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Abstract: Certain discrete probability distributions, used independently from each other in 
linguistics and other sciences, tan be considered as special cases of the distribution based on the 
Lerch zeta function. We will list the probability functions for some of the most important cases. 
Moments and estimators are derived for the general Lerch distribution. 
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1. Introduction 

Certain generalizations of the Estoup model, often called “Zipf distributions”, 
have proved to be useful in linguistics. Numerous publications on distributions 
of this type have appeared in different fields of linguistics. Zipf distributions 
arose from very heterogeneous approaches using linguistic as well as nonlinguis- 
tic argurnentations (cf. the references). 

In the present Paper we state a unified representation of the above discrete 
distributions using the Lerch zeta function [12, p. 27-301, defined by 

@(p,a,c)= c *” 
x=l (u +x)” * (1.1) 

In Section 2 certain Zipf distributions are listed, considered always as special 
cases of the Lerch distribution. The general moments of the Lerch distribution 
are considered in Section 3. In Sections 4 and 5 we derive estimators and 
illustrate them by means of empirical frequencies. 
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2. The Lerch distribution and some of its special cases 

1. The most general distribution of Zipf% type, following immediately from 
(l.l), has the probability function 

f(x)= p” 
T(” +x)” ’ 

x=l,2,3 )...) 

with 
m i 

T= ir (ap+i)’ ’ 

(2.la) 

(2.lb) 

Using (1.1) we tan represent T as 

T = @(p, a, c). 

The probability generating function (pgf) is 

G(t) = 2 p,tX= ;@(pt, a, c). 
.X=l 

(2.2) 

The distribution (2.1) has not been considered in the literature; we will cal1 it 
the Lerch distribution. Its right-truncated variant is 

f(x)= px 
T(a +x)” ’ 

x=l Y-*-Y n, (2.3a) 

with 

T= Cqp, a, c) -P”4(P, a +n, c). 

The pgf here is 

(2.3b) 

G(t) = ;[@(pt, a, c> - (P~)“+(P& a +n, c)]. (2.4) 
We will now state some important special cases of (2.1) and (2.3) which have 

been intensively studied in the literature. 
2. For p = 1, u = 0, c = 1, we obtain the Estoup distribution [13,59], existing 

only in truncated form, since the harmonic series is not convergent: 

with 

x=l,2 12, ,***, (2.5a) 

(2.5b) 

3. Choosing p = 1, u = 0, c = 2 yields the Lotku distribution [1,2,4,5,9,14,22, 
31,35,39,40-42,45-47,51-53,611: 

f(x) = $9 x=l,2 ,***, (2.6a) 
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with 

T = @(l, 0, 2) = f~*. (2.6b) 

4. For p = 1, a = 0, c > 1 we obtain the zeta distribution, known also as the 
Joos model or the discrete Pareto distribution [6,7,10,16,18,23,25-28,30,37,43,44, 
48-50,54,57-60,621: 

(2.7a) 

with 
T = @(l, 0, c). (2.7b) 

5. The Zipf-Mandelbrot distribution [3,17,20,32-34,36,55,56,62-651 is ob- 
tained for p = 1, a > 0, c > 1: 

f(x)= l 
T(u +x)” ’ 

x=l,2 >***, (2.8a) 

with 
T= @(l, a, c). (2.8b) 

The distributions (2.5)-(2.8) have been mainly used for describing ranking 
Problems in linguistics with x as a given rank and f(x) as the relative frequency 
of the given unit at rank X. They are also useful for describing the frequency 
structure of a set of units e.g. words in texts. In documentation and scientomet- 
ries they are used in the study of publication activity, citation frequency etc. 

6. The Good distribution [11,19,24,29] arises from 0 <p < 1, a = 0, c E R: 

(2.9a) 

with 
T= @(p, 0, c). (2.9b) 

This model has been used in linguistics as the distribution of word frequences. 
7. For 0 <p < 1, a = 0, c = 1 we obtain the logarithmic distribution (cf. [38] 

for extensive literature): 

(2.10a) 

with 
T = @(p, 0, 1) = -ln(l -p). (2.10b) 

The logarithmic distribution attracts especially the attention of biologists in the 
investigation of the distribution of species and genera. 

