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Unsupervised pattern-recognition 
techniques to investigate metal 
pollution in estuaries 
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J.M. Madariaga 

There has been a significant increase in the application of unsupervised pattern-recognition techniques to the analysis of long 

datasets emerging from the monitoring of metal pollution in estuaries. In this work, we thoroughly review the most important 

articles published on this topic in recent years.
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1. Intr oduction 

In rece nt decades , chemomet rics has 
grown significantly as a result of many 
advance s in the field of ana lytical instru -
mentat ion and comput er scie nces,
becomin g a discipli ne, well -recognized 
within the field of chemis try. Since Svante 
Wold and Bruce R. Kowalsk i introduced 
the concept of chemom etrics at the star t of
the 1970s , a numbe r of definitions have 
been propose d for this field of ana lytical 
chemis try. It has been defined as the art or
ability to extr act relevan t and meanin gful 
inform ation from data obta ined thr ough 
chemic al analysi s [1]. Most definitions
underl ine the following advanta ges:
� real and curren t info rmation can be ob- 

tained from data very qui ckly;
� meanin gful, clear and prec ise info rma- 

tion can be ach ieved from multid imen- 
sional datasets; and,

� it is inexpensiv e.
In short, using chemomet rics, a lot of

high-q uality informatio n is obta ined 
quickly and che aply.

In the field of environ mental ana lytical 
chemis try, iden tifying relation s between 
chemic ally cha racteriz ed objects (samples)
is a com mon prob lem. Pat tern-recog nition 
techni ques acknow ledg e that, amo ngst 
different samples , there are grou ps that 
13 Elsevie r Ltd. All rights res erved. doi:http:// dx.doi.org/1 0.1016/
have similar cha racteris tics and take these 
similar ities as a basis to classify or to
group sam ples [2]. Pattern -recogn ition 
techni ques were first use d in clas sifying 
docume nts, biometr ics, financial forecast -
ing and iden tifying langua ges [3]. All of
these technique s sha re the same three 
basic steps:
� the appl ication of mathemat ical meth- 

ods to data ;
� graphic al represen tation of data; and,
� a deci sion abou t the object �s classifica-

tion.
This article look s in detail at pattern -

recogni tion technique s, mor e spec ifically
at unsup ervised pattern -recogn ition 
method s applied to polluti on monitorin g
in estuari es.
j.tr
2. Patt ern-rec ogniti on techn iques 

Pattern-re cogniti on technique s are either 
supervi sed or unsup ervised, depe nding on
the inform ation the analyst wishes to use or
is avai lable about samples tha t con stitute 
the data matrix. In sup ervised techni ques,
also kno wn as classification techni ques,
classes are defined beforeh and because the 
rule or the cha racteris tic used to group 
samples into a sub-set is known, wherea s,
in unsup ervised technique s, clas sification is
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Figure 1. Classification of pattern-rec ognition techniqu es.
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carr ied out taking into acco unt onl y similaritie s and dif- 
fere nces betw een samples , withou t using any addi tional 
prio r inform atio n about them (see Table 1).

2.1. Superv ised techn iques 
Sup ervised patt ern-rec ognition technique s are use d in
the analysi s of chemic al data from different sources (e.g.,
chr omatog raphy, spec troscopy and sensor mea sure- 
men ts). There are numer ous supervi sed met hods and 
the y hav e been wide ly appl ied in the field of ana lytical 
che mistry [4]. In each case, the mos t appr opriate tech- 
niq ue depe nds on the problem at hand, as the base s and 
the criteria of the met hods cha nge significantly from one 
prob lem to anothe r. As can be observe d in Fig. 1, various 
crit eria can be used to sort sup ervised techni ques. Below 
are som e of the most com mon ones.

2.1.1. Parame tric and non-para metric techniqu es. Para-
met ric techni ques use mathem atical models tha t hav e
adju stable para meters to carry out sam ple classification.
Suc h techni ques includ e LDA (Linear Discrim inant 
Analysis), SIMCA (Soft Indepen dent Mod eling of Class 
Analogy), UNEQ (UNEQual disperse d clas ses) and PLS -
DA (Partial Least Squ ares Discrim inant Analysis).

Non-pa rametri c method s do not use any para meter 
base d on a mathemat ical mod el to clas sify samples .
Amongst the most use d non-pa rametri c method s are 
kNN (k-Nearest Nei ghbors), ANN (Artificial Neural 
Net works) and CAIMAN (Classification And Influence 
Mat rix ANalys is).

2.1.2. Discrimina nt and clas s-model ing analysis . Super-
vise d pattern -recogn ition techni ques divi de the hyper- 
spac e of variables that charact erize samples into diff erent 
clas ses. Using disc rimina nt techni ques, if a new sam ple is
60 http://www.el sevier.com/loc ate/trac 
plac ed in one of the hypersp ace classes, it belongs to that 
clas s, but , if it is placed outside , it does not. There is no
mid dle ground or in between . These met hods inc lude 
LDA , kNN, PLS-DA and ANN.

In class-m odeling analysi s, sam ples fitting the model 
are considered part of the class, whi le objects that do not 
fit are rejected as non -membe rs. When mor e than one 
clas s is mod eled, three differen t situ ations can be dis- 
ting uished (i.e. each sample can be assigne d to a single 
cate gory, to more than one cate gory or to no categor y at
all). SIMCA and UNEQ are amo ngst the mos t commo nly 
use d clas s-model ing techni ques.

