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A B S T R A C T

Although many studies emphasize the importance of technology

convergence, comparatively few ask, ‘‘What drives technology

convergence?’’. This study empirically demonstrates how techno-

logical and resource allocation contexts nourish technology

convergence. We use the data from government-supported R&D

projects in Korea and measure convergent patents as ones with

multi-assigned R&D domains. The results show that earlier stage of

technology life cycle, lower technology readiness level, longer R&D

timespan, or smaller R&D budget lead to the creation of technology

convergence. The results justify the policy supports for technology

convergence and highlight the paradoxical relationship between

the affluence of R&D resources and technology convergence.
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Introduction

Following the Renaissance, scientific and technological knowledge developed within their
respective domains (Roco and Bainbridge, 2002). However, as socio-economic and managerial
problems grew more complex, knowledge based on a single discipline was found to be insufficient to
resolve them (Brew, 2008). In addition, rapid globalization and intensified technological development
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induced research and development (R&D) entities to derive various competitive advantages in
emerging industries (Curran and Leker, 2011).

In this context, strategic decisions on converging technologies and associated products can
critically influence the competitiveness of both enterprises and nations (Curran and Leker, 2011).
Converging technologies lay the groundwork for a wide variety of technical solutions by unlocking the
potential of radically novel technological developments (Roco and Bainbridge, 2002; Kim et al., 2009;
Nordmann, 2004; Wolbring, 2008). Therefore, converging technologies are expected to lead and
dominate next-generation technological innovations (Athreye and Keeble, 2000), as crossing
disciplinary boundaries by convergence makes it possible for researchers to develop intellectual
breakthroughs (Morillo et al., 2003). This aspect of convergence can contribute to the increase in
innovation capabilities of research and development (R&D) entities.

Accordingly, a number of scholars have emphasized the importance of convergence and
interdisciplinary research (Stone et al., 2009); R&D managers and researchers also strongly perceive
its importance.1 Since the 1980s, a certain number of corporate strategic plans have involved
considerations of convergence (Lind, 2004; Bröring et al., 2006), and more than 80% of surveyed
Spanish researchers have used knowledge and techniques from other techno-scientific domains
(Sanz-Menéndez et al., 2001). Furthermore, more than half the knowledge in academic journals is of
an interdisciplinary nature (Morillo et al., 2003).

In fact, perceiving the importance of opportunities arising from convergence, developed countries’
governments have established initiatives to promote such convergence, especially in technology. For
example, the National Science Foundation (NSF) in the United States has shown noteworthy interest in
the convergence of nano-, bio-, information, and cognitive (NBIC) technologies (Roco and Bainbridge,
2002) and is taking action to facilitate such endeavors (Wolbring, 2008). Likewise, the European
Commission has executed similar policies vis-à-vis technology convergence (Nordmann, 2004).
Policymakers in South Korea and Japan have initiated plans analogous with those in the United States
and the European Union (Kim et al., 2009).

However, it has not been fully clarified in what contexts R&D entities combine knowledge from
different fields or what conditions promote technology convergence. By and large, technological and
demand uncertainties are theoretically speculated as the determinant of technology convergence
(Bores et al., 2003). More specifically, taking a heuristic approach (Llerena and Meyer-Krahmer, 2003;
Bainbridge, 2006), researchers elucidate the social barriers to mingling among the R&D entities of
different techno-scientific domains (Stokols et al., 2008). Conspicuously, some empirical research
demonstrates a propensity on the part of individual researchers to participate in interdisciplinary
research (Carayol and Thi, 2005) and investigates the correlation between the structures of
convergence in R&D and standardization (Gauch and Blind, 2014). However, few studies empirically
demonstrate what drives technology convergence.

This study demonstrates the influences of technological and resource allocation contexts on
technology convergence among distinct macro-level techno-scientific domains. While the efficacy of
programs that encourage technology convergence is in serious doubt (Metzger and Zare, 1999),
identifying in what contexts convergence occurs and investigating its facilitation may broaden our
understanding of convergence, perhaps helping form policy and managerial decisions in ways conducive
to fostering technology convergence. Moreover, since technology convergence is a key driver of market/
industry convergence (Hacklin, 2008), the deepened understanding created by this study may help
us envision the forthcoming future of convergence in commercial markets and industrial activities.

This study makes distinctive contributions. It offers novel empirical evidence of the influences of
technological and resource allocation contexts on convergence. Thus far, because of difficulty
obtaining relevant preference data (Hacklin, 2008), previous empirical studies focus on identification
of convergence and trend-watch in particular concentrating on industry convergence (Curran et al.,
2010; Curran and Leker, 2011; Karvonen and Kässi, 2013; Preschitschek et al., 2012). However, while
they do not empirically demonstrate hypotheses on the drivers of convergence, surveys show the
1 Although ‘‘interdisciplinary research/interdisciplinarity’’ and ‘‘convergence’’ are both phenomena in which heterogeneous

knowledge or fields are combined, they are only roughly synonymous. We review the differences between the two in Section

‘‘Definition of ‘‘technology convergence’’’’.
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importance and evidence of differentiated strategies for convergence by technological and resource
conditions (Bröring et al., 2006; Preschitschek et al., 2011). As a first step to understanding the drivers
of this understudied area of convergence, our study provides further research on technology
convergence, primarily exploring theoretical and empirical concerns. Furthermore, based on reliable
and complete enumeration data, this study presents the characteristics of R&D activities as key
contexts for technology convergence. Although technology changes derive from R&D entities’
investment decisions (Katz, 1996) and from technological characteristics (Roco and Bainbridge, 2002;
Bainbridge, 2006), the bibliographic data commonly used in similar science convergence studies
cannot link the characteristics of R&D activities with the knowledge derived from them. Survey data
could mitigate this weakness, but such data might have other serious weaknesses of reliability and
generalizability. For example, previous research on interdisciplinary research has tended to employ
survey data from a single institute, focusing on a brief time-period (Carayol and Thi, 2005). We use
data on patents derived from government-sponsored R&D programs covering a nine-year period;
the data include standardized characteristics of technology and associated R&D projects. Thus, this
study provides a profound understanding of the beginning of technology convergence using reliable
and generalizable evidence.

