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Unsupervised pattern-recognition
techniques to investigate metal
pollution in estuaries

A. Gredilla, S. Fdez-Ortiz de Vallejuelo, J.M. Amigo, A. de Diego,

J.M. Madariaga

There has been a significant increase in the application of unsupervised pattern-recognition techniques to the analysis of long
datasets emerging from the monitoring of metal pollution in estuaries. In this work, we thoroughly review the most important
articles published on this topic in recent years.
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1. Introduction

In recent decades, chemometrics has
grown significantly as a result of many
advances in the field of analytical instru-
mentation and computer sciences,
becoming a discipline, well-recognized
within the field of chemistry. Since Svante
Wold and Bruce R. Kowalski introduced
the concept of chemometrics at the start of
the 1970s, a number of definitions have
been proposed for this field of analytical
chemistry. It has been defined as the art or
ability to extract relevant and meaningful
information from data obtained through
chemical analysis [1]. Most definitions
underline the following advantages:

e real and current information can be ob-
tained from data very quickly;

e meaningful, clear and precise informa-
tion can be achieved from multidimen-
sional datasets; and,

e it is inexpensive.

In short, using chemometrics, a lot of
high-quality information is obtained
quickly and cheaply.

In the field of environmental analytical
chemistry, identifying relations between
chemically characterized objects (samples)
is a common problem. Pattern-recognition
techniques acknowledge that, amongst
different samples, there are groups that

have similar characteristics and take these
similarities as a basis to classify or to
group samples [2]. Pattern-recognition
techniques were first used in classifying
documents, biometrics, financial forecast-
ing and identifying languages [3]. All of
these techniques share the same three
basic steps:
e the application of mathematical meth-
ods to data;
e graphical representation of data; and,
e a decision about the object’s classifica-
tion.

This article looks in detail at pattern-
recognition techniques, more specifically
at unsupervised pattern-recognition
methods applied to pollution monitoring
in estuaries.

2. Pattern-recognition techniques

Pattern-recognition techniques are either
supervised or unsupervised, depending on
the information the analyst wishes to use or
is available about samples that constitute
the data matrix. In supervised techniques,
also known as classification techniques,
classes are defined beforehand because the
rule or the characteristic used to group
samples into a sub-set is known, whereas,
in unsupervised techniques, classification is
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Figure 1. Classification of pattern-recognition techniques.

carried out taking into account only similarities and dif-
ferences between samples, without using any additional
prior information about them (see Table 1).

2.1. Supervised techniques

Supervised pattern-recognition techniques are used in
the analysis of chemical data from different sources (e.g.,
chromatography, spectroscopy and sensor measure-
ments). There are numerous supervised methods and
they have been widely applied in the field of analytical
chemistry [4]. In each case, the most appropriate tech-
nique depends on the problem at hand, as the bases and
the criteria of the methods change significantly from one
problem to another. As can be observed in Fig. 1, various
criteria can be used to sort supervised techniques. Below
are some of the most common ones.

2.1.1. Parametric and non-parametric techniques. Para-
metric techniques use mathematical models that have
adjustable parameters to carry out sample classification.
Such techniques include LDA (Linear Discriminant
Analysis), SIMCA (Soft Independent Modeling of Class
Analogy), UNEQ (UNEQual dispersed classes) and PLS-
DA (Partial Least Squares Discriminant Analysis).

Non-parametric methods do not use any parameter
based on a mathematical model to classify samples.
Amongst the most used non-parametric methods are
kNN (k-Nearest Neighbors), ANN (Artificial Neural
Networks) and CAIMAN (Classification And Influence
Matrix ANalysis).

2.1.2. Discriminant and class-modeling analysis. Super-
vised pattern-recognition techniques divide the hyper-
space of variables that characterize samples into different
classes. Using discriminant techniques, if a new sample is
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placed in one of the hyperspace classes, it belongs to that
class, but, if it is placed outside, it does not. There is no
middle ground or in between. These methods include
LDA, kNN, PLS-DA and ANN.

