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ARTICLE INFO ABSTRACT

Keywords: The convergence of Internet of Things (I0Ts), mobile computing, cloud computing, edge computing and big data
Frequent pattern mining has brought a paradigm shift in computing technologies. New computing systems, application models, and
Classification application areas are emerging to handle the massive growth of streaming data in mobile environments such as
Clustering

smartphones, I0Ts, body sensor networks, and wearable devices, to name a few. However, the challenge arises
about how and where to process the data streams in order to perform analytic operations and uncover useful
knowledge patterns. The mobile data stream mining (MDSM) applications involve a number of operations for,
1) data acquisition from heterogeneous data sources, 2) data preprocessing, 3) data fusion, 4) data mining, and
5) knowledge management. This article presents a thorough review of execution platforms for MDSM
applications. In addition, a detailed taxonomic discussion of heterogeneous MDSM applications is presented.
Moreover, the article presents detailed literature review of methods that are used to handle heterogeneity at
application and platform levels. Finally, the gap analysis is articulated and future research directions are
presented to develop next-generation MDSM applications.

Mobile computing
Cloud computing
Edge computing

1. Introduction

The escalation in mobile data was witnessed about 4000-fold over
the past decade (Cisco, 2015). Cisco, the big name in network
infrastructures, predicts that mobile data will grow up to 30.6
Exabytes (i.e. 30.6 billion Gigabytes) by the year 2020 (Cisco, 2015).
This massive amount of data will be generated by next generation of
mobile systems such as mobile IoTs, WSNs, BSNs, robotics, unmanned
aerial vehicles, and satellite systems to name a few (Rehman et al.,
2016a). Considering this growth, mobile data will challenge the storage
and processing capacities of existing computing systems. Next-genera-
tion applications will be developed to handle the data in streaming
mode and on-the-fly using in-memory data processing architectures
before storing in large scale distributed systems (Zhang et al., 2015).
These trends will highlight the importance of data stream mining
applications which perform in-memory analytic operations over
streaming data in order to uncover hidden knowledge patterns
(Krishnaswamy et al., 2012). These knowledge patterns will help
understanding the underlying data and benefit in decision making in
personal and commercial applications.

Mobile streaming data which is the subset of overall big data is
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helpful in improving business operations across the enterprises
(Rehman et al.,, 2016b). For example, the analysis of mobile data
streams generated by remote vehicles help in optimizing supply chain
management operations (Kargupta, 2016). Similarly, the mobile data
streams collected from remote customers is useful for creating perso-
nalized services for online shoppers (Tan et al.,, 2016). The govern-
ments can also improve the daily and emergency response manage-
ment operations by analyzing real-time mobile streaming data from
citizen's mobile devices (Murphy, 2016). Despite wide applicability, it
is quite challenging to decide about where and when to process the
streaming mobile data.

This article presents a thorough literature review of existing MDSM
applications and platforms in order to establish the state of the art and
find the future research directions. A few relevant literature reviews
were proposed in the past, however, they emphasized on other
perspectives. For example, the authors in Gaber et al. (2005),
Parthasarathy et al. (2007), Goel et al. (2010), Fugiang (2011),
Krishnaswamy et al. (2012), Tsai et al. (2014), Gaber et al. (2014a),
Nguyen et al. (2015) and Chen et al. (2015) focused on general MDSM
algorithms and lack the discussion on application-level and platform-
level issues. Similarly, in our previous study (Rehman et al., 2015), we
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studied mobile data mining applications in batch mode execution and
static datasets. To the best of our knowledge, this is the first article that
presents the review of MDSM applications and platforms in MECC
environments. The article is structured as follows. Section 2 presents
the bibliometric analysis of mobile data mining and mobile data stream
mining publications which were indexed in web of science databases.
Section 3 presents a detailed discussion on execution platforms for
MDSM applications and the associated opportunities and challenges.
Section 4 presents the taxonomy of heterogeneous MDSM applications.
Section 5 presents a thorough literature review of methods for handling
heterogeneity in MDSM applications. Section 6 discusses the hetero-
geneity issues at platform level and Section 7 presents a detailed
literature review of selected platforms for MDSM applications. Section
8 presents the gap analysis of existing literature and discusses the
future research directions. Finally, the article concludes in Section 9.

2. Bibliometric analysis of Web of Science databases

Research on mobile data mining is growing rapidly in recent years.
We performed a preliminary study on Web of Science (WoS) databases
(Web of science databases, 2016) by querying the string “mobile data
mining”. According to retrieved statistics, as of 28th January 2016, the
WoS databases indexed 1930 publications in last 27 years (from 1990
to 28th January 2016) from International Scientific Indexing (ISI)-
listed journals, conferences and workshop proceedings, and magazines
(See Fig. 1). There was no significant research on the topic from 1990
to 2002. Since Year 2002, the miniaturization of technologies and on-
board sensing technologies had geared-up the research on mobile data
mining. However, the major boom started from Year 2007 when both
Google (Android (operating system), 2016) and Apple (Apple iphone
history, 2016) released their mobile operating systems.

According to Fig. 1, the number of publications rapidly increased
till 2015 which shows that mobile data mining is continuously
becoming a hot research topic. In near future, we perceive a major
shift towards the research on mobile data mining due to rapid growth
in far-edge mobile devices for example smartphones, wearable devices,
mobile IoTs, and body sensor networks to name a few. The citation
trends for the topic “mobile data mining” are depicted in Fig. 2. The
citation analysis showed that publications on the topic of mobile data
mining obtained 9041 total citations from 8180 citing publications
which were indexed in WoS databases. The popularity of research on
mobile data mining is witnessed by the fact that 7935 citing publica-
tions were published without self-citations by the respective authors.
The average citations per publication is 4.68 with h-index as 40. Fig. 2
also depicts that arrival of mobile operating systems in 2007, boomed
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the research on mobile data mining and it is still increasing day by day.

Since the main focus of this article is on mobile streaming data,
therefore, we further analyzed the bibliographic records from WoS
databases with another query string as “mobile data stream mining”.
We found 112 publications indexed by WoS databases from Year 1990
to 28th January 2016. These 112 publications were cited by 343 other
publications in WoS databases whereby 331 publications do not
contain any self-citation by respective authors. The average citation
per publication is 3.06 with h-index as 11 which was lower when
compared with bibliometric analysis of “mobile data mining” because
less number of publications on the topic. Likewise, the major boom in
“mobile data stream mining” was also witnessed after Year 2007 and it
is rapidly growing. Considering the fast growth of research in MDSM
algorithms, applications, and execution platforms, a thorough litera-
ture review is presented in this article.

3. Mobile data stream mining platforms

The MDSM platforms facilitate in efficient execution of analytic
components. The literature review reveals that MDSM platforms (see
Fig. 3) were deployed in multiple topological settings (Abdallah et al.,
2015; Gaber et al., 2014b; Haghighi et al., 2013; Jayaraman et al.,
2014a). The underlying communication models include multiple
computing devices and systems having different form factors. These
devices and systems include mobile devices, Internet, and intranet
based application servers and cloud data centers to name a few
(Jayaraman et al., 2014b; Kargupta et al., 2010; Mukherji et al.,
2014). The topological settings of MDSM platforms that are presented
in this article are based on far-edge mobile devices, far-edge to far-edge
communication models, mobile and immobile edge servers based
communication models, mobile cloud computing and mobile edge
cloud computing systems.

3.1. Far-edge mobile devices

Far-edge mobile devices are defined as any portable system or
device with wireless communication interfaces and ability to produce
or process data. Smartphones, wearable sensors, wireless body sensor
networks, smart vehicles, and Mobile Internet of Things (IoTs) are a
few examples of far-edge mobile devices. Although modern far-edge
mobile devices enable rich MDSM applications such as virtual reality,
computer vision, and multimedia applications using cloud augmented
computational resources (Satyanarayanan et al., 2015) however the
execution of heterogeneous MDSM applications inside far-edge devices
is a challenging task (Rehman et al., 2015). Far-edge mobile devices
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usually contain limited computational resources and battery power,
therefore, MDSM applications consider these limitations for efficient
process execution in mobile environments (Krishnaswamy et al., 2012).
Data stream mining components, as shown in Fig. 4, are designed to be
light-weight to unleash the maximum utilization of on-board computa-
tional resources (Haghighi et al., 2013).

Opportunities: The deployment of MDSM applications in far-edge
devices offers multi-fold opportunities. The MDSM applications help in
reducing outgoing data streams which in turn reduce network traffic as
well minimize the cost of communication in terms of bandwidth
utilization and GSM data plans (Jayaraman et al., 2014b). In addition,
the close proximity of data sources and computational components in

far-edge devices lowers the latency in execution time when compared
with offloading raw data streams in external environments such as
servers, cloud data centers, and grid computing resources (Jayaraman
et al., 2014a). The privacy preservation and local knowledge availability
are additional benefits of the deployment of MDSM applications in far-
edge devices (Arunkumar et al., 2015). The knowledge patterns
acquired after onboard execution of MDSM applications enable local
knowledge availability, reduce dependency on external systems for data
processing, and preserve the privacy of users' personal data.

3.2. Far-edge to Far-edge

The Far-edge to Far-edge (F2F) communication models are based
on a set of Far-edge devices that can communicate with each other
directly without any additional controlling mechanism or data
communication point. For example, F2F communication model (see
Fig. 5) facilitates in a direct communication between smart watch like
Samsung Gear and a smartphone such as Samsung Galaxy S5
(Samsung unveils galaxy s5 and new gear range, 2014). Similarly,
multiple devices owned by a single user such as wearable devices,
smartphones, tablet PCs, and laptops can offer a direct communication
network through Bluetooth communication interfaces and do not
require any other communication point such as Wi-Fi router or local
wireless hub (Gaber et al., 2014b). The F2F communication model is
adequate for single-user multi-device settings where far-edge devices
can initiate point-to-point and group communication sessions to
execute MDSM applications collaboratively (Framework, 2015).

Opportunities: In F2F settings, the closer far-edge mobile devices
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Fig. 5. MDSM applications in F2F communication model.
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can pool the computational resources to augment the resource-
constrained far-edge mobile devices with maximum execution support
within Personal Area Network (PAN) (Wang et al., 2012; Rehman
et al, 2015). In addition, the F2F settings enable to distribute
application logic among different far-edge mobile devices for seamless
application execution (Li et al., 2015; Wang et al., 2012). For example,
the far-edge mobile devices with minute computational facilities per-
form data acquisition operations and facilitate in data transfer opera-
tions in relatively high-power far-edge mobile devices. The high-power
far-edge mobile devices execute MDSM application components and
synchronize the knowledge among other far-edge mobile devices in
PAN (Gaber et al., 2014b).

3.3. Mobile edge servers

Mobile Edge server is defined as any mobile device or mobile
system that resides at a one-hop wireless distance from far-edge
mobile devices. A mobile edge server enables data stream mining
functionality by providing mobile services to thin and thick far-edge
mobile devices (see Fig. 6). The thin far-edge mobile devices function
as data acquisition and data transfer elements, however, thick far-
edge devices enable extra functionality of light-weight data stream
mining algorithms. Some examples of mobile edge servers include
frequently co-located far-edge devices such as personal mobile devices
(wearable devices, smartphones, Tablet PCs, and laptop computers),
far-edge mobile devices owned by co-workers, family members, and
friends, and shared far-edge mobile devices such as appliances in smart
home environments, and office equipment in smart co-working spaces.

Opportunities: The co-location and co-movement of far-edge
mobile devices and mobile edge servers reduce dependency over
large-scale centralized systems (Kargupta et al., 2010). In addition,
far-edge mobile devices can offload resource-intensive tasks to mobile
edge servers without Internet connections by utilizing local commu-
nication channels such as wireless hub, Wi-Fi direct, and Bluetooth
Low Energy interfaces. Mobile edge servers may own and control by
different users, therefore, MDSM applications should be device-centric
and mobile edge servers sho-uld provide complete application clones to
reduce the high coupling. An added advantage of mobile edge servers is
the elastic service availability where far-edge device can offload data
mining tasks in multiple mobile edge servers using device-centric task
scheduling schemes (Rehman et al., 2016¢). The addition of location
aware context features in MDSM applications can enable mobile
distributed intelligence where multiple far-edge mobile devices can
sense and log the data and act as both far-edge mobile devices and
mobile edge servers.

3.4. Immobile edge servers

Immobile edge servers are defined as the physically static and
resourceful computing systems that reside at a one-hop wireless
distance from far-edge mobile devices. The immobile edge servers
include cloudlets, micro data centers, radio access network (RAN)
servers in GSM networks, application servers, and smart-routers in
local area networks to name a few (Bonomi et al., 2012;
Satyanarayanan et al., 2015; Bahl, 2015; Ha and Satyanarayanan,
2015). Similar to mobile edge servers, the communication model (see
Fig. 6) facilitates thin/thick far-edge devices but physically bounded
nature of immobile edge servers enforce collaborative execution models
between far-edge mobile devices and immobile edge servers (Ferreira
et al., 2010). The collaborative execution model needs to perform
operational monitoring at far-edge mobile devices and immobile edge
servers for seamless execution of MDSM applications (Sherchan et al.,
2012).

Opportunities: The deployment of MDSM applications at immobile
edge servers helps in prolonging battery lifetime of far-edge mobile
devices (Satyanarayanan et al., 2015). In addition, the availability of
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high computational resources reduces the application processing time
hence minimizes the latency (Bahl, 2015).

3.5. Mobile cloud computing system

Mobile cloud computing (MCC) systems are defined as the
computing systems that provide heterogeneous computing, network-
ing, and storage services to far-edge mobile devices through large
scale data centers. The application models for mobile cloud computing
based data stream mining applications involve thin and thick far-edge
mobile devices (Altomare et al., 2013) (see Fig. 7). For example,
wearable devices directly upload data stream in cloud data centers and
data stream mining operations are performed in cloud environments.
Alternately, far-edge mobile devices, such as in the case of CARDAP,
perform data stream mining operations locally using on-board compu-
tational resources and enable on-demand data offloading when re-
quired (Jayaraman et al., 2014a).

Opportunities: The MCC systems offer many opportunities to
augment MDSM applications. The MCC systems enable the provision
of highly available and hypothetically unlimited computing, network-
ing, and storage resources through large-scale data centers. The MCC
systems enable multiple forms of services namely Storage-as-a-Services
(SaaS), Application-as-a-Services (AaaS), Network-as-a-Services
(NaaS), and a large plethora of services at hardware, operating systems,
and application levels (Fernando et al., 2013; Sharma et al., 2016).

3.6. Mobile edge cloud computing system

Mobile edge cloud computing (MECC) systems extend the tradi-
tional MCC services on the edge of the Internet through mobile and
immobile edge servers that reside at one-hop wireless distances from
mobile devices. The MECC systems enable distributed MDSM applica-
tions by replication of traditional infrastructure based cloud services in
edge servers as well as application partitioning at multiple levels (Ye
et al., 2012). The MECC based MDSM applications span over far-edge
mobile devices, edge servers, and traditional cloud computing infra-
structures (Ha et al., 2014) (see Fig. 8).

Opportunities: The MECC systems provide the scalable computing
infrastructure which can help in the deployment of highly distributed
MDSM applications (Ye et al., 2012). Far-edge mobile devices in MECC
systems perform single-site and multiple-site computation offloading
(Simoens et al., 2013). In addition, the unlimited computational and
storage support from traditional infrastructure based cloud computing
systems enable to deploy and dedicate heterogeneous resources for
edge servers (Ortiz et al., 2015). The edge servers can further utilize the
acquired resources for seamless application execution. Edge servers
also perform the resource intensive computations to prolong battery
life time and minimize latency in MDSM applications (Drolia et al.,
2013). Furthermore, the MDSM applications are geographically dis-
tributed to minimize the load-balancing efforts in infrastructure based
cloud (Luan et al., 2015).

3.7. Challenges

The MDSM platforms need to address several challenges for
efficient application execution.

3.7.1. Resource constraints and light-weight data processing

The limitations in battery power, CPU, and memory are the main
bottlenecks in far-edge mobile devices, F2F communication models,
and mobile edge servers (Krishnaswamy et al., 2012; Gaber et al.,
2014a; Rehman et al., 2014). The challenge arises due to miniaturiza-
tion of computational elements and the constraints of designing small
size, light-weight, and less heat dissipating far-edge mobile devices.
Since far-edge devices offer limited computational and battery power
resources. Existing MDSM platforms adapt the execution behavior
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according to resource availability and situation awareness which
enforce light-weight execution of application components and result
in compromising the quality of knowledge patterns (Haghighi et al.,
2013).

3.7.2. Compute-intensive operations

Far-edge mobile devices produce continuous data streams therefore
MDSM application need to process or store whole data streams in
order to uncover maximum knowledge patterns. Although modern far-
edge devices come with sophisticated computational elements and
enable power saving functions, the heterogeneity in MDSM applica-
tions increase the computational complexities of application compo-
nents. Handling the increased computational complexities together
with high data rates is still a challenging task (Gaber et al., 2014a;
Rehman et al., 2014).