The remainder of this study is organized as follows. Section ‘‘Theoretical background and hypotheses’’
briefly discusses the definition of ‘‘technology convergence,’’ introduces the heuristic framework of
convergence among techno-scientific domains, and provides the formulated hypotheses. The data
and empirical methodology are described in Section ‘‘Data and methods’’. The results are discussed
in Section ‘‘Results’’, and concluding remarks are offered in Section ‘‘Discussion and conclusions’’.

Theoretical background and hypotheses

Definition of ‘‘technology convergence’’

Although convergence is a much-discussed topic and has notable economic implications (Katz,
1996), the term itself functions as a buzzword (Curran and Leker, 2011) based on its multifaceted
application to science and technology (Nordmann, 2004).2 In particular, technology convergence is
often misunderstood as a synonym of technology fusion. In general, technology fusion denotes the
creation of a sub-segment in the same area as parts of the original segment (i.e., mere combination),
whereas convergence describes the concept of discrete items moving toward unity or uniformity or
the merging of distinct technologies, devices, or industries into a unified whole (Curran and Leker,
2011; Phillips, 2001). The primary distinguishing feature of convergence is that it specifically denotes
conflation between previously distinct knowledge, technology, product, or industry domains.
Therefore, convergence, in a strict sense, differs from ‘‘fusion’’ (Phillips, 2001; Kodama, 1992). For
example, convergence between telephony and radio communication technology developed into
telecommunication technology, which eventually created the personal cellular market (Phillips,
2001). Interdisciplinarity,3 meanwhile, only characterizes integration at the discipline level (Kodama,
1992; Wagner et al., 2011); interdisciplinary research (or interdisciplinarity) is understood as science
convergence in a broad sense (Curran and Leker, 2011).

By and large, convergence can be categorized as (i) science convergence that merges different
scientific disciplines or areas, (ii) technology convergence that combines technologies of different
application areas, and (iii) industry convergence that unites sets of companies with different
technology bases, application fields, and target groups in various markets (Curran and Leker, 2011). In
the advent of each stage of convergence, the prior stages of convergence work as triggers of the
convergence (Curran et al., 2010). The triggers such as scientific findings and technological
developments that are nurtured each in science convergence and technology convergence can
improve the pure ability of the entry that owns them to apply them to product or process related to
convergence, because technology convergence creates a new function through the integration of
2 For instance, Gambardella and Torrisi (1998) employee ‘‘technological convergence’’ as an opposite concept of technological

diversification in R&D activities, a term interpreted at the technological portfolio level.
3 The boundary of interdisciplinarity is also unclear because multidisciplinarity and transdisciplinarity are also similar

concepts. Several scholars have compared and refined the terms (Wagner et al., 2011).
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different technological elements (Kodama, 1995). As in the emergence of innovation (Mowery and
Rosenberg, 1979), such improvement on the supply-side and change on the demand-side such as
changes in customer structures and behaviors, which prefer satisfying multiple needs with one
transaction, lead to industry convergence (Curran et al., 2010; Katz, 1996). In this process, total
substitution of previous technological/industrial sectors pushes R&D entities to keep up with trends of
convergence (Curran et al., 2010), demanding for a strategic approach to convergence.

Thus, as one of the triggers of industry convergence and sources of technological competency,
technology convergence has received substantial attention although little of the actual process in
technology convergence is known or has been empirically demonstrated. Furthermore, technology
codified as patents is a minimal scope for R&D program management and represents a major output
manifestation; thus, there is little doubt that convergence management at the technology level is
necessary for governments and firms.

Context of technology convergence

The contexts of convergence have been discussed from diverse perspectives, as the underlying
activity (i.e., R&D) of convergence is performed in various contexts. For that reason, scholars have paid
considerable attention to technological factors, institutional obstacles, and structural aspects such as
assessment and funding problems, believing that these together affect the willingness to promote
convergence and determine its success (Stokols et al., 2008; Klein, 1996).

Incorporating the aforementioned factors and concerns, we design a short technology
development process consisting of input, development, and output, as shown in Fig. 1. We review
each of these in the following sections. Simply put, R&D entities utilize their own resources to develop
new technology. First, we deal with the resources for R&D projects as the main input. Resources as
inputs bear outputs, and R&D projects typify the formal resource basis of R&D activities. Therefore,
their performance is the key element on which governing bodies of R&D entities base assessment. This
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resource allocation context, especially for primary resources (i.e., funding and time), thus potentially
affects the manner in which R&D entities pursue technology convergence. These resources and other
input controls (i.e., organizational type and year) are considered input factors in our system. The next
step in our system, development, occurs in the technological context in which R&D entities encounter
technological difficulties and opportunities while exploring new technological objects. The process
of recombination of distinct areas of knowledge, which is a feature of technology convergence, has
been theorized to create certain costs and benefits. Our study specifies each of these conflicting
factors as a primary concern of technology convergence (i.e., cognitive difficulty and innovativeness)
under technological control (i.e., technological domains).

Technological context

Scholars investigating the development and structure of technology (Arthur, 2009) have found
that a single, emerging technology does not evolve in isolation but results from intensive networking
and recombination among different areas. Such recombination among different domains creates
benefits in the form of the discovery of novel and innovative solutions. Concurrently, however, it
can be mired in several problems: distinct communication codes and languages, different discipline-
specific theories and methods, and the costs of overcoming such cognitive differences (Llerena and
Meyer-Krahmer, 2003). Such problems eventually increase the potential transaction costs in
developing convergence (Nordmann, 2004).

The benefits of recombining information across different techno-scientific domains increase at a
decreasing rate with the distance between those domains,4 whereas the costs thereof increase at an
increasing rate with such distance (Llerena and Meyer-Krahmer, 2003). This is based on the
assumption that larger technological distances produce potentially fruitful outputs, more difficult
communication problems, mutual complementarities, and cross-fertilization. In addition, by
suggesting an analytical framework that consists of bimodal factors (i.e., costs and benefits) the
authors imply that R&D entities are reluctant to be involved in technology convergence when
potential costs exceed potential benefits. This framework explains why most R&D entities rarely
develop converging technologies or interdisciplinary knowledge across macro-level discipline
boundaries. When the distance between domains is short, the costs associated with the inherent
difficulties are likely less significant than the benefits that technology convergence development
derives; on the other hand, when the distance between domains is great, the costs are likely to exceed
the benefits (Llerena and Meyer-Krahmer, 2003).

