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HIGHLIGHTS

Causal constraints in network structure require the development of novel methods.
Tools from causal set theory can be applied to study citation networks.

This can reveal differences in citation behaviour between subfields.

We measure the dimension of the spacetime each citation network is closest to.
Other directed acyclic graphs can be studied with these methods.

ARTICLE INFO ABSTRACT

Article history: Citation networks represent the flow of information between agents. They are constrained
Received 24 April 2015 in time and so form directed acyclic graphs which have a causal structure. Here we
Received in revised form 24 September provide novel quantitative methods to characterise that structure by adapting methods
/2\?/;i51able online 23 December 2015 used in thg cause_ll set ap_proach Fo quantum gra_vity by _consi@ering_the netwgrks to be

embedded in a Minkowski spacetime and measuring its dimension using Myrheim-Meyer
and Midpoint-scaling estimates. We illustrate these methods on citation networks from

IC(;?; th;z;d;'etwork the arXiv, supreme court judgements from the USA, and patents and find that otherwise
Directed acyclic graph similar citation networks have measurably different dimensions. We suggest that these
Minkowski space differences can be interpreted in terms of the level of diversity or narrowness in citation
Dimension behaviour.

Causal set © 2016 Published by Elsevier B.V.

Network geometry

1. Introduction

Citation analysis has great potential to help researchers find useful academic papers [1], for inventors to find interesting
patents [2], or for judges to discover relevant past judgements [3]. It is not, however, enough to simply count citations,
because they can be made for a variety of reasons beyond an author genuinely finding a document useful [4-6]. To interpret
the information encoded in a citation network we must be able to identify and describe the important features, such as the
fat-tailed citation distributions [7-12], clustering [13], motifs [14], distance measures [15] and others [16,17]. Beginning
with Price’s cumulative advantage principle [ 18,19] there have been numerous attempts to construct models which replicate
some of these features [9,20-26] and in doing so highlight potentially important mechanisms for the flow of information
which drives the growth of real citation networks.

Citation networks are constrained in time, because authors can only cite something that has already been written.! This
causal constraint prevents closed loops of directed edges in the graph, since all edges must point the same direction in time,
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E-mail address: jrc309@ic.ac.uk (J.R. Clough).
1 Occasionally this is not the case for real citation networks. For instance, two authors may share and cite each others work before either is published,
leading to two papers which both cite each other, clearly forming a cycle. Such ‘acausal’ edges are rare, making up less than 1% of edges in all citation
networks considered here, and so were removed from the network since many techniques used here assume that the network forms a DAG.
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and is the same constraint placed on causally connected events in physics. Therefore they naturally form Directed Acyclic
Graphs (DAG) where a directed edge going from node A to node B represents document A having cited the document B.

By taking constraints into account it is often possible to create new methods of characterising network structure as is
well known for networks embedded in space [27-29]. This kind of geometric approach can also be used by postulating the
existence of a hidden geometric space which describes some aspects of a network’s structure [30-32]. It is our view that
the same is true of citation networks (as well as other networks which naturally form directed acyclic graphs because their
edges represent causal connections). The role of time in citation networks means that instead of an underlying Riemannian
manifold (such as usual Euclidean space of spatial networks, or a Hyperbolic space of Ref. [30]) we will consider a Lorentzian
manifold.

In a Lorentzian manifold one dimension, usually representing time is treated differently to the other, spatial dimensions.
Relations between points can be classified as timelike, null, or spacelike. The simplest such manifold, and the one we
will consider here is Minkowski space which is the geometry of Einstein’s special relativity, in which timelike relations
correspond to causal connections. We will consider applying this geometry to DAGs by equating the directed edges in the
graph with timelike separation between the nodes. With this approach we will characterise network structure using tools
from the causal set approach to quantum gravity, in which spacetime (which is a Lorentzian manifold) is discretised and
has the structure of a DAG. In particular, we will use methods which estimate the dimension of a Minkowski space from its
causal structure and apply them to citation networks.

