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When are networks truly modular?
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Abstract

The study of cluster or community structure of complex networks contributes to the understanding of networks at a functional level. In many
networks, latent classes of nodes are suspected which manifest themselves as communities, i.e. groups of nodes with a high link density among
the nodes of the same class and low link density between nodes of different classes. Community detection algorithms are used to infer these
classes, e.g. by finding a partition of the network which maximizes a quality function such as the network modularity Q [M. Newman, M. Girvan,
Finding and evaluating community structure in networks, Phys. Rev. E 69 (2004) 026113]. However, it is known from numerical experiments
that even purely random networks display intrinsic modularity and may be partitioned yielding high values of Q. Extending on our earlier results
[J. Reichardt, S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E 74 (2006) 016110], the mapping of the community
detection problem onto finding the ground state of a spin glass is exploited in order to derive analytical expressions for the expected modularity
in random graphs and assess the theoretical limits to community detection. The results are independent of any specific community detection
algorithm and allow for differentiation between modularity arising purely due to the search process in the large configuration space of possible
partitionings on the one hand, or due to the actual presence of different classes of nodes on the other hand.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing availability and steadily increasing size
of relational datasets or networks the need for appropriate
methods for exploratory data analysis arises. For general
statistical properties such as the degree distribution, degree
correlations, clustering etc. a number of well established
methods and models to explain their origin exist [1,2].
However, a standard analysis for the higher order structure in
graphs has not been established so far. Currently, the problem
of the cluster or community structure is the subject of intense
study [3,4]. Cluster analysis is an important technique that
allows for data abstraction and dimensionality reduction or aids
in data visualization. It is used in the life sciences [5], over
bibliometrics [6], to market research [7], and has implications
for experiment planning, funding policies or marketing.
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The above examples have also illustrated that such
exploratory analysis is often the starting point to further work.
It is therefore important to assess the statistical validity of the
findings and avoid the “deception of randomness” [8], i.e. to
ensure that the output of a community detection algorithm is
statistically significant and not the mere result of the search
process. To illustrate this, we consider the following problem.
Given is an Erdös–Rényi (ER) network with average degree
〈k〉 = 5. Given is further an assignment of the nodes into two
types A and B with 50 nodes each. Between nodes of different
type, 42 links are found, the remaining links being equally
distributed among nodes of type A or B alone. If nodes are
connected independently of their type, the total number of links
between type A and B nodes is Poisson-distributed with a mean
of 〈k〉N/4 = 125 and a standard deviation of σ = 11. Hence,
finding only 42 links between A and B is statistically highly
significant with a p-value of p = 2.8×10−18. Now assume that
the type of each node was not given and an assignment into two
equal sized groups A and B was found through an exhaustive
search of the (

N
N/2 ) possible assignments into two equal sized
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groups. Applying a Bonferroni correction [9] for this number
of different “experiments” would lead to the situation that only
less than 22 connections between nodes of type A and B would
be significant at the 5% level. Hence, the initial situation with
42 links between nodes of different type could not be called
significant. As will be shown below, any ER random network
with 100 nodes and 〈k〉 = 5 can be partitioned into two equal
sized groups such that only 42 links connect the two parts.
Thus, statistical significance starts much earlier than the limit
given by the Bonferroni correction. The Bonferroni correction
fails here because it assumes independent experiments. The
different assignments into groups produced by a search process,
however, are not independent.

In addition to the problem of statistical significance, another
aspect of community detection is still under intense discussion,
namely the definition of the term community or cluster in a
network. This article aims at contributing to both of these
questions.

2. What is a community?

Despite the many applications of community detection
across the sciences, it remains remarkably unclear what a
community actually is. In addition to the many definitions
that are given in sociology [10], the physics community has
contributed a fair number as well [3,4]. All authors agree that
a community should be a group of nodes that is more densely
connected among each other than with the rest of the network,
but still these definitions differ largely in the details. Below, we
give a short overview of the different aspects that have been
emphasized by different authors.