3.7.3. Distributed application logic

The distribution of application logic among far-edge devices, edge
servers, and cloud data centers is a major challenge (Wang et al., 2012).
The MDSM applications need to be carefully designed to run the
resource-intensive components in relevantly high-power far-edge de-
vices or cloud servers in order to avoid resource unavailability in low-
power far-edge mobile devices (Min and Cho, 2011). The application
logic could be distributed statically by deploying application compo-
nents across far-edge mobile devices, edge servers, and cloud servers.
The static distributions may introduce high coupling among applica-
tion components and the applications may fail in F2F and mobile edge
servers settings due to unavailability of computational and battery
power resources (Braojos et al., 2014; Liu et al., 2013). To handle this
issue, the application components could be distributed dynamically or
adaptively, however, existing literature still lacks the relevant studies.

3.7.4. Mobility

Far-edge mobile devices constantly move among different commu-
nication networks and switches between Wi-Fi, Blue tooth, and GSM-
based Internet connections. Keeping a track record of mobility patterns
for seamless application execution is a challenging task especially when
far-edge mobile devices continuously and rapidly switches among
different communication interfaces (Ahmad and Ahmad, 2016). The
mobility becomes a major challenge when MDSM platforms operate in
F2F settings or the applications are executed using mobile edge servers.
The mobility of devices may also impact the privacy and security of
device data because far-edge mobile devices may need to upload data
streams to different mobile edge servers (Khan, 2015). In addition,
heterogeneity in operating systems of mobile edge servers, program-
ming environments, and communication interfaces requires extensive
profiling of mobile edge servers to provide optimal user experience.
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3.7.5. Resource provisioning in MECC

The MCC and MECC communication models provide virtual
machines (VMs) and containers (i.e. light-weight VMs) for application
execution on the edge and cloud servers (Ahmad et al., 2015). Due to
fast mobility of devices and continuously streaming data, live VM
migration becomes very challenging because the time taken during
migration must remained lower than the time spent by far-edge mobile
device in the same communication network. The containers enable fast
provisioning of cloud resources however it requires a lot of program-
ming efforts to design containers for each MDSM application. In
addition with VM migration, the saving and resumption of application
states also becomes challenging especially when the far-edge mobile
devices continuously switch among mobile edge servers (Ha and
Satyanarayanan, 2015).

3.7.6. Dependency over internet connections

Far-edge mobile devices need persistent Internet connections for
efficient application execution using MCC and MECC communication
models. To handle the connectivity issues, MDSM applications perform
onboard data management operations which may quickly hamper
onboard memory resources and result in application failure.
Therefore, MDSM applications must reduce dependency over
Internet connection either by executing application components locally
in far-edge mobile devices or by optimizing onboard data management
schemes (Sherchan et al., 2012; Jayaraman et al., 2014a).

3.7.7. Increased data communication and high latency

The continuous data production in far-edge mobile device increases
the network traffic between far-edge devices and edge servers and
cloud servers. In addition, large transfer of raw data stream increases
in-network data communication in cloud data centers. The increased
data communication results in high bandwidth utilization cost and
extra energy consumption for data transfer, data management, and
data processing in MCC and MECC systems (Ha and Satyanarayanan,
2015). The cloud servers in MCC systems reside at multi-hop distance
from far-edge mobile devices which results in increased makespan in
MDSM applications hence increases latency. In addition, high data
rates increases the size of data stream which impacts the data
communication cost in MDSM applications (Ha and Satyanarayanan,
2015).

In this section, we presented the execution platforms for MDSM
applications and discussed the relevant opportunities and challenges.
However, MDSM applications in itself need to deal with heterogeneous
components. We present a detailed taxonomic discussion on hetero-
geneous MDSM applications in next section.

4. Heterogeneity in MDSM applications

MDSM applications work in five steps: (a) mobile applications
provide functionality to acquire data streams from one or more data
sources, (b) fusion of data stream from multiple sources results in
information rich data stream representing multiple facets of each data
tuple, (c) preprocessing operations enable to improve the quality of
data stream by handling missing values, removing noise, and detecting
anomalies and outliers, (d) data stream mining operations are per-
formed for online knowledge discovery using different model-based
and model-less data mining algorithms, and (e) uncovered knowledge
patterns are summarized, integrated and managed for further utiliza-
tion using multiple knowledge management approaches. Fig. 9 pre-
sents the taxonomy of heterogeneous MDSM applications.

4.1. Heterogeneity in data acquisition
Data acquisition in MDSM applications is a challenging task

because of massive heterogeneity in multiple aspects. Although data
streams are represented as subset of big data, however, it also need to
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handle few big data properties such as volume, velocity, variety,
variability, and veracity.

4.1.1. Volume (Size)

MDSM applications need to handle continuous and unboun-ded
data streams, therefore, limiting the size of data stream is a tedious
task (Krishnaswamy et al., 2012). MDSM applications handle volume
using few methods based on sliding windows and segmentation (Oneto
et al., 2015; Abdallah et al., 2015; Wu et al., 2013). The sliding
windows are used to sample a preset number of tuples at a given time
interval. The size of sliding windows may vary in different applications.
Sliding windows are used in two modes. The overlapping sliding
windows contain a portion of data which overlaps the previous window.
The overlapping is performed to improve the quality of data stream so
that the useful data items on the start and end of the windows should
not be wasted. The non-overlapping sliding windows also play a vital
role in some of the application areas. For example, mobile health
applications with non-overlapping sliding windows are more useful
than overlapping windows. Similarly, data segmentation is used as an
alternate of sliding windows methods where the buffered data streams
are equally distributed in a finite number of chunks for lateral
processing.

4.1.2. Velocity (speed)

The speeds of incoming data streams play a vital role in MDSM
applications (Gaber et al., 2009). Velocity is the key challenge in mobile
applications that increases latency. MDSM applications handle velocity
in two ways: (a) the applications collect raw data in centralized data
stores for lateral data processing and (b) the data is analyzed using in-
memory operations before data storage. In the first approach, MDSM
application create a delay between data acquisition and knowledge
discovery. This strategy is more useful for analysis of historical data.
The second approach is more appropriate for real-time data analysis.
However, in this case, MDSM applications compromise on the quality
of knowledge patterns because the continuous entrance of data stream
bounds to one-time data processing (Gama, 2013).

4.1.3. Variety (number and type of data sources)

The variety property represents collection of the data stream from
heterogeneous data sources and multiple data formats (i.e. structured,
unstructured, and semi-structured) (Rehman et al., 2015; Swan, 2012).
MDSM applications collect the data stream from multiple data sources
including the on-board sensors (such as in IoT systems, wearable
devices, and smartphones) and off-board sensors such as accumulating
data from other devices or external environments. A thorough review of
the data sources is presented in Rehman et al. (2015) for interested
readers.

4.1.4. Variability (variable data production rates)

The data rates in MDSM applications vary according to the nature
of data sources and application requirements. Therefore, variability
property of data stream needs serious attention in MDSM applications
in order to deal with inconsistencies and uncertainties of incoming data
streams. In addition, MDSM applications sometimes need to handle
consistently continuous data streams and sometimes data streams
come in episodic patterns. This behavior increases the importance of
variability property of data streams.

4.1.5. Veracity (authenticity of data sources)

The veracity property shows that MDSM application need to collect
the data streams from trustworthy and reliable data sources. The
veracity property ensures that the data streams are collected in an
authentic way and the correctness of the data is guaranteed. Therefore,
if properly handled, the veracity property of the data stream improves
the quality and usefulness of collected data. Otherwise, inefficient
handling of veracity property may lead to degradation of quality of
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Application Heterogeneity
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knowledge patterns produced by MDSM applications.
4.2. Heterogeneity in data fusion

Data sources generate data stream with different sampling frequen-
cies and introduce heterogeneity in data fusion operations. For
example, the sampling frequency of accelerometer is absolutely differ-
ent when compared with a parallel data stream that is being sampled
from the camera.

4.2.1. Early data fusion

Early data fusion methods are applied when raw sensor data from
multiple data sources is sampled at the same data rate which is
measured as a number of samples in each given time period (Oneto
et al., 2015; Mukherji et al., 2014; Khan et al.,, 2013; Wang et al.,
2012). For example, activity recognition applications that are sampling
data streams from accelerometer and GPS location sensor at the same
time with same sampling rate. The average sampling frequency of
accelerometer for activity recognition applications is recommended as
25HZ however user location do not change so frequently hence produce
a lot of redundant GPS data. Similarly, if the sampling frequency is set
as 1HZ the under-sampling of accelerometer produce inaccurate data
hence affects the results of data mining algorithms. Therefore early
data fusion strategies are helpful for MDSM applications with low
sampling rates but under perform in case of high variance in sampling
rates of different data sources.

4.2.2. Late data fusion

Late data fusion methods are applied after preprocessing the data
stream (Min and Cho, 2011; Sherchan et al., 2012; Jayaraman et al.,
2014a). The late fusion strategies helps in addressing the data
redundancy issues. The data stream from multiple data sources is
sampled at different sampling rates, preprocessed and the resultant
data is integrated to generate events data streams. For example, the
accelerometer samples the sensors at 25 Hz while the GPS is sampled
at 1 Hz. The late data fusion strategies first create sliding windows of
25 readings from the accelerometer and performs the feature extrac-
tion from each sliding window. The extracted features and GPS
locations are integrated and transformed into events. When compared
with early data fusion, the late data fusion strategies helps in data
reduction and improving data quality.

4.2.3. Discriminatory features based data fusion
Far-edge mobile devices such as wireless sensor networks and
mobile IoTs may involve homogeneous sensing settings where multiple

data sources represent same information (Shoaib et al, 2014).
However, sensor configurations and placement may affect in quality
data acquisition. The discriminatory fusion methodologies involve the
identification of quality data sources and fusion of discriminatory
features which may help in improving the quality of uncovered
knowledge patterns.

4.3. Heterogeneity in data preprocessing

The preprocessing operations enable to improve the quality of the
data stream. The heterogeneity in preprocessing operations arise when
MDSM applications need to handle missing values, remove noise, and
detect anomalies and outliers from the data stream.

4.3.1. Noise filtration

Noise refers to the inclusion of extraneous and irrelevant informa-
tion in mobile data streams (Khan et al., 2010). The data streams
becomes noisy due to multiple reasons such as improper placement of
sensors, wrong sensor configurations, and inducement of environmen-
tal noise among others.

4.3.2. Outliers detection

Outliers refer to misreported data points where the acquired data
streams do not fully represent the desired data streams. Numerous
classification and clustering methods are used to detect and remove the
outliers (Hromic et al., 2015).

4.3.3. Anomaly detection

Anomaly detection refers to the presence of anomalous data points
in acquired data streams (Suarez-Tangil et al., 2015). The anomaly
detection helps in improving the quality of knowledge patterns.

4.3.4. Feature extraction

Massive data streams need to handle efficiently. The feature
extraction methods help in extracting features (also known as attri-
butes) from incoming data streams (Siirtola and Roning, 2013; Yang
et al., 2014; Oshin et al., 2015). Feature extraction methods convert
data streams from unstructured and semi-structured formats into
structured data formats.

4.3.5. Sparsity handling

Highly sparse data may hamper the performance of far-edge mobile
devices in some cases (Wang et al., 2013). Similarly, low sparsity also
degrades the performance of data stream mining applications.
Therefore, handling sparsity and maintaining an adequate level of
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sparsity in data stream mining applications help in improving the
quality of knowledge patterns.

4.4. Heterogeneity in data stream mining

Data stream mining algorithms vary in terms of frequent pattern
mining, classification, and clustering schemes and the learning models
vary in terms of supervised, unsupervised, semi-supervised, and deep
learning schemes.

4.4.1. Learning model heterogeneity

The learning models represent the machine learning algorithms and
used to support the clustering, classification, and frequent pattern
mining algorithms for knowledge discovery. The heterogeneity in
learning model arises in terms of learning type, learning model, and
learning modalities. The training type varies in terms of supervised,
unsupervised, semi-supervised, and deep learning models. The super-
vised learning models are trained using labeled data streams wherein
the learning models adopt the recognition behaviors in order to predict
and classify the future data streams (Cord and Cunningham, 2008;
Dogan and Tanrikulu, 2013). On the contrary, the unsupervised
learning models are trained without labeling the data streams wherein
the learning model adopt the behavior and group the future events on
the basis of similarities and dissimilarity measures (Huang et al.,
2014). The semi-supervised learning models are initially trained with
labeled data streams, however, it adopts with unlabeled data for future
recognition (Settles, 2012; Goldberg et al., 2009; Triguero et al., 2015).
The deep learning models are the multi-level implementations of
supervised, semi-supervised, and unsupervised learning models where-
in data streams are segregated on the basis of preset criteria set by
application designers and separate learning models are developed for
each subspace of the data stream (Martens, 2010).

MDSM applications train learning models either online or offline.
The online learning models are trained inside far-edge mobile devices,
edge servers, and cloud data centers using live data streams. However
offline learning models are trained using already collected data (Liang
et al.,, 2014). Although online learning models are computationally
complex, the knowledge patterns produced by online learning models
are more accurate and can cater the evolving data streams (Gomes
et al., 2012a). Alternatively, the offline learning models produce less
accuracy and become personalization-agnostic because of training with
historical data (Khan et al., 2013).

4.4.2. Mining algorithm heterogeneity

MDSM algorithms are categorized as classification, clustering, and
frequent pattern mining algorithms.

Classification: The classification algorithms use supervised, semi-
supervised, and deep learning models in order to classify the input data
streams. The classifiers use single class recognition or multi class
prediction models depending upon the application requirements. The
classification algorithms vary in terms of (a) universal model, wherein a
global model is used for the whole data stream; (b) personalized model,
wherein the local models are used depending upon the needs of users,
applications, and machines; and (c¢) adaptive model, wherein the
classification process starts from a global model which is retrained as
a personalized model (Lu et al., 2012). Despite various modeling
techniques, the classification algorithms posses the data labeling over-
head either manually or automatically, therefore, the automation of
classification algorithms is a laborious and time consuming process.

Clustering: The clustering algorithms use unsupervised learning
models and cluster data points on the basis of similarities and
dissimilarities (Abdallah et al., 2015; Haghighi et al., 2013; Suarez-
Tangil et al., 2015). The measurement of similarities and dissimilarities
depends on cluster centroids and the attribute values of data points.
The data clustering algorithms in MDSM applications vary in terms of
subspace clustering, density based, centroid-based, hierarchical, sub-
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space, spectral, and constrained based methods. The choice of these
techniques solely depends upon the type and nature of data to be
clustered as well as the application requirements. However, clustering
algorithms are not widely adopted in far-edge mobile device-based data
stream mining systems due to high and sometimes unlimited computa-
tional requirements.

Frequent Pattern Mining: The Frequent pattern mining algorithms
are applied over similar sets of items (Agrawal et al., 1994; Rehman
et al, 2014). The frequent pattern mining algorithms mines the
frequently occurring itemsets with a preset frequency threshold named
as minimum support (minsup). The frequent itemsets are further
mined to find the associations among itemsets and establish the
association rules among them. The rule establishment is performed
using another threshold called minimum confidence (minconf). The
itemsets and their association rules vary in simple, closed, maximal,
rare, sporadic and utility based itemsets. These algorithms are gen-
erally designed to mine only frequent patterns and/or to find associa-
tions among different itemsets. Overall research in frequent pattern
mining varies from basic patterns to multilevel and multidimensional
patterns, to extended patterns for data sets and streams.

4.5. Heterogeneity in knowledge management

The integration, storage, and utilization of knowledge patterns in
MDSM applications take place at various places.

4.5.1. On-device

The on-board storage refers to the storage capabilities of far-edge
devices that are used to store locally uncovered knowledge patterns
(Wang et al., 2013; Yoon, 2013). In addition, the synchronized knowl-
edge patterns for personalized user experience are also stored on-board
far-edge mobile devices.

4.5.2. on-edge

The service provision from edge servers enables data reduction (Ye
et al., 2012; Yoon, 2013). The location-aware aggregation of knowledge
patterns facilitate in reduced data transfer in remote environments and
minimize bandwidth utilization.

4.5.3. Remote

Conventionally knowledge patterns are integrated and stored in
remote data stores which include cloud data center, clusters, grids, and
application servers. Remote knowledge aggregation is useful for global
knowledge discovery (Ferreira et al., 2010).

In this section, we presented the detailed taxonomic discussion on
heterogeneous MDSM applications. In the next section, we present a
thorough literature review of proposed methods for heterogeneous
MDSM applications.

5. Handling heterogeneity in MDSM applications
5.1. Methods for handling data acquisition heterogeneity

Number and type of data sources vary depending upon the nature
of data stream mining systems. The application specific systems
facilitate only essential data sources, however, the number of data
sources in generic systems varies. For example, the application specific
systems such as mobile activity recognition system mostly use accel-
erometers, GPS receivers, and magnetometers (Oneto et al., 2015;
Khan et al., 2013; Yang et al., 2014). Alternately, generic systems like
CARDAP, OMM, and MobiSens caters bundles of sensory and non-
sensory data sources to enable generality and support wide range of
applications (Jayaraman et al., 2014a; Haghighi et al., 2013; Wu et al.,
2013). The data sources include homogeneous and heterogeneous type
of data sources. Homogeneous data sources are mainly used when
same type of data is produced by multiple data sources such as multiple
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accelerometers deployed in wireless body sensor networks (Shoaib
et al., 2014). Alternately heterogeneous data sources are used when
MDSM applications need to collect and analyze data stream from
different data sources. The heterogeneous data sources produce
integrated and multi-dimensional data stream. Systems such as
MineFleet and MobiSens utilizes heterogeneous data sources and
produce multi-format information-rich data streams (Kargupta et al.,
2010; Wu et al., 2013).