8. The geometric distribution [38] tan be considered as a Lerch distribution as 
well for a E R, 0 <p < 1, 4 = 1 - p and c = 0: 

f(x) = f = qpx-1, x= 1, 2,..., (2.11a) 
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with 

(2.11b) 

The geometric distribution, the best known member of the family, is used e.g. in 
physics (known as the Furry distribution), in linguistics as a model for the 
distribution of gaps and ranks, and various modified forms are used in the 
theory of queueing. 

9. Moreover the discrete rectangulur distribution [38] is obtained for p = 1, 
a E R, c = 0: 

f(x) = ;, x = 1, 2,. ..,n. 

10. The only published distribution with a negative Parameter 
discrete Pearson distribution, type 111 [21,38]: 

f(x)=A(x-l+B)c e-b(x-l), x=l,2,... 

Using the notations T := (A eb)-‘, a := B - 1, p := eeb yields: 

(x + u)cpx 
fb)= T 

) x=l,2 )...) 

with 

T = @(p, a, -c). (2.14b) 

(2.12) 

c is the 

(2.13) 

(2.14a) 

Other distributions, permitting a negative c, are the truncated zeta distribu- 
tion, the truncated Zipf-Mandelbrot distribution and both variants of the Good 
distribution. 

The respective Parameter values for each of the above distributions are listed 
in Table 1. 

Table 1 
Special cases of the Lerch distribution 

distribution Parameters 

P a C 

Estoup 
Lotka 
zeta 
Zipf-Mandelbrot 
Good 
logarithmic 
geometric 
rectangular 
Pearson P 

0 1 
0 2 
0 C 

a C 

0 C 

0 1 
- 0 

a c<o 
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Some of the distributions in Table 1 tan also be represented using other 
functions, e.g. the generalized Riemann zeta function, the bigamma or trigamma 
function or the hypergeometric function. 

3. Moments 

The general moments of the Lerch distribution tan be represented in terms of 
the Lerch zeta function: 

li r 

=( )( 

PX =- 
Ti_1 i 

-c -qi i 
x=l (u +x)c-i 

-c - ~2)‘~‘@(p, a, c - i). 

The moments of the truncated case are analogous: 

(3.1) 

l’r =- =( i( Ti_1 i 
-c -u)r-i* [@( p, a, c -i) -pi’@(p, u + IZ, c -i)]. 

(3 3 

4. Estimation by means of empirical frequencies 

In this section we will derive estimators for the Parameters of the general Lerch 
distribution (2.1). We will tonfine ourselves to fitting the Lerch distribution to 
data sets with “very fast” decreasing frequencies (cf. Section 5). 

Estimators based on probability classes tan be derived as follows. We choose 
the Parameters p, u, c such that 

bi= p 
i 

(u +i)” (4.1) 
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-0.5 - 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 

X 

Fig. 1. Illustration of the function g in (4.2). 

holds for i = 1, 2 or for i = 1, 2, 3, where the numbers fil denote the relative 
empirical frequencies. On grounds of the above assumption on the empirical 
data, (4.1) “normally” implies 

m i m 

T= iFl ($ = cpi= 1 

(cf. Section 51, i.e. (4.1) insures that the first two or three theoretical probabili- 
ties pi =p’/T(a + i)” coincide approximately with the corresponding empirical 
values $i. 

In Order to solve a nonlinear System of equations of the form (4.1) we define 
the function g by 

In 
(X + 1)2 

g(x)= ln(;:;)3 3 (4.2) 

x+3 
for X> -1, X#X, = 0.5214, where xr denotes the unique zero of the denomi- 
nator in (4.2) (cf. Fig. 1). Let further x2 = - 0.53 denote the relative minimum of 
g (for x <x,). 

Using the rule of the 1’Hospital it tan be shown that lim, --> _,g(x) = $ and 
lim .,,gW = L 2’ 

Theorem 1. Let pl, p2, p3 be any positive real numbers with p2 #p:, p3 #p;. Let 
the function g and the number x2 be defined us above and 

In+ 
P: Q := - 

In!5 * 

P: 
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The system of equations 
i 

pi= caii)c (i=l,2,3), (4.3) 

with variables p E R, a > - 1, c # 0 is unsolvable for 

0.5 < Q < g(x2) = 0.598. 

If (4.4) does not hold, any Solution of (4.3) is given by 

a = g-‘(Q), 

(4.4) 

1n- 
P: 

C= 

In 
(a + 1)’ ’ 

a+2 

(4.5) 

p =pl(a + 1)‘. 