The more important point is that the functions of the costs and benefits vary by context (Llerena
and Meyer-Krahmer, 2003). One notable context is the technology readiness level, which primarily
indicates how close an R&D output is to being operational (Jeong et al., 2011). When R&D is at the stage
of making a technology operational rather than strategically developing new ideas, the transaction
costs for recombining knowledge increase (Brousseau, 1993). Technology development at a higher
readiness level—i.e., further from basic and fundamental research—requires more control in the
determination of visible outputs such as intellectual property. In addition, the potential degree of
technological complexity and diversity at this level is certainly higher than at lower levels (Jeong et al.,
2011). In fact, due to the relatively high transaction costs inherent in intense networking at a high level
of technology readiness, researchers at this level tend not to collaborate with other knowledge
providers—even those within the same organization (Jeong et al., 2011). Citing the case study of
manufacturers of medical lasers (Schmoch et al., 1996), Llerena and Meyer-Krahmer (2003) also
examine this proposition, claiming that convergence among distant domains primarily occurs at the
basic research level. Hence, technology convergence is more likely to occur when the technology
readiness level of the R&D output is low.

Hypothesis 1. The lower level of technology readiness, the higher probability of technology convergence

Another notable technological context involves the technology lifecycle. By describing the lifecycle
patterns of technologies as similar to the biological cycles of living beings, this concept illustrates
4 Therefore, the benefits follow an inverted-U shape as the technological distance increases.
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technological evolution based on the theory of diffusion (Mansfield, 1961) and the adoption of
innovation (Ansoff, 1984).

In this respect, it can be understood that the relative opportunities potentially afforded by
technology convergence vary by the developmental phase of the technology lifecycle because of
differences in ‘‘innovativeness’’ between converging technologies and ordinary technologies (Nieto,
1998). In an early stage of the technology lifecycle, the rate of growth depends on newness, which is
one of the major benefits of atypical knowledge combination: technological newness and novelty
define the speed of growth for both the technology itself and its associated products (Betz, 1993). As
a form of technology innovation, convergence opens up possible new ways of coping with new things
(Katz, 1996); thus, technology convergence at an earlier stage in the technology lifecycle can induce
R&D entities to undertake R&D activities by providing relatively larger incentives. On the other hand,
the impact of innovativeness in late stages of the technology lifecycle is not sufficient to improve
technology performance and the sale of related products (Nieto, 1998).

We can thus surmise that R&D activities related to various stages of the technology lifecycle follow
the benefits curve illustrated in Llerena and Meyer-Krahmer’s analytic framework (Llerena and
Meyer-Krahmer, 2003). Hence, we can hypothesize that the occurrence of technology convergence has
a negative relationship with the stage of the technology lifecycle.

Hypothesis 2. The earlier stage of the technology lifecycle, the higher probability of technology conver-
gence

R&D resource allocation context

R&D funding management is considered an important policy tool because such financial support
contributes to increased R&D outputs (Breschi and Malerba, 2011). Funding also influences the
qualitative facets of R&D activities. Previous studies have commonly shown that the scale of funding
has a positive relationship to the impact of research (Gonzalez-Brambila and Veloso, 2007).

In this respect, we can surmise that potentially high impact can increase the probability of
technology convergence taking place—which, as discussed, in turn implies the advent of technology
covering heterogeneous techno-scientific domains. Since the impact of research is defined as its actual
influence on research activities within the vicinity of the techno-scientific domain (Moed et al., 1985),
R&D outputs with higher impact can extend to a broader area. That is, higher-impact technology has a
greater possibility of being referenced and applied to other domains.

The perspective of practical R&D activity decisively supports the positive effect of the scale of
funding on the advent of technology convergence. The financial scale eventually determines the R&D
scope (Sargent, 2004), thus also potentially increasing the likelihood that the domain of technology
will overlay diverse fields. It can also enhance the ability to enlist researchers, so that the R&D entity’s
increased human capital—i.e., the sum of the scientific, technical, and social knowledge embodied in
a workgroup (Bozeman et al., 2001)—can help discern opportunities to merge heterogeneous
technologies.

Hence, we can surmise as follows.

Hypothesis 3. The larger scale of an R&D project’s funding, the higher probability of technology
convergence

Another issue of concern for R&D resource allocation is the timespan of R&D funding. Governments
may wish to make the R&D process more efficient by accelerating the speed of R&D (shortening the
R&D period) but maintaining the same research goal.5 However, in terms of practical R&D execution,
it has been prevalently argued that a short R&D project time period can deter researchers from
undertaking in-depth activities related to knowledge production or networking, inducing them to
focus primarily on easily predicted consequences. Short funding timespans create anxiety for
researchers, pushing them to generate the expected results needed to secure further funding
(Gulbrandsen and Smeby, 2005).
5 For example, in 2009, the Ministry of Knowledge Economy in South Korea executed a plan to speed up R&D activities by

shortening the scheduled period of government-supported R&D programs to lower the impact of the global financial crisis.
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For this reason, researchers tend to desire both abundant and long-term funding when searching
for innovative solutions and discoveries through convergence. In fact, convergence-related R&D
is considered more risky and thought to require a longer timespan (Schmoch et al., 1994), so it is
heuristically sensible that during a longer R&D activity period, more diverse methodologies and
perspectives can be applied to the development of technological solutions. Hence, we can surmise as
follows.

Hypothesis 4. The longer timespan of an R&D project that creates technology, the higher probability of
technology convergence
Data and methods

Data sources

We employ data from the National Science and Technology Information Service (NTIS) that
contains information about the features of wholly government-supported R&D programs and their
outputs in South Korea. Researchers who undertake any government-supported R&D project are
intended to register their R&D outputs, such as patents, as outputs of R&D activities.

