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It is critical for “catching-up” countries to narrow innovation gaps with developed countries by developing
emerging industries. This research introduces a data-mining based method to systematically assess the national
innovation gap that is specifically for emerging industries. Themethod examines thefive key attributes of emerg-
ing industries, including the ownership of platform technologies, globalization intention, international knowl-
edge position, university-industry linkage, and cross-disciplinary technology development. In particular, this
method combines data-miningwith experts' knowledge to build patent-training examples, and then uses a sup-
port vectormachine-based classifier to single out all high-quality patents for each innovation attribute. Based on
the selected high-quality patents, the authors utilize a factorial design analysis to systematically evaluate the in-
novation gap between countries. This method can significantly reduce measurement bias of traditional single
patent indicators. In addition, it also can robustly adjust measuring weights in response to the specifics of each
innovation attribute, while traditional multi-attribute evaluation methods cannot. As a result, this research em-
pirically shows that China' industrial robot sector has apparent innovation gaps compared to developed econo-
mies, specifically in university-industry linkage, cross-disciplinary competence, and globalization intention,
and this calls for the attention of policy makers and industrial experts.
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1. Introduction

Innovation is necessary for “catching-up” countries (Fan, 2006).
Backward countries – at different times – have managed to narrow
the gap in innovation between themselves and the frontier countries,
and we call it “catch up”. Studies have noted that innovation is a
major stimulus for national economic growth in industrial, newly indus-
trialized, and developing economies (Archibugi et al., 1991; Ernst and
Kim, 2002; Guan and Chen, 2012; Kim, 1980; Pavitt and Walker,
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1976). Further, an effective diffusion of innovation is vital for the eco-
nomic development of many countries' operating periods under differ-
ent social and economic systems (Guan et al., 2005). Every country is a
beginner in the newly emerging techno-economic paradigm, and inno-
vation capability can serve as a cause for catching up (Schumpeter,
1942). Latecomers can catch up with more advanced countries by
leap-frogging, or direct innovation at the technological frontier. Short-
ening the innovation gap with developed countries is meaningful, as
well as achieving leaps in development, by developing emerging indus-
tries to facilitate this catch-up (Perez, 2010).

Multiple methods exist to assess innovation and innovation gaps
across entities, using a variety of attributes as noted in Table 1. Innova-
tion is a comprehensive result of multiple factors, and it is difficult to
evaluate innovation based only on objective data. Thus, the case study
is a popular method to illustrate innovation capability and the gap be-
tween latecomers and frontiers (Hobday, 1998; Fan, 2006; Fu et al.,
2011; Choung et al., 2014; Rogo et al., 2014; Gao, 2015; Ernst, 2015).
A survey-based quantitative analysis is another effective method to
evaluate innovation capability and this gap (Anderson et al., 2013;
Forés and Camisón, 2016; Guan and Yam, 2015; Vecchi and Brennan,
2009; Wu et al., 2016; Zehir et al., 2015). The results through case
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Attributes to assess innovation for the emerging industry.

Assessing attribute Studies by case
study on innovation

Studies by survey on innovation Studies by econometrics on innovation

Fan
(2006)

Rogo et al.
(2014)

Gao
(2015)

Guan and
Yam (2015)

Forés and
Camisón (2016)

Wu et al.
(2016)

Corrocher
et al. (2003)

Fu and Yang
(2009)

Liu and Zhi
(2010)

Ownership of platform
technologies

* * * * *

Globalization intention * *
international knowledge
position

* * * *

University-industry linkage * * * * * * *
Cross-disciplinary technology
development

* *

Assessing attribute Studies by econometrics
on innovation

Studies by bibliometrics on innovation

Li et al.
(2016)

Castellacci and
Natera (2016)

Porter and
Detampel (1995)

Hung and
Chu (2006)

Srinivasan
(2008)

Bekkers and
Martinelli (2012)

Wu and
Mathews (2012)

Ávila-Robinson and
Miyazaki (2013)

Li et al.
(2016)

Ownership of platform
technologies

* * * *

Globalization intention * *
International knowledge
position

* * * * * *

University-industry linkage * * * * * *
Cross-disciplinary
technology development

* * *
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study or survey methods can be easily affected by the selection of cases
and interviewees. Another type of quantitative method is based on pat-
ents, journal publications, news, and economic data that focus on inno-
vation capability and diffusion efficiency (Ávila-Robinson andMiyazaki,
2013; Castellacci andNatera, 2016; Fu and Yang, 2009; Gu et al., 2016; Li
et al., 2016; Liu and Zhi, 2010; Mellor and Hyland, 2005; Oura et al.,
2016; Shao and Lin, 2016; Wu and Mathews, 2012).

Patent data can effectively indicate innovation performance, includ-
ing product, process, and technology innovation, which is especially
more accurate than such alternative measures as “new product” sales
(Acs et al., 2002; Choi et al., 2011; Fu, 2008; Hong and Su, 2013; Jaffe
et al., 1993; Usai, 2011; Wang and Lin, 2013). Previous research has al-
ways selected one single indicator, or a package of single indicators, to
indicate various countries' innovation capabilities based on patent
data, such as citations (Guan and Gao, 2009; Harhoff et al., 2003; Liu
and Zhi, 2010), the number of publications (Fu and Yang, 2009), claims
(OuYang and Weng, 2011; Tong and Frame, 1994), and the number of
countries in which the patents are filed (Ernst and Omland, 2011;
Harhoff and Hoisl, 2007; Meyer et al., 2011), among others. These indi-
cators are always easily obtainable patent features, and they assume
that the patent's quality or quantity can be presented by one indicator
in one dimension. However, quality is a comprehensive effect achieved
through different patent features. Multi-criteria methods also exist to
indicate innovation, such as the analytic hierarchy process (AHP), and
these can compare different countries' patent portfolios using different
indicators' weights, measured by expert assessment. However, the
real case is complicated, caused by multiple technology categories of
owned patents, multiple countries that have prioritized patents, and
multiple time periods inwhich the patentswere published. Theweights
differ under various conditions, and the mass data characteristics can-
not be adequately and comprehensively processed in batch mode.

Therefore, this research proposes a newmethod, support vectorma-
chines (SVMs), to identify high-value patents and assess innovation
gaps between different countries based on high-quality patents. This is
a popular and effective supervised-learning method, which asks a ma-
chine or algorithm to learn from the training sets for patent classifica-
tion (Venugopalan and Rai, 2015). Experts can select a set of training
examples in one classification (including two categories: one positive
and onenegative category) based on expert knowledge,which is similar
to using more complex composited indicators. Not all high-quality
patents require expert selection, while all of the patents in the positive
category can be guaranteed as high quality. Similarly, all of the patents
in the negative category can be guaranteed as low quality. When an ex-
pert identifies whether a patent is high quality, he considers multiple
patent features, with different resulting contributions. However, no
fixed weights exist for different features, such as traditional AHP
methods. The contributions of features regarding high-quality patents'
identification are more flexible to reflect experts' knowledge. Addition-
ally, SVMs have the absolute advantage in handlingmassive amounts of
data.

This research will use SVMs to assess innovation gaps between late-
development and developed countries, and use a factorial design analy-
sis to investigate the direction inwhichmore investments are necessary
(Beck-Broichsitter et al., 2012; Macdonald, 2011) in an empirical study
of industrial robot innovation. Industrial robotics is a compelling,
emerging, and important enabling technology, with radical novelty
and relatively fast growth, coherence, prominent impacts, and uncer-
tainty (Rotolo et al., 2015). This industry receives increasing attention
withmanufacturing developments, especiallywhen it proposed that in-
tegrating artificial intelligence, robotics, and digitalmanufacturing tech-
nology was revolutionizing manufacturing. China is a late-developing
country in industrial robotics compared with the United States, Japan,
and Germany. This study's goal is to evaluate the innovation gap be-
tween leading industrial robotics countries and late-development coun-
tries by integrating SVMs based on patent data to address the following
questions:

Q1: Does the SVM-based method provide reliable and valid innova-
tion assessment results?
Q2: How large are the industrial robotics innovation gaps among the
United States, Japan, Germany, and China?
Q3: How can the industrial robotics innovation gap change for
China?
National innovation is a comprehensive performance related to
multiple attributes. The authors measure an emerging industry's
innovation gap between late-developing and developed countries
through an assessment from five perspectives: the ownership of
platform technologies, globalization intentions, international knowl-
edge positions, university-industry linkages, and cross-disciplinary
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technology development. Displaying a country's overall situation is
more comprehensive and systemic than using patent counts from
the European Patent Office (EPO) or triadic patent family counts,
which can only reveal the patent situation of the country or assignee.
The article is structured as follows to achieve its goals: the second
section will introduce the research's detailed methodology. The
third sectionwill review the technical narrative of industrial robotics
from experts' perspectives, which introduce the empirical case to
verify the research methodology's effectiveness. The fourth section
provides the empirical analysis, and the fifth section discusses and
concludes.