The rest of this paper is structured as follows. In Section 2 we introduce in detail the Lorentzian perspective of DAGs,
seeing how they can be embedded in space and time, and the methods of estimating their dimension. In Section 3 we
will adapt these methods for use on citation networks and test them on examples from academic papers, patents and court
judgements. In Section 4 we interpret these results in terms of using dimension as a measure of citation diversity, and finally
in Section 5 we discuss applications and the similarities and differences of this approach with others in the literature.

2. Dimension estimates for spacetime networks

In the causal set approach to quantum gravity, spacetime is seen as a set of discrete points with a partial order relation,
called a causal set whose structure approximates the continuous space we perceive. Whether causal sets are a useful ap-
proach to understanding the physical universe is not the focus of this paper and so we direct the reader to Refs. [33-35] for
more details.

We will consider only the simplest spacetimes, D dimensional Minkowski spacetimes of one time dimension and D — 1
spatial dimensions.? To create a causal set which approximates the structure of Minkowski space, we begin by randomly
and uniformly scattering points in Minkowski space by randomly assigning each point an associated time t and spatial co-
ordinates x;. Two points are causally connected if and only if they are timelike separated, meaning the differences in their
co-ordinates satisfy:

(AD? > > "(Ax)%. (1)

If this relationship is satisfied we then say that the point with the larger/smaller t coordinate is in the future/past lightcone
of the other. In special relativity it is this relationship that defines whether two events in spacetime can causally affect
one another. The direction of the edges is determined by the causal/temporal ordering as given by the ordering of the time
coordinates, and provides a uniquely defined causal relationship. To translate this structure into the language of networks,
we say each point is a node, and we add edges between nodes which are causally connected, i.e. their coordinates satisfy
Eq. (1). We will use the convention that all edges point backwards in time. This process necessarily generates a DAG since
all edges point the same direction in time.

An interval [A, B] in a DAG is the set of nodes which can be reached from A (are in its causal past) in one direction, and
from B in the other direction (in its causal future) [36] as in Fig. 1. The dimension estimates used here are defined on an
interval in a DAG.

To illustrate these estimates we will use a simple network model in which points are scattered uniformly at random in
an interval of Minkowski space. We first create two extremal points with time co-ordinates of 0, and 1 respectively, with all
spatial co-ordinates equal to 0. We then add more nodes to the network by assigning a random time co-ordinate between
0 and 1, and random spatial co-ordinates between —0.5 and 0.5 and allowing this node to be in the network if it has edges
to the two extremal nodes and so lie within the interval such that Gp(N) is a network created by this process with N nodes,
which are described by D coordinates. We will refer to these networks as spacetime networks though they are also known
as cone spaces in the mathematics literature [37].

The number of spatial dimensions will determine the structure of the graph this process creates. Extra spatial dimensions
add further terms to the summation on the right hand side of Eq. (1) and make it less likely that two points are connected.

2 1tis possible to define other similar networks, such as a cube-space [41], a spacetime network using a curved spacetime [31] or geometric space with
other rules [26]. Minkowski spacetime is the simplest, being defined by just one parameter D, the measurement of which we will use to characterise the
network’s structure.
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Fig. 1. The Midpoint-Scaling dimension in a 2-D spacetime network. The longest path through the interval (defined by the triangular nodes) is shown,
and its midpoint is the octagonal node. The diamond nodes are those that lie within a subinterval, from the midpoint to the upper extremal point of the

network, and the square nodes lie in the lower subinterval. In a 2D network we expect the number of nodes lying in these subintervals (the diamonds and
squares) to be approximately half of the total population of the whole network.

So if we were to forget about the space and time coordinates of each point it should still be possible to estimate the number
of spatial dimensions from the network’s structure alone. We will use two such methods: the Myrheim-Meyer dimension
estimate, and the Midpoint-Scaling dimension estimate.

2.1. Myrheim-Meyer dimension

An n-chain in a DAG is a sequence of n nodes which are all causally connected to each other. When points are placed at
random with uniform probability density in a spacetime interval the expected number of n-chains S, is given by [38,39]

(5,) = N"T'(D/2)T'(D)T'(D + 1)*! @)
" 2n=1nr(nD/2)T ((n + 1)D/2)
where D is the dimension of the Minkowski spacetime and I'(z) is the Gamma function.