The data streams are collected from both on-board and off-board
data sources (Pasricha et al., 2015; Abdallah et al., 2015). Similarly, the
systems are designed as first-person data stream mining systems
whereby personal data is analyzed and personalized knowledge dis-
covery is performed (Gu et al., 2011; Mukherji et al., 2014).
Alternatively, the data stream mining systems integrate the data
streams from multiple users/devices/data sources for the production
of generalized knowledge patterns (Pasricha et al., 2015; Jayaraman
et al., 2014b). MDSM systems handle multiple data types ranging from
numerical and textual data to multimedia and event data streams.
Literature review reveals that most of the systems cater only the
numerical data streams such as accelerometer axis and GPS coordi-
nates, however, a few systems such as MSM (Mukherji et al., 2014) and
OMM (Haghighi et al., 2013) supports multiple data formats. These
data types finally lead towards the nature of data streams as structured,
unstructured, and semi-structured data tuples.

To handle the resource constraints, MDSM systems adopt different
data collection strategies which differ in terms of collection mode, and
amount and nature of collected data. The data streams are either
collected offline for lateral data processing or immediately processed
using either on-board computational resource, offloaded to other
computational system/infrastructures such as edge servers, cloud
servers, or perform collaborative data processing by harnessing com-
putational resources from nearer similar devices/systems. MDSM
systems either collected raw data streams or initially process and
reduce the data streams to lower on-board resource consumption as
well as bandwidth utilization cost for data offloading.

In addition, some studies reported the representative and context
aware data collections strategies as well. The representative data
collection strategies are useful when multiple data sources generate
same data stream representing the same knowledge. The representative
data collection strategies work best in crowd-sensing like application
scenario and useful in handling highly redundant data streams. The
contextual information about user states, locations, and behavior helps
in inferring current situations of users which in turn facilitate in data
reduction whereby data stream mining applications only collect the
data stream when a specific situation occurs. CAROMM utilizes context
aware data collection strategies based on fuzzy situation inference
model which infer current situation of users (Sherchan et al., 2012).
Table 1 presents the detailed literature review of methodologies for
handling data acquisition used by selected studies.

5.2. Methods for handling data fusion heterogeneity

Literature review reveals that early data fusion is adopted in data
stream mining systems which collect data streams from multiple data
sources and aggregate for further processing (Srinivasan et al., 2014;
Braojos et al., 2014). Early data fusion results in redundant and noisy
data streams therefore introduce inefficiency and extraneous resource
consumption in mobile devices. A few studies use late data fusion
strategies whereby collected data streams are preprocessed in parallel
before data fusion (Min and Cho, 2011; Jayaraman et al., 2014a). The
late data fusion strategies consume onboard computational resources
however it improves the data quality for lateral data processing. Late
data fusion is useful when preprocessed data is integrated from
multiple persons and different data sources. Although discriminatory
data fusion strategies are also proposed by the researchers but existing
literature still lacks its application in MDSM systems (Shoaib et al.,
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2014).

Data fusion strategies either work as online methods where all
computations are performed in memory or work offline where data
streams are stored onboard before data fusion (Oshin et al., 2015;
Yoon, 2013). The online strategies are effective and improve system
performance in terms of latency and local storage I/O operations.
However, in-memory computations sometimes result in data loss and
reduced data quality when dealing with large and complex data
streams. Offline data fusion facilitates in improved data quality and
complete data streams however quickly hampers onboard storage
resources. Table 2 presents a detailed literature review of data fusion
heterogeneity in MDSM applications.

5.3. Methods for handling data preprocessing heterogeneity

MDSM applications adopt various data preprocessing methods for
sliding windows based data stream segmentations, feature extraction,
data conversion from unstructured to structured formats, signal
analysis, noise and data filtration, privacy and security, dimension
reduction, outliers' detection and many others.

The selection of preprocessing methods depend upon the nature of
data streams and application requirements. For example, overlapping
sliding windows based segmentations are used for activity recognition
applications (Suarez-Tangil et al., 2015). Similarly, anonymization and
encryption techniques facilitate in privacy and security features of
MDSM applications (Mukherji et al., 2014).

Similar to data fusion operation, data preprocessing operations are
performed in offline and online mode (Lu et al., 2012; Yuan and
Herbert, 2014). The offline preprocessing methods are applied over
historical data which is acquired and stored using onboard storage. The
online data preprocessing operations are performed in memory.
However, in-memory computations become challenging due to variant
complexities of data preprocessing algorithms. Table 3 presents the
detailed literature review of preprocessing methods.

5.4. Methods for handling data mining heterogeneity

MDSM applications use different learning models based on super-
vised, unsupervised, semi-supervised and deep learning approaches.
Currently, most of the learning models are trained offline in desktop
PCs, servers, or cloud systems. Some studies trained learning models in
mobile devices as well however online training of learning models
inside mobile environments is a challenging task. The challenge arises
because training types of supervised, unsupervised, semi-supervised
and deep learning approaches differ. In the case of supervised learning
models, the training data stream needs to be labeled/annotated so that
learning models can accurately recognize and predict the future similar
data streams.

However, the labeling of data streams differs in manual, automatic,
and observational settings. The manual labeling is performed when
each segment/chunk of the data stream is manually annotated however
this process is quite laborious and needs a lot of efforts. An alternate
methodology is the adoption of automatic application driven labeling
where the applications are configured at the time of data collection and
the resultant data streams are annotated accordingly. The automatic
labeling is more promising as compared to manual labeling in order to
reduce the training efforts. The observational settings further enhance
the automatic labeling by allowing users to intervene in data labeling
process. In this approach the learning models are initially trained in
automatic settings however in the case of discrepancies users are
allowed to intervene by manually labeling the data streams.

The selection of learning algorithms significantly impacts the
performance of MDSM applications in order to perform energy-
efficient, cost-effective, highly accurate data stream mining operations.
For deployment in mobile environments, the internal structures of
learning models and their processing behavior play an important role
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Table 1
Data acquisition heterogeneity.
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Reference Data Sources Types Name Users Data Types Nature Mode
Oneto et al. (2015) 2 Off-board Accelerometer and Magnetometer Multiple Numeric/Textual Structured Offline
Pasricha et al. (2015) 1 Onboard Application Log Files NA Textual Structured Online
Abdallah et al. (2015) 72 Onboard Accelerometer Multiple Numeric/Textual Structured Offline
Suarez-Tangil et al. (2015) Numerous Onboard Sequence of System Calls NA Textual Structured Online
Boukhechba et al. (2015) 1 Onboard GPS Receiver Multiple Textual Structured Offline
Haghighi et al. (2013) 2 Off-board ECG Sensors, Accelerometers Single Numerical Structured Offline
Gomes et al. (2012b) 1 Onboard Accelerometer Multiple Numerical Structured Online
Liu et al. (2012) 1 Off-board Accelerometers Multiple Numerical Structured Online
Khan et al. (2010) 5 Onboard Accelerometer Multiple Numerical Structured Offline
Mukherji et al. (2014) 3 Onboard Application Log Files, Call Records, Location Single Textual Structured Offline
Abdallah et al. (2012) 72 Onboard Accelerometer Single Numerical/Textual Structured Offline
Sidek et al. (2014) Numerous Off-board ECG Sensors Multiple Continuous Signals Unstructured Offline
Khan et al. (2013) 5 Onboard Accelerometer Multiple Numerical Structured Offline
Srinivasan et al (2014) 3 Onboard Application Log Files, Call Records, Locations Multiple Textual Structured Offline
Siirtola and Roning (2013) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Siirtola and Roéning (2012) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Yang et al. (2014) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Lu et al (2012) 1 Onboard Microphone Multiple Audio Unstructured Offline
Donohoo et al. (2014) Numerous Onboard GPS/user Interactions Multiple Numerical/Textual Structured Offline
Oshin et al. (2015) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Rai et al. (2012) 1 Onboard Accelerometer Multiple Numerical Structured Offline
Wang et al. (2012) 7 Off-board 5 Accelerometers and 2 RFID Multiple Numerical Structured Offline
Gaber et al. (2014b) Numerous Both Multiple Data Sources Multiple Both Both Both

Ortiz et al. (2015) 1 Onboard Camera Multiple Images Unstructured Offline
Braojos et al. (2014) 9 Both Accelerometer Multiple Numerical Structured Offline
Min and Cho (2011) Numerous Both Accelerometer and Magnetometer Multiple Numerical Structured Offline
Stahl et al. (2012) Numerous Both Multiple Data Sources Multiple Both Both Both

Jayaraman et al. (2014b) 13 Both Multiple Multiple Both Both Online
Wu et al. (2013) 8 Onboard Multiple Multiple Both Both Offline
Sherchan et al. (2012) Numerous Both Multiple Data Sources Multiple Both Both Offline
Jayaraman et al. (2014a) Numerous Onboard Multiple Data Sources Multiple Both Both Online
Lin et al. (2013) 1 Onboard GPS Receiver Multiple Numerical Structured Offline
Yuan and Herbert (2014) 2 Both Accelerometer and Gyroscope Multiple Numerical Structured Both

Talia and Trunfio (2010) Numerous NA Numerous Multiple NA NA Offline
Kargupta et al. (2010) Numerous Onboard On-board Vehicle Sensors Multiple Both Both Online
Yoon (2013) 2 Onboard Accelerometer and GPS Multiple Numerical Structured Online
Gu et al. (2011) 2 Off-board Accelerometer and Camera Multiple Both Both Offline

in devising the computational complexity of learning models. In
essence, MDSM applications need to perform online data stream
mining operations on continuous data streams. Therefore, most of
the studies either separate the training and recognition processes or
use shallow data structures like arrays, lists, or pruned trees for
improved efficiency. Learning in MDSM applications is performed to
achieve multiple objectives which include system level and application
level performance enhancements. The system level performance objec-
tives include battery life enhancements in mobile devices and perform-
ing offloading decisions in mobile cloud settings. However the majority
of methods used learning models to enhance application performance
in terms of change detection from uncertain data streams, model
personalization, prediction and optimization of next locations, online
activity recognition, finding emerging patterns, to name a few.

Once the learning models are trained and deployed, the MDSM
applications process the incoming data streams in both online and
offline mode. The offline data streams are stored in the onboard local
storage and processed whenever the feasible environment for data
stream processing is available. The online data streams are directly
processed either using on-board computational resources or offloaded
in other devices and systems in F2F, mobile-edge, MCC, or MECC
settings. Majority of the studies in literature used classification algo-
rithms due to low computational complexities and easy deployment as
compared to clustering and frequent pattern mining algorithms. The
classification algorithms are used for multiple purposes that include
onboard classifications, on-wireless node classification, distributed
classification, multi-level classification, and light-weight classification.
A few studies implemented light-weight clustering and association rule
mining algorithms which show the practicality of clustering and
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frequent pattern mining algorithms in mobile environments. Table 4
presents a detailed literature review of data stream mining hetero-
geneity in MDSM applications.

5.5. Methods for handling knowledge management heterogeneity

Since MDSM applications process data streams at multiple devices
and systems, therefore, the integration and summarization of knowl-
edge patterns needs careful attention. MDSM applications usually run
the knowledge discovery operations such as learning and recognition
and knowledge management operations such as integration, summar-
ization, and storage of knowledge patterns at the same device or
system. However, few studies present the synchronization/transfer of
knowledge patterns among different systems whereby the knowledge
patterns are stored either in local storage such as onboard data stores
in far-edge mobile devices or in remote data stores such as those in
cloud data centers and edge servers. The hierarchical knowledge
management facilitate in enabling both local and remote storage
settings. Hierarchical knowledge management strategies enable local
storage at a lower level where far-edge mobile devices manage the
knowledge patterns using on-board settings. At the second level,
multiple devices transfer the knowledge patterns to nearer edge servers
which integrate and manage local data stores. Finally, multiple edge
servers in different geographical settings transfer the knowledge
patterns to centralized cloud data centers which enable knowledge
integration for a global view.

Knowledge visualization is another challenge that MDSM applica-
tions need to handle efficiently. MDSM applications provide the
visualization functionalities either on-screen in far-edge mobile devices



M.H.u. Rehman et al.

Table 2
Data fusion heterogeneity.

Reference Nature of Fused Data Fusion Mode
Data Fusion
Oneto et al. (2015) Raw Early Offline
Abdallah et al. (2015) Raw Early Offline
Haghighi et al. (2013) Raw Early Offline
Khan et al. (2010) Raw Early Offline
Mukherji et al. (2014)  Raw Early Offline
Abdallah et al. (2012) Raw Early Offline
Sidek et al. (2014) Preprocessed Early Offline
Khan et al. (2013) Raw Early Offline
Srinivasan et al Raw Early Offline
(2014)
Donohoo et al. (2014) Raw Early Offline
Oshin et al. (2015) Raw Early Offline
Rai et al. (2012) Raw Both Offline
Wang et al. (2012) Raw Early Offline
Gaber et al. (2014b) Raw Both Online
Ortiz et al. (2015) Raw Early Online
Braojos et al. (2014) Raw Early Online
Min and Cho (2011) Preprocessed Late Online
Stahl et al. (2012) Raw Both Online
Jayaraman et al. Raw Early Online
(2014b)
Wau et al. (2013) Raw Early Offline
Sherchan et al. (2012)  Preprocessed Late Offline
Jayaraman et al. Raw Late Online
(2014a)
Lin et al. (2013) Raw Early Online
Yuan and Herbert Raw Early Online
(2014)
Talia and Trunfio Raw Early Offline
(2010)
Kargupta et al. (2010) Raw Early Online
Yoon (2013) Raw Both Online
Gu et al. (2011) Raw Early Offline

or provide a web interface for remote visualization. On-screen visua-
lization in far-edge mobile devices is handy for real-time applications
however limited screen size and energy intensive operations quickly
hampers the on-board computational and battery resources. The
knowledge management strategies work in both online and offline
mode. The online knowledge management strategies integrate, sum-
marize and visualize the knowledge patterns before storage and lateral
aggregation if required. However, offline strategies first integrate,
summarize, and store the knowledge patterns. In such cases, the on-
demand visualization is enabled whereby knowledge patterns are
visualized when required. For example, the historical activity patterns
of a user or noise level in a particular city. Table 5 presents the detailed
literature review of knowledge management heterogeneity in MDSM
applications.

In this section, we presented a detailed literature review of
heterogeneous MDSM applications. In the next section, we present a
thorough literature review of methods that are used to handle platform
level heterogeneity for MDSM applications.

6. Handling heterogeneity in data stream mining platforms

The heterogeneous devices and systems offer variable computa-
tional and energy resources to MDSM applications. Therefore, platform
level heterogeneity is handled using adaptation methods, application
partitioning and computation offloading schemes, and data transfer
strategies.

6.1. Adaptation
The adaptations are made at system-level to adapt the generic

processing behavior of data stream mining applications. Alternately,
the adaptation strategies work at algorithm level by altering the
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execution behaviors of data stream mining algorithms. The adaptations
are made using multiple parameters such as data rate, memory, CPU,
context aware features, learning models, and specific event. The data
rate based adaptive strategies work by monitoring the velocity of
incoming and outgoing data streams. These adaptive data stream
mining algorithms adjust the execution behavior according to data
rates. The memory and CPU based adaptation strategies work by
profiling the computational requirements of data stream mining
algorithms and adjusting the execution behavior accordingly. The
context-aware adaptive strategies models different situations and
adjust the execution behavior of data stream mining systems when a
relevant situation is inferred. The learning model based strategies
consider the execution history of data stream mining applications,
learn the execution patterns, and alter the execution behavior accord-
ing to predicted settings. Event based strategies work by adopting the
execution behavior of data stream mining algorithms accordingly when
a specific event occurs. Table 6 presents a detailed literature review of
adaptation strategies in MDSM platforms.

6.2. Application partitioning

Distributed MDSM applications are partitioned to run on multiple
devices and systems. The application partitioning strategies are con-
trolled by either far-edge devices, cloud servers, or edge servers. MDSM
applications are either partitioned dynamically at runtime after asses-
sing the resource requirements of the running processes or the
application is partitioned in fixed form where specific application
components run at designated devices and systems.

The applications are partitioned either on the basis of data or
computations. The data based application partitioning is performed by
executing data parallel strategies where partial data streams are
offloaded and executed in various devices and systems. The computa-
tion based partitioning is performed by measuring the computational
requirement and granularity of data stream mining algorithms. In
computation based partitioning partial tasks such as methods, classes,
programs, and applications are executed in various device and systems.
Application partitioning is performed either offline or online. The
offline partitioning is performed before or after the application execu-
tion however the online partitioning is performed during the applica-
tion execution process. Table 7 presents the detailed literature review
of application partitioning methods in MDSM platforms.