2. Methodology

Most prior research focused on innovation assessment has been
based on multiple attributes and specific indicators to indicate both in-
novation capacity and efficiency (Fan, 2006; Forés and Camisón, 2016;
Fu and Yang, 2009; Shao and Lin, 2016). This article proposes the intro-
duction of support vector machines (SVMs) for data mining to assess
the innovation gap between China and developed countries based on
patent data (See Fig. 1), which can ignore the bias of specific indicators.
2.1. Support vector machines-based machine learning

Patenting is considered a representative activity for an empirical
analysis of innovation. Patents are the direct outcome of the inventive
process, and because of the cost and time involved in patenting, a com-
mercial benefit can be expected, thus leading to innovation (Pianta and
Archibugi, 1996). Further, they are publicly available, and as they are not
covered by confidential clauses, time-series data can be obtained. Al-
though patents have strength as representative tools, not all lead to in-
novation (Caillaud and Duchêne, 2011; Cohen et al., 2002). Thus, the
authors utilized machine learning to split the patents into those from
the patent database that make greater contributions to innovation in
deep-data mining for innovation gap assessments, which the authors
call “high-quality patents” in the research.
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Support vectormachines (SVMs) inmachine learning are supervised
learning models with associated learning algorithms that analyze data
used for classification and regression analyses (Cortes and Vapnik,
1995). Comparedwith othermachine learning classifiers, such as neural
networks, quadratic and linear discriminant analyses, or LatentDirichlet
Allocation (LDA), SVMs can demonstrate advanced performance in sev-
eral classification tasks, and have the best accuracy for patent categori-
zations (Joachims, 1998; Venugopalan and Rai, 2015).

A SVM training algorithm given a set of training examples, each
marked to one of two categories (one positive and one negative catego-
ry), builds a model that assigns new examples into one category or the
other, as a non-probabilistic binary linear classifier. A SVMmodel repre-
sents the examples as points in space, mapped so that the separate cat-
egories' examples are divided by a clear gap, which is as wide as
possible. New examples are thenmapped into that same space and pre-
dicted to belong to a category based on towhich side of the gap they fall
(Harrington, 2012).

Assume a training dataset in feature space is

T ¼ x1; y1ð Þ; x2; y2ð Þ; :::; xN ; yNð Þf g;

where xi∈χ=Rn, yi∈Υ∈{+1,−1}, i = 1,2, …,N, xi is the ith p-dimen-
sional real vector, and yi is the class marker of xi. When yi = +1, xi is
a positive example; when yi =−1, xi is a negative example. The classi-
fier must discover the “maximum-margin hyperplane” that divides the
group of points xi

!, for which yi = +1, from the group of points for
which yi = −1. This is defined to maximize the distance between the
hyperplane and the nearest point xi

! from either group. The hyperplane
can be written as a set of points xi

! satisfying

ω� � xþ b� ¼ 0;

where ω∗ is the (not necessarily normalized) normal vector to the hy-
perplane, and b⁎ indicates the intercept. The corresponding classifica-
tion decision function can be written as
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 on the ith 

ibute

 on 
ing 

SVM-Based 
Classifier

High-Quality 
Patents on the 

Assessing Attribute

The next Assessing Attribute

Is the assessing 
attribute the last one?

Yes No

ovation gap assessment.



83D. Kong et al. / Technological Forecasting & Social Change 119 (2017) 80–97
2.2. Assessing attributes for the emerging industry

Innovation attributes in the emerging industry must be identified to
complete the innovation gap assessment. Several perspectives based on
the literature review evaluate innovation and the gap between devel-
oped countries and latecomers, such as R&D input (Ernst, 2016; Gu et
al., 2016; Liu and Zhi, 2010; Rogo et al., 2014; Wu et al., 2016), innova-
tion capability (Fan, 2006; Forés and Camisón, 2016; Fu and Yang, 2009;
Shao and Lin, 2016), and innovation efficiency (Fu and Yang, 2009; Shao
and Lin, 2016). Researchers have always focused on the causal relation-
ship between R&D inputs and innovation capability when assessing
R&D input gaps. This research focuses on the gap of innovation itself be-
tween countries, regardless of the R&D input. Thus, five critical attri-
butes have been recognized in Table 1: the ownership of platform
technologies, globalization intention, international knowledge position,
university-industry linkages, and cross-disciplinary technology
development.

Finally, the authors utilize a factorial design analysis to investigate
the innovation gap across countries. This is a widely utilized method
in engineering optimization and decision sciences (Beck-Broichsitter
et al., 2012; Macdonald, 2011; Onsi, 1975), which could potentially be
introduced in innovation science. A factorial design analysis is popular
for the development of new products as well as product or process im-
provement, and this can improve with the combined factors of high
quality, high production, and low consumption through fewer tests.
One country's innovation can be treated as the product in this research,
and attribute, time period, and country can be assessed as the factors.
The innovation gap across countries can be assessed by comparing out-
put with different country factor levels.

2.2.1. Ownership of platform technologies
The ownership of platform technologies is one level used to assess

attribute factors. Technological innovation is a key element in industri-
alization, and catch-up in developing countries (Fu et al., 2011). A
knowledge-based economy has more potential for the sustainable de-
velopment than an extensive economy with high energy consumption
and pollution, and low productivity. The technology push theory
(Nemet, 2009) notes that advances in scientific understanding deter-
mine innovation's rate and direction. Technology is treated as the source
of innovation, as well as amotivation for innovators, and platform tech-
nology is the core of a specific industry. A platform is a group of technol-
ogies used as a base upon which other applications, processes, or
technologies are developed. A patent analysis of platform technologies'
ownership is an effectivemethod to analyze the trajectories and innova-
tion in platform technologies (Ernst, 2003).

2.2.2. Globalization intention
Globalization intention provides another level in assessing attribute

factors. Global intellectual property is critical for global, sustainable
competitiveness (Gosens and Lu, 2014), and a patent's geographic ex-
tent is proportional to an innovation's success (Grimaldi et al., 2012).
As this framework aims to analyze the innovation gap between coun-
tries, the authors have decided to evaluate geographic coverage and
protection by considering both the dimension and quality of markets.
According to Ernst (2001), a patent reaches high-value innovation
when it is granted at the USPTO (United States Patent and Trademark
Office), EPO, and the JPO (Japan Patent Office).

2.2.3. International knowledge position
International knowledge position is a third level in assessing attri-

bute factors. Less-developed countries require substantial time to
reach the same technology frontier as innovation-driven economies.
During this process, they can reduce the technology gap and catch up
by absorbing external knowledge from technologically leading nations
through various knowledge interactions (Guan et al., 2005). The role
of knowledge flow has been emphasized both in theoretical arguments
and empirical studies (Cowan and Jonard, 1999; Schilling and Phelps,
2007). Several studies have focused on how social network structure in-
fluences the flow of knowledge, and how network positioning has af-
fected the actor's innovation performance (Cowan and Jonard, 1999;
Uzzi and Spiro, 2005; Schilling and Phelps, 2007; Bettencourt et al.,
2009). A patent analysis can help assess this position from an interna-
tional knowledge perspective (Grimaldi et al., 2012).

2.2.4. University-industry linkage
University-industry linkage is the fourth level in assessing attribute

factors. Scientific linkage is critical to assess the quality of knowledge
and build internalization capabilities, and is particularly essential for
latecomers (HuandMathews, 2008). Increasingly, patents are citing sci-
entific literature, and particularly with emerging new technologies.
Thus, a high scientific linkage indicates that a patent is building on a
technology base grounded in scientific advances (Wu and Mathews,
2012). National governments prefer to improve the link between the re-
search activities in universities and research institutes, and the national
economy's needs (Liefner, 2003). Many governments have cut public
funding, and have encouraged universities to obtain research funds
from commercialization, such as through contract research (Gibbons,
1994). The gap between universities and research institutes' knowledge
supply and industries' knowledge demand is muchwider in developing
countries than in those that are developed (Liu and Zhi, 2010). An as-
sessment of the innovation gap is meaningful from the university-in-
dustry linkage perspective.

2.2.5. Cross-disciplinary technology development
Cross-disciplinary technology development is the fifth level in

assessing attribute factors. Numerous monographs and anthologies un-
derline the importance of cross-disciplinary research on innovation, and
especially for future and emerging technology, in considering the com-
plexity of global problems (Hadorn et al., 2007; Lyall et al., 2011). Future
and emerging technologies are science-driven, large-scale, and multi-
disciplinary research initiatives oriented towards a unifying goal, with
a transformational impact on science and technology, and substantial
benefits. Many studies have found that boundary-spanning communi-
cation in networked organizations can be beneficial. For example,
workers in a diverse network, which consists of members with hetero-
geneous knowledge and expertise from various work units, may access
various resources outside their silo, which assist in creating innovation
(Cox and Blake, 1991; Herring, 2009; Jehn and Neale, 1999; Kilduff
and Mehra, 2000).