The initial work on communities by Girvan and New-
man [11] gives an algorithmic definition. They design a com-
munity detection algorithm which recursively partitions the
graph to produce a hierarchy of communities from the entire
network down to single nodes. At each point, the nodes belong-
ing to distinct sub-trees in the resulting dendrogram are consid-
ered as communities.

Radicchi et al. [12] tried to improve this heuristic definition
by coining the term of “community in a strong sense” such that

kin
i > kout

i , ∀i ∈ C. (1)

This means for all nodes i in the community C , the number of
connections node i has to members of its own community kin

i
is larger than kout

i , the number of connections it has to the rest
of the network. Further, they define a “community in a weak
sense”, such that the sum of internal connections is larger than
the sum of external links

∑
i∈C kin

i >
∑

i∈C kout
i . Radicchi et al.

then suggest to stop any recursive partitioning algorithm when
an additional partition would not result in a community in the
strong (or weak) sense.

Palla et al. [6,13] have given a definition based on
reachability. They define a subgraph percolation process based
on k-cliques (fully connected subgraphs with k nodes). Two
k-cliques are connected, if they share a (k − 1)-clique, e.g. two
triangles (which are 3-cliques) are connected if they share an
edge (a 2-clique). A community, or k-clique percolation cluster,
is then defined as the group of nodes that can be reached via
adjacent k-cliques. Communities may overlap, i.e. nodes may
belong to more than one percolation cluster, but communities
corresponding to (k + 1)-clique percolation clusters always lie
completely within k-clique clusters.

Newman and Girvan have further defined a quantitative
measure of the quality of an assignment of nodes into
communities. This so-called “modularity” [14] can be used
to compare different assignments of nodes into communities
quantitatively. The modularity is defined as:

Q =

∑
s

(ess − a2
s ). (2)

The sum runs over all communities s. The fraction of all links
connecting nodes in group s and r is denoted by esr . Hence,
ess is the fraction of all links lying within group s. The fraction
of all links connecting to nodes in group s is denoted by as =∑

r ers. One can interpret a2
s as the expected fraction of internal

links in group s, if the network was random and the nodes were
distributed randomly into the different groups. Such a measure
can be used to stop recursive partitioning or agglomerative
approaches when they do not lead to an improvement of Q
anymore [15].

We see the diversity of definitions and approaches of
which we have described only a few. Refs. [3,4] give a
more comprehensive overview. Because of this controversy of
opinions, we have set out from a first principles approach in the
next section that will shed some light on the general properties
of the problem.

3. A first principles approach to community detection

As outlined in Ref. [16] the problem of community detection
can be addressed from a first principles perspective by adhering
to a simple principle: to group nodes that are not linked in
different communities and to put nodes which are linked in the
same community. This principle is expressed in the following
Hamiltonian:

H(σ ) = −

∑
i< j

ai j Ai jδ(σi , σ j ) +

∑
i< j

bi j (1 − Ai j )δ(σi , σ j ).

(3)

Here, σi denotes the group index of node i , δ(σi , σ j ) is the
Kronecker delta, Ai j is the adjacency matrix of the network
with Ai j = 1 if nodes i and j are connected and zero
otherwise. Hence, the first sum runs over all pairs of connected
nodes, while the second sum runs over all pairs of unconnected
nodes. Our Hamiltonian rewards every pair of connected nodes
(i, j) in the same group with ai j and penalizes every pair of
unconnected nodes (i, j) in the same community with bi j . It
implements just the principle we started out from. Any spin
configuration that will minimize (3) is hence optimal in the
sense of this first principle. It is now important to define the
weights ai j and bi j in a sensible way. A particularly good
choice is to balance them, such that all existing connections in
the network are equally important to our optimality criterion as
are all missing connections [16]. One way of achieving this is to
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set ai j = 1 − γ pi j and bi j = γ pi j which also reduces the need
for two different weights to only one. We have introduced an
additional parameter γ that will allow us to adjust the balance
of missing and existing links. The only constraint we have to
impose on pi j is that

