the VOS
approach does not seem to impose any artificial structure
on a map. Our findings based on the maps of the authors
dataset are confirmed when examining the maps of the jour-
nals and keywords datasets. A detailed discussion of the
latter maps is beyond the scope of this paper. We note,
however, that an examination of these maps indicates the
same artifacts of the MDS-AS and MDS-COS approaches
as discussed above. The interested reader can verify this at
www.neesjanvaneck.nl/comparison_mds_vos/.

The maps in Figures 2 and 3 indicate the consequences
of the artifacts from which the MDS-AS and MDS-COS
approaches suffer. In these maps, a number of prominent ISR

authors (e.g., Spink, Wang, & Wilson) are located equally
close or even closer to various informetrics authors than
to some of their less prominent ISR colleagues. However,
contrary to what the maps seem to suggest, there is in fact very
little interaction between the prominent ISR authors and the
informetrics authors. The relatively small distance between
these two groups of authors therefore does not properly reflect
the structure of the field of information science. The small dis-
tance is merely a technical artifact, caused by the tendency of
the MDS-AS and MDS-COS approaches to locate important
items in the center of a map. It follows from this observation
that distances in maps constructed using the MDS approaches
may not always give an accurate representation of the relat-
edness of items. Hence, in the case of the MDS approaches,
the validity of the interpretation of a distance as an (inverse)
measure of relatedness seems questionable. The VOS map in
Figure 4 does properly reflect the large separation between the
prominent ISR authors and the informetrics authors. In this
map, the interpretation of a distance as a measure of relat-
edness therefore seems valid. We note that the journal and
keyword maps available online provide similar examples of
the consequences of the MDS artifacts.

Explanation for Circular Maps

Finally, let us consider the phenomenon of the circular
maps produced by the MDS-AS approach in somewhat more
detail. Although this phenomenon may seem puzzling at first
sight, it actually has a quite straightforward explanation.14

Co-occurrence data typically consists for a large part of zeros.
For example, in the case of the authors, journals, and key-
words datasets, respectively 73%, 75%, and 89% of all pairs
of items have zero co-occurrences. It follows from Equation 1
that, when two items have a co-occurrence frequency of zero,
their association strength equals zero as well. This means that
in the MDS-AS approach MDS is typically applied to sim-
ilarity data that consists largely of zeros. MDS attempts to
determine the locations of items in a map in such a way that
for each pair of items with a similarity of zero the distance
between the items is the same. In the case of similarity data
that consists largely of zeros, it is not possible to construct a
low-dimensional map with exactly the same distance between
each pair of items with a similarity of zero. MDS can only
try to approximate such a map as closely as possible. Our
empirical analysis indicates that the best possible approxi-
mation is a map with an almost perfectly circular structure.
This is in fact not a very surprising finding, since it is well
known in the MDS literature that MDS produces perfectly
circular maps when all similarities between items are equal
(Borg & Groenen, 2005; De Leeuw & Stoop, 1984; for a
rigorous mathematical analysis, see Buja, Logan, Reeds, &
Shepp, 1994). In our empirical analysis, not all similarities
between items are equal but only a large proportion. The cir-
cular structure of our maps is therefore not perfect but almost
perfect.

In our empirical analysis, the VOS approach is applied
to the same similarity data as the MDS-AS approach. Hence,
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the VOS approach is also applied to similarity data that con-
sists for a large part of zeros. This raises the question why,
unlike the MDS-AS approach, the VOS approach does not
produce circular maps. To answer this question, recall how
MDS and VOS are related to each other. As discussed ear-
lier, VOS can be regarded as a kind of weighted MDS with
proximities and weights chosen in a special way. More pre-
cisely, in the case of VOS, the proximity of two items is set
equal to the inverse of the similarity of the items. The weight
of two items is set equal to the similarity of the items. From
this point of view, one can say that the VOS approach dis-
tinguishes itself from the MDS-AS approach in that it does
not give equal weight to all pairs of items. The VOS approach
gives more weight to more similar pairs of items. It gives
little weight to pairs of items with a low similarity. As men-
tioned above, similarity data is typically dominated by low
values, in particular by zeros. These low values cause the
MDS-AS approach to produce circular maps. In the case of
the VOS approach, however, pairs of items with a low simi-
larity receive little weight and therefore have little effect on
a map. Because of this, the VOS approach does not produce
circular maps.