3. A technical narrative of industrial robotics

What is an industrial robot? How does one define it? Even scholars
struggle to answer these questions. ISO defines an industrial robot in
two ways: a “manipulating industrial robot— automatically controlled,
reprogrammable,multi-purposemanipulator programmable in three or
more axes, whichmay be either fixed in place ormobile for use in indus-
trial automation application,” and a “mobile robot—which carries all of
themeans needed for itsmonitoring andmovement (power control and
driving)” (IFR, 2013a; IFR, 2013b; IFR, 2013c). The industrial robot is one
of themost important pieces of automation equipment in the advanced
manufacturing factory.

3.1. Worldwide industrial robotics development

Themodern industrial robotwas first developed in themiddle of the
20th century, relying on the rapid development of computers, automa-
tion, and atomic energy (Sun and Luo, 2012). Much nuclear radiation
was generated in the processing of atomic energy, which was signifi-
cantly harmful to the human body. The United States' Argonne Institute
developed the tele-operationmanipulator in 1947 to solve this problem
(Graefe and Bischoff, 2009), as well as a mechanical master-slave
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manipulator in 1948 (Hitachi, 2008), to perform operations with radio-
active substances in radioactive environments, rather than humans.
Meanwhile, to satisfy the urgent demands for large quantities of prod-
uct manufacturing, a numerically-controlled machine tool was created
in 1952 (Carlsson, 1984), with the development of related automation
technologies. The development of key NC machine tool components,
such as a control system, servo motor, and reducer, provided a solid
foundation for the development of industrial robotics.

Devol and Engelberger (Wang and Tao, 2014) invented the first re-
programmable and industrial robots in the 1950s, and they applied
the patents later. The United States' AMF Ltd. in 1962 launched
VERSATRAN, a versatile transfer machine that was one of the earliest
practical industrial robots (Robotworx, 2013). Its control system was
similar to NC machine tools', while its appearance approximated a
human, with arms and hands. The Massachusetts Institute of Technolo-
gy developed a type of robot system in 1965with integrated visual sen-
sors to identify and position simple bricks (Torgny, 2007). The first
International Industrial Robots Conferencewas held in theUnited States
to promote the development of robotics research in 1970, and conse-
quently, industrial robotics research widened and development quickly
occurred.

Japan founded its Manipulator Research Association in 1967, and
held its first academic robotics conference (IFR, 2012). Kawasaki
Heavy Industries, Ltd., introduced robotics products and technologies
from the United States in 1967, and established production plants. The
company then developed Japan's first general robotic manipulator in
1968 (Jone, 2013). Japan promoted the use of robots in various fields,
which could ease social conflicts from serious labor shortages, and in-
dustrial robotics came into its prime in Japan from1980 to 1990. Assem-
bly and logistics-handling robots came into use in the 1990s (IFR, 2011).

As typical advanced manufacturing equipment, the industrial robot
has become a measure of a country's manufacturing level, and an im-
portant symbol of scientific and technological development. Multi-
fields have widely utilized the industrial robot in their production
since the 1960s, through such methods as automobile and automotive
component manufacturing; the machinery-processing, electrical, and
electronics industries; the rubber and plastics industry; the food indus-
try; logistics; and manufacturing to improve processing efficiency and
product consistency (Xu and Yan, 2012). The market scale of global in-
dustrial robotics since 1960 has been approximately $10 billion to $12
billion through its 50-year development, and annual sales have
approached 160,000 sets (Zhao, 2012). Japan and Europe have signifi-
cant advantages in industrial robots' research and production, with
many well-known corporations, such as the ABB Group, the KUKA Ro-
botics Corporation, FANUC, and Yaskawa, which cover 60% to 80% of
the industrial robotics market share. Technological innovation in robot-
ics is active in theUnited States, as it has absolute advantages in themil-
itary, medical, and domestic service robot industries.

3.2. Chaotic period in China (before 1985)

China is a latecomer to the industrial robotics industry, as Chinese
scholars had the first understanding of robot technologies in the early
1970s from foreign magazines; robotics research first appeared at this
time. However, research and development was restrained, disordered,
and sporadically spontaneous due to outdated information and the
stagnation of academic exchanges in China.

Universities and research institutions in the 1980s conducted sever-
al robotics research and development projects, as well as engineering
application and development projects, under the support of the Nation-
al Scientific and Technological Commission, military departments, and
local governments. Gradually, a variety of robot technology research
centers and their corresponding academic institutions were formed.
The Shenyang Institute of Automation of the Chinese Academy of Sci-
ences, one of the best robotics research institutes in China, began plan-
ning a robotics engineering center supported by the SSTC in 1982, and it
was established in 1984, primarily to develop both intelligent and un-
derwater robots (Cao and Xie, 2008).

During this period, the development of robotics in Chinawas charac-
terized by: (1) spontaneous research, with separately generated topics;
(2) only a robot prototype existed, and the robot prototypes' control
systemswere directly copied and simple; and (3) robotics organizations
were found in universities and scientific research institutes.

3.3. Primary planning stage in China (1986 to 2000)

Chinese scholars and governments had recognized the importance
of industrial robotics in themid-1980s, and the Chinese government ar-
ranged its “Industrial Robot Development Research Project” as a signif-
icant national scientific research project in the Seventh Five-Year Plan
(1986 to 1990). TheMechanical and Electrical Ministry was responsible
for implementing this project, authorized by both theNational Planning
Commission and National Economic Commission. China had formed a
technical team for the research and development of robot technologies
through the project's implementation, and built a solid foundation for
the sustainable development of China's industrial robot technologies.

The central government released its “High Technology Research and
Development Program” in 1986, and a committee of automation ex-
perts established two themes under the program (Wang, 2007): a com-
puter-integrated manufacturing system and intelligent robotics. The
National Science and Technology Commission held a signing ceremony
for “cooperation agreement on robots and automation application engi-
neering” on August 24, 1995, which marked the end of adjustments for
the second stage of strategic targeting in the intelligent robotics theme
(Cao and Xie, 2008).

The research, development, and application of robot technology in
China evolved in this period (1986 to 2000), from spontaneous and
decentralized to organized and systemic, and many robotics achieve-
ments occurred in the efforts of government departments, academic or-
ganizations, and all scientific and technical personnel. China had
successfully developed three genres and five models of robots during
the Seventh Five-Year Period, and had conducted preliminary applica-
tion trials. However, a large gap of original technology innovation still
existed between China and developed countries regarding robotics
and automation equipment.

3.4. Preliminary industrialization development in China (2001 to 2010)

Several domestic robotics companies were established in China at
the end of the 20th and beginning of the 21st centuries, benefiting
from the 863 national program implementations from 1986 to 2000.
Most of the companies were founded by universities or research insti-
tutes, such as the Shenyang Siasun Robot Automation Corporation, fos-
tered by Shenyang Institute of Automation of the Chinese Academy of
Sciences; Harbin Boshi Robot Corporation, by the Harbin Institute of
Technology; and Tianjin Nankai Taiyang Corporation, byNankai Univer-
sity, among others. The robot industry began to take shape in this
period.

Robotics experts in 863 national programs adjusted the robot tech-
nology development strategy in 2001. The central task had been simple
robot technology research, and this changed after 2001, to “research
and develop robot manufacturing cells and systems, automation equip-
ment, and special robots for advanced manufacturing; to promote the
intellectualization of traditional machines and the development of the
robotics industry; and to improve the overall level of automation tech-
nology in China” (Wang, 2007). After this adjustment, a strategic layout
centered on “national strategic equipment and core competitive tech-
nology,” and “overall national strength improvement and enterprise
competitiveness.” The strategy's core task involved developing robotics
enterprises and the industry.

China's economy and technology had gained significant progress
through its reform and opening over more than 20 years, and China
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was prepared to develop its industrial robotics industry. During the
Eleventh Five-Year Period (2006 to 2010), industrial robotics develop-
ment focused on the automation technology for complete sets of equip-
ment, and its application in integrated circuits, ships, automobiles,
textiles, household appliances, and food. This innovation and develop-
ment aimed to break through foreign companies' monopoly on large-
scale automationmanufacturing systems, as well as promote the indus-
trialization of robot technology, and it achieved some successes.

3.5. Explosive development in China (after 2011)

The “Intelligent Manufacturing Technology Development in the
Twelfth Five-Year Plan” and “Service Robot Technology Development
in the Twelfth Five-Year Plan”have indicated that the industrial robotics
industry was a key strategic emerging industry in China. The country's
manufacturing industry is currently transforming from labor-intensive
to modernized, and China's industrial robotics market has displayed
vigorous development as the first largest market in Asia. The demand
for Chinese industrial robotics has rapidly increased since 2010; active
service robots in China accounted for 9% globally in 2015, and there
were 75,000 industrial robots in the market, with a year-on-year
growth of 36.6%.