For a given DAG we can simply count the number of chains and numerically find an estimate for the dimension using
this formula. Estimates for the dimension can be made using chains of any length, but there are significantly larger number
of 2-chains (just a pair of causally connected points). Because of this we found the 2-chain case to be more accurate than
others as well as being computationally easier. The expected number of 2-chains is simply

(S2) I'(D+1)I(b/2)

N2 =/ =0 (3D)

(3)

For a given interval, the left hand side of this equation can be measured, and the right hand side, f (D) is a monotonically
decreasing function, so we can estimate D by inverting it numerically [40].

2.2. Midpoint-scaling dimension

When nodes are uniformly and randomly scattered in a space, the number of points in a region is proportional to the
volume, V, of that region [39]. In a Minkowski space, the longest chain through an interval corresponds, in the large-n limit,
to the geodesic through embedding spacetime (the Myrheim length conjecture®) [38,41,42]. This means that in an interval
the length of the longest path, L is proportional to the time difference between the starting and ending nodes.* We then
expect that in a D-dimensional Minkowski space V(L) ~ LP. Knowing how the size of an interval scales with its height
allows the dimension to be inferred.

3 Itis proven in the case of flat spacetime.

4 The causal structure of Minkowski space and therefore the structure of the spacetime network is invariant under Lorentz transformations, so any
interval can be transformed such that the starting and ending nodes have the same spatial coordinates, so the length of the geodesic in the continuum limit
is simply the difference in the node’s time coordinates.
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Fig. 2. The Myrheim-Meyer dimension (left column) and Midpoint-scaling dimension (right column), against the number of points in the graph, averaged
over 100 random spacetime networks Gp(N) for D equal to 2, 3, 4 and 5. The estimates’ convergence from below to the correct dimension is also seen in
Ref. [40]. Error bars (smaller than the markers on the left figure) show the standard error of the estimated dimension. Errors are larger for higher dimension,
but smaller as the size of the space grows.

The Midpoint-Scaling dimension [34] measures how the size of two subintervals scale with the size of a larger interval
between two nodes. The two subintervals of interval [A, B] are [A, C] and [C, B], which have populations Ny and N,. The
midpoint, C, is the node on the longest path such that smaller population of Ny and N, is maximised.

Since [A, C] and [C, B] each have around half the height of [A, B] we can estimate the manifold dimension of this interval
using Ny >~ N, =~ 2%. This is illustrated in Fig. 1 (see Fig. 2).

2.3. Reduced degree

It is also possible to estimate the dimension of a spacetime network by comparing the average in/out degree of a node
before and after Transitive Reduction (TR). TR is an operation on directed graphs which removes all edges implied by
transitivity, the result of which is uniquely defined if the graph is acyclic [43]. We will call the degree after TR the reduced
degree, k.. Taking Fig. 1 as an example, consider the triangular node at the bottom of the diagram. Its degree before TR is
N = 20 and its degree after is k, = 4 (as shown by the 4 remaining links).

We show in the Appendix that for a two-dimensional spacetime network the distribution of reduced degrees k, is
proportional to the unsigned Stirling numbers of the first kind. For large N the degree distribution is roughly Poissonian

with a mean of In(N). For other dimensions the expected reduced degree is roughly’ k, = K’ [33]. However, we found
that the dimension estimate given by this method does not display the consistency of the other two methods described here
when used on citation networks. This is primarily because in a given citation network nodes which have the same degree
can have reduced degrees which differ by more than an order of magnitude, as shown in the Appendix. In Ref. [44] we
suggest that the reduced degree of a node reveals particular properties of the paper it represents, and given such variation
this method is too noisy to use as a way of characterising the network as a whole.

3. Estimating the Minkowski dimension of citation networks

The methods described above are designed to estimate the dimension of the spacetime in which the nodes of a DAG are
randomly scattered. Graphs which represent citation networks do not originate from points scattered in a Minkowski space,
and so there is no original ‘dimension’ for us to estimate.

This means that the interpretation of the dimension estimate has to change. We are now no longer investigating the prop-
erties of a space in which we know the nodes are embedded, but instead just characterising the graph’s structure in a way that
is analogous to embedding it in some Minkowski spacetime. We do not claim that citation networks are like the spacetime
networks described above in all regards, only that these tools are useful characterisations of different citation networks.

