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The number and extent of current Science, Technology & Innovation topics are changing all the time, and their
induced accumulative innovation, or even disruptive revolution, will heavily influence the whole of society in
the near future. By addressing andpredicting these changes, this paper proposes an analyticmethod to (1) cluster
associated termsandphrases to constitutemeaningful technological topics and their interactions, and (2) identify
changing topical emphases. Our results are carried forward to present mechanisms that forecast prospective
developments using Technology Roadmapping, combining qualitative and quantitative methodologies. An em-
pirical case study of Awards data from the United States National Science Foundation, Division of Computer
and Communication Foundation, is performed to demonstrate the proposed method. The resulting knowledge
may hold interest for R&D management and science policy in practice.
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1. Introduction

The coming of the Big Data Age introduces big opportunities and big
challenges for modern society. The focus on “data-driven”, emphasizing
information technology's (IT) role in leading decisionmaking and inno-
vation, has now evolved into both analytic and applied models (Bughin
et al., 2010; McAfee et al., 2012). Meanwhile, research addressing Sci-
ence, Technology, & Innovation (ST&I) activities is widening into multi-
ple perspectives (Bengisu, 2003; Zhang et al., 2014c). Industry and
national Research & Development (R&D) efforts are beginning to track
these trends to compete globally. However, the number and extent of
potential topics are changing all the time, and their induced accumula-
tive innovation, or even disruptive revolution, has the ability to quickly
and heavily influence much of society.

ST&I data sources, involving academic publications, patents, aca-
demic proposals, etc., provide possibilities for describing previous scien-
tific dynamics and efforts, discovering innovation capabilities, and
forecasting probable evolution trends in the near future (Porter and
Detampel, 1995; Zhang et al., 2013). As a valuable instrument for ST&I
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analysis, text mining affords automatic techniques to explore insights
into data structure and content, which helps augment and amplify the
capabilities of domain experts when dealing with real-world problems
(Kostoff et al., 2001). Information visualization techniques are also high-
ly engaged in Technology Roadmapping (TRM) for R&D planning and
strategic management. Current ST&I text analysis oriented toward
TRM focuses on emerging technical topics via the Forecasting Innova-
tion Pathways approach (Guo et al., 2012; Robinson et al., 2013), and
the Keyword-based Patent/Knowledge Map (Yoon and Park, 2005; Lee
et al., 2008; Lee et al., 2009b). Those contribute promising efforts to
deal with industry-related technology assessment and forecasting
tasks via both semi-automatic, bibliometric-oriented software tools
and expert knowledge.

Previous studies on ST&I topic analysis and forecasting could be con-
sidered in two aspects: 1) IT techniques have been widely introduced
for text clustering, but these intelligent algorithms usually concentrate
on data dimensions, data scale, and cluster understanding (Beil et al.,
2002), and lack the consideration to connect the stimulated experi-
ments with real-world problems. As an example, an efficient text clus-
tering algorithm in a simulated training set of business news would
not be readily adaptable for scientific publications, since semantic struc-
ture and linguistic norms differ between the two data forms. 2) Current
R&D and strategic management favor the contribution of expert knowl-
edge, tending to shut the door on intelligent IT techniques.

We summarize concerns with recent research as follows: 1) Text
clustering algorithms generally are able to obtain sound results on
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simulated datasets, but show biases and limited scope; and cannot be
readily adapted to real-world data; 2) New approaches combined with
old, unsolved issues have increased the confusion of feature selection,
e.g., in which situations does Term Frequency Inverse Document Fre-
quency (TFIDF) analysis really benefit the text clustering process?
Whichone is better for text clustering— singlewords orphrases?3) Sim-
ilaritymeasurement is usually used to group similar items, however, is it
possible to explore the relationships among topics, which would help
identify significant topics or predict possible developmental directions?

Considering these concerns, this paper attempts to build up a semi-
automatic method for ST&I topic analysis and forecasting. For the above
concerns, we introduce a K-Means-based clustering approach for semi-
supervised learning on semi-labeled ST&I records, and especially for the
third concern, a topic analytic model is engaged in clustering, where we
1) apply a similarity measure approach to trace the interactions be-
tween topics and identify highly involved topics and 2) predict future
trends via the changes of the TFIDF value of related topics in a time se-
ries. Based on the United States (US) National Science Foundation
(NSF) Awards data, we construct a feature selection model to compare
phrases and single words, TFIDF and normal term frequency value,
and assembled sets of features. We then focus on the computer science
domain and Big Data-related topics, and use TRM approaches to visual-
ize both historical data-oriented analytic results and forecasting studies,
where we creatively combine the objective quantitative evidence and
expert knowledge in one TRM model.