The development of the robotics industry in China was slow, with
weak domestic innovation capabilities, and eminently relied on
imported key components. Interminably, the industry and economy's
development depended on a low labor force and scale expansion, pro-
duction techniques were relatively outdated, and industrial robotics'
application developmentwas limited. From amarket share perspective,
international brands accounted for over 85% of products (Song and Yao,
2015). Although nearly 60 domestic enterprises were engaged in indus-
trial robot production in China, such as Siasun, Boshi, Aifute, and GSK,
their products had low industrialized application levels, with a produc-
tion scale of only dozens of industrial robots.

The government's work report and development plan declared in
2014 that the robotics industry was a priority development area in
China to promote its innovation development. Further, the central gov-
ernment released its “Robotics Industry Development Plan, 2016–2020”
to accelerate its development. The document is meaningful in guiding
government departments and enterprises to realize industrial robotics'
innovation and development, and to shorten the innovation gap in
this industry between China and developed countries.

4. Empirical analysis

The authors utilized Thomson Innovation (TI) to create a patent da-
tabase on industrial robotics in June 2016, with 155,532 patents includ-
ed in the innovation gap assessment research. The company's well-
known database platform captures worldwide patents, and TI's patents
are rewritten according to their standards by its staff. The authors devel-
oped a search strategy with robotics experts, using accuracy and com-
pleted-cover as criteria. The search strategy for industrial robotics
included many technologies, searched by International Patent Classifi-
cation (IPC) and Derwent World Patent Index (DWPI) number, and
multiple products, searched by keyword.

4.1. Data

Fig. 2 illustrates that a small crest occurs in patent development for
industrial robots in the 1980s, and a larger crest is currently forming;
this general trend conforms to industrial robot development. Japan
devoted itself to industrial robot development in the 1980s to relieve
pressure from labor shortages (Kumaresan and Miyazaki, 1999), and
currently, advanced production strategies aiming at intelligent
manufacturing has attracted worldwide attention. Industrial robotics,
as a pivotal clasp in advanced manufacturing, again ushers in new de-
velopment opportunities. Approximately 18 months are spent on
patent data collection from different countries and standardization for
TI staff, and the hysteresis of collection may cause declines in 2015
and 2016.

Twenty-seven fields are loaded in the patent database to sign the
patent records, based on availability noted by TI and correlation with
the five attributes. The fields include priority year, publication number,
claims count, assignee/applicant, assignee-DWPI, assignee count, inven-
tor—w/address, inventor count, publication kind code, priority country,
earliest PCT app number, PCT pub date, IPC— current full (4 characters),
IPC class, DWPI class, count of cited refs — patent, count of cited refs —
non-patent, count of citing patents, INPADOC legal status code, reas-
signment date (US), designated states, litigation (US), publication lan-
guage, DWPI count of family members, DWPI count of family
countries, assignee — standardized, and application country.

The numbers of patents announced by the five main countries are
displayed in Fig. 3: China (CN), the United States (US), Germany (GE),
South Korea (KR), and Japan (JP). These five countries are selected due
to their manufacturing strength, emphasis on industrial robotics, and
coverage in almost all of the patents, based on Section 3.

Fig. 3 indicates that China's number of patents has rapidly increased
since 2004, and the other four countries' patents have slowly increased
since 1980. The hysteresis of TI's collection may cause declines in 2015
and 2016.

4.2. SVM-based classification

The authors have organized three meetings to collect experts' opin-
ions from the industrial robotics field regarding the selection of training
sets. Experts identify whether a patent can be a positive or negative
training example by reading all information provided in TI's database,
such as the abstract, text, citation information, family information,
legal status, and priority information. Five training sets respectively per-
tain to the ownership of platform technology (OPT), globalization inten-
tions (GI), international knowledge position (IKP), university-industry
linkage (UIL), and cross-disciplinary technology development (CTD),
which are utilized in SVMs to split the patents from the database that
more greatly contribute to industrial robotics development.

The authors run 50 replicates of classifications for each attribute to
assure the algorithm's stability, and the training set is randomly separat-
ed into two parts in each replicate. Of the patents randomly selected
from the training set, 70% are for training, and the remaining 30% of pat-
ents are for testing to detect the learning accuracy rate.

Table 2 demonstrates that the United States and Japan always have
the most high-quality patents in every assessed attribute. Although
there are few high-quality patents, Germany's percentage of high-qual-
ity patents is obviously higher than China and South Korea, except in
CTD.

4.2.1. Ownership of platform technology analysis
The core and frontier platform technologies in industrial robotics in-

clude electric actuators, electric servo drives, intelligent sensors, and
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precious reducers (Kumaresan and Miyazaki, 1999). The training set
consists of 108 patents noted as valuable to platform technology inno-
vation, and 502 patents were noted as valueless to platform technology
development. The 95% confidential interval of accuracy rate, based on
the 50 replicates'machine learning results, is (0.975, 0.981). Table 3 dis-
plays inconsistent contribution degrees for different features, while a
feature's contribution coefficient does not directly determine the causal
relationship between the feature and one patent's quality. The factors
that can influence this relationship include feature encoding, training
example selections, and algorithm and parameter selections, among
others. However, common features are included that relate to patent
quality regarding the ownership of platform technologies, such as the
number of citing patents, with coefficients equaling 9.237; the DWPI
number of family members, with 3.989; application country, with −
2.095; IPC current full (4 characters), with −2.020; and publication
language, with−1.499.

4.2.2. Globalization intention analysis
The training set has 485 patents noted as valuable to the innovation

of globalization intentions, and 469 patents are noted as valueless to
globalization development. The 95% confidential interval of accuracy
rate, based on the 50 replicates' machine learning results, is (0.982,
Table 2
Descriptive statistical results of SVM classifiers.

Assessing attribute Country

Ownership of platform technologies (OPT) China (CN)
the United States (US)
Germany (DE)
South Korea (KR)
Japan (JP)

Globalization intention (GI) China (CN)
the United States (US)
Germany (DE)
South Korea (KR)
Japan (JP)

International knowledge position (IKP) China (CN)
the United States (US)
Germany (DE)
South Korea (KR)
Japan (JP)

University-industry linkage (UIL) China (CN)
the United States (US)
Germany (DE)
South Korea (KR)
Japan (JP)

Cross-disciplinary technology development (CTD) China (CN)
the United States (US)
Germany (DE)
South Korea (KR)
Japan (JP)
0.986). Table 3 indicates that although the features' contribution coeffi-
cients in the classification do not present a causal relationship between
the feature and patent quality, common features are included that relate
to the patent quality for globalization intention, such as the DWPI num-
ber of family countries, with a coefficient of 6.961; application country,
with−2.388; number of citing patents, with 1.857; INPADOC legal sta-
tus code, with −0.652; and DWPI number of family members, with
0.538.
4.2.3. International knowledge position analysis
The training set noted 506 patents as valuable to the innovation of

international knowledge position, and 846 noted as valueless for the
ascent. The 95% confidential interval of accuracy rate, based on the 50
replicates' machine learning results, is (0.982, 0.986). Table 3 illustrates
that although the features' contribution coefficients for the classification
do not present a causal relationship between the feature and patent
quality, the common patent quality features for international knowl-
edge position include the number of citing patents, with a coefficient
equaling 33.626;DWPI number of familymembers, with 2.713; publica-
tion language, with −2.208; publication kind code, with −1.063; and
number of cited refs — patent, with 0.615.
Average high-quality patent counts Percentage of high-quality patents

1943 4.70%
10,067 49.97%
3111 31.04%
1220 8.50%
12,053 27.52%
1217 2.94%
15,873 78.78%
6279 62.65%
2841 19.79%
36,006 82.20%
10,533 25.49%
13,213 65.58%
5185 51.74%
3876 27.00%
22,593 51.58%
10 0.02%
3786 18.79%
999 9.97%
243 1.69%
2201 5.03%
396 0.96%
8824 43.80%
2470 24.65%
4099 28.56%
26,001 59.36%



Table 3
Contribution degrees of classified patent features.