The use of this novel database featuring a broad time period and technology domains makes it
possible for us to reveal the generalized behaviors of R&D entities vis-à-vis technology convergence—
especially by R&D entities that use public R&D resources. As of 2010, a total of 66,244 patents in
South Korea had resulted from government-supported R&D projects that NTIS managed. Some of the
patents do not include sufficient information to be included in this research, including that pertaining
to the macro-technology domain, the stage in the technology lifecycle, the type of R&D entity, and
the identification code of the associated project. After excluding those patents, we have 51,837 patents
to use in this study, with a timespan of patent applications extending from 2001 to 2009, inclusive.
Some patents have not yet been approved for registration by the Korean Intellectual Property
Office (KIPO), but it is sensible to understand them as the results of R&D activities that are still
under review in the registration process; therefore, we include all patents regardless of the existence
of a registration number.

Measurements of technology convergence

To measure technology convergence indicators, we need to review the means of measuring those in
science convergence, given the dearth of empirical studies on convergence at a technological level.
Although scholars have disagreed about which indicators are most appropriate to measure
interdisciplinarity (Morillo et al., 2003), they have generally demonstrated the structure of science
convergence through bibliometric methods. Several studies have analyzed interconnectivity among
disciplines using cross-disciplinary citation among journal articles (Porter and Rafols, 2009; Porter
et al., 2007; Small, 1999; van Leeuwen and Tijssen, 2000), the co-classification of journals’ subfields
(Morillo et al., 2003; Tijssen, 1992), or co-wording among journal articles (Palmer, 1999). In particular,
having the same foci as this study, several science convergence studies (Porter and Rafols, 2009) focus
on interdisciplinarity among macro-level disciplines using citation analysis of journals in the six
macro-level research domains. Similarly, based on the multi-assignation of journals to macro-level
subject categories, some studies posit the importance of macro-level science convergence analysis
and find that the propensity of convergence varies by macro-level research domain (Morillo et al.,
2003).

However, such bibliometric methods cannot be applied to technology convergence studies because
academic journals cannot represent technical/commercial knowledge and innovative activity. Given
the difference, industry convergence studies use similar methods but different measures. The most
representative of which are seen is the works of Curran and Leker (2009, 2011) and Curran et al.
(2010), who define and refine the methodology based on co-classifications of international patent
classification (IPC) and match with industrial categories. Karvonen and Kässi (2013), which explore
the evidence of convergence through patent citation, are also based on IPC as well as matching it with
industrial categories.
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Hence, we use an alternative means of measuring technology convergence based on the multi-
assignation of patent documents. Admittedly, patents do not measure all relevant knowledge held by
an R&D entity, because knowledge can take such diverse forms as academic papers, patents, copyright,
reports, and undocumented knowhow. However, patent documents constitute an ample information
source that describes and represents technological innovation (Ernst, 2003), on which this study
primarily focuses. The majority of previous research has employed patents as an indicator of
technological innovation and the specific strengths of R&D entities (Lee and Kim, 2012); following this
trend, we also use patents as an indicator of technological innovation.

Another underlying issue in the identification of technology convergence is the classification of
technology domain. Practically, one can say classifications of technology domain already exist in
various forms, including the IPC or the National Science and Technology Standard Taxonomic System.6

However, to derive better practical implications, a taxonomic framework should consider the
standpoint of governmental policy aimed at technology convergence; thus, we briefly review the
typologies of technology that major governmental bodies define for technology convergence.

According to the government initiatives of major developed countries, technologies can be
categorized into discrete domains. The NSF in the United States proclaims four major technology
convergence domains: nanotechnology (NT), biotechnology (BT), information technology (IT), and
cognitive science (CS) (Roco and Bainbridge, 2002). The European Commission defines a similar
typology (NT, BT, IT, social science, and humanities) (Nordmann, 2004), as does the Japanese
government in the Third Science and Technology Basic Plan (NT, BT, IT, and environment technology
[ET]) (Kim et al., 2009). In the case of South Korea, the Office of Science and Technology Innovation
also proclaim Promising New Future Technologies (6T), consisting of the six major technology
domains for convergence: NT, BT, IT, ET, space technology (ST), and culture technology (CT)7; all
R&D projects are classified per those domains (Oh et al., 2010).8

In understanding these typologies—which contain macro-technology categories whose definitions
vary by country but nonetheless show similarities—numerous experts have actually designed and
introduced substantialized or substantializable cases of technology convergence among macro-
technology domains (Roco and Bainbridge, 2002). In addition, the South Korean typology for
technology convergence is widespread within South Korea and has been used in planning practical
technology convergence strategies as well as processes of planning, investing in, and assessing
national R&D programs (Kim et al., 2009). Thus, it is sensible to make typology a fundamental
framework in analyzing technology convergence—at least in the South Korean context.

The key measurement issue is how to define the original source of technological knowledge.
A sensible way of defining the base level of multi-assignation is to set sourced R&D activities (e.g.,
conducting R&D projects) as the sources of techno-scientific domains under the premise that
technological knowledge derives from R&D activities. Regardless of the different paths that eventually
lead to technological emergence, an upsurge of technology accompanies a set of linked knowledge
(Llerena and Meyer-Krahmer, 2003). In fact, some scholars argue that convergence can also be
gauged in terms of proposals or projects (Porter et al., 2007).

As illustrated in Fig. 2, R&D activities bear technologies (e.g., patents) as outputs. Under the premise
that R&D projects are a key proxy for the R&D activities within them aimed at producing technological
outputs, the multi-assignation of sourced R&D projects for patents provides evidence of whether the
produced technologies are convergent. At the time of planning R&D projects, researchers declare the
macro-technology domain in which R&D projects are based and then submit the proposal to funding
agencies. If accepted, they undertake those projects. During or after the R&D activities, they register
the produced patents along with information on what projects contributed to the creation of the
patents. Because of legal issues related to the ownership of patents and the distribution of profits—
such as licensing fees that result from the patents—researchers are careful to refer to the contributing
6 The standard taxonomic system for science and technology in South Korea.
7 Unlike other technology domains, CT has an uncommon definition rarely used in other nations: technology for cultural

contents such as virtual reality, cyber-communication, and multimedia content.
8 Projects that do not belong to any of the six domains are categorized as ETC.
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R&D projects using ratios that indicate how much the projects contributed to the patents when
reporting the patents created.