Some work is needed to adapt these dimension estimators for use on citation networks because citation networks do not
share some of the particular properties of causal sets or the spacetime networks described above.

Firstly, the spacetime networks are constructed to be an interval, that is there is only one source node (with zero in-
degree) and one sink node (with zero out-degree), both of which must be reachable from any other node in the network. This

5 We note that some versions of this formula in the literature contain typographical errors and are incorrect. Our analysis, numerical and analytical, gives
the form we quote here.
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Fig. 3. The Myrheim-Meyer (left) and Midpoint-scaling (right) dimensions for the hep-th citation network appears to settle at a value around 2 for large
intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is almost always not the case for citation networks. So instead of estimating the dimension of the whole citation network,
we look at many intervals within the citation network and apply the estimators to these intervals. To find intervals we
choose two nodes uniformly at random from the network, and if an interval exists between them we estimate its dimension,
otherwise ignoring this pair of nodes. To visualise the results we plot the population of the interval against its estimated
dimension.

Secondly, the spacetime networks are always transitively complete meaning that if node A is in the future lightcone of B,
and B is in the future lightcone of C then A is necessarily in the future lightcone of C. In the language of networks the edges
(A, B) and (B, C) imply the edge (A, C) also exists. In citation networks this is not necessarily true since if an author cites a
paper, they do not also have to cite its entire bibliography. A consequence of this is that there is no distinction in spacetime
networks between edges and causal connections, but in citation networks they are different. So in our implementation of
the Myrheim-Meyer dimension estimator we seek to count chains of causally connected nodes and not just edges. To do
this we first transitively complete the network [43] (adding edges between any two nodes if there is a path between them)
before counting the 2-chains which are now just the edges.

3.1. Data

To test these dimension estimates we used citation networks from academic papers, patents and court judgements. The
academic citation networks are from subsections of the arXiv online research paper repository, from the citation network
visualiser Paperscape. The citation network is separated out into the subsections of the arXiv, and each consists of the
citations from one paper in that subsection to another also in that subsection. Here we will look at the ‘high energy theory’,
‘high energy phenomenology’, ‘astrophysics’, and ‘quantum physics’ sections, labelled by their tags on the arXiv, hep-th,
hep-ph, astro-ph, quant-ph respectively. Their sizes range from around 20,000 to around 120,000 nodes and stretch in
time from 1991 to 2013.

Since patents must cite other patents that contain ‘prior art’ they also form a citation network. We use data derived from
patents registered in the USA between 1975 and 1999 [45] and in total there are around 4,000,000 patents.

Court decisions also cite previous decisions as precedent so form a citation network. We will analyse the network formed
by all decisions and citations made by the US Supreme Court from its inception in 1754 to 2002 [46], in total around 25,000
nodes.

Further discussion of these particular datasets is available in our previous paper [44] and our datasets will be made
available on figshare [47].

4. Results and interpretation

Figs. 3-6 show scatter plots for each arXiv section, plotting the population of 5000 randomly chosen intervals against
their estimated dimension. Each point is coloured by the publication date of the last node in the interval.

It is immediately clear from the differing shapes of the histograms in Figs. 3-10 that there are structural differences in
the citation networks analysed here which have been revealed by these dimension estimates. In general there is a large
spread of measured dimensions suggesting structural heterogeneity unlike the homogeneous Minkowski space embedded
networks. This is unsurprising given that citation networks show high levels of clustering and usually contain many different
communities with strong intra-community links but weak inter-community links [48].
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Fig. 4. The Myrheim-Meyer (left) and Midpoint-scaling (right) dimensions for the quant-ph citation network appears to settle at a value around 3 for
large intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The Myrheim-Meyer (left) and Midpoint-scaling (right) dimensions for the rewired hep-th citation network. The 10° edges have been rewired
randomly 107 times, so all structure other than the degree distribution and causality constraints has been removed.

In all four arXiv citation networks the two plots, for Myrheim-Meyer dimension and Midpoint-Scaling dimension, show
similar shapes, and converge on a consistent dimension value for large interval sizes. For the Minkowski spacetime networks
there actually is an underlying dimension being estimated and so it is reasonable to expect independent estimations of it to
agree. This is not obviously the case in other networks so it is encouraging to see consistency between the two methods in
real social networks.