6.3. Computation offloading

Existing computation offloading schemes are based on different
communication models that vary in terms of client-server settings,
virtual machine migration, and mobile agent configurations (Khan,
2015). In client-server based settings, offloading components reside on
the mobile device that offloads the computations after performing
collaborative cost-benefit analysis for computation offloading favor-
ability. Cost-benefit analysis is performed to label the local and remote
computations for application partitioning (Liu et al., 2013) and
resource-hungry computational tasks are offloaded to the nearest or
designated surrogates (servers) in the cloud. The main concern with
server-based computation offloading is the requirement for pre-in-
stalled cloud services in ad-hoc cloud environments. In virtual machine
migration-based communication models, the memory image of a
central cloud server is migrated in cloudlets, which lowers the com-
munication cost as well as overall bandwidth utilization in highly-dense
mobile cloud computing environments (Satyanarayanan et al., 2009).
However, live virtual machine migration introduces latency in service
provisioning (Ahmad et al., 2015). In addition, the preservation and
resumption of application states during migration is also a major
challenge (Satyanarayanan et al., 2009). In mobile agent communica-
tion models, the application clones are migrated in cloud environments
to augment the mobile devices with cloud resources. However, mobile
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Table 3

Data preprocessing heterogeneity.

Journal of Network and Computer Applications 79 (2017) 1-24

Reference Data Preprocessing Method Type of Preprocessing Algorithm Mode Preprocessing Objective
Oneto et al. (2015) Sliding Windowing with 50% Overlap Time and Frequency Domain Feature Extraction Offline Extraction of 561 Features
Abdallah et al. (2015)  Clustering Sliding Windows KNN Clustering Online Extraction of Features from Clusters
and Sub-clusters
Suarez-Tangil et al. Sliding Windowing with 50% Overlap Histogram Features Online / Feature Extraction for Anomaly
(2015) Offline Detection
Haghighi et al. (2013)  ECG signals converted using mobile ECG signals to numeric value conversion Offline Feature Extraction
health open source framework
Khan et al. (2010) Feature Extraction Methods Noise Filtering and Feature Extraction Offline Feature Extraction from Non-linear
Space
Abdallah et al. (2012)  Clustering of Sliding Windows Cluster-based Features Online Extracted Features from Clusters
Mukherji et al. (2014)  Anonymization and Encryption Privacy and Security Offline User De-identification
Sidek et al. (2014) QRS Selection/Normalization Feature Selection and Normalization Offline Feature Extraction from ECG Data
Khan et al. (2013) SMA, LDA, and KDA Noise Filtering and Feature Extraction Offline Feature Extraction from Non-linear
Space
Srinivasan et al (2014)  Anonymization and Encryption Privacy and Security Offline User De-identification
Siirtola and Roning Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction from
(2013) Accelerometer Data
Siirtola and R6ning Feature Extraction Statistical Feature Extraction Methods Offline Features Extraction from
(2012) Accelerometer Data
Yang et al. (2014) Feature Extraction Time and Frequency Domain Features Offline Feature Extraction
Lu et al (2012) Feature Extraction Statistical and Acoustic Features Offline Feature Extraction from Voice Data
Donohoo et al. (2014)  Principle Component Analysis Feature Extraction Offline Feature Extraction Onboard Sensors
Oshin et al. (2015) Feature Extraction Mathematical Functions for Feature Extraction Offline Feature Extraction from
Accelerometer Data
Rai et al. (2012) Feature Extraction Statistical Feature Extractions Offline Feature Extraction
Wang et al. (2012) Dynamic Time Wrapping Template Matching Offline Template Matching
Gaber et al. (2014b) Numerous Numerous Both Multiple
Ortiz et al. (2015) Sift/Surb/ORB Feature Extraction Method Online Feature Extraction
Braojos et al. (2014) Time-domain and Frequency domain Feature Extraction Method Online Feature Extraction
Min and Cho (2011) Segmentation Activity-based Classification Offline Segmentation
Stahl et al. (2012) Numerous Numerous Both Multiple
Jayaraman et al. Sliding Windows with 50% Overlap FFT and Light-weight Analysis Online Multiple
(2014b)
Wu et al. (2013) Sliding Windowing for Segmentation NA NA NA
Sherchan et al. (2012)  Change Detection Light-weight Clustering Online Quality Data Collection
Jayaraman et al. Light-weight Algorithms Light-weight Clustering Online Quality Data Collection
(2014a)
Yuan and Herbert Sliding Windowing with 50% Overlap and 66 Time Domain and Frequency Domain Features  Online Multi-user Data Collection
(2014) Feature Extraction Extracted through Statistical Methods
Yoon (2013) Filtration methods are applied Filtration Online Data Filtration
Gu et al. (2011) Sliding Windows based Segmentation NA Offline Improving Data Quality

agent management and clone security are the main issues in mobile
agent-based mobile cloud computing environments (Khan, 2015).

Computation offloading schemes function with single-site and
multiple-site surrogate settings (Abolfazli et al., 2014). In the case of
single-site surrogates, the application components are offloaded to the
same server in the mobile cloud computing architecture. However, this
setting develops a tightly bounded relationship between mobile appli-
cations and their corresponding surrogates. Therefore, the dynamic
mobility increases the latency in distant mobile devices (Abolfazli et al.,
2014). On the other hand, multiple-site surrogates work in two ways.
Either application clones are provided at multiple sites using live
virtual machine migration methods or different program components
are executed at various surrogates. In addition, the virtual machine
migration problem also brings the parallelization challenge, which
needs to be addressed in multiple-site surrogates (Abolfazli et al.,
2014). The programs should be effectively partitioned and mapped into
graph data structures that are further optimized for seamless applica-
tion execution in mobile cloud computing environments. In addition,
adaptive computation offloading schemes consider program execution
contexts and previous program instances and devise optimal execution
strategies accordingly. Adaptive computation offloading schemes con-
sider various parameters, including network connections and band-
widths, workloads, architectural heterogeneity and task deadlines.
However, the favorable offloading decision becomes complex due to
varying bandwidth, resource availability and network dynamics
(Abolfazli et al., 2014).
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Computation offloading schemes in mobile cloud computing en-
vironments are categorized as either static or dynamic (Kumar et al.,
2013). In static schemes, one-time cost-benefit analysis is performed
and offloading-favorable computations are offloaded in mobile cloud
computing environments. Dynamic computation offloading schemes
initially perform a cost-benefit analysis, implement online profiling, tag
the offloadable program components during application execution,
perform application partitioning for local and remote execution, and
offload the computation offloading favorable components in mobile
cloud computing environments. Computation offloading is performed
at different granularity levels. At the coarse-grained level, entire
applications are offloaded in mobile cloud computing environments.
The coarse-grained level computation offloading is well-suited when
cloud resources are available at one-hop distances from mobile devices.
However, in the case of cloudlets, live virtual machine migration may
incur higher cost in terms of latency. On the other hand, the complete
migration of entire application states in edge servers increases local
computation costs. At fine-grained levels, computation offloading is
performed at various application code levels, including method, task,
object, thread, class and program levels. These different granularity
levels increase the decision complexity of computation offloading.
Optimal computation offloading strategies involve multiple offloading
objectives, including performance enhancement, energy gain, reduced
execution time, minimum bandwidth utilization cost, and data reduc-
tion, among others. Table 8 presents the detailed literature review of
existing computation offloading methodologies for MDSM platforms.
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6.4. Data transfer

MDSM applications transfer data streams among devices and
systems in multiple ways. The simplest data stream transfer strategies
are based on transferring raw data streams. The raw data streams are
either stored on-board or directly collected from data sources.
Sometimes the MDSM applications perform initial data processing
and transfer the intermediate data to other systems and sometimes the
data stream mining algorithms are executed onboard in light-weight
processing modes and resultant knowledge patterns are transferred to
other devices and systems for aggregation and global knowledge view.

The data streams are transferred in push-based, pull-based, on-
demand, or opportunistic settings. In push based strategies, the mobile
devices simply transfer the data stream to connected devices and
systems. In pull based strategies, remote systems like cloud servers
monitor the connections and periodically collect the data stream from
mobile devices. The on-demand strategies work when the remote
servers issue a query for data processing or sensing to connected
mobile devices which in turn perform the required operations and
communicate the results back to requesting server. On-demand data
transfer strategies are useful for mobile crowd sensing applications.
The opportunistic data transfer strategies monitor the connected
devices and systems and find the feasible environment for pushing or
pulling data streams among connected devices and systems. Smart data
reduction is another approach for data transfer where mobile devices
perform the data stream mining operations and the results are
communicated only if there is a significant change in the data stream.
Table 9 presents the summary of data transfer strategies in MDSM
platforms.

In this section, we presented a thorough literature review of
methods that are used to handle the heterogeneity in MDSM platforms.

7. Literature summary

This section presents the summarized view of major contributions
relevant to MDSM platforms. Table 10 presents the comparison of
these contributions.

7.1. MineFleet

Minefleet is a distributed data stream mining platform for vehicular
data stream analysis (Kargupta et al., 2010). The data stream mining
components reside in an onboard computing system that continuously
mine the data streams which is acquired from on-board vehicle
sensors. Minefleet is based on five components: (a) Onboard hardware
component enables data acquisition form multiple onboard sensors
and provides the communication interface for data transfer, (b)
onboard data stream mining and management module enables the
execution of various data stream mining and statistical data analysis
algorithms and in case of unusual behaviors in vehicle data the module
enables to connect with remote MineFleet servers located in centralized
data center, (c) MineFleet server collects the analytics results from
vehicles to perform further analysis, (d) MineFleet web services provide
application programming interface (API) to access and view the
analyzed data from MineFleet servers and (e) privacy module manages
the end-to-end privacy in MineFleet system.

Minefleet uses light-weight algorithms to handle online data
streams and performs in-memory computations for finding the dis-
tance metrics, invariance, correlation, and inner product between data
stream elements. In addition, MineFleet performs change detection
using correlation matrix to uncover the unusual behavior from
vehicular data streams. Overall, MineFleet is designed to reduce the
onboard data storage cost and data communication cost in wireless
networks. In addition, the system processes the high-volume data
streams on resource constrained onboard computing system. However,
it is purposefully built for vehicular data stream mining applications
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Table 5

Knowledge management heterogeneity.
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Reference Local DM Remote DM On-screen Visualization Remote Visualization Knowledge Management
Pasricha et al. (2015) Y N Y N Online
Abdallah et al. (2015) Y N Y N Online
Boukhechba et al. (2015) Y N N N N
Haghighi et al. (2013) Y Y N N Online
Gomes et al. (2012b) Y N Y N Online
Mukherji et al. (2014) Y N N N N
Abdallah et al. (2012) Y N N N N
Srinivasan et al (2014) Y N N N N
Yang et al. (2014) Y N Y N Online
Gaber et al. (2014b) Y N Y N Online
Min and Cho (2011) Y N N N N
Stahl et al. (2012) Y N Y N Online
Jayaraman et al. (2014b) Y Y N Y Both
Dou et al. (2011) N N Y N N
Wu et al. (2013) N Y N Y Offline
Sherchan et al. (2012) Y Y Y Y Offline
Jayaraman et al. (2014a) Y Y Y Y Offline
Lin et al. (2013) N N N NA Online
Yuan and Herbert (2014) Y N N NA Both
Talia and Trunfio (2010) N Y Y N Offline
Kargupta et al. (2010) Y Y Y Y Online
Yoon (2013) Y Y NA NA Online

Table 6

Adaptation heterogeneity.
Reference System Level Algorithm Level Data Rate CPU Memory Context Learning Model Event
Pasricha et al. (2015) Y N N Y N N Y Y
Abdallah et al. (2015) N Y N N N N Y N
Boukhechba et al. (2015) N N N N N N Y N
Haghighi et al. (2013) Y Y Y Y Y Y N N
Gomes et al. (2012b) N Y N N N N Y N
Lu et al (2012) N N N N N N Y N
Gaber et al. (2014b) N Y Y Y Y N N N
Stahl et al. (2012) N Y Y Y Y N N N
Jayaraman et al. (2014b) Y Y Y Y Y N N N
Eom et al. (2015) N N N N N N Y N
Sherchan et al. (2012) Y Y Y Y Y Y Y N
Jayaraman et al. (2014a) Y Y Y Y Y Y Y N
Yuan and Herbert (2014) Y N N N N N Y N
Kargupta et al. (2010) N Y N N N N N N

and still lacks the generality for execution of heterogeneous data

stream mining applications.

7.2. OMM

Open Mobile Miner (OMM) is a situation aware and adaptive data

Table 7

Application partitioning heterogeneity.

stream mining system for mobile devices (Haghighi et al., 2013). OMM
architecture enables six main components: (a) data source component
generates data stream from four different sources which include
onboard sensors, controlled data streams generated by OMM applica-
tions, recording and replaying data stream using CSV files, and web
services, (b) data stream capture component acquires data stream from

Reference Device Cloud Server Edge Type Partitioning Mode Model Granularity Form
Wang et al. (2012) Y NA NA NA Offline Data-based Static Data Fixed
Gaber et al. (2014b) Y N N N Offline Data-based Static Data Fixed
Ortiz et al. (2015) Y N NA NA Offline Data-based Static Data Fixed
Braojos et al. (2014) Y N N N Offline Computation-based Static Learning Model Fixed
Min and Cho (2011) Y N N N Offline Data-based Static Data Fixed
Stahl et al. (2012) Y N N N Offline Data-based Static Data Fixed
Jayaraman et al. (2014b) Y Y Y Y Offline Data-based Dynamic Data Fixed
Dou et al. (2011) Y N N N NA Data-based Static Data Fixed
Sherchan et al. (2012) Y Y N N Offline Computation-based Static Application Fixed
Jayaraman et al. (2014a) Y Y N N Offline Computation-based Static Application Fixed
Lin et al. (2013) N N Y N Offline Data-based Static Data Fixed
Yuan and Herbert (2014) Y Y Y NA Offline Data-based Static Data Fixed
Hassan et al. (2015) Y No No No Online Method-based Dynamic Method Dynamic
Talia and Trunfio (2010) N N Y N Offline Data-based N N N
Yoon (2013) Y Y NA NA Offline Data-based Static Method NA
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Table 8
Computation offloading heterogeneity.
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Ref. Mode Type Parameters Offloading Devices Servers Objective

Wang et al. (2012) Offline Static NA Single Single Pattern Mining

Gaber et al. (2014b) Offline Static NA Single Multiple Collaborative Mining

Ortiz et al. (2015) Online Static Execution Time Multiple Multiple Collaborative Clustering
Stahl et al. (2012) Offline Static NA Single Multiple Collaborative Mining
Jayaraman et al. (2014b) Both Dynamic Connectivity Multiple Multiple Multi-objective

Eom et al. (2015) Online Dynamic Classifier Single Multiple Dynamic Scheduling
Sherchan et al. (2012) Offline Static NA Multiple Single Reduced Data Collection
Jayaraman et al. (2014a) Offline Static NA Multiple Single Reduced Data Collection
Hassan et al. (2015) Online Dynamic Multiple Single Multiple Reduced Latency and Energy Gain
Talia and Trunfio (2010) N N NA Multiple Multiple Offline Remote Data Analysis
Yoon (2013) Offline Static NA Multiple Single Multi-layer Data Mining

different data sources and input either directly into light-weight data
mining algorithms or redirects through adaptation engine if OMM is
operating in adaptive mode, (c) resource monitor component tracks the
memory, CPU, and battery power in mobile devices for seamless
execution and adaptations, (d) a library of light-weight data stream
mining algorithms, (e) a library to enable visualization facilities in
mobile devices, and (f) adaptation engine to execute resource and
situation aware adaptation strategies. OMM provides light-weight
classification, clustering, and association rule mining algorithms how-
ever the adaptation strategies are occasionally required to handle the
resource constraints in mobile devices. Situation-aware adaptation
strategies maintain a set of predefined situations which are inferred
from periodically collected contextual information. Alternately, re-
source-aware adaptation strategies control the data rate and execution
behaviors of data stream mining algorithms on the basis of incoming/
outgoing data rates, and memory and CPU availability. OMM is a first
general purpose mobile based adaptive data stream mining system but
the light-weight execution of data mining algorithms enforces the
compromises over the quality of knowledge patterns such as level of
accuracy of classifiers, the number of clusters produced by clustering
algorithms or association rules found by association rule mining
algorithms.

7.3. CARDAP

Context aware real time data analytics platform (CARDAP) is a
distributed data stream mining system for mobile crowd sensing
applications (Jayaraman et al., 2014a). CARDAP architecture offers
five key components: (a) data stream capture component facilitate in
data acquisition from range of on-board and off-board, physical and
virtual, and sensory and non-sensory data sources, (b) analytic
component facilitates in deploying application specific data stream
mining algorithms such as activity recognition components, (¢) open
mobile miner to facilitate generic execution of light-weight data stream
mining algorithms, (d) data sink component to push data to external

Table 9
Data transfer heterogeneity.

data stores such as cloud based data storage services, and (e) storage
and query component to store results of local analytics for lateral on-
demand querying. CARDAP uses three data transfer strategies from
mobile devices to cloud data stores. First, it uses naive approach to
uploading raw data stream in the cloud environments. Second, it uses
local analytics approach where locally stored analytics results can be
acquired by cloud data stores using on-demand querying. The Third
approach enables smart data reduction where analytics results are
transferred in case of significant change.