While some patents have a multi-assignation of sourced R&D projects with homogeneous macro-
technology domains (e.g., Patents 5 and 6 in Fig. 2) or only a single assignation (e.g., Patent 1 in Fig. 2),
some other patents have multi-assignations of the sourced R&D projects with heterogeneous macro-
technology domains (e.g., Patents 2–4 in Fig. 2). We presume that the latter type of multi-assignation
represents technology convergence, since such a type reveals that the researchers have referred to and
blended technological knowledge from heterogeneous technology domains; hereafter, we define such
patents as ‘‘converging patents.’’ For example, Patent 5 in Fig. 2 is the output of both Research activity
B1 and B2, which are included in the Technology domain B. According to our definition, therefore,
Patent 5 is not a ‘‘converging patent’’ even if this patent stems from multi-assignation of sourced
R&D projects. Contrariwise, Patent 2 in Fig. 2 is produced at the same time from Research activity
A2 and B1, and each Research activity is included in the Technology domain A and B respectively.
Thus, Patent 2 is a ‘‘converging patent’’ because of multi-assignation of the sourced R&D projects
with heterogeneous macro-technology domain.
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Methodology and variables

In order to understand the factors affecting the converging technology development, we
empirically analyze the influences of different variables based on our hypotheses on the creation of
converging patents. In the empirical analysis below, y�i is a latent variable and determined by the
model as shown in Eq (1):

y�i ¼ x0ib þ ui where yi ¼
1 if y�i > 0
0 if y�i � 0

�
(1)

In this formulation, x0ib is called the index function (Greene, 2003).
While y�i is not observed, the observations yi for the analysis are patents as outcomes of national

R&D programs and each observation represents a patent. By using the technological taxonomy and the
multi-assignation method reviewed in Section ‘‘Measurements of technology convergence’’, each
observation is shown in two states, which equals 1 if the patent is a converging patent and 0 otherwise.
That is to say, a dependent variable (i.e., Convergence) of our analysis takes only two values that are
denoted by 0 and 1. When we assume that the error term (ui) follows a standard normal distribution,
we use the probit model (Greene, 2003; Maddala, 1983).9

In Eq. (1), xi represents the independent variables that affect the probability of creating converging
patents. As an independent variable, Tech_RD_Level indicates the technology readiness level; it is
obtained from the registered features of the relevant R&D projects. The Organization for Economic
Co-operation and Development (OECD) categorizes the types of government-supported R&D
programs into basic research, applied research, and experimental development (OECD, 2002) The
NTIS mandates that researchers report their R&D project type based on the OECD’s typology when
registering projects. Like previous studies (Jeong et al., 2011), we presume the continuous technology
innovation model and code this variable as a linearly increasing value by level, i.e., 1: ‘‘basic research,’’ 2:
‘‘applied research,’’ and 3: ‘‘experimental development.’’ In cases of multi-assignation patents, we adopt
the technology readiness level of the R&D project whose contribution ratio is the highest among all
R&D projects related to with the patent as a proxy for the characteristics of the sourced R&D projects.

Tech_Life_Cycle indicates the phase of the technology lifecycle; it is obtained in the same way as
Tech_RD_Level. Previous studies specify the technology lifecycle by level of maturity: embryonic,
growth, mature, and aging (Roussel et al., 1991). Consistent with the specification of previous study
(Roussel et al., 1991), Tech_Life_Cycle is coded as a linearly increasing value by the phase, i.e., 1:
‘‘embryonic,’’ 2: ‘‘growth,’’ 3: ‘‘mature,’’ and 4: ‘‘aging’’; in the case of multi-assignation, the same
rule as in Tech_RD_Level is applied.

RND_Budget represents the annual average amount of funding, in the logarithmic scale number of
millions of KRW, for the R&D projects to which the patent is attributed.10 To nullify the effect of inflation,
we employ deflated annual budget values for R&D projects. The use of annual R&D budgets makes it
possible for us to discern the actual impact of financial support, since the entire R&D budget of a project is
certainly proportional to the timespan of the R&D project. Furthermore, to reflect the actual contribution
of resources on the creation of multi-assignation patents, the weighted average of the annual average
amount of funding based on the contribution ratio of R&D projects is used for RND_Budget.

RND_Period is the duration, in years, of funding for the R&D projects to which the patent is
attributed. This variable is measured with the same rule used for the weighted average in RND_Budget.

We introduce the macro-technology domains for controls. Neither convergence nor technology
innovation occurs uniformly across all techno-scientific domains; in addition, not every domain is
conducive to convergence. Therefore, as in the discussion in Section ‘‘Measurements of technology
convergence’’, we set dummy variables as controls based on the 6T typology of macro-technology
domains. In this respect, we assume that the technology domain whose share of contribution to
a patent is highest is the technology domain of the patent; hereafter, we call this the ‘‘key technology
domain.’’ In this setting, we set the case in which technology is categorized into ‘‘et cetera’’ as the
baseline for technological dummy variables.
9 The probit model is estimated by STATA 12.
10 KRW 1 million was approximately USD 884.17 as of March 2012.
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We include controls for type of organization as well, since the organizational context can affect the
environment for convergence (Llerena and Meyer-Krahmer, 2003). The variables indicating the
organizations involved in the development of technology are exclusively designated per the following
dummy variables. Indu indicates that the industrial sector alone developed the technology without
any collaboration with a university or government research institute. Accordingly, Indu takes a value
of 1 if only the industrial sector was involved in developing the technology, and 0 otherwise. In
the same way, we set Univ for universities and Gov for government research institutes. For the
collaboration modes, combinations of the three sectors—i.e., Indu–Univ, Univ–Gov, and Indu–Gov—are
created, as collaborative R&D entities can work on R&D projects with strategic motivation under
difference circumstances (Miotti and Sachwald, 2003). In this setting, the collaboration case in
which all types of R&D entities (i.e., university, government, and industry) work together is set as
the baseline for organizational dummy variables.