In class-modeling analysis, samples fitting the model
are considered part of the class, while objects that do not
fit are rejected as non-members. When more than one
class is modeled, three different situations can be dis-
tinguished (i.e. each sample can be assigned to a single
category, to more than one category or to no category at
all). SIMCA and UNEQ are amongst the most commonly
used class-modeling techniques.

2.1.3. Deterministic/probabilistic ~ methods. When a
deterministic system is used to assign a class to each
sample, no statement about the reliability of the decision
is made. Probabilistic methods, in contrast, estimate the
reliability of the classification. Deterministic methods
include kNN and CAIMAN, and probabilistic methods
include LDA, PLS-DA, SIMCA, UNEQ and ANN.

2.2. Unsupervised techniques

The rule for classifying samples is not often known —
neither the number nor the identity of the classes. This is
common in studies that carry out monitoring of pollu-
tion. In these cases, and some others, unsupervised
pattern-recognition techniques are used. The methods
usually used can be divided into three main groups (see
Fig. 1), as follows.

2.2.1. Cluster Analysis (CA). Until a few years ago, this
was the most widely used pattern-recognition method.
This technique assigns samples to the same cluster on
the basis of the degree of similarity among the variables
(properties) that have been used to characterize the
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Table 1. Summary of the publications that use unsupervised pattern-recognition techniques to analyze data from metal-pollution monitoring in estuarine sediments

Unsupervised Data input (sample x variable) Metals considered and analytical method used Main objective Ref.
technique used
PCA, MCR-ALS, 136 x 14 (PCA, MCR-ALS) Al, As, Co, Cu, Cr, Cd, Fe, Mn, Mg, Ni, Pb, Sn, V, Practical comparison between two- and three-way methods. Spatial [17]
PARAFAC, Tucker 3 8 x 17 x 14 (PARAFC, Tucker3) (8  Zn (ICP-MS) and temporal distribution of metals
sites, 17 campaigns)
PCA, MCR-ALS, 51 x 11 (PCA, MCR) As, Ba, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Zn (ICP-OES) Identify metal sources and their spatial distribution [22]
PARAFAC Tucker3 17 x 3 x 11 (PARAFAC, Tucker3)
(17 sites, 3 compartments)
FA, CA 36 x22 Cu, Zn, Pb, Cd, As, Cr (XRF) Toxicological and sediment quality assessment [24]
(12 sites, 3 compartments)
PCA 21 x 18 (7 sites, 3 compartments) Ag, Al, As, Cd, Co, Cr, Fe, Mn, Ni, Pb, Zn (ICP-MS) Toxicological assessment [25]
PCA 36 x 13 (12 sites, 3 campaigns) Cr, Cd, Pb, Ni, Zn, Cu, As (ICP-MS) Identify metal sources [26]
PCA 29x 11 Al, Fe, Li, Mn, Ag, Cd, Co, Ni, Pb, Zn (AAS) Identify metal sources and describe spatial distribution [27]