∑
i< j pi j = M with M being the total

number of links in the network. With this choice, Eq. (3) is
written in the much simpler form:

H(σ ) = −

∑
i< j

(
Ai j − γ pi j

)
δ(σi , σ j ). (4)

Eq. (4) is formally identical to the Hamiltonian for a q-state
Potts spin glass, with q being the number of possible group
indices. The coupling matrix is then defined as Ji j = Ai j −

γ pi j . We identify pi j with the connection probability between
nodes i and j in the network. Depending on the network under
study, this can be pi j = p, if the links are assumed to connect
nodes with constant probability p = 2M/N (N − 1). Another
possible choice is pi j =

ki k j
2M , if the degree distribution of the

nodes is to be taken into account and there are no degree–degree
correlations. Here ki denotes the degree of node i and M
represents the number of links in the network as before.

Both of these choices render pi j positive and smaller
than one, hence we are dealing with a spin glass which
has ferromagnetic couplings between connected nodes and
anti-ferromagnetic couplings between unconnected nodes. The
ground state of this spin glass defines the optimal assignment
of nodes into communities. For γ = 1 and pi j = ki k j/2M , we
recover the modularity Q defined by Newman and Girvan [14]
from (4) via Q = −

1
MH [17].

It is instructive to rewrite (4) as a sum over spin states s:

H = −

∑
s

(
mss − γ [mss]pi j

)︸ ︷︷ ︸
css

=

∑
s<r

(
mrs − γ [mrs]pi j

)︸ ︷︷ ︸
ars

. (5)

We denote the number of links within group s by mss and
between groups r and s by mrs. Further, we denote the
expectation values of these quantities under the model of
connection probability pi j and assuming a random assignment
of spins into groups by [·]pi j . In (5) we have introduced two new
terms css and ars which measure within group “cohesion” and
between group “adhesion”, respectively. Maximizing cohesion
and minimizing adhesion are in fact equivalent and will hence
always be extremal at the same time, i.e. any configuration of
spins that minimizes H will automatically maximize cohesion
and minimize adhesion.

With our mapping couplings between all pairs of nodes exist.
Fortunately, the particular choice of pi j allows us to implement
efficient optimization routines [16] that only need to consider
interactions along the links and treat the anti-ferromagnetic
interactions along the non-existing links in a mean field manner,
which is, however, not an approximation but accounts exactly
for the repulsive interactions. One only needs to keep track of
the occupation numbers of the spin states or the total sum of
degrees in each group.

A definition of community follows directly from the
properties of the ground state as a global minimum of (4) [16]:
(1) Every proper subset n1 of a community ns has a
maximum coefficient of adhesion with its complement in
the community compared to the coefficient of adhesion with
any other community (a1,s\1 = max).

(2) The coefficient of cohesion is non-negative for all
communities (css ≥ 0).

(3) The coefficient of adhesion between any two communities
is non-positive (ars ≤ 0).

As a community, we understand a group of nodes that has the
above three properties. The presented formalism also allows
for the detection of overlapping communities and community
structures in possibly degenerate ground states. Sampling local
minima of the energy landscape defined by the graph under
study will also lead to valid community assignments. They can
be regarded as sub-optimal community structures and the study
of their overlap among each other and with the ground state
yields valuable information about how many alternative, but
sensible groupings exist for a particular network [18,16].

The ground state depends on the value γ chosen. Recall
the definitions of adhesion and cohesion in Eq. (5), where γ

measures the relative influence of the number of internal and
external links over the respective expectation values. Further,
compare the ground state properties (1) to (3). For γ = 1, a set
of nodes has non-negative cohesion, if it has at least as many
internal links as expected from a random assignment and for
γ = 2, a set of nodes needs at least twice as many internal
links than expected in order to be considered a community.
Therefore, larger values of γ will lead to denser communities
which are also smaller. The opposite is true for smaller values
of γ . Hence, γ determines a threshold for the link density
contrast in the community structure. The highest sensible value
is γ ≈ 1/p, since then only complete subgraphs (cliques) will
have a non-negative cohesion. The lowest sensible value of γ

will be the largest value which leads to a ferromagnetic ground
state. Of course, an initial investigation should be performed at
γ = 1, which corresponds to the natural partition of the graph.
If one then wants to find additional structures, for most practical
applications a sensible parameter range is 0.01 ≤ γ ≤ 100,
which should be explored starting around γ = 1.