Crudely, the ‘dimension’ of the hep-th network appears to be around 2, and the hep-ph network around 3, astro-ph
around 3.5, and quant-ph also around 3. We note that each of the individual arXiv citation networks, containing only intra-
section links are themselves sub-networks of the larger arXiv citation network. Our estimated dimensions for these four
sections show significant differences strongly suggesting that the arXiv citation network is structurally heterogeneous, with
its different communities having measurably different citation behaviours. This suggests that an application of this technique
would be to provide a novel method of measuring these differences in other large, heterogeneous citation networks, or DAGs
representing other systems, and identifying relevant subgroups even without externally applied labelling of the nodes.

4.1. Similar causal constraints give similar structure

Citation networks are under causal constraints which impose some structure. We can see the effect of this structure by
rewiring the edges of the network but maintaining the causal constraints. This is done by taking two edges, [A, B] and [C, D]
and rewiring them to [A, D] and [C, B] if both of the new edges respect causality, thereby retaining the original in, and out
degrees of each node and ensuring the network remains acyclic. Fig. 7 shows that after all structure other than the causal
constraints, and in and out degree of each node in a network is removed, the dimension estimate plots give a significantly
different result to the original hep-th network showing that other structure is involved in determining the estimated
dimension and importantly that it is not an expected feature of a random network with the same degree distribution and
causal constraints.

To further investigate the extent to which causal constraints and degree distribution we will determine estimated
dimension with a simple null model.

We generate a network with the same degree distribution as the quant-ph network using the simple cumulative
attachment model for citations®due to Price [ 19] and measure its dimension.

Fig. 8 shows that we can easily create a scale-free network with the same degree distribution as a citation network does
not look the same according to these dimension estimates.

4.2. Differing citation behaviour

Citation networks from outside academia illustrate different behaviour. The US patent network’s plot is much sparser for
larger intervals, and almost all measured intervals were very small. For large intervals the measured dimension is around 5,
much larger than the arXiv citation networks.

6 we begin with a small number of nodes connected in a line. We add nodes one by one, and when a node is added it attaches (k;,) edges to existing
nodes, where (k;,) is the mean in degree in the network whose degree distribution we are replicating. With probability p, edges attach preferentially, that
is, proportionally to nodes according to their current in-degree, and with probability 1 — p they attach randomly. By manually tuning p, we can create a
network with a very similar degree distribution to a real citation network. In this instance, p = 0.6.
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Fig. 9. The Myrheim-Meyer (left) and Midpoint-scaling (right) dimensions for the patent citation network. In this citation network larger intervals are
much rarer than in the others, as a large interval usually contains many different paths from that starting node to the ending node, which is rare in patent
citation networks.

Fig. 10 shows estimates for the US Supreme Court citation network and shows a different shape to all the others we
investigated. In the arXiv and patent citation networks we see a slow growth in estimated dimension as interval size
increases. The US Supreme Court network seems to show the opposite effect. Small intervals have a higher dimension
estimate, and dimension falls as interval size increases. Our suggestion is that this effect is caused by this network stretching
over an unusually long time period (it covers all judgements made in the Supreme Court since 1754). In the same way that a
large, thin plane appears three-dimensional on length scales much smaller than the plane’s thickness, but two dimensional
on length scales much larger than this thickness, this network may also appear to have a different estimated dimension
on different time scales. We also note that newer cases (those with a larger case number on the colour bar) have a lower
measured dimension than older cases which is again the opposite trend to that in the arXiv citation networks. This temporal
heterogeneity is another aspect of citation network structure which can be revealed by measuring dimension.

4.3. Measuring citation diversity

To find an interpretation for these results, we can look at simple examples of low, and high dimensional networks. A
network with dimension 1 (no spatial dimensions, just a time dimension) would be a single line, where nodes form an
unbroken chain of edges, each linking the previous node.
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Fig. 10. The Myrheim-Meyer (left) and Midpoint-scaling (right) dimensions for the US Supreme Court citation network. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

&

Fig. 11. From left to right, simple DAGs embeddable in 1, 2 and 3 dimensional Minkowski spacetimes.