Proof. The assertion follows from the following equivalent transformations of 
System (4.31, where the above conditions on pl, p2, p3 insure that all occurring 
logarithms are # 0: 

Substituting p =pl(a + 1)” for p in the second and the third equation yields 
the System 

which is equivalent to 

p =pi(a + l)‘, c = 

ln? 

ln (a f 1)’ 

a+2 

ln- 
Pl 

c= 
ln @ + U3 * 

a+3 

Substituting the right side of the second equation for c in the last equation 
yields 

lnpz 

p =pl(a + l)‘, p; 
c = 

(a + 1)2 ’ 
Q = s(a)- 

In 
a+2 

It follows that the System (4.3) has exactly one Solution for Q < i, Q = g(x,) 
= 0.598 or Q 2 3 (since g(x) = Q has exactly one Solution in these cases, cf. 
Fig. 1). For g(x,) < Q < 5 exactly two solutions exist for (4.3). In the remaining 
cases, i.e. for i G Q < g(x,>, no Solution exists. EI 
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Theorem 2. Let pl, pz be positiue real numbers with p2 #pt, pz <pl. 
(a) Any solution of the System 

i 

Pi= (a:i)C 7 (i = 1, 2; a > -1) 

has the form 
a> -1, 

hl- 
P: 

C= 

In 
(a + 1)2 ’ 

a+2 
p =pi(a + 1)‘. 

(b) The (continuous) solution function 

f(x)= p” 
(a +x)” 

(p, a, c as in (4.6)) is strictly monotone decreasing for x > 1 if 

h(a) := 

I 

ln pl 
cy:= -* 

1,s ’ 
cf. Fig. 2 

\ P: 

15- 

10 - 

5- 

p-x 

-5 - 

-10 - 

x.0.031~ 

-15- / 
-1 -0.5 0 0.5 1 i.5 2 2.5 3 

(4.6) 

P-7) 

(4.8) 

X 

Fig. 2. Illustration of the function h in (4.8) for (Y = 0.05. 
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Proof. Part (a) is analogous to the proof in Theorem 1. (b) By means of 
elementar-y analysis we tan show that 

C 
f’(x)=0 e x=--a 

lnp . 

Using (4.6), the last equation tan be transformed as follows: 
c 

‘= In pI +c In(a + 1) -” 

1 
x= lnp, -a, 

- + ln(a + 1) 
c 

1 
x= 

(y In (a + 1)’ 
-a =h(a). 

a+2 +ln(a+l> 

The above transformations show that f’(x) equals zero if x = h(a). Thus f is 
monotone decreasing for x > 1 if h(a) < 1. 0 

The preceding theorems yield two possible ways to compute estimators. On 
the one hand we tan choose p, a, c as a Solution of (4.51, where pI, pZ, p3 

Table 2 
Estimators and optimal Parameters in the fit of the Lerch distribution to an observed surname 
distribution 

District Estimators Optimal Parameters 

P a C P a c 

0.4431 - 0.5 0.8126 1 
0.4126 - 0.5 1.0465 1 
0.3753 -0.5 1.2419 0.5488 
0.3381 -0.5 1.4340 0.5156 
0.3557 -0.5 1.3447 0.2437 
0.3541 -0.5 1.3331 0.3306 
0.3615 - 0.5 1.3075 0.4023 
0.4006 -0.5 1.0930 0.2971 

0.4097 3.2736 
1.6957 6.3904 

- 0.3143 1.9424 
- 0.6918 1.3816 
- 0.9998 0.1246 
- 0.9999 0.1464 
- 0.8826 0.6879 
- 0.9996 0.1116 

District x2 prob./ES 

1 9.5056 0.30 
2 1.4076 0.24 
3 0.0221 0.88 
4 3.8* 10P6 0.0001 
5 0.0267 0.0102 
6 1.1928 0.27 
7 0.2692 0.60 
8 0.4311 0.51 

d.f. h(a) T 

8 - 0.4984 0.9830 
1 - 0.6823 1.0022 
1 - 0.7671 0.9954 
0 - 0.8224 0.9907 
0 - 0.8010 0.9940 
1 - 0.7840 0.9822 
1 - 0.7852 0.9906 
1 - 0.6948 0.9907 
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denote the empirical relative frequencies. This alternative is not always suitable, 
since (4.5) tan be inconsistent and the Solution function f(x) is not always 
monotone decreasing. On the other hand we tan choose p, a, c as given in (4.6). 
If a satisfies the condition h(a) < 1 (cf. Theorem 2(b); this is always possible 
since h(a) is monotone decreasing for sufficiently large a), equations (4.6) yield 
a monotone decreasing Solution function f(x). 