Average contribution degree on the classification result Assessing attributes

OPT GI IKP UIL CTD

Features of patents in TI database Publication number −0.112 0.028 0.082 −3.555 −0.632
Assignee/applicant −0.244 0.035 −0.864 −7.735 0.098
Publication kind code −0.376 0.139 −1.063 −9.084 −0.798
Inventor — w/address −0.567 0.055 −0.173 −5.909 0.023
DWPI class 0.104 −0.187 −0.112 −0.411 0.019
Assignee — DWPI −0.038 0.198 −0.388 0.076 −0.286
Inventor count −0.655 0.006 −0.386 −5.525 0.244
Assignee count 0.256 0.034 −0.348 −1.269 −0.657
Count of cited refs — non-patent 0.154 −0.010 0.083 14.360 −0.106
Count of citing patents 9.237 1.857 33.626 0.013 0.045
Count of cited refs — patent −0.016 −0.027 0.615 2.532 0.020
IPC class 0.457 0.092 −0.237 −1.704 −1.070
IPC current full (4 characters) −2.022 0.056 −0.164 −6.267 0.982
Priority country −0.688 0.049 −0.514 −4.198 0.921
PCT pub date 0.000 0.000 0.000 0.000 −0.013
Designated states 0.386 0.092 −0.155 2.957 0.147
Claims count −0.701 0.255 0.284 1.348 0.031
Assignee — standardized −0.020 0.198 −0.380 −1.515 −0.269
Application country −2.095 −2.388 −0.548 0.108 −0.731
PCT app number 0.000 0.000 0.001 0.000 −0.013
INPADOC legal status code −0.555 −0.652 −0.203 −2.201 0.006
Reassignment (US) — date −0.134 0.030 −0.185 −4.254 −0.406
Litigation (US) 0.002 0.000 0.003 −0.023 0.000
Language of publication −1.499 0.007 −2.208 −2.202 0.247
DWPI count of family members 3.989 0.538 2.713 16.328 0.727
DWPI count of family countries −0.129 6.961 −0.069 0.178 −0.033
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4.2.4. University-industry linkage analysis
The training set noted 478 patents as valuable to the innovation of

university-industry linkage, and 332 patents noted as valueless to
strengthen the linkage. The 95% confidential interval of accuracy rate,
based on the 50 replicates' machine learning results, is (0.913, 0.926).
Table 3 demonstrates that although the features' contribution coeffi-
cients for the classification do not present a causal relationship between
the feature and patent quality, the common patent quality features for
university-industry linkage include the DWPI number of family mem-
bers, with a coefficient equaling 16.328; number of cited refs — non-
patent, with 14.360; publication kind code, with −9.084; assignee/
applicant, with −7.735; and IPC current full (4 characters), with −
6.267.

4.2.5. Cross-disciplinary technology development analysis
The training set noted 376 patents as valuable to the innovation of

cross-disciplinary technology development, and 665 patents were
noted as valueless for cross-disciplinary development. The 95% confi-
dential interval of accuracy rate, based on the 50 replicates' machine
learning results, is (0.771, 0.797). Table 3 reveals that although the fea-
tures' contribution coefficients for the classification do not present a
causal relationship between the feature and patent quality, the common
features related to the patent quality for cross-disciplinary technology
development include IPC class, with a coefficient equaling −1.070;
IPC current full (4 characters), with 0.982; publication kind code, with
−0.798; DWPI number of family members, with 0.727, and assignee
count, with−0.657.

4.3. Innovation gap between catching-up countries and developed
countries

The authors utilize a general full-factorial design analysis from
Minitab 17 in this research to assess the innovation gap between catch-
ing-up and developed countries. National innovation in the industrial
robotics industry is the output, with different combinations of factor
levels to assess attributes, time periods, and countries. Five levels are
used to assess attributes: the ownership of platform technology (OPT),
globalization intentions (GI), international knowledge position (IKP),
university-industry linkages (UIL), and cross-disciplinary technology
development (CTD). Four time periods are used: before 1985 (marked
as 1), 1986–2000 (2), 2001–2010 (3), and after 2011 (4). The boundary
years for each time period are included in their period, and the time pe-
riods are set based on industrial robotics industry development in
China. Five country levels are included: China (CN), the United States
(US), Germany (GE), South Korea (KR), and Japan (JP). There are 50 rep-
licates in the factorial design.

This analysis indicates innovation through the worldwide count of
priority patents in the high-quality category from SVMs. This is because
theworldwide quantity of priority patents is proven as an effective indi-
cator of inventive activity (de Rassenfosse et al., 2013). Further, the per-
centage of high-quality patents out of all priority patents is another
indicator in research studies to neutralize time period-length effects.
4.3.1. Cross-country innovation gaps
The R2-adjusted for the factorial analysis using high-quality patent

counts (HighValue) to indicate innovation is 95.19%, and the R2-adjust-
ed using a percentage of high-quality patents (Percentage) is 92.42%.
Both of the R2-adjusted are sufficiently large, and the factorial analysis
results are acceptable. The analysis of variance (ANOVA) table and the
differences in HighValue and Percentage between the different factor
and interaction levels are significant.

The coefficient tables indicate several exceptions, inwhich the factor
or interaction levels are insignificant for innovation. Regarding the
HighValue analysis: Percentage in the second time period does not
have significant differences among countries for international knowl-
edge position, with a P-value of 0.243. Further, the United States does
not indicate significant differences among different time periods for
university-industry linkages, with a P-value of 0.173. Regarding the Per-
centage analysis: HighValue in thefirst stage does not display significant
differences among countries from the globalization intentions and uni-
versity-industry linkages perspectives, with P-values of 0.295 and 0.431,
respectively. South Korea does not indicate significant differences
among different time periods for the ownership of platform technology,
with a P-value of 0.386. Further, China does not reveal significant differ-
ences among different assessing attributes in the second time period,



Table 4
General full factorial design analysis results.

General factorial regression: HighValue versus Attributes, Stage, Country

Analysis of variance

Source DF Adj SS Adj MS F-value P-value

Model 99 46,222,000,029 466,888,889 980.04 0
Linear 11 26,567,175,516 2,415,197,774 5069.69 0

Attributes 4 4,842,363,729 1,210,590,932 2541.12 0
Stage 3 7,928,112,757 2,642,704,252 5547.24 0
Country 4 13,796,699,029 3,449,174,757 7240.08 0

2-Way interactions 40 15,868,203,695 396,705,092 832.71 0
Attributes ∗ Stage 12 1,950,184,480 162,515,373 341.13 0
Attributes ∗ Country 16 6,016,093,540 376,005,846 789.27 0
Stage ∗ Country 12 7,901,925,675 658,493,806 1382.23 0

3-Way interactions 48 3,786,620,818 78,887,934 165.59 0
Attributes ∗ Stage ∗ Country 48 3,786,620,818 78,887,934 165.59 0

Error 4900 2,334,359,467 476,400
Total 4999 48,556,359,496

Adjusted R-squared = 0.951
Coefficients
Term Coef SE Coef T-value P-value VIF
Constant 1950.4 9.76 199.81 0
Attributes
OPT −530.7 19.5 −27.18 0 1.6
GI 1160.4 19.5 59.44 0 1.6
IKP 819.6 19.5 41.98 0 1.6
UIL −1588.4 19.5 −81.36 0 1.6

Stage
1 −1551.8 16.9 −91.79 0 1.5
2 599.2 16.9 35.44 0 1.5
3 1725.6 16.9 102.07 0 1.5

Country
CN −1245.5 19.5 −63.8 0 1.6
US 637.8 19.5 32.67 0 1.6
DE −1048.2 19.5 −53.69 0 1.6
KR −1336.5 19.5 −68.46 0 1.6

Attributes ∗ Stage
OPT 1 548.1 33.8 16.21 0 2.4
OPT 2 210.9 33.8 6.24 0 2.4
OPT 3 −406.3 33.8 −12.02 0 2.4
GI 1 −941 33.8 −27.83 0 2.4
GI 2 333 33.8 9.85 0 2.4
GI 3 740.3 33.8 21.89 0 2.4
IKP 1 −671.7 33.8 −19.86 0 2.4
IKP 2 39.5 33.8 1.17 0.243 2.4
IKP 3 881.5 33.8 26.07 0 2.4
UIL 1 1263.1 33.8 37.36 0 2.4
UIL 2 −570.5 33.8 −16.87 0 2.4
UIL 3 −1367.5 33.8 −40.44 0 2.4

Attributes ∗ Country
OPT CN 311.6 39 7.98 0 2.56
OPT US 459.4 39 11.76 0 2.56
OPT DE 406.2 39 10.4 0 2.56
OPT KR 221.7 39 5.68 0 2.56
GI CN −1561.2 39 −39.98 0 2.56
GI US 219.7 39 5.63 0 2.56
GI DE −492.9 39 −12.62 0 2.56
GI KR −1064.1 39 −27.25 0 2.56
IKP CN 1108.8 39 28.4 0 2.56
IKP US −104.6 39 −2.68 0.007 2.56
IKP DE −425.5 39 −10.9 0 2.56
IKP KR −464.7 39 −11.9 0 2.56
UIL CN 886 39 22.69 0 2.56
UIL US −53.2 39 −1.36 0.173 2.56
UIL DE 935.9 39 23.97 0 2.56
UIL KR 1035.3 39 26.52 0 2.56

Stage ∗ Country
1 CN 847.1 33.8 25.05 0 2.4
1 US −206.5 33.8 −6.11 0 2.4
1 DE 1034.4 33.8 30.59 0 2.4
1 KR 938 33.8 27.74 0 2.4
2 CN −1275.4 33.8 −37.72 0 2.4
2 US 229.7 33.8 6.79 0 2.4
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Table 4 (continued)

General factorial regression: HighValue versus Attributes, Stage, Country

Analysis of variance

Source DF Adj SS Adj MS F-value P-value

2 DE −186 33.8 −5.5 0 2.4
2 KR −986.3 33.8 −29.17 0 2.4
3 CN −908.3 33.8 −26.86 0 2.4
3 US 255.4 33.8 7.55 0 2.4
3 DE −1110.7 33.8 −32.85 0 2.4
3 KR −614.7 33.8 −18.18 0 2.4