2.1 .3. Determ inistic/ probabil istic methods . When a
dete rminis tic syst em is used to assi gn a class to each 
sam ple, no stat ement about the reliabil ity of the deci sion 
is mad e. Pro babilist ic met hods, in con trast, estimat e the 
reli ability of the clas sification. Det ermini stic met hods 
inc lude kNN and CAIMAN, and probabi listic met hods 
inc lude LDA, PLS -DA, SIMCA , UNEQ and ANN.

2.2 . Unsup ervis ed techn iques 
The rule for classify ing samples is not often kno wn –
nei ther the numbe r nor the identit y of the clas ses. This is
com mon in stu dies that carry out monito ring of pollu- 
tion . In the se case s, and some oth ers, unsup ervised 
patt ern-rec ognitio n tech niques are used. The met hods 
usu ally used can be divi ded into thr ee main groups (see
Fig. 1), as follows.

2.2 .1. Clu ster Analysi s (CA). Until a few year s ago, this 
was the mos t wide ly use d patt ern-rec ognitio n met hod.
Thi s tech nique assigns sam ples to the same cluster on
the basi s of the degree of sim ilarity amo ng the vari ables 
(properties) tha t have been use d to charact erize the 



Table 1. Sum mary of the public ations that use unsu pervise d pattern-r ecognit ion techniqu es to ana lyze data fro m meta l-pollu tion monit oring in est uarine sedime nts 

Unsupervised 

technique used 

Data input (sample x variable) Metals considered and analytical method used Main objective Ref.

PCA, MCR-ALS,

PARAFAC , Tucker 3

136 · 14 (PCA, MCR-ALS)

8 · 17 · 14 (PARAFC, Tucker3) (8
sites, 17 campaigns )

Al, As, Co, Cu, Cr, Cd, Fe, Mn, Mg, Ni, Pb, Sn, V,

Zn (ICP-MS)

Practical comparison between two- and three-way methods. Spatial 

and temporal distribution of metals 

[17]

PCA, MCR-ALS,

PARAFAC Tucker3 

51 · 11 (PCA, MCR)

17 · 3 · 11 (PARAFAC, Tucker3)
(17 sites, 3 compartment s)

As, Ba, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Zn (ICP-OES) Identify metal sources and their spatial distribution [22]

FA, CA 36 · 22

(12 sites, 3 compartment s)

Cu, Zn, Pb, Cd, As, Cr (XRF) Toxicologi cal and sediment quality assessment [24]

PCA 21 · 18 (7 sites, 3 compartment s) Ag, Al, As, Cd, Co, Cr, Fe, Mn, Ni, Pb, Zn (ICP-MS) Toxicologi cal assessment [25]
PCA 36 · 13 (12 sites, 3 campaigns ) Cr, Cd, Pb, Ni, Zn, Cu, As (ICP-MS) Identify metal sources [26]

PCA 29 · 11 Al, Fe, Li, Mn, Ag, Cd, Co, Ni, Pb, Zn (AAS) Identify metal sources and describe spatial distribution [27]

PCA 56 · 7 (8 sites, 7 campaigns )
51 · 7 (2 cores)

Pb (ICP-MS) Study the role of physico-chem ical variables in the fate of Pb and 
identify metal sources 

[28]

PCA 20 · 11 (5 sites, 4 seasons) Al, Fe, Mn, Zn, Cu, Cr, Pb, Ni, Cd (AAS) Toxicologi cal and sediment quality assessment. Spatial and temporal 

distribution of metals and their sources 

[29]

PCA 33 · 19 Cu, Fe, Pb, Zn, Na, K, Ca, Mg, Al (AAS) Identify metal sources and their spatial distribution (tide effect).

Evaluate anthropogenic impacts 

[30]

PCA 32 · 24 Cd, Cr, Cu, Ni, Pb, Zn (AAS) Identify metal sources and their spatial distribution [32]

CA 10 · 9 (zone1) 7 · 9 (zone2) Al, Fe, Ni, As, Cu, Pb, Zn, Cd, Cr (ICP-MS) Identify metal sources and evaluate anthropogenic impacts [33]
FA, CA 39 · 21 Cd, Zn, Pb, Cr, Fe, Mn, Al, Ni, Cu (ICP-OES) Demonstrat e the effectiveness of a multivariat e analysis technique.

Identify metal sources 

[34]

CA 300 · 6 (5 cores) Cd, Pb, Zn (ICP-MS) Identify metal sources and their spatial distribution. Evaluate 
anthropogen ic impacts 

[35]

PCA 15 · 7 (zone1) 15 · 7 (zone2) 9 · 7

(zone3)

Pb, Cu, Co, Cr, Cd, Zn (AAS) Define background values and identify metal sources [36]

CA 210 · 10 (15 sites, 14 campaigns) As (AAS). Al, Fe, Cr, Cu, Ni, Mn, Pb, Zn, (FAAS).