5. Fitting the model to empirical data 

In this section we will fit the Lerch distribution (2.1) to empirical data and 
illustrate the estimation in Section 4. Therefore we use the observed data in 
Panaretos [37] who studied the distributions of surnames in eight districts and 
tried to fit the Yule and the zeta distribution to these data. 

Table 3 
Observed cupper entries) and expected (lower entries) frequencies f(x) of the occurrences of 
surnames 

x District 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

> 
13 

1 2 3 4 5 6 7 8 

329 292 243 234 281 349 282 832 
829.87 
1.51 
143.48 
39 
46.057 
20 
19.845 
11 
10.164 
2 
5.8335 
4 
3.6292 
5 
2.3979 
0 
1.6600 
1 
1.1926 
0 
0.8833 
2 
0.6709 
2 
3.3099 

328.29 291.99 243.00 233.57 280.45 348.89 281.62 
43 28 17 19 23 30 34 
43.713 27.925 17.002 19.695 24.074 29.792 34.941 
11 6 4 5 9 7 11 
9.4620 6.2016 4.0004 4.4027 7.1909 7.7213 9.6083 
1 2 2 0 1 3 2 
2.7553 1.8404 1.2544 1.0201 2.2403 2.3806 2.7284 
0 0 0 1 0 1 0 
0.9801 0.6336 0.4490 0.2398 0.7101 0.7909 0.7850 
1 0 0 0 0 0 0 
0.4027 0.2388 0.1735 0.0568 0.2272 0.2740 0.2275 
0 1 0 0 0 0 0 
0.1845 0.0957 0.0705 0.0135 0.0731 0.0975 0.0662 
0 0 0 0 1 0 0 
0.0920 0.0401 0.0297 0.0032 0.0236 0.0353 0.0193 
1 0 0 0 0 0 0 
0.0491 0.0173 0.0128 0.0008 0.0077 0.0130 0.0057 
0 0 0 0 0 0 0 
0.0278 0.0077 0.0056 0.0002 0.0025 0.0048 0.0017 
0 0 0 0 0 0 0 
0.0164 0.0035 0.0025 0.0000 0.0008 0.0018 0.0005 
0 0 0 0 0 0 1 
0.0101 0.0016 0.0011 0.0000 0.0003 0.0007 0.0001 
0 0 0 0 0 0 0 
0.0210 0.0014 0.0010 0.0000 0.0001 0.0004 0.0001 
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The empirical data are listed in Table 3 cupper entries) where f(x) denotes 
the number of surnames occurring x times in the given district. We have 
computed the estimators according to (4.6). Practical tests with the present data 
have shown that a = - 0.5 yields good starting values (h(a) G 1 is satisfied in 
particular; cf. Theorem 2). The estimators p, a, c are listed in Table 2. Starting 
with these values we minimized the Chi-Square value by means of the optimiza- 
tion method of Nelder and Mead and obtained the optimal Parameters in the 
right part of Table 2. The Chi-Square values for the Lerch distribution with 
optimal Parameters, the corresponding probabilities and the numbers of degrees 
of freedom (d.f.) are also contained in Table 2. We have set p = 1 for the 
districts 1 and 2, since the optimal Parameters obtained by the procedure of 
Nelder and Mead lead to probability functions which are not monotone decreas- 
ing. For the districts 4 and 5 we have computed Cohen’s [8] effect size 
coefficient instead of the Chi-Square value, because there are 0 degrees of 
freedom in these cases. 

The “monotony criterion” h(a) and the number T (cf. (2.lb) and the 
introductory remarks in Section 4) are listed in the last two columns. ‘The 
theoretical frequencies are also listed in Table 3 (lower entries). 

The investigations Show that the fit of the Lerch distribution is better than in 
the case of the discrete Pareto distribution or the Yule distribution, used in 
Panaretos [37]. 
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