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A B S T R A C T

Trait-based approaches may give insights into underlying mechanisms of relationships between biological
communities and environmental stressors, and are increasingly used in ecological studies, but are only very
recently considered for freshwater riverine microalgae. Here, we i) review the research trend in riverine mi-
croalgae during the past 26 years in order to conduct a quantitative and qualitative analysis for global trends in
the research field, ii) summarize the use of algae traits in riverine biomonitoring and iii) propose future research
perspectives. The bibliometric analysis showed that the annual number of publications on microalgae increased
significantly from 1991 to 2016, although their proportions to total numbers of scientific articles remained
steady. The studies have become increasingly concerned on issues arisen from global environmental changes
such as “eutrophication”, “pollution”, “land use”, “biomonitoring”, “biodiversity”, “functional group”, etc. The
use of algae traits in biomonitoring has become popular and includes e.g. functional diversity, cell size, guild, life
form, eco-morphology, spore formation as well as algal quality. Here we collate all relevant algal traits, their
different categories and propose their responses to resource supply and disturbance frequency in a conceptual
model, which should be validated in future studies. In order to expand the knowledge and future use of mi-
croalgae in biomonitoring research efforts should also include: i) description of relationships between algal traits
and ecosystem functions (e.g., nutrient uptake, metabolism, energy transfer across the food web) and underlying
mechanisms; ii) selection of robust traits reflecting and disentangling the effects of multiple stressors; iii) water
resource management in an interdisciplinary manner linking risk assessment and management scenarios by an
integrated modelling system using microalgae.

1. Introduction

Algae (both eukaryotics and cyanobacteria) occupy nearly every
aquatic environment including fresh and marine waters, moist terres-
trial habitats, such as soils and rock surfaces, and they also live on
living surfaces such as plants and animals (Hoffmann, 1989; Round
et al., 1990). While algae were known by the ancient Greeks and Ro-
mans, records as far back as 3000 BC indicated that algae already at
that time were used by the emperor of China as food (Huisman, 2000;
Porterfield, 1922). Since the late 18th century with the description and
naming of Ecklonia maxima (Pehr Osbeck) in 1757, phycology (i.e.

scientific study of algae) as a research field has undergone several
stages. The first stage was from late 18th to late 19th century with
descriptive work of scholars, such as Carl Adolph Agardh (1785–1859),
who firstly emphasized the importance of the reproductive characters
of algae and the use of these to distinguish different genera and families
(Papenfuss, 1976). The second stage started from the late 19th century,
when phycology became a recognized research field of its own. Scholars
such as Friedrich Traugott Kützing (1807–1893) continued the de-
scriptive work with systematic recordings, extensive distribution map-
ping and the development of identification keys. The third stage was
from the early 20th century up to now. In this stage a rapid progress has
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been made and numerous key books have been published. Two im-
portant new research areas were also initiated during this last stage
including investigations of freshwater algae (most previous work was
done with marine algae) and the use of algae in bio-assessments, war-
ranted by decreased water quality of freshwater ecosystems due to in-
tensive human disturbances. During the last decades the concepts and
tools for assessing ecosystem health and diagnosing causes of impair-
ment in streams and rivers have developed rapidly (Stevenson et al.,
2010).

Algae (benthic and pelagic) are increasingly being used as reliable
environmental indicators in streams and rivers globally (Lange et al.,
2016; Wu et al., 2012) because they strongly respond to environmental
changes (Dong et al., 2016; Stevenson et al., 2010). Especially three
major properties merit their use in ecosystem monitoring (Hötzel and
Croome, 1999): (i) they have a high sensitivity to environmental
changes, (ii) they are easy to sample, and (iii) most species are cos-
mopolitan with well-known autecology (Porter, 2008; van Dam et al.,
1994). As a consequence, many assessment methods based on micro-
algae (especially diatoms, a key component of stream benthic and pe-
lagic algae) have been developed in several countries and regions
(Siddig et al., 2016). Generally, the assessment methods build on one of
three different approaches. The first approach is based on community
composition and the ecological preferences and/or tolerances of species
or taxa within the community (Kolkwitz and Marsson, 1908), for in-
stance, the Pollution Sensitivity Index (PSI) (Kelly et al., 1995), the
Trophic Diatom Index (TDI) (Kelly and Whitton, 1995), the Pollution
Tolerance Index (PTI) (Kentucky Department for Environmental
Protection Division, 2002), the Q index (Borics et al., 2007) and the
Trophic Index of Potamoplankton (TIP) (Mischke and Behrendt, 2007).
The second approach relies on algal diversity as a general indicator of
river health (i.e. ecological integrity). The third approach can be seen as
a mixture of the previous two approaches combining the different in-
dices in multimetric indices, like for instance the Index of Biotic In-
tegrity (IBI) (Karr, 1981). The third approach is preferred by more and
more researchers for purposes of risk assessment and management of
freshwater ecosystems and has been developed for different types of
impairments in various regions (Bae et al., 2010; Birk et al., 2012; Dong
et al., 2015; Zalack et al., 2010; Zhu and Chang, 2008).