PCA 56 x 7 (8 sites, 7 campaigns) Pb (ICP-MS) Study the role of physico-chemical variables in the fate of Pb and [28]
51 x 7 (2 cores) identify metal sources
PCA 20 x 11 (5 sites, 4 seasons) Al, Fe, Mn, Zn, Cu, Cr, Pb, Ni, Cd (AAS) Toxicological and sediment quality assessment. Spatial and temporal ~ [29]
distribution of metals and their sources
PCA 33x19 Cu, Fe, Pb, Zn, Na, K, Ca, Mg, Al (AAS) Identify metal sources and their spatial distribution (tide effect). [30]
Evaluate anthropogenic impacts
PCA 32 x24 Cd, Cr, Cu, Ni, Pb, Zn (AAS) Identify metal sources and their spatial distribution [32]
CA 10 X 9 (zonel) 7 X 9 (zone2) Al, Fe, Ni, As, Cu, Pb, Zn, Cd, Cr (ICP-MS) Identify metal sources and evaluate anthropogenic impacts [33]
FA, CA 39x21 Cd, Zn, Pb, Cr, Fe, Mn, Al, Ni, Cu (ICP-OES) Demonstrate the effectiveness of a multivariate analysis technique. [34]
Identify metal sources
CA 300 x 6 (5 cores) Cd, Pb, Zn (ICP-MS) Identify metal sources and their spatial distribution. Evaluate [35]
anthropogenic impacts
PCA 15 x 7 (zonel) 15 x 7 (zone2) 9x 7  Pb, Cu, Co, Cr, Cd, Zn (AAS) Define background values and identify metal sources [36]
(zone3)
CA 210 % 10 (15 sites, 14 campaigns)  As (AAS). Al, Fe, Cr, Cu, Ni, Mn, Pb, Zn, (FAAS). Spatial and temporal distribution of metals and evaluate [371
Hg (AAS) anthropogenic impacts
HCA 27 x 19 (Filtered) Mg, Al, K, Ca, Ti, Mn, Fe (EPXMA) Identify metal sources [38]
5 x 8 (Centrifuged)
12 x 10 (Superficial)
CA, FA 31x9 (CA) 31 x 32 (PCA) Fe, Mn, Zn, Cu, Co, Cr, Ni, Pb, Cd (AAS) Sediment-quality assessment and identification of metal sources [39]
CA, PCA 49 x 11 (14 samples in zonel, Cu, Fe, Mn, Zn, Cr, Co, Ni, Pb, Ba (ICP-OES). Identify metal sources and their spatial distribution. Evaluate [40]
20 in zone2 and 20 samples Al (EDXRF) anthropogenic impacts
in zone3)
PCA 16x 13 Cd (ICP-MS). Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sediment-quality assessment, spatial distribution of metals and [43]
Zn (FS-FAAS) identification of their possible origin
CA, FA 20 x 13 (Pre-monsoon) Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd (GF-AAS) Identify metal sources and their spatial distribution [44]
20 x 13 (Post-monsoon)
CA 8x10 Cu, Ni, Pb, Co, Zn, Mn, Fe, Al, Ca (NS) Identify metal sources and their spatial distribution. Evaluate [45]
anthropogenic impacts
PCA 116 x 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Spatial and temporal distribution of metals and identification of their ~ [46]
Zn (ICP-MS) sources. Sediment-quality assessment and evaluate anthropogenic
impacts
HCA, PCA 12 x 10 (3 sites, 4 seasons) Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn (ETAAS, FAAS) Toxicological assessment. Identify metal sources and study spatial [47]