Hg (AAS)

Spatial and temporal distribution of metals and evaluate 

anthropogen ic impacts 

[37]

HCA 27 · 19 (Filtered)

5 · 8 (Centrifuged)
12 · 10 (Superficial)

Mg, Al, K, Ca, Ti, Mn, Fe (EPXMA) Identify metal sources [38]

CA, FA 31 · 9 (CA) 31 x 32 (PCA) Fe, Mn, Zn, Cu, Co, Cr, Ni, Pb, Cd (AAS) Sediment-qua lity assessment and identification of metal sources [39]

CA, PCA 49 · 11 (14 samples in zone1,
20 in zone2 and 20 samples 

in zone3)

Cu, Fe, Mn, Zn, Cr, Co, Ni, Pb, Ba (ICP-OES).
Al (EDXRF)

Identify metal sources and their spatial distribution. Evaluate 
anthropogen ic impacts 

[40]

PCA 16 · 13 Cd (ICP-MS). Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb,
Zn (FS-FAAS)

Sediment-qua lity assessment, spatial distribution of metals and 
identification of their possible origin 

[43]

CA, FA 20 · 13 (Pre-monsoon)

20 · 13 (Post-monsoon)

Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd (GF-AAS) Identify metal sources and their spatial distribution [44]

CA 8 · 10 Cu, Ni, Pb, Co, Zn, Mn, Fe, Al, Ca (NS) Identify metal sources and their spatial distribution. Evaluate 
anthropogen ic impacts 

[45]

PCA 116 · 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V,

Zn (ICP-MS)

Spatial and temporal distribution of metals and identification of their 

sources. Sediment-qua lity assessment and evaluate anthropogenic 
impacts 

[46]

HCA, PCA 12 · 10 (3 sites, 4 seasons) Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn (ETAAS, FAAS) Toxicologi cal assessment. Identify metal sources and study spatial 

distribution of metals 

[47]

(continued on next page )
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Table 1 (continued)

Unsupervised 

technique used 

Data input (sample x variable) Metals considered and analytical method used Main objective Ref.

PCA 7 · 23 Fe, Mn, Zn, Cu (FAAS). Hg, As (MHS-FIAS).

Pb, Cd, Ag, Sn, V, Ni (GF-AAS)

Toxicological assessment and identify metal sources [48]

PCA 66 · 16 Al, Fe, Ti, Mn, Cu, Pb, Cr, Zn, Co, As, Ni, Cd, Sr

(ICP-OES)

Spatial distribution of metals, study their distribution patterns and 

evaluate anthropogen ic impacts 

[49]

PCA 117 · 16 (6 cores) Cd, Cr, Co, Cu, Ni, Pb, Zn, Mn (ICP-OES) Study spatial distribution of metals in cores [50]
PCA 8 · 12 (zone1) 6 · 12 (zone2) Zn, Cd, Pb, Cu, Ni, Co, V (DPASV-HMDE) Toxicological and sediment-quali ty assessment, study spatial and 

temporal distribution of metals and their sources 

[51]

HCA 16 · 15 (core1) 16 · 15 (core2) Pb, Zn, Cu, Cr, V, Mn, Cd, Co, Sb, Sn Ag, Mo (ICP-MS) Identify metal sources and sediment quality assessment [52]

HCA, PCA 36 · 6 Mn, Fe, Ni, Cu, Zn, Pb (NS) Identify metal sources and evaluate anthropogenic impacts [53]
HCA, PCA 59 · 6 (23 samples in zone1 and 

36 in zone2)

Pb, Cd, Cu, Zn, Ni (AAS). Hg (MHS-FIAS) Sediment-qua lity assessment and spatial distribution of metals [54]

FA, HCA 60 · 17 (30 samples, 2 seasons) Pb, Ni, Cu, Co, Cd, Cr, Fe (AAS) Identify metal sources and their spatial distributio n. Evaluate 
anthropogen ic impacts 

[55]

PMF 34 · 18 Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn.

(ICP-OES)

Identify metal sources [57]

PCA 24 · 6 (October)

24 · 6 (February)

Fe, Cu, Zn, Cd, Pb, Cr (AAS) Spatial distribution of metals [58]

PCA, CA 235 · 15 (7 sites, 4 cores) Li, Mg, AI, Cr, Mn, Fe, Ni, Cu, Zn, (FAAS).

Na, K, Ca (AES). Cd (FAAS). Hg (MHS-FIAS)

Spatial distribution of metals [60]

CA 60 · 16 (6 cores) Fe, Mn, Cr, Cu, Ni, Pb, Cd, Mo, Ag, As, Ba (ICP-MS) Sediment quality assessment, evaluation of anthropogenic impacts 

and the mobility of metals 

[62]

PCA, k-NN, SIMCA,
LDA, ANNs 

95 · 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn
(ICP-MS)

Spatial and temporal distribution of metals [63]

PARAFAC 7 · 5 · 4 Cd, Cr, Cu, Pb, Zn (ICP-OES) Spatial distribution of metals [64]

PCA 15 · 20 Ag, Cd, Cu, Cr, Ni, Pb, Zn, As, Se (FAAS). Cu, Cr, Ni, Pb,
Zn, (GF-AAS). Ag, Cd, (HG-AAS). Hg (CV-AAS)

Toxicological and sediment quality assessment. [65]

HCA 116 · 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn

(ICP-MS)

Clustering of samples prior to PLS modeling [67]

PCA PLS-DA LDA 
QDA CVA ECVA 

CART CP-ANNS 

3048 · 16 As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn (NS) Exploratory analysis prior to build predictive models [69]

HCA 116 · 14 (8 sites, 12 campaigns) Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V, Zn
(ICP-MS)

Clustering of samples prior to PLS modeling [70]

SOM 27 · 48 (9 sites) Cu, Mn, Ni, Cr, Pb, Zn (AAS) Identify associations between metal content and sediment phases [71]