Lastly, we include dummy variables for patent application year from 2002 to 2009 because
convergence occurs not as mere status quo but as an evolving process that can be affected by the
environmental factors of the era. For example, Y2002 takes a value of 1 if the patent application year is
2002, and 0 otherwise. Patents assigned in 2001 work as the baseline for the time dummy variable.

Definitions of the variables are summarized in Table 1.
Table 1
Definitions of dependent and independent variables.

Variable Description

Dependent variable
Convergence Dummy equal to 1 if the patent is attributed to the R&D projects that are assigned to heterogeneous

macro-technology domains; if not, 0

Independent variable 1: technological context
Tech_RD_Level Technology-readiness level of the R&D projects that contribute to the invention of the patent (1:

basic research; 2: applied research; 3: experimental development)

Tech_Life_Cycle The phase of technology lifecycle at which the R&D projects are assigned to the patent (1:

embryonic, 2: growth, 3: mature, 4: aging)

Independent variable 2: R&D resource distribution context
RND_Budget Weighted average of the deflated annual average funding amount for the R&D projects to which the

patent is attributed, the logarithmic scale number of millions (KRW)

RND_Period Weighted average of duration, in years, of funding for the R&D projects to which the patent is

attributed

Controls
IT Dummy equal to 1 if the key technology domain is info-technology; if not, 0

BT Dummy equal to 1 if the key technology domain is bio-technology; if not, 0

ST Dummy equal to 1 if the key technology domain is space-technology; if not, 0

CT Dummy equal to 1 if the key technology domain is culture-technology; if not, 0

NT Dummy equal to 1 if the key technology domain is nano-technology; if not, 0

ET Dummy equal to 1 if the key technology domain is environment-technology; if not, 0

Indu Dummy equal to 1 if industrial sector is solely involved in developing the technology; if not, 0

Univ Dummy equal to 1 if university sector is solely involved in developing the technology; if not, 0

Gov Dummy equal to 1 if government research institute sector is solely involved in developing the

technology; if not, 0

Indu–Univ Dummy equal to 1 if industrial sector and university sector exclusively collaborate in developing

the technology; if not, 0

Univ–Gov Dummy equal to 1 if university sector and government research institute sector exclusively

collaborate in developing the technology; if not, 0

Indu–Gov Dummy equal to 1 if industrial sector and government research institute sector exclusively

collaborate in developing the technology; if not, 0

Y2002 Dummy equal to 1 if application year of the patent is 2002; if not, 0

Y2003 Dummy equal to 1 if application year of the patent is 2003; if not, 0

Y2004 Dummy equal to 1 if application year of the patent is 2004; if not, 0

Y2005 Dummy equal to 1 if application year of the patent is 2005; if not, 0

Y2006 Dummy equal to 1 if application year of the patent is 2006; if not, 0

Y2007 Dummy equal to 1 if application year of the patent is 2007; if not, 0

Y2008 Dummy equal to 1 if application year of the patent is 2008; if not, 0

Y2009 Dummy equal to 1 if application year of the patent is 2009; if not, 0
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Fig. 3 depicts the number of patents and the percentage of technology convergence patents
among all patents in each year. Interestingly, the ratio has ascended incrementally according to
the same uprising pattern in Curran and Leker’s previous study (Curran and Leker, 2011) that show
for industry convergence in the chemical and pharmaceutical industries; this phenomenon
indicates that the level of R&D activity corresponding to technology convergence has increased,
and perhaps that the needs have also increased. The interesting point in the figure is that the trend
took a downturn in 2008, during the global financial crisis—although the trend seems to have
recovered in 2009. From the perspective of risk management, we can heuristically conjecture that
during the economic recession period, R&D entities became less willing to be involved in
technology convergence that entails greater risk, since those R&D entities—especially firms—might
have been more interested in tangible future R&D outputs to reduce the financial and managerial
risks inherent in R&D during a recession. However, this assertion requires further research and
empirical examination.

Table 2 reports the means, standard deviations, and minimum and maximum values of the
explanatory variables. Understandably, the mean of the technology readiness level exceeds 2,
indicating that a majority of technologies are invented in applied research or experimental
development. In addition, the mean of the technology lifecycle stage (1.784) signifies that R&D
activities tend to occur in relatively early stages of the technology lifecycle.
Table 2
Descriptive statistics of explanatory variables.

Variable Mean Std. Dev. Min. Max.

Tech_RD_Level 2.318 0.757 1 3

Tech_Life_Cycle 1.784 0.684 1 4

RND_Budget 6.618 1.495 �0.048 11.923

RND_Period 2.263 1.086 1 4



Table 3
Correlations and VIF values of explanatory variables.

(1) (2) (3) (4) VIF

(1) Tech_RD_Level 1 1.086

(2) Tech_Life_Cycle 0.261a 1 1.076

(3) RND_Budget 0.233a �0.014a 1 1.012

(4) RND_Period 0.021a 0.006 0.008 1 1.000
a Significant at the 5% level.
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Table 3 shows that there is no critical correlation among the explanatory variables. In addition, the
variance inflation factors (VIFs), which we examined to check for the possibility of multicollinearity,
turned out to be below 10, the guideline often used for such a check (Cohen et al., 2003).

Figs. 4 and 5 show the shares of technology domains and R&D organization types, respectively.
Info-technology accounts for 38.3% of patents in our data, followed by miscellaneous-technology
(18.8%), bio-technology (18.7%), and environment-technology (13.5%), reflecting the R&D trend
between 2001 and 2009. With regard to R&D organization type, a single type of organization (i.e., Indu,
Univ, and Gov) is seen for less than half of patents (42.2%), showing that R&D collaboration among
heterogeneous organization types is more common.

Results

Table 4 shows the empirical results. To demonstrate the robustness of our estimation results, we
design three specifications that have differentiated sets of respective variables. The coefficients of
each variable are arranged in three individual specifications that have different sets of hypothesized
contexts. Specification 1 includes the explanatory variable only as it is related to the technological
context (i.e., Tech_RD_Level and Tech_Life_Cycle) and controls. Specification 2 includes the
explanatory variable only as it is related to the resource allocation context (i.e., RND_Budget and
RND_Period) and controls. Specification 3 includes variables related to both contexts using all
independent variables. The standard errors of each coefficient are displayed in parentheses below
each coefficient.