The value of γ at which the community structure was
obtained should always be quoted. Changing the value of γ

allows us to detect hierarchies in the assignment of nodes into
communities [18,16].

The performance of this approach to community detection
was benchmarked on computer generated test networks [18,
4] and the results compared to those obtained by Girvan
and Newman’s betweenness algorithm [11]. The networks are
Erdös–Rényi (ER) graphs [19] with an average degree of 〈k〉 =

16 and 128 nodes. The nodes were divided into 4 groups of
32 nodes each. Keeping the average degree fixed, the links per
node were distributed into an average of 〈kin〉 to members of
the same group and an average of 〈kout〉 to members of the 3
remaining groups in the network such that 〈kout〉 + 〈kin〉 = 〈k〉.
Obviously, increasing 〈kout〉 at the expense of 〈kin〉 makes the
recovery of the designed community structure more difficult.
At 〈kin〉 = 4 the network should be completely random and
any trace of the built-in community structure is lost since at this
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Fig. 1. Benchmarks of a community detection algorithm based on finding the ground state of a spin glass and comparison with Girvan–Newman’s algorithm [11].
Tests were run on computer generated test networks with known community structure. “Sensitivity” denotes the fraction of all pairs of nodes that are classified
correctly in the same community, while “specificity” denotes the fraction of all pairs of nodes classified correctly in different communities.
point the probability to link to a member of a different node
equals the probability to link to a member of the same group
pin = pout = p.

Fig. 1 shows the results of the benchmarks. We measured
the success of the two methods in terms of sensitivity and
specificity. Sensitivity measures the fraction of pairs of nodes
that are correctly classified as being in the same cluster, while
specificity measures the fraction of nodes correctly classified
as belonging to different clusters. In other words, the two
measures indicate how good the algorithms are in grouping
together what belongs together and in keeping apart what does
not belong together. From Fig. 1 we see that both algorithms
are rather conservative in terms of grouping things together
as indicated by the high levels of specificity. The change in
sensitivity is much more drastic and we find that the Potts
model approach outperforms the algorithm of Girvan and
Newman [11]. The critical value of 〈kin〉, at which the ability
to recover the built-in community structure vanishes, seems to
be 〈kin〉c ≈ 8.

4. Communities and modularities in random networks

In our introductory paragraphs, we have already raised
the question of when one may call a network truly modular.
Obviously, running a clustering algorithm over a set of
randomly generated data points will always produce clusters
which, however, have little meaning. Similarly, minimizing
the modularity Hamiltonian on a random graph results in a
community structure which has all the desired properties. This
does, of course, not mean that the graph we studied was in
fact modular. A differentiation between graphs which are truly
modular and those which are not can hence only be made if
we gain an understanding of the intrinsic modularity of random
graphs. By comparing the modularity of random graphs with
that of real world graphs, we can assess whether the graphs
under study are truly modular.

Such a comparison can of course always be made by
randomizing the network under study keeping the degree
distribution invariant. Such algorithms then remove all
correlations and community structures possibly present in the
data. Comparing the results of clustering the empirical data and
a randomized version of it can always give a clue to what extent
the data shows modularity above that of a random network
with the same degree distribution. Nevertheless, such analysis is
biased by the algorithm used to detect the community structure.
Much more desirable would be a measure of modularity that
can be used to compare with any algorithm.