PARAFAC 7 · 5 · 7 Cd, Cr, Cu, Pb, Zn (ICP-OES) Identify metal sources and their spatial distributio n [72]
CA, PCA 20 · 27 (PCA) 20 · 15 (CA) Be, Sc, V, Cr, Co, Ni, Cu, Zn, As, Y, Zr, Mo, Ag, Ba, Pb

(ICP-MS)

Define background values [74]

AAS, Atom ic abs orption spectro scopy; AES, Atom ic emis sion spectro scopy; CV-A AS, Cold- vapor ato mic absorp tion spe ctrosco py; DPA SV, Diff erential pulse anodic stri pping volta mmet ry;
EDXRF, Ene rgy-disp ersive X-ray fluorescence; EPXMA , Electron -probe X-ray microan alysis; ETAAS, Ele ctrotherma l ato mic absorp tion spe ctrosco py; FAAS, Fla me atom ic absorp tion spe ctros- 
copy; FS-FA AS, Fast seq uent ial flame atom ic absorp tion spe ctrom etry; GF-AAS, Graph ite-fur nace atomic absorp tion spectro scopy; HG-A AS, Hydride-g eneratio n atom ic absorp tion spe ctros- 
copy; HMD E, Hang ing mercu ry dro pping electrod e; ICP-M S, Inductive ly-cou pled plasma mass spe ctrosco py; ICP-OE S, Indu ctively-co upled plasma optical emis sion spectrosco py; MHS-FIAS ,
Mercu ry-hydr ide system flow-injection atomic spectrosco py; XRF , X-ray fluorescence; NS, Not specified.Abbrevi ation of analyti cal metho ds that do not appea r in the text;
CVA , Canoni cal varia te analy sis; CART , Classification and regressi on trees ; CP-ANN S, Counter-pr opaga tion artificial neural network s; ECVA, Exten ded canon ical varia te ana lysis; QDA,
Qua dratic discri minan t ana lysis.
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Figure 2. Different ways to organize tables of environme ntal data. In this example, several compartmen ts (sediment, water, and biota) have been 
sampled in different campaigns (2009, 2010 and 2011) at different points (sites), and several variables have been measured in sample s
(concentration of metals, organics and physico-che mical parameter s).

Trends in Analytical Chemistry, Vol. 46, 2013 Trends 
objects, and, at the sam e time, assigns samples that are 
not similar to diff erent clu sters. It is normally use d to
develop a new classification of the samples under study,
but it can also be appl ied to con firm an already kno wn
groupin g. Massart and Kau fman [5] published a com -
prehen sive monogr aph on clu ster ana lysis of ana lytical 
chemic al data .

2.2.2. Artificial Neu ral Net works (ANN). ANN are 
mathem atical techni ques that simula te the nervou s
system in hum an beings, creatin g mod els for pattern 
reco gnition. They are usually very effectiv e at over -
com ing the difficulties freq uently encoun tered in the 
clas sification process. ANN starts from a so-calle d data -
trai ning set, which usuall y has properti es (e.g., concen -
trat ion levels or spec tra) measur ed in different samples ,
to calc ulate the probabi lity of samples being a member of
a clas s (output vari ables). ANN can be used in either 
sup ervised or uns upervised pattern recogni tion, but , as
the ir applicat ion is less simple tha n CA, the ir uses are 
still limited . Fur ther informatio n on the appl ication of
ANN in che mistry can be fou nd elsewhe re [6].
http://www.elsevier.com/loc ate/trac 63
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2.2.3. Met hods based on factor mod els. The objectiv e of
the se methods is to lim it n-dimension al inform ation 
abou t objects to a reduced, mor e represen tative dimen- 
sion . In this manne r, each sample can be grap hically 
depi cted in a two- or thr ee-dimensi onal (2D or 3D) space,
mak ing it easi er to iden tify the main ten dencies. Dat a
can be stru ctured in diff erent ways (see Fig. 2). If samples 
are orga nized in one directio n and vari ables in ano ther,
a sing le 2D data tabl e is obtaine d (e.g., the variable s
mig ht be spectral or con centrat ion levels of sample 
com ponent s).

Met hods that handle data organiz ed in this manne r
are known as two-way met hods. Data can also be or- 
gan ized accordin g to a multi- set or multi-way arrange -
men t. In both cases, a simult aneous ana lysis of several 
tabl es of 2D data is performed.

In the multi-set approac h, the data tabl es to be
han dled sim ultane ously hav e one mod e in commo n and 
an irre gular structure and/or mea ning [7].

In multi-way analysi s, seve ral 2D data tabl es with 
seve ral modes in commo n and a cube or hyp ercube 
stru cture are con sidered.

PCA (Principal Componen t Analysis), MCR (Multi-
vari ate Curve Resolu tion) and Pos itive Mat rix Factor- 
izat ion (PMF) are, amongs t others, the mos t popular 
tech niques to deal with 2D data tabl es and multi-set 
appr oaches. As a matter of fact, the multi-set approac h
has been adop ted by Environme ntal Pro tection Agency 
(EPA) for adequat e air- quality manage ment [8].

The pape rs by Wold et al. [9], Rutan et al. [10] and
Paa tero et al. [11] illustrate the basics and the applica- 
tion s of the se three techni ques.