Overall, the results in Specification 1, 2, and 3 present strong consistency vis-à-vis estimated signs
and significance, thus suggesting the robustness of our theoretical model for technology convergence.
IT
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Fig. 4. Shares of technology domains among all patents.
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Table 4
Probit estimations of the determinants of technology convergence.

Specification 1 Specification 2 Specification 3

Tech_RD_Level �0.147*** (0.013) �0.145*** (0.013)

Tech_Life_Cycle �0.026* (0.014) �0.024* (0.014)

RND_Budget �0.025*** (0.007) �0.015** (0.007)

RND_Period 0.013* (0.008) 0.014* (0.008)

IT �0.595*** (0.025) �0.588*** (0.025) �0.592*** (0.025)

BT �0.271*** (0.026) �0.247*** (0.026) �0.281*** (0.026)

ST �0.072 (0.075) �0.070 (0.075) �0.062 (0.076)

CT 0.237** (0.094) 0.185* (0.094) 0.230** (0.094)

NT 0.165*** (0.029) 0.213*** (0.029) 0.159*** (0.029)

ET 0.031 (0.027) 0.016 (0.027) 0.023 (0.028)

Indu �0.389*** (0.045) �0.476*** (0.046) �0.412*** (0.047)

Univ 0.362*** (0.033) 0.418*** (0.034) 0.334*** (0.035)

Gov �0.111*** (0.037) �0.066* (0.036) �0.121*** (0.037)

Indu–Univ 0.297*** (0.030) 0.279*** (0.032) 0.277*** (0.032)

Univ–Gov 0.410*** (0.038) 0.468*** (0.038) 0.406*** (0.038)

Indu–Gov �0.284*** (0.042) �0.307*** (0.042) �0.289*** (0.042)

Year dummy Included Included Included

_cons �1.000*** (0.047) �1.230*** (0.066) �0.924*** (0.072)

Number of obs. 51,837 51,837 51,837

LR chi2 (4) 3313.21 3169.88 3320.69

Prob>chi2 0 0 0

Log likelihood �13,186.318 �13,257.987 �13,182.581

* p<0.1, ** p<0.05, *** p<0.01.
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Regarding the estimation results, we find strong support for Hypothesis 1: the coefficients of
Tech_RD_Level in Specification 1 and 3 are significant at the 1% level with negative signs. As
Tech_RD_Level of R&D activities decreases, the probability of technology convergence increases: the
more basic the research, the greater the probability of technology convergence being nurtured.
Similarly, we find strong support for Hypothesis 2: the coefficients of Tech_Life_Cycle in Specification
1 and 3 are significant at the 10% level with negative signs. As Tech_Life_Cycle of R&D activities
decrease, the probability of technology convergence increases: the earlier the phase of the technology
lifecycle, the greater the probability of nurturing technology convergence.



S. Jeong, S. Lee / Journal of Engineering and Technology Management 36 (2015) 78–9692
As for the R&D resource allocation context, the results support Hypothesis 4 but not Hypothesis 3:
the coefficients of RND_Period in Specification 2 and 3 are significant at the 10% level with positive
signs. However, the coefficients of RND_Budget in both Specification 2 and 3 are significant at the 1%
level with negative signs, which does not support Hypothesis 3. In other words, the size of an R&D
budget is negatively related to the probability of generating technology convergence, while the R&D
activity period is positively related to this probability.

The 6T variables illustrate the intriguing nature of technology convergence. Compared to the base
group, which is miscellaneous technology (i.e., ETC), info-technology (i.e., IT) and bio-technology (i.e.,
BT) are unlikely to be involved in technology convergence, while nano-technology (i.e., NT) and
culture-technology (i.e., CT) turned out to be more likely to be involved in convergence than
miscellaneous technology. Accordingly, combining those results, it can be hypothetically surmised
that R&D activities in nano-technology and culture-technology are more likely to create technology
convergence than those in info-technology and bio-technology.

The estimations of coefficients of organizational variables show the importance of universities in
technology convergence. Compared to the base group Indu–Univ–Gov, any variables not engaged with
universities (i.e., Indu, Gov, and Indu-Gov) turn out to be negatively significant at the 1% level in every
specification. However, a similar pattern was not found for government research institutes: Gov is
negatively significant at the 1% level in every specification.

In summary, technology convergence is likely to occur when (1) the level of technology readiness
is low, (2) the technology is in the early stages of its lifecycle, (3) the R&D budget is low, or (4) the R&D
research period is long.

Discussion and conclusions

Discussion and policy implications

With its multi-contextual framework consisting of technological and R&D resource allocation
contexts, this study answers the question: what drives technology convergence? Based on the multi-
assignation analysis of technology domains, we employed a rich and novel dataset from a nearly
complete enumeration survey of the technologies derived from government-supported R&D programs
in South Korea from 2001 to 2009. Overall, the above empirical results strongly support our multi-
contextual framework, with the exception of the explanations related to the scale of funding. To
conclude, it is useful to summarize our findings by discussing their implications in increasing
opportunities for creating technology convergence and the extent to which policy actions can foster
this process. In this respect, our analysis produced the following findings.

First, technology convergence occurs within a context of potential costs and benefits, as indicated
by the influence of the level of technology readiness and the stage of the technology lifecycle on the
probability of technology convergence. Accordingly, in terms of efficacious policy, means of promoting
technology convergence should aim to reduce costs and increase benefits.

For example, improved institutional networks and new models of financing and of assessment
criteria can be effective policy/managerial tools for promoting technology convergence. In particular,
convergence-oriented networking programs may help reduce transaction costs by promoting
vigorous communication among different techno-scientific domains. Government and quasi-
governmental bodies such as funding agencies hold a number of network meetings to give
researchers opportunities to network and understand other disciplines; however, one can be skeptical
about the efficacy of such network activities given the absence of tangible outputs deriving from them.
In response to this skepticism, we suggest that such network activities could be worthwhile because
reduction of the cognitive distance could potentially lower the technology convergence cost at the
social level.