Despite the increasing popularity of using these three approaches,
some studies have shown that the first two approaches have not always
been successful (Tang et al., 2006). For instance, nonlinear relationship
between anthropogenic impacts and response of indices (Allan, 2004)
resulted in potential bias for assessment. Moreover, if we look at the
most used indices, summarized in a previous review (Wu et al., 2014),
in research papers (Dong et al., 2015; Tang et al., 2006; van Dam et al.,
1994; Wang et al., 2005) and in books (Mischke and Behrendt, 2007;
Stevenson et al., 2010), it becomes obvious that the algorithm of many
of these (e.g., TDI, PSI, PTI, TIP) is highly complex with a low degree of
transparency. Furthermore, these approaches largely ignore that
freshwater environments are exposed to a complex mixture of stressors
arising from global change including water abstraction, intensive
farming land use and climate change (Dudgeon et al., 2006; Hering
et al., 2015; Vörösmarty et al., 2010). Consequently, the use of indices
developed to target single stressors is inadequate and new approaches
are needed to deal with this complexity.

Recent studies have shown the advantages of applying traits for
biomonitoring of freshwater ecosystems and for biodiversity con-
servation (Di Battista et al., 2016; Lange et al., 2011; Litchman and
Klausmeier, 2008; McGill et al., 2006; Menezes et al., 2010; Soininen
et al., 2016). A trait is defined as a characteristic that reflects a species
adaption to its environment (Menezes et al., 2010). Usually traits are
divided into two types: ecological traits (related to habitat preferences,
like pH, oxygen and temperature tolerance, tolerance to organic pol-
lution, etc.) and biological traits (e.g., life history, physiological, be-
havioural and morphological characteristics, such as reproductive
strategies, motility, cell size, life form, etc.). In comparison with

traditional taxonomic indices, traits possess many merits: 1) most traits
need only assignment to different categories and do not need complex
algorithm, 2) traits show greater consistency in their responses across
temporal and spatial scales (Menezes et al., 2010; Soininen et al.,
2016), 3) traits can potentially be transferrable across geographic re-
gions since different geographic regions are likely to contain similar
complements of traits although they might be characterized by distinct
taxonomic composition (Van den Brink et al., 2011), 4) traits can serve
to tackle with complex mixture of stressors, e.g., disentanglement of
multiple interacting influential factors (Baattrup-Pedersen et al., 2016),
5) they can give important insights into the mechanisms driving the
community and ecosystem processes along the gradients of influential
factors including responses to global change (Litchman and Klausmeier,
2008). In fact, functional traits have been used for different purposes in
terrestrial plants (Grime, 1979; Tilman, 1980) and macroinvertebrate
(Menezes et al., 2010), but have only very recently been considered for
freshwater algae (Lange et al., 2016; McGill et al., 2006; Tapolczai
et al., 2016), in particular in phytoplankton studies (Colina et al., 2016;
Padisák et al., 2009; Reynolds et al., 2002; Thomas et al., 2016), and a
growing number of investigations in benthic algae have also adopted a
trait-based approach. A broadly accepted trait nowadays is guilds (i.e.,
low profile, high profile, motile) of diatoms (Berthon et al., 2011; Dong
et al., 2016; Lange et al., 2011; Soininen et al., 2016; Tang et al., 2013),
which can reflect not only the difference of dispersal ability, but also
the environmental adaptability (Passy, 2007). Meanwhile, other bio-
logical traits based on cell sizes, life history, physiology, behaviour and
morphology have been proposed recently (Lange et al., 2016).