Conclusions

VOS is a new mapping technique that is intended as an
alternative to the well-known technique of MDS. We have
presented an extensive comparison between the use of MDS
and the use of VOS for constructing bibliometric maps. Our
analysis has been partly theoretical and partly empirical. In
our theoretical analysis we studied the mathematical rela-
tionship between MDS and VOS. We have shown that VOS
can be regarded as a kind of weighted MDS with proxim-
ities and weights chosen in a special way. In our empirical
analysis we compared three approaches for constructing bib-
liometric maps, two approaches relying on MDS and one
approach relying on VOS. We found that maps constructed
using the VOS approach provide a more satisfactory repre-
sentation of the underlying dataset than maps constructed
using either of the MDS approaches. The somewhat disap-
pointing performance of the MDS approaches is due to two
artifacts from which these approaches suffer. One artifact is
the tendency to locate the most important items in the center
of a map and less important items in the periphery. The other
artifact is the tendency to locate items in a circular struc-
ture. Unlike the MDS approaches, the VOS approach does
not seem to suffer from artifacts. It is worth emphasizing
that our empirical findings are quite robust. We have made
the same findings for three fairly different datasets. These
datasets differ from each other in size (405, 831, or 2079
items), in type of item (authors, journals, or keywords), and
in concept of similarity (co-citation in a reference list or co-
occurrence in an abstract). We note, however, that in the case
of small datasets (e.g., datasets of less than 100 items) the arti-
facts of the MDS approaches tend to be much less serious.
Hence, the VOS approach yields improved results mainly in
the case of medium and large datasets.

The interested reader who would like to try out the VOS
approach to bibliometric mapping can easily do so using
the VOSviewer software (Van Eck & Waltman, 2010) that
is freely available at www.vosviewer.com. The software
offers a graphical user interface that provides easy access
to the VOS mapping technique. In addition, the software also
comprehensively supports the visualization and interactive
examination of bibliometric maps.
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Endnotes
1Other techniques include the VxOrd technique (e.g., Boyack, Klavans, &

Börner, 2005; Klavans & Boyack, 2006), the graph drawing techniques
of Kamada and Kawai (1989) and Fruchterman and Reingold (1991), and
the pathfinder network technique (e.g., Schvaneveldt, 1990; Schvaneveldt,
Dearholt, & Durso, 1988;White, 2003). For overviews of various techniques,
we refer to Börner, Chen, and Boyack (2003) and White and McCain (1997).

2Sometimes a distinction is made between similarity measures calculated
based on a rectangular occurrence matrix and similarity measures calcu-
lated based on a square symmetric co-occurrence matrix (e.g., Schneider,
Larsen, & Ingwersen, 2009). It can be shown that this distinction is math-
ematically equivalent with our distinction between direct and indirect
similarity measures (see also Van Eck & Waltman, 2009).

3There are two different similarity measures, a direct and an indirect one,
that are both referred to as the cosine. These two measures should not be
confused with each other.

4The stress function in Equation 3 is referred to as the normalized raw
stress function. Various alternative stress functions are discussed in the MDS
literature (e.g., Borg & Groenen, 2005). In this paper, however, we do not
consider these alternative stress functions. The normalized raw stress func-
tion is used by most MDS programs, including the PROXSCAL program in
SPSS. Some MDS programs, such as the ALSCAL program in SPSS, use a
somewhat different stress function.

5For a discussion of the concepts of ratio scale, interval scale, and ordinal
scale, see Stevens (1946).

6Mapping techniques based on the objective function in Equation 5
have also been proposed by Belkin and Niyogi (2003) and by Davidson,
Hendrickson, Johnson, Meyers, and Wylie (1998). However, the constraints
used by these researchers are different from the constraint in Equation 6. In
our experience, the constraint in Equation 6 yields much more satisfactory
results than the alternative constraints used by other researchers.

7Hence, wij increases linearly with sij . This is the most natural way to
define wij . If wij increases slower than linearly with sij , the division by zero
problem remains. If wij increases faster than linearly with sij , there is no
penalty for locating two completely nonsimilar items close to each other in
a map. We further note that wij = sij is equivalent with wij = 1/dij . This is
exactly how weights are chosen in the well-known Sammon mapping variant
of MDS (Sammon, 1969).

8The Journal of the American Society for Information Science and
Technology and its predecessor, the Journal of the American Society for
Information Science, were treated as a single journal.

9Author name disambiguation was performed using an algorithm that we
have developed ourselves. A few corrections were made manually. Unlike
in some other author co-citation studies, all authors of an article were taken
into account, not just the first author.