The ana lysis of multi-way data has been most usuall y
atte mpted by PARA FAC (PARallelFAC tor Analysis),
Tuc ker3 or models based on STATI S (Structur ation des 
Tabl eaux A Trois Indices de la Statisti que ). Aca r and co- 
work ers pub lished a literatu re sur vey on these tech- 
niq ues [12].
3. Applicat ion of unsuperv ised pattern-r ecognitio n
tec hniqu es to the study of metal pollution in
est uaries 

Sin ce the United Nat ions Confer ence on the Human 
Env ironme nt in Stoc kholm in 197 2, there has been a
clea r reco gnition of the imp ortance of dealing with 
env ironme ntal issues tha t has resulte d in a growing 
numbe r of env ironme ntal inst itutions, researcher s and 
stri ct regulat ions [13]. Con sequently, the use of unsu- 
perv ised pattern -recogn ition techni ques in the field of
env ironme ntal ana lysis has also significantly inc reased.
Spec ifically, env ironmenta l qua lity assessm ent has been 
a topi c of great con cern [8]. Cer tainly, pattern recogni -
tion has been more widely appl ied to soil and/or sedi -
men t-related prob lems. A good summa ry of the work 
64 http://www.el sevier.com/loc ate/trac 
don e concernin g soil poll ution was rece ntly publish ed by
Mos tert [14].

The re are many studies that investi gate the geo- 
grap hical distribu tion of con tamina nts in soil s and sed- 
ime nts using pattern -recogn ition techni ques [15–17].
Water and air pollution has received less attention [18–
20], followed at a dist ance by works rela ted to biota 
[21 ,22] . Reg arding che micals, both orga nic and inor- 
gan ic com pounds have been con sidered ind ependently 
or simult aneous ly [14].

In the case of wate r bodi es, patt ern-rec ognition tech- 
niq ues hav e been used inc reasingly since the introduc- 
tion of the Europea n Water Framew ork Directi ve (WFD,
200 0/60/EC) in 2000. The monito ring carried out in
orde r to reac h the obje ctives set out in the WFD gener- 
ates a large amo unt of data con taining numer ous vari- 
able s tha t nee d to be interpr eted.

In monitorin g stu dies, many sam pling campaig ns,
sam ple types and areas are taken into accoun t at the 
sam e tim e, generat ing datasets of great com plexity and 
vari ability. Sin ce the y con tain correlated inform ation, it
mak es no sen se to use univar iate models to ana lyze these 
data sets, as a lot of inform ation wou ld be lost in the 
proc ess. This is particu larly tru e in estuari es. These 
tran sitiona l area s are con sidered to be one of the most 
prod uctive ecos ystems. The y are usuall y den sely-popu- 
late d zon es with imp ortant ind ustrial, agricul tural and 
recr eationa l activiti es, suscept ible to prod uce large 
amo unts of poll utants [23]. Among poll utants, metals 
are of especial interes t, due to the ir high toxicity and 
pers istence in the environme nt.

Alt hough the study of diff erent estuari ne com part- 
men ts at the sam e time is becomin g more com mon 
[22 ,24–26], mos t of the studies are still focu sed on the 
ana lysis of a single mat rix. Considerin g that water 
sam ples on their own mer ely give curren t inform ation 
abou t a specific space or momen t in time, it is pref erable 
to study sedimen ts. Their capacity to act as accumula- 
tors of metals and to become pote ntial sources of pollu- 
tion con tributes in this sen se. The foll owing is a
sum mary of the most important work s that use unsu- 
perv ised pattern-rec ognitio n technique s to investi gate 
met al poll ution in estu arine sedi ments (see Tab le 1).

Firs t, we carried out a bibl iometri c analysi s to inves- 
tiga te the evol ution of the numbe r of publica tions con- 
cern ing uns upervis ed pattern -recognitio n techni ques 
appl ied to the stu dy of metal poll ution in estuaries be- 
twee n 1980 and 201 1. The on-line version of SciF inder 
was used in this sur vey. This research tool integra tes the 
data bases inc luded in CAplus and MEDLINE. In a first
step , the data bases were searche d with the con cepts 
‘‘clu stering’’, ‘‘unsu pervised patt ern reco gnition’’,
‘‘un supervised classification’’, ‘‘clust er analysi s’’, ‘‘PCA’’,
‘‘M CR’’, ‘‘PA RAFAC’’ and ‘‘Tuck er3 ’’ to retr ieve all the 
docu ments (books, reviews and articles ) related to ‘‘pol- 
luti on’’ stu dies. Nea rly 7200 docu ments were obta ined.



Figure 3. Num ber of publication s per year (1980–2011) that use d unsuperv ise d pattern-r ecogn ition techn iques in pollution studies (white bars, left-han d Y axis); the same result s after refining
the surve y success ively with the conce pts ‘‘met al’’ (black bars, left-han d Y axis), ‘‘est uary’’ (continuous line, right-han d Y axis) and ‘‘sed iment ’’ (dashed line, right-han d Y axis).
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This first result was refined using successivel y the key- 
word s ‘‘metal ’’ (nearly 1700 docume nts), ‘‘estua ry’’ (88
docu ments) and ‘‘sediment ’’ (67 documents ). Only 57 of
tho se 67 final referen ces were written in English . The 
evol ution (1980–2000) in the numbe r of docu ments 
pub lished per year in the abov e-mention ed fou r catego- 
ries is depicted in Fig. 3.