In this paper we describe research trends in past years, and by
collecting the latest trait-based approaches and existing attempts, we
aim to identify future research gaps in order to progress the use of algal
traits in biomonitoring. Specifically, the goals of this review are to 1)
describe research trends of river microalgae in the past 26 years by
conducting a bibliometric analysis, 2) summarize the current algal
traits used in riverine biomonitoring, and 3) propose future research
directions and applications.

2. Methods

2.1. Terminology of river microalgae

River microalgae can be divided into two main categories: pelagic
algae and benthic algae. Pelagic algae are algae suspended in the water
column and most previous studies have been carried out in lowland
rivers or streams with long retention time and low flow current (Abonyi
et al., 2014; Basu and Pick, 1996; Piirsoo et al., 2008; Sabater et al.,
2008). In the literature, more popularly used terms are “phyto-
plankton”, “potamoplankton”, “phytoseston” or “riverine algae”. In
contrast to the pelagic algae, benthic algae grow on the surfaces of
bottom sediments and are most commonly filamentous or colonial
forms, but may also be microscopic single celled organisms. Former
investigations have been conducted mostly in mountainous streams
with short retention time and high flow velocity (Birk et al., 2012;
Soininen et al., 2016; Wang et al., 2005). Except for “benthic algae”,
other widely used terms are “periphyton”, “benthic diatom”, “diatom”,
“eplithic algae/diatom”, “epiphytic algae/diatom”, “epipelic algae/
diatom”, etc. In this study, however, to unify the terminology, we
confine to either “pelagic algae” or “benthic algae” (but for the pub-
lication searching, we used all keywords referred above).

2.2. Data sources, methods and results

We used a bibliometric analysis similar to a previous study (Wang
et al., 2015) with a minor modification of the keywords used. All ar-
ticles containing the keyword “river microalgae”; “pelagic algae”;
“phytoplankton”; “potamoplankton”; “phytoseston”; “benthic algae”;
“periphyton”; “benthic diatom”; “diatom”; “eplithic algae”; “eplithic
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diatom”; “epiphytic algae”; “epiphytic diatom”; “epipelic algae” and
“epipelic diatom” in the title published between 1991 and 2016; were
queried from all citation indexes on Web of Science (Thomson Reuters).
An XML file containing titles; keywords; abstracts; year of publication;
authors’ names and authors’ affiliations; cited times and cited reference
counts was generated. The search query was constructed as: TI = (river
OR stream) AND TI = (microalgae OR pelagic algae OR algae OR algal
OR phytoplankton OR potamoplankton OR phytoseston OR benthic
algae OR periphyton OR benthic diatom OR diatom OR epilithic algae
OR epilithic diatom OR epiphytic algae OR epiphytic diatom OR epi-
pelic algae OR epipelic diatom).

A total of 1907 articles were found based on the keywords defined,
and the annual numbers of publication demonstrated a linear increasing
tendency (p< 0.001) from 1991 to 2016 (Fig. 1), although the pro-
portion to the total numbers of scientific articles remained steady
(around 0.005%).

Then, we extracted the keywords following the procedures of Wang
et al. (2015) and top 30 keywords were visualized (Fig. 2). First, the
yearly percentages of occurrence of each keyword was calculated as the
yearly frequency divided by total frequency during a specified period of
time, and then adjusted (divided) by the numbers of yearly total pub-
lications to compensate for the general increase of total amount of
publications. Second, Mann–Kendal (MK) trend test, by a self-composed
R code, was performed thereafter on each keyword in order to test
whether the temporal change (from 1991 to 2016) is significant (in-
creasing or decreasing). Third, we show 30 keywords with significant
increasing trend from 1991 to 2016 in Fig. 2.

The temporal trends of the top 30 keywords showed an obvious
increasing trend from 1991 to 2016 (Fig. 2). The popular keywords
used were algae terms (e.g., “diatom”, “phytoplankton”, “periphyton”,
“algae”, “benthic algae”, “benthic diatom” “biofilm”, “cyanobacteria”,
“bacillariophyceae” etc.) in relation to abiotic factors (e.g., “nutrient”,
“phosphorus”, “nitrogen”, “nutrient limit”, etc.) and biotic interaction
(i.e., “macroinvertebrate”) at different research locations (e.g.,
“stream”, “river”). Water problem related keywords (e.g., “eu-
trophication”, “pollution”, “land use”) and its related fields (e.g.,
“monitoring”, “biomonitoring”, “indicator”, “bioindicator”, “biodi-
versity”, “diversity”, etc.) also showed an increasing trend. Im-
pressively, new keywords as “functional group” and “framework di-
rective” were also included in more studies.