Attributes ∗ Stage ∗ Country
OPT 1 CN −329.2 67.6 −4.87 0 3.84
OPT 1 US −259.9 67.6 −3.84 0 3.84
OPT 1 DE −383.4 67.6 −5.67 0 3.84
OPT 1 KR −239.3 67.6 −3.54 0 3.84
OPT 2 CN 9.6 67.6 0.14 0.887 3.84
OPT 2 US 469.9 67.6 6.95 0 3.84
OPT 2 DE 29.7 67.6 0.44 0.661 3.84
OPT 2 KR −6 67.6 −0.09 0.929 3.84
OPT 3 CN 598 67.6 8.84 0 3.84
OPT 3 US 349.8 67.6 5.17 0 3.84
OPT 3 DE 203.6 67.6 3.01 0.003 3.84
OPT 3 KR 23.3 67.6 0.34 0.731 3.84
GI 1 CN 1341.6 67.6 19.84 0 3.84
GI 1 US −98.7 67.6 −1.46 0.145 3.84
GI 1 DE 497.4 67.6 7.36 0 3.84
GI 1 KR 844.5 67.6 12.49 0 3.84
GI 2 CN 51.1 67.6 0.76 0.45 3.84
GI 2 US −459.2 67.6 −6.79 0 3.84
GI 2 DE −311.6 67.6 −4.61 0 3.84
GI 2 KR −441 67.6 −6.52 0 3.84
GI 3 CN −1105.8 67.6 −16.35 0 3.84
GI 3 US 17.2 67.6 0.25 0.799 3.84
GI 3 DE −298.1 67.6 −4.41 0 3.84
GI 3 KR −769.2 67.6 −11.37 0 3.84
IKP 1 CN −1255.9 67.6 −18.57 0 3.84
IKP 1 US 233 67.6 3.44 0.001 3.84
IKP 1 DE 496.4 67.6 7.34 0 3.84
IKP 1 KR 316.6 67.6 4.68 0 3.84
IKP 2 CN −1899.2 67.6 −28.08 0 3.84
IKP 2 US 242.1 67.6 3.58 0 3.84
IKP 2 DE 249.3 67.6 3.69 0 3.84
IKP 2 KR −294.3 67.6 −4.35 0 3.84
IKP 3 CN 829.4 67.6 12.26 0 3.84
IKP 3 US −177.3 67.6 −2.62 0.009 3.84
IKP 3 DE −554.2 67.6 −8.2 0 3.84
IKP 3 KR 85.9 67.6 1.27 0.204 3.84
UIL 1 CN −560.9 67.6 −8.29 0 3.84
UIL 1 US −220.3 67.6 −3.26 0.001 3.84
UIL 1 DE −932.4 67.6 −13.79 0 3.84
UIL 1 KR −710.2 67.6 −10.5 0 3.84
UIL 2 CN 1244.8 67.6 18.41 0 3.84
UIL 2 US −51.7 67.6 −0.76 0.445 3.84
UIL 2 DE 227.4 67.6 3.36 0.001 3.84
UIL 2 KR 916.6 67.6 13.55 0 3.84
UIL 3 CN 551.6 67.6 8.16 0 3.84
UIL 3 US 152.8 67.6 2.26 0.024 3.84
UIL 3 DE 1009.8 67.6 14.93 0 3.84
UIL 3 KR 384.7 67.6 5.69 0 3.84

General factorial regression: Percentage versus Attributes, Stage, Country

Analysis of variance

Source DF Adj SS Adj MS F-value P-value

Model 99 496.66 5.0168 616.71 0
Linear 11 366.98 33.3614 4101.12 0

Attributes 4 137.41 34.3529 4223.01 0
Stage 3 24.58 8.1933 1007.21 0
Country 4 204.98 51.2459 6299.67 0

2-Way interactions 40 114.72 2.8681 352.57 0
Attributes ∗ Stage 12 24.15 2.0123 247.37 0
Attributes ∗ Country 16 77.58 4.849 596.08 0
Stage ∗ Country 12 12.99 1.0827 133.1 0

3-Way interactions 48 14.96 0.3117 38.32 0
Attributes ∗ Stage ∗ Country 48 14.96 0.3117 38.32 0

(continued on next page)
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Table 4 (continued)

General factorial regression: Percentage versus Attributes, Stage, Country

Analysis of variance

Source DF Adj SS Adj MS F-value P-value

Error 4900 39.86 0.0081
Total 4999 536.52
Adjusted R-squared 0.9242

Coefficients
Term Coef SE Coef T-value P-value VIF
Constant 0.34611 0.00128 271.35 0

Attributes
OPT −0.06207 0.00255 −24.33 0 1.6
GI 0.20146 0.00255 78.97 0 1.6
IKP 0.14519 0.00255 56.91 0 1.6
UIL −0.26759 0.00255 −104.89 0 1.6

Stage
1 −0.01254 0.00221 −5.68 0 1.5
2 0.0622 0.00221 28.16 0 1.5
3 0.06004 0.00221 27.17 0 1.5

Country
CN −0.23961 0.00255 −93.93 0 1.6
US 0.28747 0.00255 112.69 0 1.6
DE 0.06886 0.00255 26.99 0 1.6
KR −0.22173 0.00255 −86.92 0 1.6

Attributes ∗ Stage
OPT 1 0.07951 0.00442 18 0 2.4
OPT 2 0.0563 0.00442 12.74 0 2.4
OPT 3 −0.01892 0.00442 −4.28 0 2.4
GI 1 −0.03198 0.00442 −7.24 0 2.4
GI 2 −0.04904 0.00442 −11.1 0 2.4
GI 3 −0.01096 0.00442 −2.48 0.013 2.4
IKP 1 0.00462 0.00442 1.05 0.295 2.4
IKP 2 0.0773 0.00442 17.5 0 2.4
IKP 3 0.07494 0.00442 16.96 0 2.4
UIL 1 −0.00348 0.00442 −0.79 0.431 2.4
UIL 2 −0.05813 0.00442 −13.16 0 2.4
UIL 3 −0.04007 0.00442 −9.07 0 2.4

Attributes ∗ Country
OPT CN 0.04901 0.0051 9.61 0 2.56
OPT US 0.06174 0.0051 12.1 0 2.56
OPT DE 0.01325 0.0051 2.6 0.009 2.56
OPT KR −0.00443 0.0051 −0.87 0.386 2.56
GI CN −0.26092 0.0051 −51.14 0 2.56
GI US 0.14594 0.0051 28.6 0 2.56
GI DE 0.11142 0.0051 21.84 0 2.56
GI KR −0.18592 0.0051 −36.44 0 2.56
IKP CN 0.12656 0.0051 24.81 0 2.56
IKP US 0.02913 0.0051 5.71 0 2.56
IKP DE 0.03422 0.0051 6.71 0 2.56
IKP KR −0.08818 0.0051 −17.28 0 2.56
UIL CN 0.16221 0.0051 31.79 0 2.56
UIL US −0.14344 0.0051 −28.11 0 2.56
UIL DE −0.04373 0.0051 −8.57 0 2.56
UIL KR 0.15453 0.0051 30.29 0 2.56

Stage ∗ Country
1 CN −0.06253 0.00442 −14.15 0 2.4
1 US 0.06716 0.00442 15.2 0 2.4
1 DE 0.07085 0.00442 16.03 0 2.4
1 KR −0.10244 0.00442 −23.18 0 2.4
2 CN 0.00552 0.00442 1.25 0.212 2.4
2 US 0.02315 0.00442 5.24 0 2.4
2 DE 0.03346 0.00442 7.57 0 2.4
2 KR −0.02483 0.00442 −5.62 0 2.4
3 CN 0.01507 0.00442 3.41 0.001 2.4
3 US −0.02079 0.00442 −4.7 0 2.4
3 DE −0.03127 0.00442 −7.08 0 2.4
3 KR 0.03288 0.00442 7.44 0 2.4

Attributes ∗ Stage ∗ Country
OPT 1 CN −0.09788 0.00884 −11.08 0 3.84
OPT 1 US 0.10102 0.00884 11.43 0 3.84
OPT 1 DE 0.01868 0.00884 2.11 0.035 3.84
OPT 1 KR −0.02242 0.00884 −2.54 0.011 3.84
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Table 4 (continued)