Identification of pollution sources is one of the objec- 
tive s mos t frequently pursue d. In this line of work , PCA 
and CA predom inate [26–51]. Nev erthele ss, both Hier- 
arch ical Clu ster Analys is (HCA) [38,52 –55] and Factor 
Analysis (FA) [34,39,4 4,55] have also been use d. Pol -
lution epis odes of anthro pogenic [31,54 ] or geogeni c
orig in [32,56 ] are clea rly dist inguished . In mos t of the 
case s, agricul tural and industrial acti vities are respon- 
sibl e for poll ution of anthropog enic origin [26 ,27] .

CA has also been use d to iden tify the origin of pollu- 
tion in a wide area by the simult aneous analysis of data 
obta ined from sedimen ts of different estuari es loca ted in
it [35]. The inform atio n obtaine d in this case was useful 
to develop effectiv e manageme nt strategies to control 
poll ution in the vast estu arine area inv estigate d.

Rec ently, PMF was use d with a similar objectiv e [57].
In this work, the resu lts obta ined by PMF were compar ed
with tho se obtaine d by FA.

In other work, ana lytical data obtaine d after sequen -
tial extraction were ana lyzed by FA and CA not only to
define the orig in of poll ution, but also to connect this 
inform atio n with the evaluat ion of risk asse ssment using 
sedi ment-q uality gui delines [39].

Cla ssification of the sam pling sites accordin g to metal 
con tent in sedimen ts is ano ther importa nt research area .
The aim in this case is to obtain more info rmation about 
the spatial distributio n of che micals along the estuary .
PCA and CA [27,29 ,30,32,3 5,37,40–47,49 –52,54,58–
63] are agai n the method s preferre d to carr y on this 
task , alth ough HCA [47,54 ,55] and PARA FAC [64]
hav e also been used. In this last work, the PARAFAC 
mod el was also useful to visuali ze and to inte rpret the 
dist ributio n of the five heavy metals (Cd, Cr, Cu, Pb and 
Zn) in diff erent sedimen t frac tions and sam pling points of
an estuary in Arg entina . In most of the case s, the sam -
pling site s were simply classified acco rding to their metal 
con tent [29,32,6 4,65] .

The influence of a specific con tamina tion sou rce [37]
and the tidal effe ct [30] on the dist ributio n of metals 
hav e been investi gated in deta il by CA and PCA,
resp ectively . Chatte rjee et al. used PCA and CA to study 
con centrat ion grad ients in sediment cores, and to iden- 
tify geoc hemica l fact ors resp onsible of the spatial distri- 
but ion of trace elemen ts in the sedi ment profiles [40].

The study of spat ial distribu tion of met als in specific
estu aries has been a very acti ve rese arch line. In tradi- 
tion al mon itoring studies , both spat ial and tempora l
vari ations are conside red simult aneous ly. Howeve r,
whe n uns upervised patt ern-recogn ition techni ques are 
66 http://www.el sevier.com/loc ate/trac 
appl ied to analyze data, only the spatial dist ribution of
poll ution is usuall y investigate d [59,66]. Sim ultane ous 
con siderati on of both tren ds is scar ce [17,26 ,28,37,
46,63,67] , and only in a few cases is the seas onal var- 
iabi lity the issue of interes t [44,47 ,55,58] .

Uns upervis ed tech niques have been also frequently 
use d in combinatio n with cert ain para meters [e.g.,
enr ichmen t fact or (EF), ecologic al risk index (ERI), pol- 
luti on-load ind ex (PLI) or the geoaccu mulati on index 
(Igeo)] to eval uate the magnit ude of anthro pogenic im- 
pact s in selected areas [30,33 ,35,37,4 0,41,45,46,
53,55,62,65 ,66] . The efficiency of a new ly deve loped 
poll ution index (Ipoll) was studied by CA and oth er che- 
mom etric tools [42 ]. Sediment-q uality gui delines (SQG)
are frequently use d toge ther with patt ern-recogn ition 
tech niques to estimat e the toxi city of sedi ments accord- 
ing to the ir metal content [24 ,29,39,4 3,46,51,54,
62,65] . Howeve r, stu dies base d in in-vivo toxicolo gical 
test s have beco me more popular in recent year s. For 
exam ple, PCA was used to identif y the ran ges in which 
che mical con centration s may resu lt in adve rse effe cts on
loca l livi ng orga nisms [48]. In this case, particu larly 
sign ificant correlat ions between chemic al con centrat ions 
in sedimen t and biol ogical effects were identified. The 
rela tion betw een certain physico -chemical parame ters of
man grove sedi ments (including met al con centrat ion)
and the abu ndance and the diversit y of ammon ia-oxi- 
dizi ng archaea and ammon ia-oxidi zing beta -protoba cte- 
ria has been studied using unsup ervised patt ern- 
reco gnition techni ques [68]. Mor eover, the cha nges ob- 
serv ed in mic robial activity under different degrees of
met al contamina tion have been inv estigate d by multi- 
dim ension al scal ing (MDS), HCA and PCA [47]. Data 
from phy sical, chemical and biologic al sou rces have also 
been com bined to estimat e sedi ment qua lity after data 
ana lysis by diff erent unsup ervised techni ques [24].
Wepener et al. [25] repo rted the results of a multiv ariate 
stat istical analysi s (including uns upervised techni ques)
of chemic al data (metal con centrat ions) from water,
sedi ment and mussel s coll ected in the Sch eldt Estuary 
and biomark er resp onses in residen t mol lusc populat ion.
A sim ilar appr oach was describe d by Mucha et al. con- 
cern ing mac robenth ic com munit ies and sedi ments from 
the Dou ro Estuary [29].