3. Traits used in river microalgae biomonitoring

In addition to species composition, ecologists have recently started
investigating trait composition since it reflects the functional responses
of communities to environmental gradients (McGill et al., 2006). In this
section, we summarize the latest proposed traits of river microalgae,

which would be valid for both pelagic and benthic algae (Table 1), as
complementary to traditional taxonomic based indices that have been
summarized previously (Mischke and Behrendt, 2007; Wu et al., 2014).
A total of 12 algal traits, which belong to 79 categories (for details see
Table 1) have been widely used recently (Berthon et al., 2011; Centis
et al., 2010; Ferragut and Campos Bicudo, 2010; Guo et al., 2016a;
Passy, 2007; Rimet and Bouchez, 2012), but some obvious and con-
cerning constrains exist:

(i) Trait categories are continuously being updated and taxa as-
signments to different categories are still controversial and a more
complete and reliable assignment system for all algal taxa is therefore
of high priority to advance the use of trait-based approaches in the
future. Classification of diatom guilds, for instance, has mostly been
based on the study of Passy (2007) with three guilds (i.e., low profile,
high profile and motile taxa), but Rimet and Bouchez (2012) proposed
modifications by adding a fourth ecological guild (i.e., planktonic taxa)
and furthermore suggested some revisions. For example, planktonic
species were excluded from the low profile guild (e.g., Cyclotella spp.,
Stephanodiscus spp., Supplementary Table S1) and all taxa presenting
the largest size class (> 1500 μm3, e.g., Cymbella lanceolata, Eucocconeis
flexella, Achnanthes brevipes, etc.) were moved from the low profile guild
to the high profile guild (Rimet and Bouchez, 2012). Nevertheless, the
assignment of Frustulia spp. was still unclear: some regarded it as high
profile guild (Passy, 2007; Rimet and Bouchez, 2012) while others re-
garded it as a motile taxa (Dong et al., 2016; Passy and Larson, 2011;
Stenger-Kovács et al., 2013; Tang et al., 2013). These updates and
modifications will improve the precision of assignments into distinct
trait categories, but at the same time restrict the comparisons with
other studies applying different assignment systems.

(ii) Responses of different traits to environmental stressors are still
debated and some studies have concluded contradictory responses to a
single stressor. For example, both positive (B-Béres et al., 2014; Lange
et al., 2016; Passy, 2007B-Béres et al., 2014) and negative (Stenger-
Kovács et al., 2013) relationships between motile taxa and nitrogen
concentrations have been found. Besides, most previous studies have
focused on single or a few traits and were conducted in mesocosms (Hill
et al., 2011; Lange et al., 2011; Piggott et al., 2012; Piggott et al., 2015)
or in the field (Berthon et al., 2011; Guo et al., 2016a; Passy, 2007;
Soininen et al., 2016; Thomas et al., 2016). Very few have investigated
the combined effects of multiple, simultaneously operating stressors on
a comprehensive set of algal traits (Lange et al., 2016; Piggott et al.,
2012), although it is quite clear that multiple stressors often interact on
the algal community (i.e., synergism or antagonism) (Guo et al., 2016a;
Hill et al., 2011; Lange et al., 2011; Lange et al., 2016; Piggott et al.,
2012).

(iii) Trait distribution has been investigated at a comparatively
small scale and their underlying environmental and historical drivers at
larger scales are still poorly understood (Soininen et al., 2016). Fur-
thermore, most of the previous studies have been conducted on a spatial
scale (Berthon et al., 2011; Dong et al., 2016; Passy, 2007, 2009;
Soininen et al., 2016) while studies based on a temporal scale are rare
(B-Béres et al., 2014; Stenger-Kovács et al., 2013B-Béres et al., 2014).