General factorial regression: Percentage versus Attributes, Stage, Country

Analysis of variance

Source DF Adj SS Adj MS F-value P-value

OPT 2 CN −0.03481 0.00884 −3.94 0 3.84
OPT 2 US 0.07224 0.00884 8.18 0 3.84
OPT 2 DE 0.03756 0.00884 4.25 0 3.84
OPT 2 KR −0.06404 0.00884 −7.25 0 3.84
OPT 3 CN 0.02871 0.00884 3.25 0.001 3.84
OPT 3 US 0.00042 0.00884 0.05 0.962 3.84
OPT 3 DE −0.02799 0.00884 −3.17 0.002 3.84
OPT 3 KR −0.00176 0.00884 −0.2 0.842 3.84
GI 1 CN 0.07145 0.00884 8.08 0 3.84
GI 1 US −0.03319 0.00884 −3.76 0 3.84
GI 1 DE −0.0054 0.00884 −0.61 0.541 3.84
GI 1 KR 0.00704 0.00884 0.8 0.426 3.84
GI 2 CN 0.00712 0.00884 0.81 0.421 3.84
GI 2 US −0.03457 0.00884 −3.91 0 3.84
GI 2 DE 0.00358 0.00884 0.41 0.685 3.84
GI 2 KR 0.02516 0.00884 2.85 0.004 3.84
GI 3 CN −0.021 0.00884 −2.38 0.018 3.84
GI 3 US −0.02169 0.00884 −2.45 0.014 3.84
GI 3 DE 0.02266 0.00884 2.56 0.01 3.84
GI 3 KR 0.00391 0.00884 0.44 0.658 3.84
IKP 1 CN −0.16209 0.00884 −18.34 0 3.84
IKP 1 US 0.05 0.00884 5.66 0 3.84
IKP 1 DE 0.08516 0.00884 9.64 0 3.84
IKP 1 KR −0.07103 0.00884 −8.04 0 3.84
IKP 2 CN 0.06714 0.00884 7.6 0 3.84
IKP 2 US −0.04197 0.00884 −4.75 0 3.84
IKP 2 DE 0.00839 0.00884 0.95 0.343 3.84
IKP 2 KR −0.06292 0.00884 −7.12 0 3.84
IKP 3 CN 0.08748 0.00884 9.9 0 3.84
IKP 3 US −0.0403 0.00884 −4.56 0 3.84
IKP 3 DE −0.04336 0.00884 −4.91 0 3.84
IKP 3 KR 0.03463 0.00884 3.92 0 3.84
UIL 1 CN 0.07743 0.00884 8.76 0 3.84
UIL 1 US −0.08208 0.00884 −9.29 0 3.84
UIL 1 DE −0.08102 0.00884 −9.17 0 3.84
UIL 1 KR 0.10713 0.00884 12.12 0 3.84
UIL 2 CN −0.00684 0.00884 −0.77 0.439 3.84
UIL 2 US −0.0071 0.00884 −0.8 0.422 3.84
UIL 2 DE −0.01704 0.00884 −1.93 0.054 3.84
UIL 2 KR 0.02348 0.00884 2.66 0.008 3.84
UIL 3 CN −0.03569 0.00884 −4.04 0 3.84
UIL 3 US 0.0305 0.00884 3.45 0.001 3.84
UIL 3 DE 0.05593 0.00884 6.33 0 3.84
UIL 3 KR −0.04037 0.00884 −4.57 0 3.84

Notes: stage 1means the time period of before 1985, stage 2means the time period of 1986–2000, stage 3means the time period of 2001–2010, and stage 4means the time period of after
2011.

91D. Kong et al. / Technological Forecasting & Social Change 119 (2017) 80–97
with a P-value of 0.212. The factorial design analysis results are stated in
Table 4.

Fig. 4 illustrates similarmain effects on innovation fromassessing at-
tribute, time period, and country, regardless of the indicator for innova-
tion that the authors use. China and South Korea have large gaps with
the United States and Japan in innovation, and Germany has large
gaps with the United States and Japan for HighValue, but smaller gaps
for Percentage. The innovation of globalization intentions and interna-
tional knowledge position is more easily achieved than for university-
industry linkages and the ownership of platform technology. Although
the time periods differ, the innovation capability increases over time,
and especially from the periods of 1986–2000 to 2001–2010. The num-
ber of valuable patents in the third 10-year stage is much larger than in
the second 15-year stage.

4.3.2. Innovation gap changes across countries over time
The authors utilize a Z-score normalization to normalize the outputs

of different countries' innovation, including high-quality patent counts
(HighValue) and the percentage of high-quality patents (Percentage).
The data after normalization follows a normal distribution, with a
mean of zero and standard deviation of one. The transformation func-
tion is

y� ¼ y−μ
σ

;

where y⁎ is the normalized data, y is the initial data, μ is the sample
data's mean, and σ is the sample data's standard deviation. The authors
then plot interactions to assess the attribute, time period, and country
for normalized high-quality patent counts, as well as normalized per-
centages of high-quality patents.

Fig. 5 indicates the interactions fromassessing attribute and country,
and the interactions of time period and country on different assessed at-
tributes, for normalized high-quality patent counts, respectively.

As observed in the interaction plot of Assessing Attribute ∗ Country
in Fig. 5, China has a significant gap with Japan on globalization inten-
tion (GI) and cross-disciplinary technology development (CTD), as the
gaps for these two attributes are greater than one sigma. China does
not have a significant gap with other countries for university-industry
linkage (UIL) compared to the other attributes, and the five countries'



Fig. 4.Main effects on innovation for assessing attribute, time period, and country. (Upper: HighValue, indicating innovation; lower: percentage, indicating innovation).
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UIL levels are not as high as the other attributes. The gaps between
China and other countries in ownership of platform technologies
(OPT) and international knowledge position (IKP) are approximately
equal to or less than one sigma, and it can be inferred that these gaps
are controlled.

The interaction plots of Time Period ∗ Country in Fig. 5 indicate that
the gaps between China and other countries for OPT and IKP are
narrowed from the period of 1986–2000 to 2001–2010. The data for
the period after 2011 is significantly lower than the other time periods
because of the shorter time period length and the delay of data entered
into TI's database. China's performances in GI, UIL, and CTD do not sig-
nificantly change over time,while Japan and theUnited States improved
in these attributes from the periods of 1986–2000 to 2001–2010. The
gaps between China and developed countries for GI, UIL, and CTD actu-
ally increase over time, as the gaps between China and Japan for GI and
CTD are over three sigma, and the gap between China and the United
States for UIL has increased to three sigma in the period of 2001–2010.

Fig. 6 indicates the interaction for assessing attribute and country,
and the interactions of time period and country on different assessed
attributes, respectively, for normalized percentages of high-quality
patents in all related patents in the country. All patents cost re-
sources to develop and preserve, and the percentage of high-quality
patents among all related patents can present an effective innovation
ratio.

As observed in the interaction plot of Assessing Attribute ∗ Country
in Fig. 6, China has a significant gap with the United States in globaliza-
tion intention (GI), and the gap in this attributemeasures approximate-
ly three sigma. The gap between China and the United States for the
ownership of platform technologies (OPT) and the gap between China
and Japan for cross-disciplinary technology development (CTD) mea-
sure approximately two sigma. The gaps in GI, OPT and CTD between
China and theUnited States or Japan are significant. China performs bet-
ter on international knowledge position (IKP) than on the other attri-
butes, which is on an average level, while the gap between China and
the United States is still significantly larger than one sigma. Compared
with the other attributes, China does not have a significant gap with
other countries for university-industry linkage (UIL), and the UIL levels
for the five countries are lower than average for the five assessed
attributes.

As demonstrated in the interaction plots of Time Period ∗ Country in
Fig. 6, the gap between China and other countries for OPT has narrowed
over time, and the gap between China and the United States for IKP has
narrowed from theperiod prior to 1985 to the period of 1986–2000, and
currently remain at similarwidths. China's performances for GI, UIL, and
CTD are approximately one sigma lower than the attribute's average
level, and have not significantly changed over time. The other countries
also have not experienced significant changes in the performances of GI
and CTD, and the gaps between China and the best country for GI and
CTD are approximately two sigma. The United States' performance for
UIL improves over time, with the exception of a gentle decline from
the period of 2001–2010 to the period after 2011. Further, the gap be-
tween China and the United States for UIL measured nearly three
sigma from the period prior to 1985 to the period of 2001–2010. Addi-
tionally, South Korea performs well for CTD another catching-up coun-
try in the analysis, and the gap to the United States or Japan is only one
sigma.



Fig. 5. Interaction plots for high-quality patent counts.
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4.4. Validation of high-quality patent counts based on SVMs

Several types of patent indicators can estimate patent value (de
Rassenfosse et al., 2013), such as the quantity of the patents granted
by the USPTO, patent applications filed at the EPO, triadic patent fami-
lies, and patent applications with high forward citations. The number
of patents granted by the USPTO has been accessible to researchers for
some time, and is extensively used for international comparisons
(Merton, 1935; Schmookler, 1954; Soete and Wyatt, 1983). The EPO is
a regional office in the European patent system, and its count is not bi-
ased towards a single country. Statistics on the EPO's patent filings are
often assumed as less biased than those at the USPTO (de Rassenfosse
et al., 2013). The quantity of triadic patent families is a statistic indicator
of patent families, as developed by the Organization for Economic Co-
operation andDevelopment (2009). According to the OECD's definition,
the triadic patent family is a set of patent applications that have been
filed with both the EPO and JPO, and have been granted by the USPTO,
and that share one ormore priority applications. The high-forward cita-
tion criteria is another important indicator of high-value patents (Guan
and Gao, 2009; Harhoff et al., 2003; Liu and Zhi, 2010).