10Ties in the data were kept tied. This is sometimes referred to as the
secondary approach to ties (Borg & Groenen, 2005). The secondary approach
to ties is the default setting in the PROXSCAL program.

11In the case of the MDS-AS approach, rather stringent convergence cri-
teria were required for the optimization algorithm. Without such criteria,
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the algorithm was very sensitive to local optima. Due to the stringent con-
vergence criteria, the application of the MDS-AS approach to the journals
dataset took more than 2 days of computing time on a standard desktop
computer. For comparison, the application of the VOS approach to the same
dataset took less than 10 minutes of computing time.

12We note that MDS is not the only mapping technique with a tendency to
produce circular maps. See, for example, Boyack et al. (2005), Heimeriks,
Hörlesberger, and Van den Besselaar (2003), Klavans and Boyack (2006),
and Noll, Fröhlich, and Schiebel (2002).

13In the maps the green cluster corresponds to the informetrics subfield
and the blue and red clusters correspond to the ISR subfield.

14For an explanation similar to ours, see Martín-Merino and Muñoz
(2004).
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Appendix

In this appendix a proof of Proposition 1 is provided. The
two parts of the proposition will be proven separately. Both
parts will be proven by contradiction.

First consider part (i) of Proposition 1. Let X = (x1,. . ., xn)
denote a globally optimal solution to the problem of minimiz-
ing Equation 10, and let Y = (y1, . . ., yn) denote a globally
optimal solution to the problem of minimizing Equation 5
subject to Equation 6. Let c be given by:

c = n(n − 1)

2
∑

i<j ‖xi − xj‖ . (11)

Furthermore, define U = cX and V =Y/c. It follows from
Equation 11 that U satisfies the constraint in Equation 6.
Assume that U is not a globally optimal solution to the prob-
lem of minimizing Equation 5 subject to Equation 6. This
assumption implies that:

∑
i<j

sij‖ui − uj‖2 >
∑
i<j

sij‖yi − yj‖2. (12)

It then follows that:
∑
i<j

sij‖xi − xj‖2 >
∑
i<j

sij‖vi − vj‖2. (13)

Extending both the left-hand side and the right-hand side of
this inequality with an additional term, where the additional
term in the left-hand side equals the additional term in the
right-hand side, yields:

∑
i<j

sij‖xi − xj‖2 − 2
∑
i<j

‖xi − xj‖ >
∑
i<j

sij‖vi − vj‖2

−2
∑
i<j

‖vi − vj‖. (14)

This inequality implies that X is not a globally optimal solu-
tion to the problem of minimizing Equation 10. However, this
contradicts the way in which X was defined. Consequently,
the assumption that U is not a globally optimal solution
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to the problem of minimizing Equation 5 subject to Equation
6 must be false. This proves part (i) of Proposition 1.

Now consider part (ii) of Proposition 1. This part will be
proven in a similar way as part (i). Let X = (x1, . . . , xn)
denote a globally optimal solution to the problem of mini-
mizing Equation 5 subject to Equation 6, and let Y = (y1, . . . ,
yn) denote a globally optimal solution to the problem of
minimizing Equation 10. Let c be given by:

c = 2
∑

i<j ‖yi − yj‖
n(n − 1)

. (15)

Furthermore, define U = cX and V =Y/c. It follows from
Equation 15 that V satisfies the constraint in Equation 6.
Assume that U is not a globally optimal solution to the prob-
lem of minimizing Equation 10. This assumption implies
that:

∑
i<j

sij‖ui − uj‖2 − 2
∑
i<j

‖ui − uj‖ >
∑
i<j

sij‖yi − yj‖2

−2
∑
i<j

‖yi − yj‖. (16)

In this inequality, the second term in the left-hand side equals
the second term in the right-hand side. The inequality can
therefore be simplified to:

∑
i<j

sij‖ui − uj‖2 >
∑
i<j

sij‖yi − yj‖2. (17)

It then follows that:
∑
i<j

sij‖xi − xj‖2 >
∑
i<j

sij‖vi − vj‖2. (18)

This inequality implies that X is not a globally optimal solu-
tion to the problem of minimizing Equation 5 subject to
Equation 6. However, this contradicts the way in which X was
defined. Consequently, the assumption that U is not a glob-
ally optimal solution to the problem of minimizing Equation
10 must be false. This proves part (ii) of Proposition 1. The
proof of the proposition is now complete.
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