distribution of metals

(continued on next page)
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Table 1 (continued)

Unsupervised Data input (sample x variable) Metals considered and analytical method used Main objective Ref.
technique used
PCA 7 %23 Fe, Mn, Zn, Cu (FAAS). Hg, As (MHS-FIAS). Toxicological assessment and identify metal sources [48]
Pb, Cd, Ag, Sn, V, Ni (GF-AAS)
PCA 66 %16 Al, Fe, Ti, Mn, Cu, Pb, Cr, Zn, Co, As, Ni, Cd, Sr Spatial distribution of metals, study their distribution patterns and [49]
(ICP-OES) evaluate anthropogenic impacts
PCA 117 x 16 (6 cores) Cd, Cr, Co, Cu, Ni, Pb, Zn, Mn (ICP-OES) Study spatial distribution of metals in cores [50]
PCA 8x 12 (zonel) 6 x 12 (zone2) Zn, Cd, Pb, Cu, Ni, Co, V (DPASV-HMDE) Toxicological and sediment-quality assessment, study spatial and [51]
temporal distribution of metals and their sources
HCA 16 x 15 (corel) 16 x 15 (core2) Pb, Zn, Cu, Cr, V, Mn, Cd, Co, Sb, Sn Ag, Mo (ICP-MS)  Identify metal sources and sediment quality assessment [52]
HCA, PCA 36%x6 Mn, Fe, Ni, Cu, Zn, Pb (NS) Identify metal sources and evaluate anthropogenic impacts [53]
HCA, PCA 59 % 6 (23 samples in zonel and Pb, Cd, Cu, Zn, Ni (AAS). Hg (MHS-FIAS) Sediment-quality assessment and spatial distribution of metals [54]
36 in zone2)
FA, HCA 60 x 17 (30 samples, 2 seasons) Pb, Ni, Cu, Co, Cd, Cr, Fe (AAS) Identify metal sources and their spatial distribution. Evaluate [55]
anthropogenic impacts
PMF 34x18 Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn. Identify metal sources [571
(ICP-OES)
PCA 24 x 6 (October) Fe, Cu, Zn, Cd, Pb, Cr (AAS) Spatial distribution of metals [58]
24 x 6 (February)
PCA, CA 235 x 15 (7 sites, 4 cores) Li, Mg, Al, Cr, Mn, Fe, Ni, Cu, Zn, (FAAS). Spatial distribution of metals [60]
Na, K, Ca (AES). Cd (FAAS). Hg (MHS-FIAS)
CA 60 X 16 (6 cores) Fe, Mn, Cr, Cu, Ni, Pb, Cd, Mo, Ag, As, Ba (ICP-MS) Sediment quality assessment, evaluation of anthropogenic impacts [62]
and the mobility of metals
PCA, k-NN, SIMCA, 95 x 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn Spatial and temporal distribution of metals [63]
LDA, ANNs (ICP-MS)
PARAFAC 7X5x%x4 Cd, Cr, Cu, Pb, Zn (ICP-OES) Spatial distribution of metals [64]
PCA 15%x20 Ag, Cd, Cu, Cr, Ni, Pb, Zn, As, Se (FAAS). Cu, Cr, Ni, Pb,  Toxicological and sediment quality assessment. [65]
Zn, (GF-AAS). Ag, Cd, (HG-AAS). Hg (CV-AAS)
HCA 116 x 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn Clustering of samples prior to PLS modeling [671]
(ICP-MS)
PCA PLS-DA LDA 3048 x 16 As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn (NS) Exploratory analysis prior to build predictive models [69]
QDA CVA ECVA
CART CP-ANNS
HCA 116 x 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn Clustering of samples prior to PLS modeling [70]
(ICP-MS)
SOM 27 x 48 (9 sites) Cu, Mn, Ni, Cr, Pb, Zn (AAS) Identify associations between metal content and sediment phases [71]
PARAFAC 7xX5x%x7 Cd, Cr, Cu, Pb, Zn (ICP-OES) Identify metal sources and their spatial distribution [72]
CA, PCA 20x 27 (PCA) 20 x 15 (CA) Be, Sc, V, Cr, Co, Ni, Cu, Zn, As, Y, Zr, Mo, Ag, Ba, Pb  Define background values [74]

(ICP-MS)

AAS, Atomic absorption spectroscopy; AES, Atomic emission spectroscopy; CV-AAS, Cold-vapor atomic absorption spectroscopy; DPASV, Differential pulse anodic stripping voltammetry;
EDXRF, Energy-dispersive X-ray fluorescence; EPXMA, Electron-probe X-ray microanalysis; ETAAS, Electrothermal atomic absorption spectroscopy; FAAS, Flame atomic absorption spectros-
copy; FS-FAAS, Fast sequential flame atomic absorption spectrometry; GF-AAS, Graphite-furnace atomic absorption spectroscopy; HG-AAS, Hydride-generation atomic absorption spectros-
copy; HMDE, Hanging mercury dropping electrode; ICP-MS, Inductively-coupled plasma mass spectroscopy; ICP-OES, Inductively-coupled plasma optical emission spectroscopy; MHS-FIAS,
Mercury-hydride system flow-injection atomic spectroscopy; XRF, X-ray fluorescence; NS, Not specified. Abbreviation of analytical methods that do not appear in the text;
CVA, Canonical variate analysis; CART, Classification and regression trees; CP-ANNS, Counter-propagation artificial neural networks; ECVA, Extended canonical variate analysis; QDA,
Quadratic discriminant analysis.
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Figure 2. Different ways to organize tables of environmental data. In this example, several compartments (sediment, water, and biota) have been
sampled in different campaigns (2009, 2010 and 2011) at different points (sites), and several variables have been measured in samples

(concentration of metals, organics and physico-chemical parameters).