Table 5 demonstrates that the count of high-quality patents from the
SVM-based classifier significantly correlates with at least one of the tra-
ditional indicators. The United States is the origin of robotics, and a
country well-known for both original technological developments and
the integration of production and research. Thus, the number of patents
granted by the USPTO correlates with the number of high-quality pat-
ents for ownership of platform technologies (OPT) and university-in-
dustry linkages (UIL). Most application and industrialization
technology innovations must refer to and cite platform technologies.
Therefore, the quantity of patents with high forward citations correlates
with the OPTs' high-quality patent counts. Counting patent applications
filed at the EPO, the number of triadic patent families is less home-
biased, and the patents covered always have medium to high value
(de Rassenfosse et al., 2013). Logically, these two indicators significantly
correlate with the number of high-quality patents for every assessed
attribute.

5. Discussion and conclusions

This research empirically analyzes the industrial robot innovation
gap between China and developed countries (the United States, Japan,
and Germany). This demonstrates that a support vector machine
(SVM) based classifier is reliable in choosing high-quality patents,
with high classification accuracy in every assessed attribute. Further,
high-quality patent counts are valid to assess innovation, based on sig-
nificant correlations with traditional innovation indicators.

As the expert opinions in Section 3 reveal, the United States and
Japan have solid foundations and the systematized knowledge systems
for industrial robotics innovation. This research's method provides sim-
ilar results in that the United States and Japan are significantly devel-
oped countries, and lead industrial robotics innovation by a significant
margin, compared to China and South Korea. While Germany is a
well-known, industrially developed country, the government does not
focus on industrial robotics development as much as Japan. Thus, Ger-
many does not perform as well as Japan and the United States in indus-
trial robotics innovation. However, Germany's performance is still
better than newly industrialized China and SouthKorea's, and especially
regarding the effective innovation ratio.

Section 4 notes that the innovation gaps between China and devel-
oped countries on the ownership of platform technologies (OPT) and in-
ternational knowledge position (IKP) have narrowed since the
beginning of the 21st century. Innovation in China has improved to a
certain extent with comprehensive economic increases. As the litera-
ture reviews in Section 3 illustrate, China began its organized, systemic



Fig. 6. Interaction plots for percentages of high-quality patents.
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industrial robotics research in 1986, and recognized the industrial ro-
botics industry's importance in the early 21st century; the industrializa-
tion of China's industrial robotics manufacturing also began at this time.
Chinese scholars and the central government have discovered that a
lack of core, critical generic technologies has created a bottleneck in in-
dustrial robotics development, and significant research efforts, includ-
ing money and talent, is invested in both core and critical
technologies. Therefore, the innovation gaps between China and devel-
oped countries have narrowed, to a certain extent.

Moreover, the empirical analysis' results indicate that a substantial
innovation gap still exists between China and developed countries re-
garding globalization intention (GI). China has become the largest glob-
al industrial roboticsmarket, and logically, Chinese organizations do not
have strong globalization intentions, as reflected in the country's patent
applications. A country's GI is an important attribute to assess innova-
tion, as this presents the organization's confidence in participating in in-
ternational competition. This attribute indicates the national and
Table 5
Correlation coefficients.

OPT GI IKP UIL CTD

USPTO 0.540⁎ 0.349 0.334 0.884⁎⁎ 0.282
EPO 0.773⁎⁎ 0.717⁎⁎ 0.604⁎⁎ 0.605⁎⁎ 0.664⁎⁎

Triadic 0.859⁎⁎ 0.987⁎⁎ 0.839⁎⁎ 0.587⁎⁎ 0.981⁎⁎

High forward citations 0.539⁎ 0.237 0.280 0.633⁎⁎ 0.189

Notes: data for the four Time Periods ∗ Five Countries, or the same as in Section 4. A patent
with more than 50 forward citations is defined as a patent with high forward citations.
⁎ Coefficient is statistically significant at the 5% level.
⁎⁎ Coefficient is statistically significant at the 1% level.
international competitiveness of innovation, which cannot be ignored
to assess innovation on a national scale.

The innovation gaps between China and developed countries for
university-industry linkage (UIL) and cross-disciplinary technology de-
velopment (CTD) become more serious with the developed countries'
improvement over time. Investors have found that a gap exists between
innovation and its commercialization, or the “Death Valley.” American
scholars of public administration, business administration, risk invest-
ment, and technology have recognized the scale of this problem, and
have conductedmany research studies and practices to promote the co-
operation of universities, research institutes, and industry. The United
States has had many successful experiences in this cooperation, and
its industrial robotics innovation in UIL is far superior to China's. As
aforementioned, Japan's development of industrial robotics began
with production, which significantly differs from China's; further, the
innovation commercialization problem is less serious in Japan than in
China. Innovation aims to generate commercial profits, and the substan-
tial UIL innovation gap should compel China to focus on the cooperation
of its universities, research institutes, and industry. Additionally, indus-
trial robotics technologies are multidisciplinary, involving mechanical,
electrical, optical, and computer engineering, as well as application sce-
narios. The weak technology foundation and a lack of successful inter-
disciplinary collaboration experiences cause primitive innovation for
CTD compared with the United States, Japan, and Germany.

In this study, the authors conducted a method to assess the innova-
tion gap between catching-up and developed countries for emerging in-
dustries based on data-mining. The authors utilized support vector
machines algorithm to obtain high-quality patents to analyze the na-
tional innovation gaps in the industrial robot sector, in terms of OPT,
GI, IKP, UIL, and CTD. It provides reliable and valid innovation
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assessment results, and shows that China has significant innovation
gaps with the United States and Japan. The innovation gaps tend to in-
crease for GI, UIL, and CTD. Our main conclusions are as follows.

First, this comprehensive, systematic method for innovation gap as-
sessment can cover shortages in traditional single indicators' serious
preferences, aswell as provide afixed-weights assignment of traditional
multi-attribute evaluation methods. The method involves experts'
knowledge to choose sets of training examples and assess their attri-
butes, and utilizes a proper algorithm-basedmachine learning classifier
to categorize high-quality data regarding the assessing attributes. Fur-
ther, the high-quality patent counts in this research represent innova-
tion, and the proper algorithms are SVMs, based on the literature
review. The assessed attributes for emerging industries are the OPT,
GI, IKP, UIL, and CTD, which derive from the previous innovation evalu-
ation research. This research empirically analyzes the industrial robot
innovation gap between China and developed countries (the United
States, Japan, andGermany). This demonstrates that an SVM-based clas-
sifier is reliable in choosinghigh-quality patents,with high classification
accuracy in every assessed attribute. Further, high-quality patent counts
are valid to assess innovation, based on significant correlationswith tra-
ditional innovation indicators.

In addition, the empirical analysis indicates that China has a significant
innovation gap with the United States and Japan regarding GI, UIL, and
CTD; further, these innovation gaps have increasing trends for these attri-
butes. Innovation gaps exist between China and the United States, Japan,
and Germany for OPT and IKP, and the gaps have narrowed over time. In-
vestments ofmoney and technical talents in industrial robotics have gen-
erated certain innovative achievements. However, money and technical
talents cannot solve every problem, such as improving cooperation con-
sciousness and mechanisms, and increasing confidence in competing in-
ternationally. China, as a catching-up country, requires patience to solve
these problems, must further strengthen its technology foundation, and
establish positive cooperation habits and mechanisms.

Based on the analysis in the industrial robot sector, China has
narrowed innovation gaps on OPT and IKP, which provides their chance
of leapfrogging to the R&Dof new technologies, while has increasing in-
novation gaps compared with developed countries on GI, UIL, and CTD,
which limits the chance of leapfrogging to diffuse and industrialize the
new technologies. It suggests China's policy to focus on the cooperation
experiences accumulation, and also technology diffusion and industrial-
ization. As the assessed attributes in the research do not have special
evaluation targets except for the emerging industry, the innovation
gap assessment method has good suitability and scalability for emerg-
ing industries besides industrial robotics. This research provides a com-
prehensive evaluation method of national innovation gaps avoiding
biases of traditional patent analysis methods, which is significantly ad-
vantageous in its batch processing of massive data.

There are limitations to the research. First, patent analysis methods
must take care to reduce the data bias in future research. The analysis
only based on patent database may cause false results due to data
bias, so future researchmay consider usingmulti-source heterogeneous
data. Second, this research utilizes an effective machine learning algo-
rithm based on a previous research, while there are multiple machine
learning algorithms, which may reach a better result to assess innova-
tion gaps between countries. Third, the research chooses industrial ro-
botics as the empirical analysis target, which is only one special case
of emerging industries. In the future research, we should consider
more cases of emerging industries to prove the effectiveness of the
method, and verify the most effective machine learning algorithm in
the method. Furthermore, we may integrate more sources of data into
the method to make the assessment more objective and just.
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