In mapping the problem of finding a community structure
onto finding the ground state of an infinite range spin glass,
we have defined a coupling matrix Ji j with the following
distribution of couplings:

q(Ji j ) = pi jδ(Ji j − (1 − pi j )) + (1 − pi j )δ(Ji j + pi j ), (6)

where we have set γ = 1 and assumed we are dealing with
a random network in which the links are distributed with the
same pi j we use for defining the weights ai j and bi j of the
contributions of existing and missing links in the clustering. It is
easy to see that this distribution has zero mean. Since the mean
of this distribution couples only to the magnetization, we find
a zero magnetization in the ground state [20]. This corresponds
to an equi-partition of the network. The community structure
of a random network consists of all equal sized communities.
If we conceive community detection as looking for the “natural
partition” of a network, then the natural partition of a random
graph is the equi-partition.

For the number of edges to cut when equi-partitioning a
random graph, a number of results exist since the 1980’s,
beginning with the paper by Fu and Anderson [20] about bi-
partitioning a random graph. Kanter and Sompolinsky [21] have
given an expression for the minimum total number of inter
community edges C, also called cut-size, when partitioning
a random graph into q equal sized parts. From this, we can
immediately write an expectation value for the modularity of
random graphs [16]:

Q = −
1
M
HGS =

N 3/2

M

√
p(1 − p)

U (q)

q
. (7)

For the U (q), the ground state energy of a q-state Potts glass
with Gaussian couplings of zero mean and variance J 2

= 1,
some values for small q are given in Table 1 obtained by using
the exact formula for calculating U (q) from [21]. For large q,
we can approximate U (q) =

√
q ln q [21].

We see that maximum modularity is obtained at q =

5, though the value of U (q)/q for q = 4 is not much
different from it. This qualitative behavior of dense random
graphs tending to cluster into only a few large communities
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Fig. 2. Modularity and the number of communities in ER graphs. Shown are the values determined from clustering random graphs with N = 10,000 nodes and the
expectation values calculated from using a Potts model (8) or an Ising model (10) recursively.
is confirmed by our numerical experiments. Using the largest
value of Table 1, we finally arrive at an expression for the
expected modularity in any ER random graph with average
degree 〈k〉 = pN :

Q = 0.97

√
1 − p

pN
. (8)

Fig. 2 shows the comparison of Eq. (8) and experiments
in which we have numerically maximized the modularity
in random graphs with N = 10,000 nodes and varying
connectivity 〈k〉 using a simulated annealing approach as
described in Ref. [16].

The above approximation using a Potts spin glass,
however, cannot explain the number of communities found
experimentally in random graphs of varying connectivity
since it always assumes 5 communities. Therefore, we try
to approximate the ground state of a q-state Potts model by
recursively bi-partitioning the network and continuing as long
as the modularity increases. For every bi-partition we use
the expression of the cut-size as a function of the number
of N nodes and average degree 〈k〉 = pN given by Fu
and Anderson [20]. After every partition, the number of links
connecting to nodes in the same part and to nodes in the rest of
the network is given by:

〈kin〉 =
pN + c

√
pN (1 − p)

2
and

〈kout〉 =
pN − c

√
pN (1 − p)

2
. (9)

The constant c corresponds to U (2) and is given by c =

1.5266 ± 0.0002 [20]. After b successive recursive partitions,
we arrive at a modularity of

Q(b) =
2b

− 1
2b −

1
〈k〉

b∑
t=1

〈kout,t 〉 (10)

where 〈k〉 is the average degree in the total network and 〈kout,t 〉

is the average number of external links a node gains after
partition number t calculated from (9).

Though Eq. (10) only allows numbers of communities that
are powers of 2, the agreement of Q with the experimental
data is surprisingly good as Fig. 2 shows. Also, the number of
Table 1
Values of U (q)/q for various values of q obtained from [21], which can be used
to approximate the expected modularity with Eq. (7)

q 2 3 4 5 6 7 8 9 10

U (q)/q 0.384 0.464 0.484 0.485 0.479 0.471 0.461 0.452 0.442

communities is predicted almost perfectly by (10) as shown in
Fig. 2.