As the number of spatial dimensions grow it is more likely that two nodes do not have a causal relationship, and
so do not link to each other.” Furthermore in any spatio-temporal model of citation networks the number of spatial
dimensions corresponds to the number of coordinates required to parametrise a paper. It is appealing then to interpret
a small dimensional citation network as a more narrow field, where most of the papers are causally related to most others,
and any paper can be described by a small number of parameters, corresponding to a small number of different areas of
study (see Fig. 11).

A large dimension would then correspond to a more diverse field, where many independent authors can cite the same
paper without citing each other and each paper requires a large number of parameters to be described. Our high-dimensional
networks, such as the astrophysics section of the arXiv can then be interpreted as being more diverse in terms of citation
behaviour than high energy physics section, and patents more diverse than physics papers or court judgements.

5. Discussion

In this paper we have illustrated the effectiveness of manifold dimension estimates as novel ways of characterising
networks which form DAGs, and in particular networks constrained by causality. We have shown that in citation
networks, the Midpoint-Scaling dimension and Myrheim-Meyer dimension estimators show strong agreement and
highlight important differences in the causal structure.

We see a number of possible applications and uses of this technique in network analysis. Firstly, they provide another
method of quantitatively characterising structure in a way that allows different networks to be differentiated. For instance
the two particle physics sections of arXiv, hep-th and hep-ph, are similar in many ways. They have similar degree
distributions and clustering coefficients [44] but clearly differ in the dimension measures which quantify how ‘broad’ or
‘narrow’ the citation behaviour of authors in these fields is. Given two intervals, one from the hep-th network, and the other
from hep-ph we can estimate their dimensions using these methods and we could deduce which section of the arXiv those
papers came from, without knowing anything about their authors or their content, and using only the information in the
topology of the citation network. The message here is that citation networks from different areas of study have measurably

7 Inthe language of causal sets, the ordering fraction decreases.
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different citation behaviours, and that this is information we can extract which is potentially of interest to any scientists
who want to improve their use of bibliometric measures as an aid to research.

Secondly there has been recent interest in embedding networks derived from real data in ‘hidden metric spaces’, such
as in Ref. [49]. A program to find hidden Lorentzian spaces to embed citation networks (and other DAGs) in could yield
similarly useful applications for citation analysis such as showing the evolution of communities over time, or providing a
distance/similarity measure between individual documents which can be used for paper recommendation. Before the nodes
of a network can be assigned coordinates in a space, it is necessary to know how many dimensions that space has. Therefore,
analysis like ours is a necessary first step on this program.

Our approach here has been to view the citation network as a static object, which is a natural view if it is embedded in a
spacetime where time is just another coordinate each node has. It is possible to view the citation network with a growing
model instead, but in many cases including random geometric graphs and causal sets, static equilibrium models and growth
approaches are equivalent as shown in Ref. [50]. If viewed from a dynamic growth perspective, our dimensions estimates
can be considered as characterising the dimensionality of the available space for nodes to appear in that growth process.

Though a citation network represents information spreading process between authors, not every citation necessarily
corresponds to useful information being passed from one writer to another. It is difficult to know from the structure of the
citation network alone which edges correspond to genuine insight and which are citations inserted for other reasons. In
Ref. [44] it is explained that transitive edges (those implied by some other directed path) are less likely to be necessary for
information flow between two authors and the effect of their removal is investigated. The methods for dimension estimation
shown here are effectively invariant with respect to the existence of transitive edges since only the existence of a path from
one node to another is relevant and so it is therefore reasonable to suggest that they depend primarily on the information
carrying edges of the network.

5.1. Why use Minkowski space?

The dimension of a network is a concept which has been considered before, with differing meanings; for example the
number of parameters in a model [51], the time a random walker takes to return to its starting position [52], fractal box
counting dimension in Euclidean space [53], the number spatial (but not temporal) dimensions measured using influence
regions [54] and more [55].