7.4. MOSDEN

Mobile sensor data engine (MOSDEN) is a component based
platform to facilitate opportunistic sensing applications in mobile
crowd sensing environments (Jayaraman et al., 2014b). MOSDEN
architecture is based on seven components: (a) plugins are the software
applications that independently facilitate in interfacing with different
data sources, (b) virtual sensors represent the abstraction layer of
physical data sources, (c) processors components facilitate in develop-
ment of learning models and mining algorithms, (d) storage compo-
nents facilitate in data storage from virtual sensors and processors
components, (e) query manager component answers and resolves
queries from external sources, (f) service manager establishes the
persistent and non-persistent data transfer strategies from MOSDEN
clients to external data sources and (g) API components provide
application programming interfaces to external applications for data
access from MOSDEN clients. The component based design of
MOSDEN offers generality and programmability of the proposed
architecture. In addition, local data processing and interaction with
plethora of physical and virtual data sources helps in the deploying a
wide range of mobile opportunistic sensing applications.

7.5. MARS

Mobile activity recognition system (MARS) process the data stream

Reference Push-based Pull-based On-demand Opportunistic Smart Data Reduction
Wang et al. (2012) Yes N N N N
Gaber et al. (2014b) Yes N N N N
Ortiz et al. (2015) Yes N N N N
Stahl et al. (2012) Yes N N N N
Jayaraman et al. (2014b) Yes Yes Yes N N
Eom et al. (2015) Yes N N N N
Sherchan et al. (2012) Yes N N N N
Jayaraman et al. (2014a) Yes N Yes N Yes
Lin et al. (2013) Yes N N N N
Hassan et al. (2015) Yes N N Yes N
Talia and Trunfio (2010) Yes N N N N
Yoon (2013) Yes N N N N
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Table 10
Strengths and weaknesses of existing MDSM platforms.
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Platform Model Strengths ‘Weaknesses
MineFleet MCC - Distributed - Difficult to generalize
- Onboard data mining - Supports only vehicular onboard applications
- Data reduction at mobile end - Highly coupled applications
- Reduced bandwidth utilization - Dependency over Internet connections
OMM Far-edge - Mobile-based - Compromises on knowledge quality
- Adaptive data processing - Does not supports heavy-weight data processing
- Light-weight algorithms - Privacy concerns
- Component-based architecture
CARDAP MCC - Distributed - Does not performs runtime load-balancing
- Onboard data processing
- Data reduction
- Light-weight data mining algorithms
MOSDEN McCC - Distributed - Lacks general heavy-weight components
- Data filtration - Only focuses on data acquisition and data processing heterogeneity
- On-demand access to data
MARS Far-edge - Mobile-based - Lacks generality
- Adaptive - Does not handles heterogeneity
- Specific to activity recognition applications
STAR Far-edge - Mobile-based - Lacks generality
- Adaptive - Does not supports heavy-weight data processing
- Specific to activity recognition - Does not handles heterogeneity
PDM F2F - Mobile-based - Lacks heavy-weight data processing
- Distributed - Does not uses cloud services
- Agent-oriented - Does not handles heterogeneity at application level
- Light-weight data processing
- Scalable
CARA McCC - Distributed - Lacks in generality
- Context-aware data analysis - Lacks load-balancing
- Specific to activity recognition - Does not handles heterogeneity at platform level
- Provides universal learning models
SOA MCC - Cloud-based data analytics services - Does not handles heterogeneity in MDSM applications
MobiSens MCC - Distributed - Does not handles heterogeneity at platform level
- Generic sensing architecture
- Specific to activity recognition applications
- Thin Clients
- Two-tier back-end architecture
MSM Far-edge - Mobile-based - Lacks support from cloud servers and other devices
- Enables general components for association rule mining
Mobile Miner Far-edge - Mobile-based - Lacks support from cloud servers and other devices
- Supports wearable and IoT devices
- Mines co-occurrence patterns
Three-tier Hierarchical - Multi-layer architecture - High Coupling

- Offers data mining services at multiple levels

- Lacks in handling heterogeneity

acquired from onboard mobile phone accelerometer (Gomes et al.,
2012b). MARS extracts statistical features and labels the data stream
with certain physical activities such as walking, running, and standing.
MARS builds learning model from the training data and uses it for
future activity recognition. The system facilitates in model personaliza-
tion using dynamic model adaptation for personal data streams. The
incremental learning method is adapted and models are regenerated to
accommodate changes in the data stream.

7.6. Star

Stream learning for mobile activity recognition framework, named
as star, addresses the issue of change detection from streaming data for
accurate activity classification (Abdallah et al., 2015). The framework
uses incremental learning approach to handling concept drift over
evolving streaming data. The star framework offers three components
to build learning models, perform activity recognition, and to adapt
with evolving data streams. First, the modeling component builds the
initial sets of clusters using supervised learning approach. Later-on
fine-grained clusters are obtained using unsupervised learning models.
Second, the recognition components perform activity recognition over
sliding windows data using modeling components. Third, adaptation
component performs active online learning if the recognition compo-
nent outputs a new activity. The star handles concept drift effectively

17

however its functionality is limited to mobile activity recognition
applications.

7.7. PDM

Pocket data mining (PDM) is an agent-oriented distributed data
stream mining system for mobile devices (Gaber et al., 2014b). PDM
architecture is based on three generic software agents. First, mobile
agent miners (AM) are used to implement the data stream mining
algorithms in mobile devices. The AMs also facilitate in batch learning
models to handle the historical data. Second, mobile agent resource
discoverers (MRD) perform resource and task discovery operations
throughout the ad-hoc network. MRD matches the data sources with
stream mining algorithms controlled by AMs and it makes a decision
about which AMs should run in given mobile devices. Third, mobile
agent decision makers (MADM) travel through the ad-hoc network,
collect the results of processed data streams, and perform on-the-fly
knowledge integration. PDM applications work in following steps.
First, a mobile device initiates a data mining task by establishing an
ad-hoc network and activating the MRDs. The MRD discovers
resources, matches the data sources, decides which AMs should be
executed on connected devices, and runs the data mining tasks. Finally,
the MADM travels through ad-hoc network and integrates the acquired
results. PDM offers seamless distributed data stream mining, however,
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continuous executions of mobile agents increase energy and resource
consumption in mobile devices.

7.8. CARA

Context aware real-time assistant (CARA) provides a cloud based
data analytics tool for mobile activity recognition applications (Yuan
and Herbert, 2014). CARA works by downloading a global learning
model for activity recognition from cloud to mobile device. The mobile
device collects raw data stream, performs segmentation with 50%
overlapping sliding windows and computes features from each sliding
window. CARA distinguishes the static and dynamic activities using
threshold-based method wherein threshold is defined on the intensity
of accelerometer signals. CARA recognizes static activities through
threshold based method however it implies classification algorithms
such as decision trees, Bayesian networks, nearest neighbors, and
neural networks to predict dynamic activities. CARA components run
on both mobile devices and cloud servers. The mobile devices down-
load the universal model and perform classification operations. The
new unclassified data streams are stored temporarily in local storage
and uploaded to cloud servers when a Wi-Fi connection is available.
The cloud servers provide blob storage, enables queuing mechanism,
and utilize multiple nodes to produce best classification models for
each user.

CARA implements five types of queues: (a) data queue for client-
controller communication, (b) result queue to select suitable model for
each individual user, (c) register queue to register new users, (d) task
queue to control the task execution in universal node, and (e) model
queue to retrain the classification models and update the relevant
information. CARA designates four types of nodes in the cloud
environments: (a) controller node controls the flow of incoming data,
(b) machine learning node facilitates the model training process, (c)
universal node aggregates the data from all users and builds a universal
classifier and (d) evaluation node selects the most suitable classifier for
individual user.

7.9. SOA

Service oriented architecture (SOA) is based on client-server
communication model where mobile devices request for specific data
mining services and cloud servers provide relevant web services (Talia
and Trunfio, 2010). The proposed SOA architecture provides three
types of components: (a) data providers, (b) mobile clients, and (c)
mining servers. The data providers are the applications that generate
the data streams and mobile clients are the requesting applications that
require some specific mining tasks to be performed at mining servers.

7.10. MobiSens

MobiSens provides a generic sensing architecture for large-scale
activity recognition (Wu et al., 2013). MobiSens architecture is based
on client server communication model where mobile devices work as
clients and back-end server architecture works at two tiers. Major
components at mobile client include data widgets to sense raw data
streams, data aggregators to buffer and store data streams until the
availability of Internet connections, and sensing profile pulling com-
ponent that pulls the sensing profiles of MobiSens applications to
configure list of sensors, sampling data rates, strategy for data
sampling, interval between data push operations and many others.
On the server side, MobiSens components perform data storage,
indexing, and heavy weight data processing at the first tier. On the
second tier, MobiSens server facilitates in remote applications such as
life logging, community sensing etc.
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7.11. Mobile WEKA

Mobile WEKA is a general purpose tool developed to show the
mobile implementation of WEKA data mining library (Liu et al., 2012).
The mobile application facilitates in performing classification, cluster-
ing, and association rule mining operations. Mobile WEKA shows the
proof of concept for mobile devices as data mining platforms, however,
it lacks the generality and addressing heterogeneity at the application
level.

7.12. MSM

Mobile Sequence Miner (MSM) provides a general purpose tool for
mining association rules from frequent activity sequences (Mukherji
et al., 2014). MSM collects the data stream for application usage,
location, and call logs to infer the context and sequence of activities.
MSM runs as a back-end service in android mobile phones to
continuously monitor context and find frequent sequences. MSM
application execute in three steps: (a) preprocessing operations on
incoming data streams are performed to find the interleaved context
items, (b) sequence databases of interleaved context events is gener-
ated, and (c) frequent sequences are generated from sequence data-
bases.

7.13. MobileMiner

MobileMiner facilitates in mining co-occurrence patterns from GPS
locations, call logs, and application logs to infer the contextual
information (Srinivasan et al., 2014). MobileMiner runs as a back-
end service in Tizen applications which run in multiple platforms such
as wearable devices, home appliances, and mobile IoTs. MobileMiner
extracts the time-stamped baskets (chunks of the data stream) using
the base basket extractor component whereby co-occurring contexts
are stored in each basket. MobileMiner uses base rule miner compo-
nent which mines stream of extracted baskets and uncovers underlying
co-occurrence patterns. MobileMiner enables some other components
such as app usage filter and app rule miner to retrieve application
usage relevant context baskets and find co-occurring patterns.
MobileMiner communicates with external devices and systems using
pattern retriever component that retrieves overall and detailed pat-
terns. The prediction engine component in MobileMiner retrieves
prediction information from overall patterns.

7.14. Three-tier data mining architecture

Researchers proposed MDSM architecture that works at three
layers (Yoon, 2013). The small-scale micro-controller devices at the
lowest layer enable the sensing operations, perform row-level instance
based learning, and execute data filtration methods. The filtered data
streams are transferred to user smartphones which find the local
patterns using onboard computational resources. In addition, the
smartphones correlate local patterns to form regional patterns. The
cloud servers at the highest layer integrate the regional patterns from
multiple smartphones to generate the global patterns. The proposed
layered architecture is suitable for many application area such as
patient health monitoring systems, community sensing, and mobile
crowd sensing applications.

In this section, we presented the summary literature of few recently
proposed MDSM platforms. In the next section, we present the detailed
gap analysis of existing research work in order to articulate the future
research directions for data stream mining in mobile edge cloud
computing systems.

8. Gap analysis and future research directions

The heterogeneity needs to be controlled at both application and
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platform level.
8.1. Controlling heterogeneity at application level

Ideally, MDSM applications should collect and process data stream
using on-board memory to minimize the efforts in data storage and
reduce the latency which occurs due to I/O operations. However,
complexities introduced by data acquisition strategies and resource
constraints in mobile devices are the main bottlenecks in performing
in-memory application execution. For high volume and high speed data
streams, the chunking and segmentation operations are performed
using fixed size sliding windowing methods. The settlement of windows
size is challenging because of varying complexities and operational
behaviors (e.g. nature of data structures such as arrays, trees, graphs,
data storage in random, sorted, unsorted, compressed arrangements,
traversal behaviors such as search strategies) of data preprocessing and
mining algorithms. In addition, fixed size windows may create latency
when data streams enter with variable data rates. In addition, MDSM
applications need to handle the heterogeneity for the acquisition of
data stream from authentic data sources, in known data formats,
however, the existing literature lack to address these issues.

The data fusion strategies increase/decrease the lateral complex-
ities in stream execution process. Existing literature mainly presents
early data fusion strategies which increase the complexity in the
system. The raw data collection from multiple data source induces
noise, outliers, and missing values which increase the level of sparsity
in high-dimensional data streams. Therefore, dimension reduction,
anomalies and outliers detection, and sketching operations are used to
preprocess and improve the quality of data streams. Late data fusion
helps in reducing the complexities by performing initial data prepro-
cessing and fusing reduced, noise free, and complete data points.
Discriminatory data fusion strategies help in improving the perfor-
mance of the system by selecting useful attributes of the data stream
that help in uncovering quality knowledge patterns. However discri-
minatory data fusion may result in compromises over the quality of
knowledge patterns such as accuracy of classifiers, the number of
itemsets produced by frequent pattern mining algorithms, and the
number of clusters in data clustering algorithms. Therefore more
research is needed for late and discriminatory data fusion by keeping
a balance between quality of knowledge patterns and resource con-
sumption of MDSM applications.

Although data preprocessing operations vary according to applica-
tion requirements and objectives of data mining algorithms however
existing literature mainly considered feature extraction and noise
filtration as preprocessing methods. Existing literature still lacks in
preprocessing methods for dimensionality reduction, outliers, and
anomalies detection methods. The dimension reduction methods could
help in reducing the computational complexities of MDSM applications
by projecting high dimensional complex data streams in low dimen-
sional feature vectors. In addition, dimension reduction methods help
in reducing the sparsity which increase the computational complexity
in MDSM applications. Highly sparse data streams need to construct
large learning models and consume more computational resources,
therefore, effective reduction of high dimensional data reduce the
resource consumption.

MDSM applications should perform all data mining operations in-
memory. However, most of the existing studies first preprocess and
store the data stream before training the learning models. Few studies
performed in-memory training in batch mode or updated model from
generalized to personalized models, however, existing literature still
lacks in the online (re-)training of learning models in mobile devices.
Aside from this, the prediction by data stream mining algorithms is
made online by keeping the learning models in memory, evaluating the
attributes of incoming data streams and uncovering new knowledge
patterns. However existing studies used same data stream for training
and prediction, therefore, lacks in generality to adapt new data
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streams.

Existing studies lack in knowledge management features and none
of the studies focuses knowledge management as a core issue.
However, there exists a need to handle knowledge management issue
effectively. Distributed application logic in MDSM platforms generate
knowledge patterns in different computing environments, therefore,
integration and summarization of relevant knowledge patterns requires
further attention.

8.1.1. Critical factors of complexity in MDSM applications

Numerous factors affect the complexity of MDSM applications.
Since the mobile applications execute in resource constrained environ-
ments therefore high volume of incoming data stream becomes a
critical factor to handle the complexity in mobile devices. Although
existing methods use light-weight algorithms which do not consider the
whole data stream and reduce the quality of knowledge patterns.
However high data size severely impacts the heavy weight MDSM
algorithms. Likewise high data rate in MDSM applications increases
the computational complexity. Exiting MDSM applications work online
by performing in-memory operations with time constraints. The
algorithms are executed as one-pass algorithms with the condition
that current data stream must be processed before the arrival of next
data stream.

The choice of data fusion strategy helps in increasing or decreasing
the computational complexity of MDSM applications. Early data fusion
strategies produce redundant, noisy, and anomalous data streams
because MDSM applications collect data streams without any filtering
and/or preprocessing methods. On the other hand, late and discrimi-
natory data fusion strategies produce high quality data streams hence
requires fewer computations at later stages.

The operational behaviors such as populating data structures, the
traversal methods, and nature of computational operations affect the
computational complexity of data preprocessing and data mining
algorithms. The computational complexity increases when the data
stream mining algorithms are bounded to perform all operations using
on-board computational resources. Existing systems use light-weight
algorithms, that use shallow data structures and linear traversal
behaviors, to handle the computational complexity of data preproces-
sing and mining algorithms.

The complexity of MDSM applications also increases during the
learning phase. Online learning over large streaming data becomes
computationally infeasible due to resource limitations and constraint of
keeping whole data stream in memory. The behavior of learning model
such as supervised, unsupervised, and semi-supervised settings also
affect the computational complexity of the MDSM applications. The
supervised and semi-supervised learning model initially uses labeled
data stream hence learning algorithms are trained with-in a confined
feature space. On the other hand, during unsupervised learning the
leaning models need to be trained with high-dimensional complex data
streams which quickly hamper the computational resources especially
in mobile devices.