Variables

objects, and, at the same time, assigns samples that are
not similar to different clusters. It is normally used to
develop a new classification of the samples under study,
but it can also be applied to confirm an already known
grouping. Massart and Kaufman [5] published a com-
prehensive monograph on cluster analysis of analytical
chemical data.

2.2.2. Artificial Neural Networks (ANN). ANN are
mathematical techniques that simulate the nervous
system in human beings, creating models for pattern

recognition. They are usually very effective at over-
coming the difficulties frequently encountered in the
classification process. ANN starts from a so-called data-
training set, which usually has properties (e.g., concen-
tration levels or spectra) measured in different samples,
to calculate the probability of samples being a member of
a class (output variables). ANN can be used in either
supervised or unsupervised pattern recognition, but, as
their application is less simple than CA, their uses are
still limited. Further information on the application of
ANN in chemistry can be found elsewhere [6].
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2.2.3. Methods based on factor models. The objective of
these methods is to limit n-dimensional information
about objects to a reduced, more representative dimen-
sion. In this manner, each sample can be graphically
depicted in a two- or three-dimensional (2D or 3D) space,
making it easier to identify the main tendencies. Data
can be structured in different ways (see Fig. 2). If samples
are organized in one direction and variables in another,
a single 2D data table is obtained (e.g., the variables
might be spectral or concentration levels of sample
components).

Methods that handle data organized in this manner
are known as two-way methods. Data can also be or-
ganized according to a multi-set or multi-way arrange-
ment. In both cases, a simultaneous analysis of several
tables of 2D data is performed.

In the multi-set approach, the data tables to be
handled simultaneously have one mode in common and
an irregular structure and/or meaning [7].

In multi-way analysis, several 2D data tables with
several modes in common and a cube or hypercube
structure are considered.

PCA (Principal Component Analysis), MCR (Multi-
variate Curve Resolution) and Positive Matrix Factor-
ization (PMF) are, amongst others, the most popular
techniques to deal with 2D data tables and multi-set
approaches. As a matter of fact, the multi-set approach
has been adopted by Environmental Protection Agency
(EPA) for adequate air-quality management [8].

The papers by Wold et al. [9], Rutan et al. [10] and
Paatero et al. [11] illustrate the basics and the applica-
tions of these three techniques.

The analysis of multi-way data has been most usually
attempted by PARAFAC (PARallelFACtor Analysis),
Tucker3 or models based on STATIS (Structuration des
Tableaux A Trois Indices de la Statistique). Acar and co-
workers published a literature survey on these tech-
niques [12].

3. Application of unsupervised pattern-recognition
techniques to the study of metal pollution in
estuaries

Since the United Nations Conference on the Human
Environment in Stockholm in 1972, there has been a
clear recognition of the importance of dealing with
environmental issues that has resulted in a growing
number of environmental institutions, researchers and
strict regulations [13]. Consequently, the use of unsu-
pervised pattern-recognition techniques in the field of
environmental analysis has also significantly increased.
Specifically, environmental quality assessment has been
a topic of great concern [8]. Certainly, pattern recogni-
tion has been more widely applied to soil and/or sedi-
ment-related problems. A good summary of the work
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done concerning soil pollution was recently published by
Mostert [14].

There are many studies that investigate the geo-
graphical distribution of contaminants in soils and sed-
iments using pattern-recognition techniques [15-17].
Water and air pollution has received less attention [18-
20], followed at a distance by works related to biota
[21,22]. Regarding chemicals, both organic and inor-
ganic compounds have been considered independently
or simultaneously [14].

In the case of water bodies, pattern-recognition tech-
niques have been used increasingly since the introduc-
tion of the European Water Framework Directive (WFD,
2000/60/EC) in 2000. The monitoring carried out in
order to reach the objectives set out in the WFD gener-
ates a large amount of data containing numerous vari-
ables that need to be interpreted.

In monitoring studies, many sampling campaigns,
sample types and areas are taken into account at the
same time, generating datasets of great complexity and
variability. Since they contain correlated information, it
makes no sense to use univariate models to analyze these
datasets, as a lot of information would be lost in the
process. This is particularly true in estuaries. These
transitional areas are considered to be one of the most
productive ecosystems. They are usually densely-popu-
lated zones with important industrial, agricultural and
recreational activities, susceptible to produce large
amounts of pollutants [23]. Among pollutants, metals
are of especial interest, due to their high toxicity and
persistence in the environment.