However causal constraints are a key feature of citation networks and DAGs and it is essential that such a constraint is
taken into account when analysing these networks [44]. This is why it was important to develop methods which include
time as dimension which is not the same as the spatial dimensions. The dimension measures we use explicitly involve time
and take the causal constraints of citation networks into account, recognising that in-edges (being cited) and out-edges
(citing someone else) are fundamentally different things. While in a purely spatial embedding of a network, one might
reasonably suggest that the probability of an edge existing between two nodes will always increase if the distance between
them decreases, this is not necessarily the case in time. The information in one paper takes time to reach other researchers,
and this delay is larger if researchers work in separate field.

In the arXiv citation network, we found that the time difference of a citation between two papers in the same arXiv
subsection was 1.6 years, and for papers in different Section 2.1 years, suggesting that citations to papers which are less
similar (or further away in some abstract spatial representation) are more likely to span larger time intervals, reflecting the
finite speed of information propagation.

The primary reason for our choice of Minkowski spacetime for these dimension estimates over some other Lorentzian
spacetime is that it is one of the simplest choices to make, defined by a single parameter D. The scope of this work was to
characterise different network structures by measuring spacetime dimension and not to find an actual embedding of the
network into that spacetime by assigning coordinates to each point.

This would be much more difficult to do for spacetimes which are described by more than just one parameter (e.g. for
curved spacetimes). Regarding studies of networks embedded in other types of space, for causal sets we refer the reader to
Refs. [35,40,56] and for growing network models in hyperbolic spaces to Refs. [31,57].

There are suggestions in the literature, that it may be possible to find better correspondences between particular
networks and spaces. The de Sitter spacetime studied in Ref. [31] can give the same fat-tailed citation distribution as the
simple Price model [18] but the development of other network measures is needed before we can truly say that there
is a correspondence between citation networks and these kinds of spaces. Indeed, using other causally aware measures
on citation data reveals important new features in real citation network data [44,25] which are not present in generic
preferential attachment models.

One particular feature noted in Ref. [44] is that only small number of papers published shortly before the referencing
paper are needed to define the causal structure of a real citation network, the edges left after transitive reduction.

We note that other dimension estimators exist for networks embedded in Minkowski spaces. We have tried using the
reduced degree, but as explained in Appendix it is not a feasible method. A recently published method not implemented
here, but potentially appropriate for citation networks uses a random walker on a causal set to estimate it is spectral
dimension [58]. However many other methods are inappropriate for analysis of the causal structure of a citation network.
One such method is to find the smallest dimension in which any subgraph can be faithfully embedded [33,59]. This method
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requires a DAG to be perfectly embedded in a manifold as just one subgraph which cannot be embeddable in D dimensions
means that the entire network is given a dimension higher than D.

Furthermore, there are some finite DAGs which cannot be perfectly embedded in a Minkowski space of any
dimension [60]. This method is less appropriate for analysis of our citation networks, since the integer result such dimension
estimates give can be increased by one by the rewiring of only one edge, which is an unhelpful property when dealing with
noisy real-world data, or it may not even be defined at all.

Conversely the two estimates we use here are robust to noise, a useful property when analysing data from social
interactions. They produce a real number value and small deviations from DAGs which are faithfully embedded in a
Minkowski manifold only lead to small deviations in the estimated dimension.
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Appendix. Reduced degree
Derivation of distribution of reduced degree in 2D spacetime networks

In 2D Minkowski space the exact distribution of degrees after TR can be calculated because in 2 dimensions the spacetime
network is equivalent to another structure called a cube space. In a cube space of dimension D we have pointsi = 1,2...N
with coordinates z* where « = 1, 2...D. Point i is connected to point j iff z¥ < z* V «, which is to say that j has larger
co-ordinates in all dimensions. The nodes of the network are randomly and uniformfy scattered in this space and connected
using this rule.

Though this result will turn out to be of little help for analysis of citation networks, for reasons discussed later, it is to the
best of our knowledge a novel extension of the result of Ref. [61] which derives the expected value of the reduced degree in
cube spaces of all dimensions and so we include it here.

Suppose that the probability of a node in the corner of an interval containing N other nodes, having a degree after TR
(reduced degree) k, is p(k,, N). We will first give an argument for the following recursion relation.