The high complexity in aforementioned critical factors impacts the
MDSM applications as a whole as shown in Fig. 10. The large size of
data stream impacts the complexity of data rates, preprocessing
algorithms, learning behaviors, and data mining operations. Likewise,
the increase in computational complexity at any stage impacts the
subsequent operations in MDSM applications.

8.2. Controlling complexity at platform level

Ideally, MDSM applications should perform maximum computa-
tional operations near the data sources without latency. However, the
resource limitations in mobile devices enforce to acquire computational
support from other mobile devices and large scale computing infra-
structures such as clouds, grids, and Internet enabled servers. Existing
systems for MDSM works adaptively in mobile environments.
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Alternately, the systems enable distributed data stream mining in
mobile cloud settings. However existing literature still lacks the
systems which fully utilize the capabilities of far-edge mobile devices,
edge servers, and cloud computing architectures. In addition, the
execution models of existing systems are designed as standalone,
distributed, collaborative, and parallel settings. However existing
literature still lacks the device-centric systems based on collaborative
and distributed execution model for MDSM applications.

Due to variations in computational complexities of MDSM applica-
tions and required quality of knowledge patterns, MDSM applications
enable light-weight processing for efficient resource utilization in
mobile devices. Alternately, the algorithms are made adaptive by
adjusting the processing behaviors according to incoming data rates,
required quality of knowledge patterns, resource availability, and
outgoing data rates. Although algorithm level adaptations efficiently
handle the resource limitations, however, customization of each
algorithm impacts generality. System level adaptation strategies can
help in achieving the generality however existing literature still lacks
relevant methods.

Since MDSM applications execute using multiple computing plat-
forms, therefore, application logic is distributed among different
devices and systems. For static applications, the data acquisition, and
light-weight data stream mining components are used in mobile
devices however heavy weight data processing and knowledge aggrega-
tion components are installed in remote and resourceful environments.
In the case of dynamic application execution, application components
are mapped into graph data structures, some optimization operations
are performed before the distribution of application logic. However,
such techniques lack in MDSM relevant literature. The distribution of
application logic in MECC systems is a complex task because edge
servers are tightly coupled with infrastructure based clouds and
application components reside at all three levels i.e. mobile devices,
edge servers, and infrastructure based clouds. These tightly bounded
applications are highly dependent over Internet connectivity, therefore,
mobility of devices requires continuous virtual machine migrations and
tracings of application states. Existing literature still lacks a fully
functional MECC based system to facilitate MDSM applications. In
addition, alternate solutions are needed to handle the mobility and
Internet dependency and tight coupling issues in MECC systems.

Computation offloading strategies help in the partial execution of
MDSM applications in distributed computing settings such as F2F, far-
edge to the edge, MCC, and MECC communication models. Although
there exists numerous computation offloading schemes for general
applications, however, existing literature still lacks in data stream
mining application specific strategies. Existing literature exhibits the
static, dynamic, and adaptive computation offloading strategies which
work at method, thread, program, component, and application levels,
however, these techniques do not consider the speed and volume of the
data stream. In addition, existing computation offloading schemes are
either device or cloud-centric, or work in collaboration between mobile
and cloud systems however new methods are required to offload data
stream mining tasks in MECC systems.
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Since MDSM applications need to handle continuous data streams
in dynamically changing mobile environments, therefore, data manage-
ment strategies are needed for raw data and/or partially processed
data. Existing MDSM platforms either collect and store raw data
streams using separate applications or process raw data streams
immediately after collection. Offline data collection strategies increases
the latency and online data stream processing enforce the light-weight
execution of data mining algorithms. Therefore, new data management
strategies are needed which can handle maximum data stream online
but use heavy-weight algorithms for data processing. Alternately,
strategies are required to manage the partially processed transient
data streams.

Finally, existing MDSM systems primarily manage the knowledge
patterns in cloud environments. In addition, a few systems exist which
manage the knowledge locally using on-board storage and performs
on-demand knowledge synchronization between mobile and cloud
environments. However, new knowledge management methods are
required for MECC based MDSM applications.

8.3. Technical research challenges

In addition with above mentioned challenges, next-generation
MDSM applications and platforms need to handle following technical
research challenges.

8.3.1. Multi-tier architectures

The computing technologies are growing rapidly and next-genera-
tion MDSM platforms needs to use these processing technologies in
order to accelerate the application performance. Despite of wide
acceptance existing literature still lacks the multi-tier and heteroge-
neous data processing platforms. Therefore, future MDSM platforms
should be designed with scalable topological settings using hetero-
geneous computing architectures blended with CPUs, GPUs, FPGAs,
and large scale data centers. In addition, hierarchical memory archi-
tectures based on Caches, RAMs, and internal and external storage
should also considered to design next-generation applications and
platforms.

8.3.2. Load-balancing

Considering the advancements in computing technologies, future
MDSM platforms will span across resource-constrained IoTs, wearable,
and mobile devices at one end and resourceful servers, clusters, and
multi-cloud infrastructures on the other end. Future MDSM platforms
need to integrate efficient load-balancing strategies in order to mini-
mize the latency, efficient energy utilization, reduce bandwidth con-
sumption and in-network data movement across the platforms. The
new load-balancing strategies may integrate fuzzy logic and soft set
theory based methods for improved efficiency. In addition, deep
context models could be used in order to improve the load-balancing
strategies across the platforms.

8.3.3. Optimization

The streaming data in mobile environments challenges the capa-
cities of MDSM platforms in terms of energy consumption, storage
management, bandwidth utilization, performance gain, privacy pre-
servation, scheduling, and workflow management. Considering the
above mentioned challenges, the MDSM applications and platforms
need to be optimized for data processing, task scheduling, privacy
preservation, and knowledge management. In addition with this the
optimization algorithms should ensure seamless application execution
across multiple devices and computing systems. The MDSM platforms
should enable dynamic and adaptive application execution in MECC
systems. TO further the research, the optimization strategies should be
devised to achieve the maximum trade-off between data processing
efforts and application execution in multiple platforms. Considering
the optimization objectives, new algorithms must ensure the reduced
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and optimal resource consumption both for application execution and
the resource required to execute the optimization algorithms itself.

8.3.4. Data stream and knowledge management

MDSM applications need to handle the data streams in multiple
formats and need different data management strategies. The MDSM
platforms must provide the optimal data management schemes for raw
data streams. To this end, existing in-memory data management
schemes needs to be improved in order to efficiently handle the
streaming data considering its velocity, variety, volume, and variability
characteristics. MDSM applications convert raw data streams into
different formats at each stage of execution. These formats include
raw data converted into event data streams, feature vectors, structured
formats such as tables, to name a few. In addition, the intermediate
data generated during data processing, when the data populated in data
structures (i.e. arrays, trees, and graphs), challenge the computational
capacities of resource constrained devices and computing systems
which have low amount of available memory. New data management
strategies are required to efficiently handle the intermediate data
streams. Finally, the MDSM applications produce knowledge patterns
which need to be integrated and summarized for a holistic view of
incoming data streams. Future MDSM platforms must provide syn-
chronized knowledge management schemes across the MECC systems.

8.3.5. Programming models, design patterns, and development
environments

Considering the heterogeneity in next-generation MDSM applica-
tions and platforms, new programming models, design patterns, and
development environments are needed. Existing simulation tools and
programming models support application execution as either mobile-
first or cloud-first approach, however, new programming models
should support the application execution across MECC systems. In
addition, new design patterns are required which could be reused to
each the application development process in MECC systems. Moreover,
new integrated development environments (IDEs) are needed to
integrate the programming models and design patterns. The IDEs
should provide support for drop and drop component based visual
workflow management across MECC systems. Further, the IDEs should
provide reusable components for rapid application development in
MECC systems.

8.4. Future research areas

This section presents some future directions (see Fig. 11) in order
to accelerate the research work in MDSM applications and platforms.
Due to application and platform level heterogeneity, MDSM applica-
tions can help in future and emerging research areas in multiple ways.

8.4.1. Privacy and security

The onboard data sources in far-edge devices produce personal data
streams, therefore, MDSM applications need to address the privacy and
security concerns of end users (Sokolova and Matwin, 2016). However,
to this end, existing literature lacks in scalable end-to-end privacy
preservation models for MDSM applications in mobile edge cloud
computing systems (Chang et al., 2016). The privacy preservation
models are needed to be designed and embedded in existing MDSM
applications without loosing the quality of uncovered knowledge
patterns. Moreover, the data stream mining applications should enable
secure data and knowledge transfer strategies for data movement
inside MDSM platforms. To this end, privacy and security challenges
need serious attentions in order to prevail this important research area.

8.4.2. Big data reduction

The continuous evolution in mobile data streams eventually results
in big data. However, analyzing the massive amount of data and
uncovering useful patterns for end users is a challenging task. The
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deployment of data stream mining applications at user-end can help in
reducing big data wherein the users can uncover the knowledge
patterns using personal far-edge devices. The resultant knowledge
patterns could be shared in order to reduce big data (Rehman and
Batool, 2015). Existing literature lacks the pattern based data sharing
strategies for big data systems. Future research work should focus on
the development and deployment of learning models complying with
the needs of big data systems. In addition, pattern sharing, knowledge
summarization, and big data aggregation models are needed in order to
deal with reduced big data. In essence pattern based big data reduction
can benefit to users and big data system providers in many ways
including, (a) reduced data communication cost, (b) minimum band-
width utilization, (¢) reduced in-network data movement, (d) fewer
efforts in data cleaning and preprocessing for conversion of unstruc-
tured big data in to structured datasets, and last but not the least, (e)
big data system providers can offer personalized services to end users.

8.4.3. Value creation

MDSM applications in MECC systems can help in value creation for
customers and enterprises in multiple ways. At one end, the customers
can use the personal far-edge devices, edge servers, and cloud
computing systems to find the personal knowledge patterns. At the
other end, enterprises can acquire the customers' data in order to
develop and optimize their business process models and meet their
needs (Chang, 2014). MDSM applications can benefit in value creation
for a wide spectrum of user-centered business models such as that used
for e-commerce, personalized health and insurance, tourism, Telecom,
amongst others.

8.4.4. Machine analytics

MDSM applications can benefit in machine analytics in order to
uncover the operating and performance behaviors of machines. The
embedded data stream mining components in machines can help in
onboard and off-board data collection and uncovering machine beha-
viors in MECC systems. For example, in manufacturing industries,
large scale industrial production units can use embedded data stream
mining components to uncover knowledge patterns from machine log
files and monitor the machine's performance. Similarly, local and
collective intelligence in robotics can be embedded using MDSM
applications. Few more example applications include smart cars,
vehicular ad-hoc networks, machine to machine communication sys-
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tems, and cyber-physical systems.

8.4.5. Personal analytics

Mobile users generate personal data from a plethora of sensory and
non-sensory data sources (Rehman et al., 2015). These data sources
collect data streams of mobile users from onboard and off-board
sensors as well as the data generated in the result of user interactions
with mobile devices, physical activities performed by users, and the
behavioral data of users on social networks and World Wide Web.
MDSM applications in MECC system can help in uncovering personal
knowledge patterns from above mentioned personal data. The knowl-
edge patterns are useful for lifestyle and wellness management
applications, behavioral analytic driven systems, mobile health appli-
cations, mobile social networks, and mobile commerce, to name a few.

8.4.6. IoT analytics

MDSM applications can be embedded in IoT systems in order to
uncover the device-centric and collective knowledge patterns
(Satyanarayanan et al., 2015). The applications can be deployed in a
single device and multi-device settings. In single device settings, the
uncovered knowledge patterns could be used for improving single
device usage experiences however in the case of multi-device settings,
the patterns could be used for the overall improvement of IoT systems.
In addition, the application logic could be distributed across multiple
IoT devices in order to find the collective behavior.

8.4.7. Mobile crowd sensing

The MDSM applications in MECC systems can facilitate in mobile
crowd sensing systems (Jayaraman et al., 2014a). For example, the
data streams collected by smart city management applications for
traffic management, commuters facilitation, crowd management in
sporting arenas, and facilitating pilgrims and peoples gatherings at
holy places. Similarly, MDSM applications can facilitate in manage-
ment crowds of animals, vehicles, IoTs and many more similar
applications.

8.4.8. Participatory sensing

Participatory sensing is another application area for MDSM appli-
cations and platform. The knowledge patterns generated by mobile
users can help governments, business, enterprises, corporations, and
third party public data stream collectors in order to develop user-
driven applications and systems. However, participatory sensing
systems must ensure user privacy and security of shared data. In
addition, new incentive mechanisms are needed in order to lure mobile
users for participatory data sharing.

In this section, we discussed a few future research areas for the
intervention of MDSM applications and platforms. However, the
tremendous growth in IoTs, big data, cloud computing, and mobile
edge computing has risen many new application areas and research
opportunities for MDSM applications and platforms. Therefore, we
perceive that using MDSM in MECC system will quickly prevail in all
sectors of the economy and humane lifestyle management.

9. Conclusion

MDSM applications execute in multiple topological settings in
multiple phases. Each phase of MDSM applications need to handle
heterogeneity which increases the computational complexity. MDSM
applications are deployed in different computing devices and systems
with different form factors. Therefore MDSM systems need to enable
multiple functionalities such as application partitioning, computation
offloading, data management, light-weight and heavy-weight data
processing, knowledge management, and adaptation strategies to name
a few. Existing literature review reveals that MDSM applications need
to handle six critical factors to handle complexity namely, (a) size of
data stream, (b) speed of data, (c) early data fusion, (d) selection of
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preprocessing methods, (e) learning model development strategies, and
(f) selection of data mining algorithms. Therefore future research work
must focus these factors in order to optimize MDSM applications to
achieve multiple objectives such as, (a) efficient energy utilization, (b)
optimal bandwidth utilization, (c) reduced data movement in MECC
systems, (d) achieving memory efficiency, and (e) performance en-
hancement in terms of latency and CPU usage.

Acknowledgements

The work presented in this article is supported by the Ministry of
Education Malaysia (FRGS FP051-2013A and UMRG RP0O01F-13ICT)
and Bright Spark Unit of University of Malaya for providing incentive
support. The authors also extend their sincere appreciation to the
Deanship of Scientific Research at King Saud University for its funding
this prolific research group (PRG-1436-16).

References

Samsung unveils galaxy s5 and new gear range. (2014, February) Online. [Online].
Available: http://www.samsung.com/uk/discover/mobile/samsung-unveils-galaxy-
s5-and-new-gear-range/)

Android (operating system). (2016, 03) [Online]. Available: (https://en.wikipedia.org/
wiki/Android(operatingsystem))

Apple iphone history. (2016, 03) [Online]. Available: (http://apple-history.com/iPhone)

Web of science databases. (2016, 03) online. [Online]. Available: (www.webofknowledge.
com)

Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S., 2012. Cbars: Cluster
based classification for activity recognition systems. In: Advanced Machine Learning
Technologies and Applications. Springer, 2012, pp. 82-91.

Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S., 2015. Adaptive mobile
activity recognition system with evolving data streams. Neurocomputing 150,
304-317.

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R., 2014. Cloud-based augmentation
for mobile devices: motivation, taxonomies, and open challenges. IEEE Commun.
Surv. Tutor. 16 (1), 337-368.

Agrawal, R., Srikant, R., et al., 1994. Fast algorithms for mining association rules. In:
Proceedings 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, pp. 487—-499.

Ahmad, A., Ahmad, E., 2016. A survey on mobile edge computing. In: Proceedings of the
10th Internatonal Conference on Intelligenct Systems and Control (ISCO),
Coimbatore, India. doi: 10.1109/1SC0.2016.7727082.

Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Yousafzai, A., Xia, F., 2015. A survey
on virtual machine migration and server consolidation frameworks for cloud data
centers. J. Netw. Comput. Appl. 52, 11-25.

Altomare, A., Cesario, E., Comito, C., Marozzo, F., Talia, D., 2013. Using clouds for smart
city applications. In: 2013 IEEE Proceedings of the 5th International Conference on
Cloud Computing Technology and Science (CloudCom), vol. 2. IEEE, pp. 234-237.

Arunkumar, S., Srivatsa, M., Rajarajan, M., 2015. A review paper on preserving privacy
in mobile environments. J. Netw. Comput. Appl. 53, 74-90.

Bahl, V., (2015, May) The emergence of micro datacenters (cloudlets) for mobile
computing. [Online]. Available: (http://research.microsoft.com/apps/video/default.
aspx?1d=246447)

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the mcc Workshop on
Mobile Cloud Computing. ACM, pp. 13-16.

Boukhechba, M., Bouzouane, A., Bouchard, B., Gouin-Vallerand, C., Giroux, S., 2015.
Online prediction of peoples next point-of-interest, concept drift support. In: Human
Behavior Understanding. Springer, pp. 97-116.

Braojos, R., Beretta, 1., Constantin, J., Burg, A., Atienza, D., 2014. A wireless body sensor
network for activity monitoring with low transmission overhead. In: 2014
Proceedings of the 12th IEEE International Conference on Embedded and
Ubiquitous Computing (EUC). IEEE, pp. 265-272.

Chang, V., 2014. The business intelligence as a service in the cloud. Future Gener.
Comput. Syst. 37, 512-534.