With the expressions (8) and (10), we are adequately able
to calculate expectation values of Q for random graphs which
can be used in the assessment of the statistical significance of
the modularity in real world networks. Note that our analytical
results improve those empirically found in Ref. [22], which
reports a scaling of modularity in ER graphs as Q ∝ 〈k〉

−2/3.
We have shown that random graphs may exhibit considerable
values of modularity even without any built-in group structure.
Recall that the modularity Q has an upper bound of Q < 1.
Significant community structure can hence only be attributed to
graphs with values of modularity higher than those calculated
for equivalent random null models. The sparser a graph, the
higher the expected modularity. It is therefore particularly
difficult to detect true modularity in sparse graphs. Also,
the sparser a graph, the more modules it will show, while
dense random graphs tend to cluster into only a handful of
communities.

5. Theoretical limits of community detection

With the results of the last section we are now prepared to
explain Fig. 1 and to give a limit to what extent a designed
community structure in a network can be recovered. As we have
seen, for any random network we can find an assignment of
spins in communities that leads to a modularity Q > 0. For
our computer-generated test networks with 〈k〉 = 16 we have
a value of p = 〈k〉/(N − 1) = 0.126 and expect a value of
Q = 0.227 according to (8) and Q = 0.262 according to (10).
The modularity of the community structure built-in by design
is given by:

Q(〈kin〉) =
〈kin〉

〈k〉
−

1
4
. (11)

Hence, below 〈kin〉 ≈ 8, we have a designed modularity that
is smaller than what can be expected from a random network
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of the same connectivity! This means that the minimum in
the energy landscape corresponding to the community structure
that we design is less deep than those that one can find in the
energy landscape defined by any network. It must be understood
that in the search for the built-in community structure, we are
competing with those community structures that arise from
the fact that we are optimizing for a particular quantity in a
very large search space. In other words, any network possesses
a community structure that exhibits a modularity at least as
large as that of a completely random network. If a community
structure is to be recovered reliably, it must be sufficiently
pronounced in order to win the comparison with the structures
arising in random networks. In the case of the test networks
employed here, there must be more than ≈8 intra-community
links per node. Fig. 3 again exemplifies this. We see that
random networks with 〈k〉 = 16 are expected to show a
ratio of internal and external links kin/kout ≈ 1. Networks
which are considerably sparser have a higher ratio while denser
networks have a much smaller ratio. This means that in dense
networks, we can recover designed community structure down
to relatively smaller 〈kin〉. Consider for example large test
networks with 〈k〉 = 100 with 4 built-in communities. For such
networks, we expect a modularity of Q ≈ 0.1 and hence the
critical value of intra-community links to which the community
structure could reliably be estimated would be 〈kin〉c = 35
which is much smaller in relative comparison to the average
degree in the network.

This also means that the point at which we cannot
distinguish between a random and a modular network is not
defined by pin = pout = p for the internal and external link
densities as one may have intuitively expected. Rather, it is
determined by the ratio of 〈kin〉/(〈k〉 − 〈kin〉) in the ground
state of a random network and depends on the connectivity of
the network 〈k〉. This result is important whenever benchmark
networks are constructed and the results of various studies
on possibly different networks are to be compared. It also
shows that the Potts model clustering technique is already
close to optimal in the sense that it approaches the theoretical
limit. Therefore, research emphasis should be laid upon finding
efficient minimization routines for the Potts model Hamiltonian
suggested.

From Fig. 3 we observe that sparse random graphs all show
communities in the strong sense of Radicchi et al. [12]. Further,
it is very difficult to find communities in the strong sense in
dense graphs, even though they may exhibit a modularity well
above that of a random graph.