PCA and CA have also been use d to classify sediments 
befo re using supervised technique s [e.g ., SIMCA , ANN,
LDA , QDA (quadratic discrim inant ana lysis), or PLS -DA] 
to define clas sification mod els base d on met al con cen- 
trat ion [63,69 ]. In a sim ilar approac h, clu stering by
HCA was the first step in a proc ess to define PLS models 
able to pred ict met al con centrat ions in sedi ments from 
XRF [67 ] and NIR /MIR [70] spec tral measur ements . A
new Kohon en unsup ervised ANN approac h, the so- 
call ed Self Organizin g Maps (SOM), has also been applied 
to assess met al contam ination in dredged sediments 
usin g sequen tial extr action [71]. In this work, the 
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author s conclu ded tha t cert ain met als (e.g., Cu, Pb and 
Zn) are of special inte rest due to their capacity to be re- 
mobiliz ed and to asso ciate with organic mat ter.

In addition , multi- way analysi s of data from sequ ential 
extracti ons of sedimen ts has been carr ied out by
PARA FAC to inv estigate the mobilit y and the avai lability 
of metals (e.g., Cd, Cr, Cu, Pb and Zn) [64,72 ]. The pre- 
treatme nt tech nique applied to a data set clea rly influ-
ences the resu lt obtaine d by PCA, as evidenc ed by Rei d
and Spencer [73]. Fur thermo re, the sam e dataset (con-
centrat ions of 14 elemen ts in more tha n 136 sedimen t
samples ) was analyze d by PCA, MCR, PARAFAC and 
Tucker 3, and the results were crit ically com pared [17].
Althou gh the results obse rved afte r the use of the dif- 
ferent che mometr ic methods vari ed slightl y, the mai n
conclu sions extracted from them were similar.

The evaluat ion of geoc hemica l proc esses that control 
the pres ence and the spat ial dist ribution of metals in
sedimen ts was also carr ied out by FA and HCA [55 ].
Specifically, the loadings of FA demons trated tha t the 
variabil ity in met al con centrat ion in the Hugli Estuary 
(India) was mainly gove rned by sedi ment prop erties. It
was the refore conclu ded tha t phy sico-ch emical prop er- 
ties (e.g., texture and organic mat ter) play a critical role 
in the sorp tion and the com plexatio n of tran sition met -
als.

With a sim ilar objectiv e, the phy sico-chemi cal prop -
erties of sedimen ts (e.g., tota l orga nic carbon and car- 
bonate content) were includ ed in the statisti cal analysi s
of the met al-conc entrati on data of sediments coll ected in
differen t estuari es [43 ,44,62] .

Analog ously, geoc hemica l proc esses affectin g the 
mobilit y of metals from sedimen ts to water and vice vers a
have been evaluat ed by CA and corr elation analysi s
[42].

In addi tion, different multiv ariate-a nalysis tech niques 
(i.e. FA, CA and Canon ical Discrimin ant Analys is) were 
simult aneous ly conside red to evaluat e spatial vari ations 
and identif y polluti on sou rces, con nectin g physico -
chemic al properti es with natural biog eochem ical pro- 
cesses [34].

Finally , seve ral work s esti mated the back ground con -
centrat ions of metals in estuari ne areas usin g analysi s of
data by PCA [36] and PCA and CA [74 ].
4. Conclusion s

It is obvi ous from Fig. 2 that the re is increas ing interes t
in using sediments in the application of unsupervi sed 
pattern -recogn ition techni ques to the ana lysis of met al
polluti on in estuari es. It may be tho ught that the in- 
crease in the numbe r of articles pub lished on this topi c
during the past few year s is con comitan t with the gen -
eral trend obse rved in mos t branch es of scie nce. How -
ever, the pub lication rate in other rela ted, but mor e
gen eral, fields has reac hed a plat eau (‘‘chemometri cs’’)
or even shown a slight decreas e (‘‘environmen tal anal- 
ysis ’’) in the past few year s. Thi s is evidence tha t unsu- 
perv ised pattern -recognitio n techni ques applied to
poll ution studies is certain ly a hot topi c in both abso lute 
and rela tive terms.

How ever, it is also true tha t the aver age numbe r of
docu ments pub lished in the area per year is still low. The 
use of chemomet rics by researcher s involve d in envi- 
ron mental che mistry issues is limited , prob ably due to
� in some case s, ign orance of even the existence of these 

tech niques and , of cou rse, of the ir potenti al;
� a kind of inertia tha t involve s doing things as the y

hav e been done in the past (i.e. sim ple uni variate 
and grap hical analysi s of data ); and,

� to some extent, a veiled fear of the mathemat ics in- 
volv ed in multivaria te-anal ysis technique s.
How ever, the potenti al advanta ges are imp ortant, as

the only corr ect way to approac h multiv ariate prob lems 
is indeed usin g multivaria te techni ques. Multiv ariate 
tech niques are nec essary beca use the whole poll ution 
scen ario needs to be desc ribed by several variable s and 
requ ires tool s tha t take into accoun t the relations among 
the m. Popula rization of these techni ques among 
rese archers involve d in env ironme ntal issues is cert ainly 
a challenge for the future .