Chang, V., Kuo, Y.-H., Ramachandran, M., 2016. Cloud computing adoption framework:
a security framework for business clouds. Future Gener. Comput. Syst. 57, 24—41.

Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A.V., Rong, X., 2015. Data mining for
the internet of things: literature review and challenges. Int. J. Distrib. Sens. Netw.,
12. http://dx.doi.org/10.1155/2015/431047.

Cisco, 2015. Cisco visual networking index: Global mobile data traffic forecast update,
2015-2020 (white paper), Tech. Rep., 2015. [Online]. Available: (http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html)

Cord, M., Cunningham, P., 2008. Machine Learning Techniques for Multimedia: Case
Studies on Organization and Retrieval. Springer Science & Business Media. http://
dx.doi.org/10.1007/978-3-540-75171-7.

Dogan, N., Tanrikulu, Z., 2013. A comparative analysis of classification algorithms in
data mining for accuracy, speed and robustness. Inf. Technol. Manag. 14 (2),
105-124.

Donohoo, B.K., Ohlsen, C., Pasricha, S., Xiang, Y., Anderson, C., 2014. Context-aware


http://www.samsung.com/uk/discover/mobile/samsung-nveilsalaxy-5ndewear-ange/
http://www.samsung.com/uk/discover/mobile/samsung-nveilsalaxy-5ndewear-ange/
https://en.wikipedia.org/wiki/Android(operatingsystem)
https://en.wikipedia.org/wiki/Android(operatingsystem)
http://appleistory.com/iPhone
http://www.webofknowledge.com
http://www.webofknowledge.com
http://refhub.elsevier.com/S1084-16)30299-sbref1
http://refhub.elsevier.com/S1084-16)30299-sbref1
http://refhub.elsevier.com/S1084-16)30299-sbref1
http://refhub.elsevier.com/S1084-16)30299-sbref2
http://refhub.elsevier.com/S1084-16)30299-sbref2
http://refhub.elsevier.com/S1084-16)30299-sbref2
http://refhub.elsevier.com/S1084-16)30299-sbref3
http://refhub.elsevier.com/S1084-16)30299-sbref3
http://refhub.elsevier.com/S1084-16)30299-sbref3
http://refhub.elsevier.com/S1084-16)30299-sbref4
http://refhub.elsevier.com/S1084-16)30299-sbref4
http://research.microsoft.com/apps/video/default.aspx?Id=,0,0,2
http://research.microsoft.com/apps/video/default.aspx?Id=,0,0,2
http://refhub.elsevier.com/S1084-16)30299-sbref5
http://refhub.elsevier.com/S1084-16)30299-sbref5
http://refhub.elsevier.com/S1084-16)30299-sbref6
http://refhub.elsevier.com/S1084-16)30299-sbref6
http://dx.doi.org/10.1155/2015/431047
http://www.cisco.com/c/en/us/solutions/collateral/service-rovider/visualetworkingndex/mobile-hite-per11html
http://www.cisco.com/c/en/us/solutions/collateral/service-rovider/visualetworkingndex/mobile-hite-per11html
http://www.cisco.com/c/en/us/solutions/collateral/service-rovider/visualetworkingndex/mobile-hite-per11html
http://dx.doi.org/10.1007/978-540-7
http://dx.doi.org/10.1007/978-540-7
http://refhub.elsevier.com/S1084-16)30299-sbref9
http://refhub.elsevier.com/S1084-16)30299-sbref9
http://refhub.elsevier.com/S1084-16)30299-sbref9
http://refhub.elsevier.com/S1084-16)30299-sbref10

M.H.u. Rehman et al.

energy enhancements for smart mobile devices. IEEE Trans. Mob. Comput. 13 (8),
1720-1732.

Dou, A.J., Kalogeraki, V., Gunopulos, D., Mielikinen, T., Tuulos, V., Foley, S., Yu, C.,
2011. Data clustering on a network of mobile smartphones. In: 2011 IEEE/IPSJ
Proceedings of the 11th International Symposium on Applications and the Internet
(SAINT). IEEE, pp. 118-127.

Drolia, U., Martins, R.P., Tan, J., Chheda, A., Sanghavi, M., Gandhi, R., Narasimhan, P.
2013. The case for mobile edge-clouds. In: 2013 IEEE Proceedings of the 10th
International Conference on and 10th International Conference on Autonomic and
Trusted Computing (UIC/ATC) Ubiquitous Intelligence and Computing. IEEE, pp.
209-215.

Eom, H., Figueiredo, R., Cai, H., Zhang, Y., Huang, G., 2015. Malmos: Machine learning-
based mobile offloading scheduler with online training. In: 2015 Proceedings of the
3rd IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud). IEEE, pp. 51-60.

Fernando, N., Loke, S.W., Rahayu, W., 2013. Mobile cloud computing: a survey. Future
Gener. Comput. Syst. 29 (1), 84-106.

Ferreira, H., Duarte, S., Preguiga, N., 2010. 4sensing—decentralized processing for
participatory sensing data. In: 2010 IEEE Proceedings of the 16th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2010, pp. 306—
313.

Framework, A., 2015. Allseen alliance . [Online]. Available: (https://allseenalliance.org/
framework/documentation/learn)

Fugiang, Y., 2011. The research on distributed data stream mining based on mobile
agent. Procedia Eng. 23, 103—108.

Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B., Stahl, F., 2014. Data stream
mining in ubiquitous environments: state-of-the-art and current directions. Wiley
Interdiscip. Rev.: Data Min. Knowl. Discov. 4 (2), 116—138.

Gaber, M.M.,, Stahl, F., Gomes, J.B. Pocket data mining framework. In: Pocket Data
Mining. Springer, 2014b, pp. 23-40.

Gaber, M.M., Zaslavsky, A., Krishnaswamy, S., 2005. Mining data streams: a review.
Sigmod Rec. ACM 34 (2), 18-26.

Gaber, M.M., Zaslavsky, A., Krishnaswamy, S., 2009. Data stream mining. In: Data
Mining and Knowledge Discovery Handbook. Springer, pp. 759-787.

Gama, J., 2013. Data stream mining: the bounded rationality. Informatica 37 (1).

Goel, A.M. Mangla, N., Patel, R., 2010. A survey on distributed mobile database and data
mining. In: International Conference on Methods and Models in Science and
Technology (ICM2ST-10), vol. 1324, no. 1. AIP Publishing, 2010, pp. 207-210.

Goldberg, A.B., Zhu, X., Singh, A., Xu, Z., Nowak, R., 2009. Multi-manifold semi-
supervised learning, doi:10.1.1.153.5001.

Gomes, J.B., Krishnaswamy, S., Gaber, M.M., Sousa, P.A., Menasalvas, E., 2012b. Mars:
a personalised mobile activity recognition system. In: Mobile Data Management
(MDM), 2012 IEEE Proceedings of the 13th International Conference on, July 23-
26, Balngluru, India. IEEE, 2012, pp. 316-319.

Gomes, J.B., Krishnaswamy, S., Gaber, M.M., Sousa, P.A., Menasalvas, E., 2012a. Mobile
Activity Recognition using Ubiquitous Data Stream Mining. Springer. http://
dx.doi.org/10.1007/978-3-642-32584-7_11.

Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J., 2011. A pattern mining approach to sensor-
based human activity recognition. IEEE Trans. Knowl. Data Eng. 23 (9), 1359-1372.

Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., Satyanarayanan, M., 2014. Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, pp. 68—81.

Ha, K., Satyanarayanan, M., 2015. Openstack++ for Cloudlet Deployment. School of
Computer Science Carnegie Mellon University Pittsburgh.

Haghighi, P.D., Krishnaswamy, S., Zaslavsky, A., Gaber, M.M., Sinha, A., Gillick, B.,
2013. Open mobile miner: a toolkit for building situation-aware data mining
applications. J. Organ. Comput. Electron. Commer. 23 (3), 224-248.

Hassan, M.A., Wei, Q., Chen, S., 2015. Elicit: Efficiently identify computation-intensive
tasks in mobile applications for offloading. In: 2015 IEEE International Conference
on Networking, Architecture and Storage (NAS). IEEE, pp. 12-22.

Hromic, H., Le Phuoc, D., Serrano, M., Antonic, A., Zarko, I.P., Hayes, C., Decker, S.,
2015. Real time analysis of sensor data for the internet of things by means of
clustering and event processing. In: 2015 IEEE International Conference on
Communications (ICC). IEEE, pp. 685-691.

Huang, G., Song, S., Gupta, J.N., Wy, C., 2014. Semi-supervised and unsupervised
extreme learning machines. IEEE Trans. Cybern. 44 (12), 2405-2417.

Jayaraman, P.P., Gomes, J.B., Nguyen, H.L., Abdallah, Z.S., Krishnaswamy, S.,
Zaslavsky, A., 2014a. Cardap: a scalable energy-efficient context aware distributed
mobile data analytics platform for the fog. In: Advances in Databases and
Information Systems. Springer, pp. 192-206.

Jayaraman, P.P., Perera, C., Georgakopoulos, D., Zaslavsky, A., 2014b. Mosden: a
scalable mobile collaborative platform for opportunistic sensing applications.
arxiv:1405.5867.

Kargupta, H., 2016. Vehicle data mining based on vehicle onboard analysis and cloud-
based distributed data stream mining algorithm. February 4, 2016, uS Patent 20,
160,035,152.

Kargupta, H., Gilligan, M., Puttagunta, V., Sarkar, K., Klein, M., Lenzi, N., Johnson, D.,
2010. Minefleet: the vehicle data stream mining system for ubiquitous environments.
In: Ubiquitous Knowledge Discovery. Springer, pp. 235-254.

Khan, A.M., Lee, Y.-K., Lee, S., Kim, T.-S., 2010. Human activity recognition via an
accelerometer-enabled-smartphone using kernel discriminant analysis, In: 2010
Proceedings of the 5th International Conference on Future Information Technology
(FutureTech), IEEE, 2010, pp. 1-6.

Khan, A.M., Siddiqi, M.H., Lee, S.-W., 2013. Exploratory data analysis of acceleration
signals to select light-weight and accurate features for real-time activity recognition
on smartphones. Sensors 13 (10), 13099-13122.

23

Journal of Network and Computer Applications 79 (2017) 1-24

Khan, M.A., 2015. A survey of computation offloading strategies for performance
improvement of applications running on mobile devices. J. Netw. Comput. Appl. 56,
28-40.

Krishnaswamy, S., Gama, J., Gaber, M.M., 2012. Mobile data stream mining: from
algorithms to applications, In: 2012 IEEE Proceedings of the 13th International
Conference on Mobile Data Management (MDM). IEEE, 2012, pp. 360—-363.

Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B., 2013. A survey of computation offloading for
mobile systems. Mob. Netw. Appl. 18 (1), 129-140.

Li, J., Peng, Z., Xiao, B., Hua, Y., 2015. Make smartphones last a day: Pre-processing
based computer vision application offloading, In: 2015 Proceedings of the 12th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), IEEE, pp. 462—470.

Liang, Y., Zhou, X., Yu, Z., Guo, B., 2014. Energy-efficient motion related activity
recognition on mobile devices for pervasive healthcare. Mob. Netw. Appl. 19 (3),
303-317.

Lin, C., Choy, K.-1.,, Pang, G., Ng, M.T., 2013. A data mining and optimization-based real-
time mobile intelligent routing system for city logistics, In: 2013 Proceedings of the
8th IEEE International Conference on Industrial and Information Systems (ICIIS),
1EEE, pp. 156-161.

Liu, J., Ahmed, E., Mhiraz, M., Gani, A., Buyya, R., Qureshi, A., 2015. Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions. J. Netw. Comput. Appl. 48, 99-117.

Liu, P., Chen, Y., Tang, W., Yue Q., 2012. Mob ile weka as data mining tool on a ndroid.
In: Advances in Electrical Engineering and Automation. Springer, pp. 75-80.

Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell, A.T.,
Gatica-Perez, D., Choudhury, T., Stresssense: Detecting stress in unconstrained
acoustic environments using smartphones, In: Proceedings of the 2012 ACM
Conference on Ubiquitous Computing. ACM, 2012, pp. 351-360.

Luan, T.H., Gao, L., Li, Z., Xiang, Y., Sun, L., 2015. Fog computing: Focusing on mobile
users at the edge, arXiv preprint arXiv:1502.01815.

Martens, J., 2010. Deep learning via hessian-free optimization, In: Proceedings of the
27th International Conference on Machine Learning (ICML-10), June 21-24, Haifa,
Israel, pp. 735-742.

Min, J.-K., Cho, S.-B., 2011. Activity recognition based on wearable sensors using
selection/fusion hybrid ensemble, In: 2011 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), IEEE, 2011, pp. 1319-1324.

Mukherji, A, Srinivasan, V., Welbourne, E., 2014. Adding intelligence to your mobile
device via on-device sequential pattern mining, In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication. ACM, pp. 1005-1014.

Murphy, R.R., 2016. Emergency informatics: using computing to improve disaster
management. Computer 49 (5), 19-27.

Nguyen, H.-L., Woon, Y.-K., Ng, W.-K,, 2015. A survey on data stream clustering and
classification. Knowl. Inf. Syst. 45 (3), 535-569.

Oneto, L., Ghio, A., Ridella, S., Anguita, D., 2015. Learning resource-aware classifiers for
mobile devices: from regularization to energy efficiency. Neurocomputing 169,
225-235.

Ortiz, J., Huang, C.-C., Chakraborty, S., 2015. Get. more less: Real.-Time Image CI ust.
Mob. phones 2015.(arXiv preprint arXiv:1512.02972)

Oshin, T.O., Poslad, S., Zhang, Z., 2015. Energy-efficient real-time human mobility state
classification using smartphones. IEEE Trans. Comput. 64 (6), 1680-1693.

Parthasarathy, S., Ghoting, A., Otey, M.E., 2007. A survey of distributed mining of data
streams. Data Streams. Springer. pp. 289-307.

Pasricha, S., Donohoo, B.K., Ohlsen, C., 2015. A middleware framework for application-
aware and user-specific energy optimization in smart mobile devices. Pervasive Mob.
Comput. 20, 47-63.

Rai, A., Yan, Z., Chakraborty, D., Wijaya, T.K., Aberer, K., 2012. Mining complex
activities in the wild via a single smartphone accelerometer, In: Proceedings of the
Sixth International Workshop on Knowledge Discovery from Sensor Data. ACM, pp.
43-51.

Rehman, M.H., Batool, A., 2015. The Concept of Pattern based Data Sharing in Big Data
Environments. Int. J. Data. Th. App. 8 (4), 11-18.

Rehman, M.H., Khan, A.R., Batool, A., 2016a. Big data analytics in mobile and cloud
computing environments. Innov. Res. Appl. -Gener. High. Perform. Comput.,
349-367. http://dx.doi.org/10.4018/978-1-5225-0287-6.ch014, (IGI Global).

Rehman, M.H., Chang, V., Batool, A., Teh, Y.W., et al., 2016a. Big data reduction
framework for value creation in sustainable enterprises. Int. J. Inf. Manag. 36 (6,
Part A), 917-928. http://dx.doi.org/10.1016/j.ijjinfomgt.2016.05.013.

Rehman, M.H., Liew, C.S., Igbal, A., Wah, T.Y., Jayaraman, P.P., 2016c. Opportunistic
computation offloading in mobile edge cloud computing environments. In:
Proceedings of the 17th IEEE International Conference on Mobile Data
Management, Porto, Portugal, (Vol. 1, pp. 208-213). doi:10.1109/MDM.2016.40,
13-17

Rehman, M.H., Liew, C.S., Wah, T.Y., 2014. Frequent pattern mining in mobile devices:
A feasibility study, In: 2014 International Conference on Information Technology
and Multimedia (ICIMU), IEEE, 2014, pp. 351-356.

Rehman, M.H., Liew, C.S., Wah, T.Y., Shuja, J., Daghighi, B., 2015. Mining personal data
using smartphones and wearable devices: a survey. Sensors 15 (2), 4430—4469.

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N., 2009. The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8 (4), 14-23.

Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W., Amos, B.,
2015. Edge analytics in the internet of things, IEEE Pervasive Computing, no. 2, pp.
24-31.

Settles, B., 2012. Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6 (1), 1-114.