N -1 1
p(krs N) = Tp(krs N-1)+ Np(kr —-1,N-1). (A-l)
Since we are only considering 2 dimensions, let us call the first coordinate x, z;"zl = ¥x;, and the second coordinate y,
zf‘=2 = ¥;. We may consider each point in turn, ordering them with smallest x coordinates first so that x; < x;ifi < j.

Suppose we have already considered the first (N — 1) points and now look at the point with the N-th smallest x coordinate,
i = N. All previously considered points have smaller x coordinates, so this pointi = N can only be a new link to the origin if
it is minimal in the y coordinate. Because the coordinates are just random numbers, the probability that yy is the smallest so
far is simply % So with this probability, a new TR-surviving-edge will appear, and with probability % it will not, explaining
both terms in Eq. (A.1). This view is equivalent to a standard record statistics process [62]. Indeed the points do not even
have to be uniformly distributed here, the only requirement is that the D coordinates are independent random variables.

To solve this, we then recognise the recursion relation for the unsigned Stirling numbers of the first kind [khi ],namely
N+1]_ [N N
[ k, ] =N [k} + [kr - 1] (A2)
0
where [0} =1 (A3)

and [1(\)]:| = [13] =0. (A4)

We can then say that
1 (N
plkr. N) = o [kr] : (A5)

To check our answer, note that [I;J] = (N — 1)! giving p(k;, = 1,N) = % as expected.® As noted by Wilf in Ref. [63], ‘the
Stirling numbers of the first kind are notoriously difficult to compute’, and so we are unlikely to find a nice solution here.

8 The probability that k, = 1 is simply the probability that the point with the smallest x-coordinate also has the smallest y-coordinate.
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Fig. A.12. Left: the degree before, and after transitive reduction for the hep-ph citation network. The spread of k; is very wide for a given k;, indicating a
heterogeneity in the papers. Right: the degree before, and after transitive reduction for spacetime networks of dimension 2-5. Lower dimension appears
lower on the plot. To try and use the reduced degree method to estimate dimension is essentially to ask which of the scatter plots on the right figure best
fits the left figure, given the large spread of values on the left, the estimated dimension for individual subgraphs has very large variation, unlike the other
dimension estimates which have similar answers throughout the network and so better achieve the goal of characterising the whole network’s structure.
The reduced degree method is more useful as a characterisation of individual nodes within the network.

It is useful to find the generating function G(z, N) where

G(z.N) = > " 2*p(k. N) (A6)
k=0

with p(k,, N) = 0ifk, > N.Note that G(z = 1, N) = 1 and the first term in this polynomial is % because p(k = 0,N) = 0.
From the recursion relation (A.1) we now find that

G(z,N) = L 1G( N—l)—}——ZG( N—-1) (A7)

z, N z, N z, .
_ I'(N +2) _ _ B l

G(z,N) = 7(2) Nt 1) =@Z+N—-1).z+N-2)...(2) x N (A.8)

Note that the I'(z) normalisation factor on the denominator can be seen from the explicit expansion where we know the
term O(z) is &.
The asymptotic limit [63,64] can be studied from the generating function G(z, N) in (A.8) as

NZ*1
[Jim Gz, N) = ™ (A.9)
3" (In(N))kzk /k!
= =0 (A.10)

Nz='+¢(0) +0@)
The first term in the series, the part coming from the I'(N+z) /T (z) is just the generating function for the Poisson distribution
Proisson (k) = e~*AX/k! with mean A = In(N), divided by I"(z). However, the non-leading terms coming from the expansion
of the denominator, I'(z), prevent a simple match so the Poisson-like behaviour as seen in Ref. [56] may only be useful for
small ranges of k;, typically | Ak;| < In(N).

From the generating function in (A.8) we can find various moments of k, for fixed N. Here we will derive the expected k;
for a given N in two-dimensions.

N1
=Y - =H,~y+In(N), (A.11)

z=1 i=1 1

d0G(z, N)

(ke) =D ke p(ke, N) = ——

kr=0

~

where y =& 0.577 is the Euler-Mascheroni constant. This Harmonic number result is the two-dimensional case of D-
dimensional result in Ref. [61], which in the large N limit tends to logarithmic growth, as suggested in Ref. [58].

Comparison of measured reduced degree in citation networks, and spacetime networks

See Fig. A.12.
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