Another finding of this study is that the scale and duration of financial R&D affect the probability of
technology convergence. Contrary to the common understanding that large-scale funding enables
researchers to reach more technological domains, our results show that more funding instead
aggravates the technology-convergence environment. This negative effect of R&D budget scale on
technology convergence sheds light on an adversarial aspect of affluence of R&D resources: time
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resource positively affects the probability of creating technology convergence while financial resource
negatively affects it. One reason could be the great expectations of governing entities and
corresponding changes for R&D entities’ actions. The amount of funding for a project is generally
considered to represent its perceived importance, and the commitment of managers to fund-
recipients’ individual projects is proportional to that perceived importance (Payne, 1995). Therefore,
R&D activities in which governing bodies invest relatively large amounts tend to be of strict missions
with strategic purpose, while the others tend to be more spontaneous and more oriented toward
encouraging creativity and network activities (Jeong and Choi, 2012).

Since the exchange of essential expertise across techno-scientific domains is essential to successful
innovation management, networking and creativity-oriented R&D projects, which would accompany
smaller funding, are more likely to facilitate technology convergence. In other words, R&D projects
with substantial funding, which would be conducted under their relatively strict missions, can
obstruct the possibility of boundary-spanning across technological domains.11 In fact, the study of
science convergence posits a similar idea: researchers in small laboratories tend to be involved in
diverse research areas, whereas those in larger laboratories tend to focus on fewer areas (Carayol and
Thi, 2005).

Our results suggest what would happen if governing entities shoot for increasing the rate of
innovation, i.e., when R&D duration is shortened. They may wish to accelerate the speed of R&D in the
name of improving efficiency; they might hope to derive economic benefits from doing so. However, in
the long term, shortening the R&D period limits the possibility of securing technology convergence,
the potential source of future competitiveness. Likewise, given the same R&D timespan, allocating
more financial resources would increase R&D output but hamper the possibility of securing
technology convergence. Hence, policymakers and managers involved in nurturing technology
convergence should consider a balance between short- and long-term outcomes heir resource
management actions.

How should a manager/policymaker approach the paradoxical relationship? One solution to the
negative impact of funding is to establish large-scale technology convergence-oriented R&D
programs. However, the impact of such R&D programs may be only marginal, since the scope of such
programs is eventually limited and because general R&D programs may remain as the majority. The
choice of policy for a persistent solution might be to improve innovation systems as well as mitigating
obstacles to innovation in technology convergence. The endogenous evolution of a system may
increase not only the capacity and efficiency of knowledge production but also the possibility of
boundary-spanning innovative activities.

Regarding the differentials of technological domains, the results support the common notion for
nano-technology. It is often believed to be ‘‘building technology’’ that results in new ways of
manufacturing, as well as new novel functions, when converging with other technologies in different
domains (Roco and Bainbridge, 2002). Culture-technology also appears to relate positively to
technology convergence, while information-technology and bio-technology turn out to be negatively
correlated to technology convergence, which is inconsistent with the common belief on information-
technology as an ‘‘enabler’’. However, proving whether the conjectures are valid may require further
thorough investigation. The results are reporting not the frequency of technology convergence but
the likelihood of being engaged in technology convergence. More importantly, we cannot fully rule
out the possibility of sample biases—the likelihood can simply vary by technological trend.

As for organizational heterogeneity, one can simply surmise that government research institutes
and universities share many characteristics by virtue of being public institutes, but the results show
that they are significantly different vis-à-vis their tendencies to develop converging technologies.
However, profound reasoning on this phenomenon may require an in-depth understanding of the
difference between organizational contexts.
11 Admittedly, a large R&D project can consist of various subordinate research goals, which can create room for doubt about

whether a large R&D project really addresses narrow technological domains. However, the way in which subordinate research

goals are planned is primarily based on the organizational structure of the goals; otherwise, research groups would not be able

to justify the large volume of R&D projects in competition for funding.
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Limitations and further research

Our study has certain limitations. The novel and unique dataset that enabled this study presents a
restricted view by dealing only with technology convergence among R&D projects in heterogeneous
technology domains. Presumably, technology convergence can occur within the scope of a single
project and can take the form of patents, although technological knowledge can appear in other
mediums or evolve through a confluence of existing relevant technologies (Arthur, 2009).12 Thus,
diverse approaches—as in studies on science convergence—should follow and verify our findings.
Second, although our dataset covers a decade of fully government-supported R&D projects, it cannot
show activities not funded through government support (e.g., independent, private-sector R&D
programs). Analysis can be distorted by a firm’s motivations for participating in government-
supported R&D programs. Furthermore, although our indicator for measuring convergence originating
from government-supported R&D projects gives insight into the advent of technology convergence, it
does not offer a conclusive picture of the nature of technology convergence occurring in the private
sector. Finally, regional characteristics could affect determinants and change the study results.
Although South Korea is the fourth-most prolific generator of patent applications worldwide and has
strong industries closely involved in intellectual assets (e.g., IT and manufacturing industries),
generalizing our findings from regional phenomena to universal phenomena requires evidence from
other regions. For example, national differences in regulations obstructing convergence at the
industry or technology level could play an important role in nurturing technology convergence. These
data-related issues can also cast doubt on the unique finding of this research, the negative relationship
between financial resource for R&D and likelihood of creating technology convergence. Although more
than 50,000 patents are included in our analysis, theoretical ground for the relation is still neither fully
understood by previous literature nor firmly supported by other empirical studies. This aspect
suggests that the relationship not be concluded but remain as an open question and be investigated
by follow-up studies for generality.

This study suggests certain directions for future research. First, the actual economic benefits of
technology convergence can be studied. Science convergence studies have sought to measure the
advantages of science collaboration by using citation analysis. Similarly, citation analysis or
assessments of patent quality can widen our understanding of technology convergence and R&D
entities’ strategies. Second, empirical and thorough demonstrations of complementarity among
technologies can follow. Finally, as mentioned, a study with more generic data for different regions
and approaches to technology convergence should follow to strengthen the generalizability of our
results.
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