Finally, let us examine the most widely studied network for
community detection, the Zachary Karate Club [23], which was
used by Girvan and Newman in their seminal paper [11] as an
example. The network depicts the friendships of the members
of a Karate club which eventually broke apart into two almost
equally sized groups due to a dispute between the manager
and the instructor. It has been used widely as an example of
community detection, generally with the goal to reproduce the
actual split of the club. The network contains 34 nodes and 77
links, which leads to 〈k〉 = 4.53 and p = 0.137. According
to Eq. (8), this yields an expectation value of Q = 0.423. This
Fig. 3. Ratio of internal links to external links kin/kout in the ground state of
the Hamiltonian. Shown are the experimental values from clustering random
graphs with N = 10,000 nodes and the expectation values calculated from
using a Potts model (8) or an Ising model (10) recursively. The dotted line
represents the Radicchi et al. definition of community in “strong sense” [12].
Note that sparse graphs will, on average, always exhibit such communities,
while dense graphs will not, even though their modularity may be well above
the expectation value for an equivalent random graph.

is surprisingly close to the highest value of 0.419 found in this
network as reported by Duch and Arenas [24]. Alternatively,
Eq. (9) yields an estimate of 12.8 for the number of links
between two equal sized groups of 17 members each. A recent
refinement of this estimate from Ref. [25] gives an estimated
cut-size of 12.5 links. The actually observed split by Zachary
into a group of 18 and one of 16 had a cut-size of 10. The split
found by Girvan and Newman was a partition into a group of
19 and 15 with the same cut-size of 10. It must be understood
that the analytical results obtained in the thermodynamic limit
are not exactly applicable to such a small network and that
a rewiring technique would be more appropriate for such a
small system. This said, it still seems that the Karate club
network is not truly modular in the sense that one cannot
find partitions that considerably exceed the expectation values
of Q for equivalent random null models. There exist only
few alternative assignments of comparable modularity which
overlap only in a small number of nodes. This means the
community structure of maximum modularity is very stable.
For such a small system, this is, however, expected. Also,
one cannot say that the cut-size of the observed split differs
drastically from the expected in an equivalent random network.
This leads to the following conclusion: from a pure network
perspective, we cannot say that there were different groups of
people in the club that formed communities into which the club
eventually broke apart. Rather, it was the central position of
the conflicting individuals, their being highly connected and
their specific positions as manager and instructor which lead
to the breakup of the club. This breakup then happened along a
minimal cut which is only natural. A dispute between any other
pair of members would most likely not have led to a splitting of
the group.

6. Conclusion

In this article, we have examined the problem of assessing
statistically significant modular structure in networks. We
exploited a mapping of the problem of community detection
onto finding the ground state of an infinite range spin glass. The
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quality function of the clustering, or modularity, is identified as
the ground state energy of this spin glass. Benchmarks show
the good performance of algorithms based on this mapping.
Expectation values for the modularity of Erdös–Rényi random
graphs were given and the dependence of these expectation
values on the link density in the network was discussed. The
theoretical limits of community detection were addressed. We
found that only those community structures can be recovered
reliably that lead to modularities larger than the expectation
values of random graphs. This allowed us to quantitatively
explain the observed deterioration of benchmark results for
computer generated test networks and shed some light on the
interpretation of widely used real world example networks.
Our findings are universally applicable and independent of any
algorithm used to find the community structure.

Acknowledgements

The authors would like to thank Stefan Braunewell, Michele
Leone, Ionas Erb and Andreas Engel for many helpful hints and
discussions.

References
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[13] I. Derényi, G. Palla, T. Vicsek, Clique percolation in random networks,
Phys. Rev. Lett. 94 (2005) 160202.

[14] M. Newman, M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E 69 (2004) 026113.

[15] M. Newman, Fast algorithm for detecting community structure in
networks, Phys. Rev. E 69 (2004) 066133.

[16] J. Reichardt, S. Bornholdt, Statistical mechanics of community detection,
Phys. Rev. E 74 (2006) 016110.

[17] A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in
very large networks, Phys. Rev. E 70 (2004) 066111.

[18] J. Reichardt, S. Bornholdt, Detecting fuzzy community structures in
complex networks with a Potts model, Phys. Rev. Lett. 93 (2004) 218701.
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