Although the study of different estuarine compart-
ments at the same time is becoming more common
[22,24-26], most of the studies are still focused on the
analysis of a single matrix. Considering that water
samples on their own merely give current information
about a specific space or moment in time, it is preferable
to study sediments. Their capacity to act as accumula-
tors of metals and to become potential sources of pollu-
tion contributes in this sense. The following is a
summary of the most important works that use unsu-
pervised pattern-recognition techniques to investigate
metal pollution in estuarine sediments (see Table 1).

First, we carried out a bibliometric analysis to inves-
tigate the evolution of the number of publications con-
cerning unsupervised pattern-recognition techniques
applied to the study of metal pollution in estuaries be-
tween 1980 and 2011. The on-line version of SciFinder
was used in this survey. This research tool integrates the
databases included in CAplus and MEDLINE. In a first
step, the databases were searched with the concepts
“clustering”’, ‘“‘unsupervised pattern recognition”,
“unsupervised classification”, ““cluster analysis”’, “PCA"’,
“MCR"”, “PARAFAC” and “Tucker3” to retrieve all the
documents (books, reviews and articles) related to ‘“‘pol-
lution” studies. Nearly 7200 documents were obtained.
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This first result was refined using successively the key-
words “metal” (nearly 1700 documents), “‘estuary’ (88
documents) and “sediment” (67 documents). Only 57 of
those 67 final references were written in English. The
evolution (1980-2000) in the number of documents
published per year in the above-mentioned four catego-
ries is depicted in Fig. 3.

Identification of pollution sources is one of the objec-
tives most frequently pursued. In this line of work, PCA
and CA predominate [26—51]. Nevertheless, both Hier-
archical Cluster Analysis (HCA) [38,52—55] and Factor
Analysis (FA) [34,39,44,55] have also been used. Pol-
lution episodes of anthropogenic [31,54] or geogenic
origin [32,56] are clearly distinguished. In most of the
cases, agricultural and industrial activities are respon-
sible for pollution of anthropogenic origin [26,27].

CA has also been used to identify the origin of pollu-
tion in a wide area by the simultaneous analysis of data
obtained from sediments of different estuaries located in
it [35]. The information obtained in this case was useful
to develop effective management strategies to control
pollution in the vast estuarine area investigated.

Recently, PMF was used with a similar objective [57].
In this work, the results obtained by PMF were compared
with those obtained by FA.

In other work, analytical data obtained after sequen-
tial extraction were analyzed by FA and CA not only to
define the origin of pollution, but also to connect this
information with the evaluation of risk assessment using
sediment-quality guidelines [39].

Classification of the sampling sites according to metal
content in sediments is another important research area.
The aim in this case is to obtain more information about
the spatial distribution of chemicals along the estuary.
PCA and CA [27,29,30,32,35,37,40-47,49-52,54,58—
63] are again the methods preferred to carry on this
task, although HCA [47,54,55] and PARAFAC [64]
have also been used. In this last work, the PARAFAC
model was also useful to visualize and to interpret the
distribution of the five heavy metals (Cd, Cr, Cu, Pb and
Zn) in different sediment fractions and sampling points of
an estuary in Argentina. In most of the cases, the sam-
pling sites were simply classified according to their metal
content [29,32,64,65].

The influence of a specific contamination source [37]
and the tidal effect [30] on the distribution of metals
have been investigated in detail by CA and PCA,
respectively. Chatterjee et al. used PCA and CA to study
concentration gradients in sediment cores, and to iden-
tify geochemical factors responsible of the spatial distri-
bution of trace elements in the sediment profiles [40].

The study of spatial distribution of metals in specific
estuaries has been a very active research line. In tradi-
tional monitoring studies, both spatial and temporal
variations are considered simultaneously. However,
when unsupervised pattern-recognition techniques are
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applied to analyze data, only the spatial distribution of
pollution is usually investigated [59,66]. Simultaneous
consideration of both trends is scarce [17,26,28,37,
46,63,67], and only in a few cases is the seasonal var-
iability the issue of interest [44,47,55,58].