4. Conceptual framework of algal traits in relation to resources
and disturbance

Based on the existing knowledge, we here propose a number of
conceptual models to describe the responses of different algae traits to
resource supply (mainly nutrient enrichment) and disturbance intensity
(e.g., flow regulation and grazing) (Fig. 3). Six response patterns (A-F)
are shown in Fig. 3. Most traits are co-regulated by disturbance in-
tensity and resource supply (e.g., Fig. 3A–D). For example large cell
size, high profile and functional diversity decrease with increasing
disturbance frequency and decreasing resource supply. On the contrary
small cell size and low profile species are expected to increase from
high resource and low disturbance towards low resources and high

Fig. 1. Temporal trend of the research articles and its proportion in total databases from
1991 to 2016.
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disturbance frequency. Some traits are supposed to respond to solely a
single stressor (Fig. 3E, F) and may be suitable to disentangle the effects
of multiple stressors (e.g., nitrogen fixation to detect nutrient enrich-
ment, attachment to substrate to detect hydrological disturbance).
Nevertheless, the relationship between traits and the complex mixture
of stressors existing in freshwater habitats is still poorly documented
and understood. We thus advocate that 1) further sampling of trait data
to build up an updated database, 2) linkages between traits and en-
vironmental stressors should be further studied, and 3) validations of
the hypotheses over larger spatial and temporal scale in the future
studies, which may greatly benefit the trait-based environmental as-
sessment, biodiversity conservation and integrated water resource
management.

5. Future research directions and applications

5.1. The role of microalgae in ecosystem functions

There is an increasing interest in ecology to understand linkages
between microalgae community composition and ecosystem functions
(Reisinger et al., 2015; Reiss et al., 2009; Taylor et al., 2002), especially
across the longitudinal gradient. Streams and rivers regulate resource
(such as nutrients, sediments, organic matters, etc.) transport from
terrestrial to marine ecosystems making them extremely important for
understanding and protecting downstream ecosystems (Alexander
et al., 2008; Reisinger et al., 2015). Nutrients entering the streams are
partially used by benthic and pelagic biota (e.g., assimilation, dissim-
ilation, sorption, etc.) with a portion being removed permanently via
denitrification or deposited at the bottom, and the rest is transported to
downstream waters. Assimilatory uptake by biota in streams has proved
to constitute the majority of nutrient removal from the water column
(Mulholland et al., 2008), however, the ultimate fate of assimilated
nutrients still remains unknown (Reisinger et al., 2015). Understanding

the role of benthic and pelagic microalgae in nutrient removal in
streams is therefore particularly important for managing stream eco-
systems given the fact that anthropogenic point and diffuse sources
have increased nitrogen and phosphorus loads to river ecosystem
globally (Guse et al., 2015; Hering et al., 2015; Seitzinger et al., 2005).

Experiments, reviews and meta-analyses have shown that biological
traits, which can inform the contributions of species to ecosystem
function through differences in nutrient use and storage (Cadotte et al.,
2011), are one of the best predictors of ecosystem function available
(Griffin et al., 2009; Hooper et al., 2005; Petchey and Gaston, 2006).
However, to our knowledge, the role of different functional traits in
maintaining stream ecosystem function is still not well documented.
Therefore, the relationships between algal traits and ecosystem func-
tions (e.g., nutrient uptake, metabolism) and their underlying me-
chanisms along stream size gradients are greatly needed. In addition,
the majority of previous studies have focused only on algal traits
lacking investigations of interaction with higher consumers (e.g., zoo-
plankton, macroinvertebrates and fish) and energy transfer in eco-
system functions. Thus, impacts of human mediated stressors on algal
traits and their consequent effect in stream food webs warrant further
scientific attentions.

5.2. Trait-based approach for biomonitoring under multiple stressors

As mentioned above, freshwater resources are globally affected by
multiple stressors such as water abstraction, intensive farming land use
and climate change (Dudgeon et al., 2006; Hering et al., 2015;
Vörösmarty et al., 2010), and the importance of assessing the potential
risks on stream ecosystems is becoming ever more urgent. The tradi-
tional taxonomic based indices, however, do not fully meet these urgent
demands and new approaches for biomonitoring purposes are required
(see details above). Although the developments of the algal trait ap-
proach in biomonitoring are promising, one issue arises: how to select

Fig. 2. The yearly percentages of occurrence of top 30
keywords with significant increasing trend in the arti-
cles found from 1991 to 2016. The significance was
tested by Mann–Kendal (MK) trend test (see text for
details). ALGA= algae, EUTROPH= eutrophication,
DIVERS= diversity, POLLUT= pollution, DIOINDIC -
= bioindicator, INDIC= indicator, ECOLOG= -
ecology.
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robust traits that can disentangle the effects of multiple stressors in a
catchment?