Sharma, S., Chang, V., Tim, U.S., Wong, J., Gadia, S., 2016. Cloud-based emerging
services systems. Int. J. Inf. Manag..


http://refhub.elsevier.com/S1084-16)30299-sbref10
http://refhub.elsevier.com/S1084-16)30299-sbref10
http://refhub.elsevier.com/S1084-16)30299-sbref11
http://refhub.elsevier.com/S1084-16)30299-sbref11
https://allseenalliance.org/framework/documentation/learn
https://allseenalliance.org/framework/documentation/learn
http://refhub.elsevier.com/S1084-16)30299-sbref12
http://refhub.elsevier.com/S1084-16)30299-sbref12
http://refhub.elsevier.com/S1084-16)30299-sbref13
http://refhub.elsevier.com/S1084-16)30299-sbref13
http://refhub.elsevier.com/S1084-16)30299-sbref13
http://refhub.elsevier.com/S1084-16)30299-sbref14
http://refhub.elsevier.com/S1084-16)30299-sbref14
http://refhub.elsevier.com/S1084-16)30299-sbref15
http://dx.doi.org/10.1007/978-642-7_11
http://dx.doi.org/10.1007/978-642-7_11
http://refhub.elsevier.com/S1084-16)30299-sbref17
http://refhub.elsevier.com/S1084-16)30299-sbref17
http://refhub.elsevier.com/S1084-16)30299-sbref18
http://refhub.elsevier.com/S1084-16)30299-sbref18
http://refhub.elsevier.com/S1084-16)30299-sbref18
http://refhub.elsevier.com/S1084-16)30299-sbref19
http://refhub.elsevier.com/S1084-16)30299-sbref19
http://arxiv:1405.5867
http://refhub.elsevier.com/S1084-16)30299-sbref20
http://refhub.elsevier.com/S1084-16)30299-sbref20
http://refhub.elsevier.com/S1084-16)30299-sbref20
http://refhub.elsevier.com/S1084-16)30299-sbref21
http://refhub.elsevier.com/S1084-16)30299-sbref21
http://refhub.elsevier.com/S1084-16)30299-sbref21
http://refhub.elsevier.com/S1084-16)30299-sbref22
http://refhub.elsevier.com/S1084-16)30299-sbref22
http://refhub.elsevier.com/S1084-16)30299-sbref23
http://refhub.elsevier.com/S1084-16)30299-sbref23
http://refhub.elsevier.com/S1084-16)30299-sbref23
http://refhub.elsevier.com/S1084-16)30299-sbref24
http://refhub.elsevier.com/S1084-16)30299-sbref24
http://refhub.elsevier.com/S1084-16)30299-sbref24
http://arXiv:1502.01815
http://refhub.elsevier.com/S1084-16)30299-sbref25
http://refhub.elsevier.com/S1084-16)30299-sbref25
http://refhub.elsevier.com/S1084-16)30299-sbref26
http://refhub.elsevier.com/S1084-16)30299-sbref26
http://refhub.elsevier.com/S1084-16)30299-sbref27
http://refhub.elsevier.com/S1084-16)30299-sbref27
http://refhub.elsevier.com/S1084-16)30299-sbref27
http://refhub.elsevier.com/S1084-16)30299-sbref28
http://refhub.elsevier.com/S1084-16)30299-sbref28
http://refhub.elsevier.com/S1084-16)30299-sbref29
http://refhub.elsevier.com/S1084-16)30299-sbref29
http://refhub.elsevier.com/S1084-16)30299-sbref29
http://refhub.elsevier.com/S1084-16)30299-sbref30
http://refhub.elsevier.com/S1084-16)30299-sbref30
http://dx.doi.org/10.4018/978-5225-6.ch014
http://dx.doi.org/10.1016/j.ijinfomgt.2016.05.013
http://refhub.elsevier.com/S1084-16)30299-sbref33
http://refhub.elsevier.com/S1084-16)30299-sbref33
http://refhub.elsevier.com/S1084-16)30299-sbref34
http://refhub.elsevier.com/S1084-16)30299-sbref34
http://refhub.elsevier.com/S1084-16)30299-sbref35
http://refhub.elsevier.com/S1084-16)30299-sbref36
http://refhub.elsevier.com/S1084-16)30299-sbref36

M.H.u. Rehman et al.

Sherchan, W., Jayaraman, P.P., Krishnaswamy, S., Zaslavsky, A., Loke, S., Sinha, A,
2012. Using on-the-move mining for mobile crowdsensing, In: 2012 IEEE
Proceedings of the 13th International Conference on Mobile Data Management
(MDM). IEEE, pp. 115-124.

Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J., 2014. Fusion of
smartphone motion sensors for physical activity recognition. Sensors 14 (6),
10146-10176.

Sidek, K.A., Mai, V., Khalil, I., 2014. Data mining in mobile ecg based biometric
identification. J. Netw. Comput. Appl. 44, 83-91.

Siirtola, P., Roning, J., 2012. Recognizing human activities user-independently on
smartphones based on accelerometer data. Int. J. Interact. Multimed. Artif. Intell. 1
(5).

Siirtola, P., Roning, J., 2013. Ready-to-use activity recognition for smartphones, In: 2013
IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE,
pp. 59-64.

Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Satyanarayanan, M., 2013. Scalable
crowd-sourcing of video from mobile devices, In: Proceedings of the 11th Annual
International Conference on Mobile Systems, Applications, and Services. ACM, pp.
139-152.

Sokolova, M., Matwin, S., 2016. Personal privacy protection in time of big data. In:
Challenges in Computational Statistics and Data Mining. Springer, pp. 365-380.

Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K.K., Xu, C., Tapia, E.M., 2014.
Mobileminer: Mining your frequent patterns on your phone, In: Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, pp. 389-400.

Stahl, F., Gaber, M.M., Aldridge, P., May, D., Liu, H., Bramer, M., Philip, S.Y., 2012.
Homogeneous and heterogeneous distributed classification for pocket data mining.
In: Transactions on Large-Scale Data-and Knowledge-Centered Systems V. Springer,
pp. 183-205.

Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Pastrana, S., 2015. Power-aware
anomaly detection in smartphones: an analysis of on-platform versus externalized
operation. Pervasive Mob. Comput. 18, 137-151.

Swan, M., 2012. Sensor mania! the internet of things, wearable computing, objective
metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 1 (3), 217-253.

Talia, D., Trunfio, P., 2010. Mobile data mining on small devices through web services.
Mob. Intell. 69, 264.

Tan, G.W.-H., Lee, V.-H., Wong, C.-H., Ooi, K.-B., 2016. Mobile Shopping: the New
Retailing Industry in the 21st Century.

Triguero, 1., Garcia, S., Herrera, F., 2015. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42 (2), 245-284.

Tsai, C.-W., Lai, C.-F., Chiang, M.-C., Yang, L.T., 2014. Data mining for internet of
things: a survey. IEEE Commun. Surv. Tutor. 16 (1), 77-97.

Wang, L., Gu, T., Tao, X., Lu, J., 2012. A hierarchical approach to real-time activity
recognition in body sensor networks. Pervasive Mob. Comput. 8 (1), 115-130.
Wang, N., Merrett, G.V., Maunder, R.G., Rogers, A., 2013. Energy and accuracy trade-

offs in accelerometry-based activity recognition. In: Proceedings of the 22nd
International Conference on Computer Communications and Networks (ICCCN),
IEEE, pp. 1-6.

Wickramasinghe, A., Ranasinghe, D.C., 2013. Recognising Activities in Real Time Using
Body Worn Passive Sensors with Sparse Data Streams: to Interpolate Or Not to
Interpolate? In: proceedings of the 12th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services on 12th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (pp. 21-30). ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

Wu, P., Zhu, J., Zhang, J.Y., 2013. Mobisens: a versatile mobile sensing platform for real-
world applications. Mob. Netw. Appl. 18 (1), 60-80.

Yang, Z., Shangguan, L., Gu, W., Zhou, Z., Wu, C., Liu, Y., 2014. Sherlock: micro-
environment sensing for smartphones. IEEE Trans. Parallel Distrib. Syst. 25 (12),
3295-3305.

Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., Calo, S., 2012. Meca: mobile edge
capture and analysis middleware for social sensing applications. In: Proceedings of
the 21st International Conference on World Wide Web. ACM, pp. 699-702.

Yoon, J., 2013. Three-tiered data mining for big data patterns of wireless sensor
networks in medical and healthcare domains. In: Proceedings of the 8th
International Conference on Internet and Web Applications and Services. Rome,
Italy, pp. 23-28.

Yuan, B., Herbert, J., 2014. A cloud-based mobile data analytics framework: Case study
of activity recognition using smartphone, In: 2014 Proceedings of the 2nd IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering
(MobileCloud). IEEE, pp. 220-227.

Zhang, H., Chen, G., Ooi, B.C., Tan, K.-L., Zhang, M., 2015. In-memory big data
management and processing: a survey. IEEE Trans. Knowl. Data Eng. 27 (7),
1920-1948.

Muhammad Habib ur Rehman is a Ph.D. student at FCSIT, UM. He completed his
M.Sc. from COMSATS Institute of Information Technology, Pakistan. He is working on
data stream mining systems for Internet of Things. His research covers a wide spectrum
of application areas including smart cities, mobile social networks, Quantified self, and
mHealth. The key research areas of his interest are: mobile computing, edge-cloud
computing, Internet of Things, and mobile distributed analytics. (https://sites.google.-
com/site/drmhr2017/home)

24

Journal of Network and Computer Applications 79 (2017) 1-24

Chee Sun LIEW completed his Masters of Science (Computer Science), in Distributed
Computing and Networks from University Sains Malaysia in 2002. He holds a Ph.D. in
Informatics from the University of Edinburgh, under Malaysia Ministry of Higher
Education scholarship program. His Ph.D. research was related to workflow optimiza-
tion, under the supervision of Prof Malcolm Atkinson, former UK e-Science envoy, and
contributed to the European funded projects on big data and e-Science. He is now
working as a senior lecturer in the Faculty Of Computer Science and Information
Technology.

Ying-Wah Teh received his B.Sc. and M.Sc. from Oklahoma City University and Ph.D.
from University of Malaya. He is currently an Associate Professor at Information Science
Department, faculty of Computer Science and Information Technology, University of
Malaya. His research interests include data mining and text mining.

Muhammad Khurram Khan is currently working as a Full Professor at the Center of
Excellence in Information Assurance (CoEIA), King Saud University, Kingdom of Saudi
Arabia. He is one of the founding members of CoEIA and has served as the Manager R &
D from March 2009 to March 2012. He developed and successfully managed the research
program of CoEIA, which transformed the center as one of the best centers of research
excellence in Saudi Arabia as well as in the region.

Prof. Muhammad Khurram Khan is the Editor-in-Chief of a well-esteemed SCI-
indexed international journal ‘Telecommunication Systems’ published by Springer-
Verlag since 1993. Furthermore, he is the full-time Editor/Associate Editor of several
ISI-indexed international journals/magazines, including IEEE Communications
Magazine, Journal of Network & Computer Applications (Elsevier), IEEE Access
Journal, Security & Communication Networks (Wiley), IEEE Consumer Electronics
Magazine, Journal of Medical Systems (Springer), PLOS ONE (USA), Computers &
Electrical Engineering (Elsevier), IET Wireless Sensor Systems, Electronic Commerce
Research (Springer), Scientific World Journal (Hindawi), Journal of Computing &
Informatics, Journal of Information Hiding and Multimedia Signal Processing
(JIHMSP), International Journal of Biometrics (Inderscience), Journal of Physical &
Information Sciences, and Journal of Independent Studies and Research-Computing
(JISR), etc.

He has also played role of the guest editor of several international ISI-indexed journals
of Springer-Verlag and Elsevier Science, etc. Moreover, he is one of the organizing chairs
of more than 5 dozen international conferences and member of technical committees of
more than 10 dozen international conferences. In addition, he is an active reviewer of
many international journals.

Prof. Khurram is an adjunct professor at Fujian University of Technology, China and
an honorary Professor at IIIRC, Shenzhen Graduate School, Harbin Institute of
Technology, China. He has secured an outstanding leadership award at IEEE interna-
tional conference on Networks and Systems Security 2009, Australia. He has been
included in the Marquis Who's Who in the World 2010 edition. Besides, he has received
certificate of appreciation for outstanding contributions in ‘Biometrics & Information
Security Research’ at AIT international Conference, June 2010 at Japan.

He has been awarded a Gold Medal for the ‘Best Invention & Innovation Award’ at
10th Malaysian Technology Expo 2011, Malaysia. Moreover, his invention recently got a
Bronze Medal at ‘41st International Exhibition of Inventions’ at Geneva, Switzerland in
April 2013. In addition, he was awarded best paper award from the Journal of Network
& Computer Applications (Elsevier) in Dec. 2015.

Prof. Khurram is the recipient of King Saud University Award for Scientific Excellence
(Research Productivity) in May 2015. He is also a recipient of King Saud University
Award for Scientific Excellence (Inventions, Innovations, and Technology Licensing) in
May 2016.

Prof. Khurram has published over 260 research papers in the journals and conferences
of international repute. In addition, he is an inventor of 10 US/PCT patents. He has
edited 7 books/proceedings published by Springer-Verlag and IEEE. He has secured
several national and international research grants in the domain of information security.
His research areas of interest are Cybersecurity, digital authentication, biometrics,
multimedia security, and technological innovation management. Prof. Khurram has
recently played a leading role in developing ‘BS Cybersecurity Degree Program’ and
‘Higher Diploma in Cybersecurity’ at King Saud University.

He is a Fellow of the IET (UK), Fellow of the BCS (UK), Fellow of the FTRA (Korea),
senior member of the IEEE (USA), a member of the IEEE Technical Committee on
Security & Privacy, and a member of the IEEE Cybersecurity community.


http://refhub.elsevier.com/S1084-16)30299-sbref37
http://refhub.elsevier.com/S1084-16)30299-sbref37
http://refhub.elsevier.com/S1084-16)30299-sbref37
http://refhub.elsevier.com/S1084-16)30299-sbref38
http://refhub.elsevier.com/S1084-16)30299-sbref38
http://refhub.elsevier.com/S1084-16)30299-sbref39
http://refhub.elsevier.com/S1084-16)30299-sbref39
http://refhub.elsevier.com/S1084-16)30299-sbref39
http://refhub.elsevier.com/S1084-16)30299-sbref40
http://refhub.elsevier.com/S1084-16)30299-sbref40
http://refhub.elsevier.com/S1084-16)30299-sbref40
http://refhub.elsevier.com/S1084-16)30299-sbref41
http://refhub.elsevier.com/S1084-16)30299-sbref41
http://refhub.elsevier.com/S1084-16)30299-sbref42
http://refhub.elsevier.com/S1084-16)30299-sbref42
http://refhub.elsevier.com/S1084-16)30299-sbref43
http://refhub.elsevier.com/S1084-16)30299-sbref43
http://refhub.elsevier.com/S1084-16)30299-sbref44
http://refhub.elsevier.com/S1084-16)30299-sbref44
http://refhub.elsevier.com/S1084-16)30299-sbref45
http://refhub.elsevier.com/S1084-16)30299-sbref45
http://refhub.elsevier.com/S1084-16)30299-sbref46
http://refhub.elsevier.com/S1084-16)30299-sbref46
http://refhub.elsevier.com/S1084-16)30299-sbref47
http://refhub.elsevier.com/S1084-16)30299-sbref47
http://refhub.elsevier.com/S1084-16)30299-sbref47
http://refhub.elsevier.com/S1084-16)30299-sbref48
http://refhub.elsevier.com/S1084-16)30299-sbref48
http://refhub.elsevier.com/S1084-16)30299-sbref48

	Towards next-generation heterogeneous mobile data stream mining applications: Opportunities, challenges, and future research directions
	Introduction
	Bibliometric analysis of Web of Science databases
	Mobile data stream mining platforms
	Far-edge mobile devices
	Far-edge to Far-edge
	Mobile edge servers
	Immobile edge servers
	Mobile cloud computing system
	Mobile edge cloud computing system
	Challenges
	Resource constraints and light-weight data processing
	Compute-intensive operations
	Distributed application logic
	Mobility
	Resource provisioning in MECC
	Dependency over internet connections
	Increased data communication and high latency


	Heterogeneity in MDSM applications
	Heterogeneity in data acquisition
	Volume (Size)
	Velocity (speed)
	Variety (number and type of data sources)
	Variability (variable data production rates)
	Veracity (authenticity of data sources)

	Heterogeneity in data fusion
	Early data fusion
	Late data fusion
	Discriminatory features based data fusion

	Heterogeneity in data preprocessing
	Noise filtration
	Outliers detection
	Anomaly detection
	Feature extraction
	Sparsity handling

	Heterogeneity in data stream mining
	Learning model heterogeneity
	Mining algorithm heterogeneity

	Heterogeneity in knowledge management
	On-device
	on-edge
	Remote


	Handling heterogeneity in MDSM applications
	Methods for handling data acquisition heterogeneity
	Methods for handling data fusion heterogeneity
	Methods for handling data preprocessing heterogeneity
	Methods for handling data mining heterogeneity
	Methods for handling knowledge management heterogeneity

	Handling heterogeneity in data stream mining platforms
	Adaptation
	Application partitioning
	Computation offloading
	Data transfer

	Literature summary
	MineFleet
	OMM
	CARDAP
	MOSDEN
	MARS
	Star
	PDM
	CARA
	SOA
	MobiSens
	Mobile WEKA
	MSM
	MobileMiner
	Three-tier data mining architecture

	Gap analysis and future research directions
	Controlling heterogeneity at application level
	Critical factors of complexity in MDSM applications

	Controlling complexity at platform level
	Technical research challenges
	Multi-tier architectures
	Load-balancing
	Optimization
	Data stream and knowledge management
	Programming models, design patterns, and development environments

	Future research areas
	Privacy and security
	Big data reduction
	Value creation
	Machine analytics
	Personal analytics
	IoT analytics
	Mobile crowd sensing
	Participatory sensing


	Conclusion
	Acknowledgements
	References