Unsupervised techniques have been also frequently
used in combination with certain parameters [e.g.,
enrichment factor (EF), ecological risk index (Eg;), pol-
lution-load index (PLI) or the geoaccumulation index
(Igeo)] to evaluate the magnitude of anthropogenic im-
pacts in selected areas [30,33,35,37,40,41,45,46,
53,55,62,65,66]. The efficiency of a newly developed
pollution index (I,o;) was studied by CA and other che-
mometric tools [42]. Sediment-quality guidelines (SQG)
are frequently used together with pattern-recognition
techniques to estimate the toxicity of sediments accord-
ing to their metal content [24,29,39,43,46,51,54,
62,65]. However, studies based in in-vivo toxicological
tests have become more popular in recent years. For
example, PCA was used to identify the ranges in which
chemical concentrations may result in adverse effects on
local living organisms [48]. In this case, particularly
significant correlations between chemical concentrations
in sediment and biological effects were identified. The
relation between certain physico-chemical parameters of
mangrove sediments (including metal concentration)
and the abundance and the diversity of ammonia-oxi-
dizing archaea and ammonia-oxidizing beta-protobacte-
ria has been studied using unsupervised pattern-
recognition techniques [68]. Moreover, the changes ob-
served in microbial activity under different degrees of
metal contamination have been investigated by multi-
dimensional scaling (MDS), HCA and PCA [47]. Data
from physical, chemical and biological sources have also
been combined to estimate sediment quality after data
analysis by different unsupervised techniques [24].
Wepener et al. [25] reported the results of a multivariate
statistical analysis (including unsupervised techniques)
of chemical data (metal concentrations) from water,
sediment and mussels collected in the Scheldt Estuary
and biomarker responses in resident mollusc population.
A similar approach was described by Mucha et al. con-
cerning macrobenthic communities and sediments from
the Douro Estuary [29].

PCA and CA have also been used to classify sediments
before using supervised techniques [e.g., SIMCA, ANN,
LDA, QDA (quadratic discriminant analysis), or PLS-DA]
to define classification models based on metal concen-
tration [63,69]. In a similar approach, clustering by
HCA was the first step in a process to define PLS models
able to predict metal concentrations in sediments from
XRF [67] and NIR/MIR [70] spectral measurements. A
new Kohonen unsupervised ANN approach, the so-
called Self Organizing Maps (SOM), has also been applied
to assess metal contamination in dredged sediments
using sequential extraction [71]. In this work, the
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authors concluded that certain metals (e.g., Cu, Pb and
Zn) are of special interest due to their capacity to be re-
mobilized and to associate with organic matter.

In addition, multi-way analysis of data from sequential
extractions of sediments has been carried out by
PARAFAC to investigate the mobility and the availability
of metals (e.g., Cd, Cr, Cu, Pb and Zn) [64,72]. The pre-
treatment technique applied to a dataset clearly influ-
ences the result obtained by PCA, as evidenced by Reid
and Spencer [73]. Furthermore, the same dataset (con-
centrations of 14 elements in more than 136 sediment
samples) was analyzed by PCA, MCR, PARAFAC and
Tucker3, and the results were critically compared [17].
Although the results observed after the use of the dif-
ferent chemometric methods varied slightly, the main
conclusions extracted from them were similar.

The evaluation of geochemical processes that control
the presence and the spatial distribution of metals in
sediments was also carried out by FA and HCA [55].
Specifically, the loadings of FA demonstrated that the
variability in metal concentration in the Hugli Estuary
(India) was mainly governed by sediment properties. It
was therefore concluded that physico-chemical proper-
ties (e.g., texture and organic matter) play a critical role
in the sorption and the complexation of transition met-
als.

With a similar objective, the physico-chemical prop-
erties of sediments (e.g., total organic carbon and car-
bonate content) were included in the statistical analysis
of the metal-concentration data of sediments collected in
different estuaries [43,44,62].

Analogously, geochemical processes affecting the
mobility of metals from sediments to water and vice versa
have been evaluated by CA and correlation analysis
[42].