One of the main objectives of the trait-based research approach is
relating traits to environmental factors (McGill et al., 2006). Although
the relationships between environmental conditions (e.g., resources,
disturbances, grazing, etc.) and many aspects of river microalgae
community structure and dynamics are well known, trait − environ-
ment linkages are still poorly documented. Robust (unlinked, un-
correlated) traits should supply a quick assessment of the stressor and
provide insight into the environmental gradients in question (Poff et al.,

2006). Further field surveys and manipulative studies are needed to
address how algal traits vary across gradients of environmental vari-
ables in streams and their consequent impacts on ecosystem functions.
In fact, trade-offs and trait syndromes are two major challenges during
the trait selection. A standard approach to diminish these two problems
is to relate traits to each other by regression (McGill et al., 2006). One
example was relating nutrient uptake rates and growth rates to cell size
(Biggs et al., 1998; Lange et al., 2016; Litchman and Klausmeier, 2008).
Similarly, Menezes et al. (2010) also suggested a formal analysis ac-
counting for phylogenetic relationships and potential confounding

Table 1
Algal indices, traits, their descriptions, and expected responses to different environmental stressors e.g., nutrient enrichment, light, flow regulation and grazing.

Traits Categories Abbreviations Expected responses to stressors

Resource Disturbance

1. Functional diversity (Bruno et al., 2016;
Cadotte et al., 2011; Schleuter et al.,
2010)

Functional richness FRic Disturbances will reduce while high resource supply will increase functional
diversityFunctional evenness FEve

Functional divergence FDiv

Functional attribute
diversity

FAD

Functional dispersion FDis

Functional redundancy FRed

2. Cell size (Berthon et al., 2011; Rimet and
Bouchez, 2012)

Nano (5–100 μm3) BioVol_c1 Smaller cells have higher nutrient uptake rates and growth rates that allow
greater resilience to disturbance making them advantage under nutrient-limiting
and high disturbance conditions; Larger cells show converse trend

Micro (100–300 μm3) BioVol_c2
Meso (300–600 μm3) BioVol_c3
Macro (600–1500 μm3) BioVol_c4
Very large (> 1500 μm3) BioVol_c5

3. Diatom guild (Passy, 2007; Rimet and
Bouchez, 2012)

Low profile LowPro Advantage at lower resources and high disturbance;
Favor higher resources and low disturbance;
Advantage in resource gathering and low-flow depositional condition (MotTax
and PlaTax)

High profile HigPro
Motile taxa MotTax
Planktonic taxa PlaTax

4. Life form (Ferragut and Campos Bicudo,
2010)

Colonial LifFor_col LifFor_fil has advantage in resource gathering but susceptible to high disturbance
regimes
LifFor_uni has advantage in under depositional and high resource conditions

Filamentous LifFor_fil
Flagellate LifFor_fla
Unicellular LifFor_uni

5. Eco-morphology (B-Béres et al., 2016) Guild +Cell sizea – Combination between diatom guilds and cell size classes
Life form +Cell sizeb – Combination between life forms and cell size classes

6. Nitrogen fixation (Stancheva et al., 2013) Yes (1) or no (0) NitFix_1 N-fixer algae has advantage under nutrient-limiting condition but their relation
to disturbances varies

7. Attachment to substratum (Biggs et al.,
1998)

Non attached AttSub_non Algae with stronger attachment are more likely to retain under high disturbance
conditionMedium attached AttSub_med

Tightly attached AttSub_hig

8. Motility
(Round, 1984)

Motile attached Motile_att Actively motile algae have advantage in resource gathering and low-flow
depositional conditionMotile gliding Motile_gli

Motile drift Motile_dri

9. Reproductive strategies (Biggs et al.,
1998)

Fission RepStr_fis RepStr_fis has advantage for dispersal and recolonization after disturbance
Fragmentation RepStr_fra

10. Spore formation (Agrawal, 2009; Lange
et al., 2016)

No spore formation SpoFor_non SpoFor_aki and SpoFor_oos.zyg have advantage in unfavourable conditions
Zoospores SpoFor_zoo
Akinetes SpoFor_aki
Oospores and zygospores SpoFor_oos.zyg