In any case, the work s published so far clea rly indicat e
tha t unsupervi sed patt ern-rec ognitio n tech niques con -
stit ute an appropr iate tool for pattern reco gnition in
env ironme ntal data. Und oubtedly, the most popular 
tech niques to analyze sing le tables of data , wha tever the 
obje ctive of the study, are PCA and CA. The curren t
pred ominance of the se techni ques may be due to differ- 
ent aspe cts:
� the appl ication of multi- way and multi-set method s

may turn out more difficult due to the com plexity of
the structure of data and to the interpretat ion of the 
resu lts obta ined being harder (as is also applicab le
to ANN);

� PCA and CA are the techni ques tha t were trad ition- 
ally and systematic ally selected for uns upervised pat- 
tern recogni tion, so tha t rese archers suffer agai n
from a kind of inertia in this field.
In mos t case s, PCA and /or CA are appl ied to the 

ana lysis of single tables of 2D data . How ever, the anal- 
ysis of aug mented data in the form of multi-set or multi- 
way stru ctures has gained popu larity in rece nt years.
Alt hough simult aneous handli ng of several sing le tables 
of data may lead to formal and con ceptual difficulties,
this appr oach prov ides us with a powe rful key to inter- 
pret the system und er stu dy. Moreov er, the aug menta- 
tion of the data mat rix, inc luding sampling at diff erent 
seas ons and /or in diff erent compar tments , informs us
abou t not only the past and curren t situati on of the 
estu ary, but also its mos t prob able immedi ate future .
Thus, when the prob lem in han d deal s with seve ral data 
http://www.elsevier.com/loc ate/trac 67
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sets tha t refer to vari ables with different units, and we
aim to quanti fy to wha t exte nt the structu ral rela tions 
betw een variable s are the same across the data sets, the 
use of the multi- set or multi- way appr oach is the mos t
effe ctive. Sepa rate ana lysis of each individ ual data set by
PCA or similar and furthe r compar ison of the obtaine d
load ings may also be atte mpted, but this approac h will 
be indeed less stra ightforwar d.

It is extr emely imp ortant to define the objectiv e of
the study first and to structu re data accordin g to tha t
obje ctive. The selection of the mos t appr opriate tech- 
niq ue(s) in each case reli es to a great exte nt on a
corr ect definition of the objective and a wise organi- 
zati on of data. Despite a single tech nique ofte n giving 
use ful inform ation about met al poll ution in estu aries,
the combin ed use of two or mor e techni ques may be
hel pful to inte rpret the results more adeq uately or to
con firm findings obtaine d with other techni ques.
Mor eover, complem entary inform ation is usu ally ob- 
tain ed whe n different tech niques are con sidered 
sim ultane ously.

Fin ally, it should be underl ined tha t the appl ication of
unsup ervi sed pattern -recognitio n techni que s has been a
tur ning point in the asse ssment of ecol ogical qua lity in
estu aries, which is a key issue in deve lopmen t, imple- 
men tation and enforce ment of any regu lation in the 
fram ework of aquatic ecos ystems.
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(1998) 127.

[49] B. Rubio, M.A. Nombela, F. Vilas, Mar. Pollut. Bull. 40 (2000)

968.

[50] Z.L. He, M. Zhang, P.J. Stoffella, X.E. Yang, Environ. Geol. 50

(2006) 250.

[51] A. Cesar, R.B. Choueri, I. Riba, C. Morales-Caselles, C.D. Pereira, A.R.

Santos, D.M. Abessa, T.A. DelValls, Environ. Int. 33 (2007) 429.

[52] N. Tue, T. Quy, A. Amano , H. Hamaoka, S. Tanabe, M. Nhuan, K.

Omori, Water Air Soil Pollut. 223 (2012) 1315.

[53] A.M. Idris, Microchem. J. 90 (2008) 159.

[54] C. Quelle, V. Besada, J.M. Andrade , N. Gutie ´rrez, F. Schultze, J.

Gago, J.J. Gonza ´lez, Talanta 87 (2011) 197.

[55] D.P. Mukher jee, B. Kumar, Arch. Appl. Sci. Res. 4 (2012) 1155.

[56] K.K. Balachandran , C.M. Lalura j, G.D. Martin, K. Srinivas, P.

Venugopal, Environ. Forensics 7 (2006) 345.

[57] H. Pekey, G. Dog ˘an, Microchem. J. 106 (2013) 233.

[58] E. Daka, M. Moslen, C. Ekeh, I. Ekweozo r, Bull. Environ. Contam.

Toxicol. 78 (2007) 515.

[59] J.A. Gonza ´lez-Pe ´rez, J.R. De Andre ´s, L. Clemente, J.A. Martı́n, F.J.

Gonza ´lez-Vila, Environ . Chem. Lett. 6 (2008) 41.

[60] R.H.C. Emmerson , S.B. O�Reilly-Wiese, C.L. Macleod, J.N. Lester,

Mar. Pollut. Bull. 34 (1997) 960.

[61] G.E. Millward, I. Herbert, Environ. Pollut. Bull. 2 (1981) 265.
[62] M.P. Jonathan, S.K. Sarkar, P.D. Roy, M.A. Alam, M. Chatterje e,

B.D. Bhattach arya, A. Bhattach arya, K.K. Satpathy, Ecotoxico- 

logy 19 (2010) 405.

[63] S. Fdez-Ortiz de Vallejue lo, G. Arana, A. de Diego, J.M. Madariaga ,

Chemospher e 85 (2011) 1347.
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