In addition, different multivariate-analysis techniques
(i.e. FA, CA and Canonical Discriminant Analysis) were
simultaneously considered to evaluate spatial variations
and identify pollution sources, connecting physico-
chemical properties with natural biogeochemical pro-
cesses [34].

Finally, several works estimated the background con-
centrations of metals in estuarine areas using analysis of
data by PCA [36] and PCA and CA [74].

4. Conclusions

It is obvious from Fig. 2 that there is increasing interest
in using sediments in the application of unsupervised
pattern-recognition techniques to the analysis of metal
pollution in estuaries. It may be thought that the in-
crease in the number of articles published on this topic
during the past few years is concomitant with the gen-
eral trend observed in most branches of science. How-
ever, the publication rate in other related, but more
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general, fields has reached a plateau (‘“‘chemometrics’)
or even shown a slight decrease (“‘environmental anal-
ysis”’) in the past few years. This is evidence that unsu-
pervised pattern-recognition techniques applied to
pollution studies is certainly a hot topic in both absolute
and relative terms.

However, it is also true that the average number of
documents published in the area per year is still low. The
use of chemometrics by researchers involved in envi-
ronmental chemistry issues is limited, probably due to
e in some cases, ignorance of even the existence of these

techniques and, of course, of their potential;

e a kind of inertia that involves doing things as they
have been done in the past (i.e. simple univariate
and graphical analysis of data); and,

e to some extent, a veiled fear of the mathematics in-
volved in multivariate-analysis techniques.

However, the potential advantages are important, as
the only correct way to approach multivariate problems
is indeed using multivariate techniques. Multivariate
techniques are necessary because the whole pollution
scenario needs to be described by several variables and
requires tools that take into account the relations among
them. Popularization of these techniques among
researchers involved in environmental issues is certainly
a challenge for the future.

In any case, the works published so far clearly indicate
that unsupervised pattern-recognition techniques con-
stitute an appropriate tool for pattern recognition in
environmental data. Undoubtedly, the most popular
techniques to analyze single tables of data, whatever the
objective of the study, are PCA and CA. The current
predominance of these techniques may be due to differ-
ent aspects:

e the application of multi-way and multi-set methods
may turn out more difficult due to the complexity of
the structure of data and to the interpretation of the
results obtained being harder (as is also applicable
to ANN);

e PCA and CA are the techniques that were tradition-
ally and systematically selected for unsupervised pat-
tern recognition, so that researchers suffer again
from a kind of inertia in this field.

In most cases, PCA and/or CA are applied to the
analysis of single tables of 2D data. However, the anal-
ysis of augmented data in the form of multi-set or multi-
way structures has gained popularity in recent years.
Although simultaneous handling of several single tables
of data may lead to formal and conceptual difficulties,
this approach provides us with a powerful key to inter-
pret the system under study. Moreover, the augmenta-
tion of the data matrix, including sampling at different
seasons and/or in different compartments, informs us
about not only the past and current situation of the
estuary, but also its most probable immediate future.
Thus, when the problem in hand deals with several data
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sets that refer to variables with different units, and we
aim to quantify to what extent the structural relations
between variables are the same across the data sets, the
use of the multi-set or multi-way approach is the most
effective. Separate analysis of each individual data set by
PCA or similar and further comparison of the obtained
loadings may also be attempted, but this approach will
be indeed less straightforward.

It is extremely important to define the objective of
the study first and to structure data according to that
objective. The selection of the most appropriate tech-
nique(s) in each case relies to a great extent on a
correct definition of the objective and a wise organi-
zation of data. Despite a single technique often giving
useful information about metal pollution in estuaries,
the combined use of two or more techniques may be
helpful to interpret the results more adequately or to
confirm findings obtained with other techniques.
Moreover, complementary information is usually ob-
tained when different techniques are considered
simultaneously.

Finally, it should be underlined that the application of
unsupervised pattern-recognition techniques has been a
turning point in the assessment of ecological quality in
estuaries, which is a key issue in development, imple-
mentation and enforcement of any regulation in the
framework of aquatic ecosystems.
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