11.Temperature traits (Thomas et al., 2016) Optimum temperature for
growth

Topt Topt Tmax Tmin decline with latitude increasing

Maximum persistence
temperature

Tmax

Minimum persistence
temperature

Tmin

12. Algal quality (Guo et al., 2016a,b; Hill
et al., 2011)

Saturated fatty acids SAFA Nutrient enrichment, low light and low temperature increases PUFA%, which in
turn affect growth and PUFA composition in stream grazersMonounsaturated fatty acids MUFA

Polyunsaturated fatty acids FUFA
Highly unsaturated fatty
acid

HUFA

Note: Resource acquisition includes nutrient enrichment (e.g., global land use change) and light (global warming); disturbance includes flow regulation and grazing. Seven traits (i.e., cell
size, life form, nitrogen fixation, attachment to substratum, motility, reproductive strategies and spore formation) were adapted from Lange et al. (2016). Although some traits are
overlapped, we retained them in order to gather all potential traits. Except for temperature traits, which are ecological traits, all these traits are biological traits (for definitions see
Supplementary Table S2).

a A simple combination between 4 guilds and 5 cell size classes, resulting in 20 combinations (B-Béres et al., 2016).
b A simple combination between 4 life forms and 5 cell size classes, resulting in 20 combinations.
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effects on trait measures, which will be used to provide information on
future trait selection for biomonitoring purposes.

5.3. Trait-based approach for water resource management in an
interdisciplinary manner

Apart from biomonitoring and risk assessment, one of the great

potential applications of trait-based approaches is to improve our
ability to predict community composition, dynamics and ecosystem
functions under rapidly environmental changes or management sce-
narios. To develop adaptive strategies and manage water resources in a
sustainable way, we suggest to develop an integrated interdisciplinary
approach with a sound understanding of potential risks, catchment
processes and feedback mechanisms of stream organisms. Models could

Fig. 3. Conceptual models showing six response patterns of different traits to resource supply and disturbance frequency. Traits categories are designated to different response patterns
and given below the diagrams. Some of these patterns have been validated (bold) and others remain to be tested (italic). The pattern E and F show the potential traits, which relate solely
to a single stressor and may be suitable for disentangling the effects of multiple stressors (e.g., nitrogen fixation to detect nutrient enrichment, attachment to substrate to detect
hydrological disturbance). Temperature traits, which are supposed to relate solely to temperature changes, and eco-morphology traits were not shown here. Abbreviations are as in
Table 1.

Fig. 4. A conceptual framework following a rigorous
step-by-step process (S1-S3). S1 is risk assessment of
different stressors and identifying robust traits of
microalgae; S2 is predicting the future global change
scenarios (including global land use and climate
change) and developing management strategies with
regard to global change and socio-economic devel-
opment; S3 is the implementation and evaluation of
distinct management scenarios in integrated model-
ling system. Definitions of different terms are shown
at Supplementary Table S2.
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be especially promising to achieve this goal and researchers have
started using integrated models (e.g., biological model + regional cli-
mate model, biological model + hydrological model, etc.) to predict
community reorganization under different global change scenarios
(Elliott et al., 2005; Jähnig et al., 2012; Kuemmerlen et al., 2015;
Schmalz et al., 2015).

Here we propose a novel integrated framework that links trait-based
risk assessment and management scenarios by an integrated ecohy-
drological modelling (Fig. 4). In a first step (S1), potential risks of
different stressors should be evaluated statistically and robust traits of
microalgae should be identified (the same processes as above). The
selected traits are linked to benefits for human well-being by ecosystem
functions and services (e.g. regulating, provisioning and cultural ser-
vices). The second step (S2) is to generate different management stra-
tegies (scenarios) under global change (i.e. climate change, land use
change, and both climate + land use change at the same time) based on
socio-economic developments in the region. Numerous candidate
management strategies should be generated by the combinations be-
tween future global change and management scenarios. The third step
(S3) is the calibration and validation by an integrated modelling system
which comprises hydrological and biological models (Fig. 4). Environ-
mental predictors (e.g., land use, topography, climate and hydrology)
are the bridge linking these two models. The effect of each management
strategy on ecosystem services should be tested by the application of
the interdisciplinary modelling system. The process circle should then
continue until the best management strategy is successfully defined.
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