Themain contributions of this paper include: 1) we focus on theNSF
data and construct a K-Means-based clustering methodology with high
accuracy in a local K-value interval, where an optimized K value would
be determined automatically; 2) we introduce a similarity measure
function for topic relationship identification, which helps explore the
interaction among TRM components quantitatively and predict possible
future trends, and then, creatively visualize both objective analytic re-
sults and expert knowledge-based qualitative discussion of the TRM.

The rest of this paper is organized according to the following struc-
ture. “Related works” section reviews previous studies including text
clustering, topic analysis, TRM, and a comparison between our research
and related works. In the Methodology section, we present a detailed
research methodology on the ST&I topic analysis and forecasting stud-
ies. The section “Empirical study” follows, using the US NSF Awards
from 2009 to 2013 in the Division of Computer and Communication
Foundation as a case. This section identifies topics by clustering
approaches, illustrates the development trend visually, and engages
expert knowledge in topic understanding and forecasting. Finally, we
conclude our current research, noting limitations, and put forward
possible directions for future work.

2. Related works

This section mainly reviews previous literature on text clustering,
topic analysis, and TRM, and then, compares the significance of our
work with related work.

2.1. Text clustering

The purpose of clustering analysis is to explore potential groups for a
set of patterns, points, or objects (Jain, 2010). Analogously, text cluster-
ing concentrates on textual datawith statistical properties and semantic
connections between phrases or terms. Its algorithms seek to calculate
the similarity between documents and reduce rank by grouping a
large number of items into a small number of meaningful factors
(Chen et al., 2013; Zhang et al., 2014a). Text clustering emphasizes
statistical properties and semantic connections of words or phrases,
and it is popular, while not necessary, to introduce TFIDF analysis
for feature extraction (Aizawa, 2003; Wu et al., 2008). On one hand,
various statistics-based approaches are available for text clustering,
e.g., Principal Components Analysis (PCA) (Zhu and Porter, 2002), K-
Means (Huang, 2008; Jain, 2010), and hierarchical cluster (Cutting
et al., 1992; Beil et al., 2002). These approachesmeasure document sim-
ilarity via a term–document matrix, in which co-occurrence analysis is
most involved. On the other hand, the Topic Models approach, evolving
from Latent Dirichlet Allocation (LDA) into a family of methods, has
more recently been playing an active role in clustering. It engages a
hierarchical Bayesian analysis for discovering latent semantic groups
in a collection of documents (Blei and Lafferty, 2006; Blei, 2012).

2.2. Topic analysis

Several studies have applied text clustering analysis to information
search and retrieval (Voorhees, 1986; Chang and Hsu, 1997; Begelman
et al., 2006). Currently, in the ST&I studies these generated semantic
clusters are usually identified as “topics,” and learning these topics ex-
tends to newer sub-domain topic analyses. Topic analysis comprises
topic identification (Boyack et al., 2011; Small et al., 2014), topic detec-
tion and tracking (Cataldi et al., 2010; Dai et al., 2010; Lu et al., 2014),
and topic visualization (Huang et al., 2014; Zhang et al., 2014b). In par-
ticular, Kontostathis et al. (2004) concluded this related research as
Emerging Trend Detection (ETD), which was described as a system
with components containing linguistic and statistical features, learning
algorithms, training and test set generation, visualization, and evalua-
tion. An important ancestor of ETD is Topic Detection and Tracking
(TDT) — the first to afford systematic methods to discover topics in a
textual stream of broadcast news stories (Allan et al., 1998). Significant
systems for technology management include Technology Opportunity
Analysis (TOA) and Tech Mining (Porter and Detampel, 1995; Porter
and Cunningham, 2004), both of which perform value-added data
analysis by extracting useful information from ST&I documents for a
specified domain and identifying related component technologies,
market stakeholders, and relations.

2.3. Technology Roadmapping

TRM is defined as a future-oriented strategic planning approach to
connect technologies, products, and markets over time (Phaal et al.,
2004; Winebrake, 2004). Researchers have contributed to construct
basic criteria and schemes for qualitatively based TRM models (Garcia
and Bray, 1997; Phaal et al., 2004; Walsh, 2004; Phaal et al., 2006;
Robinson and Propp, 2008; Tran andDaim, 2008). At the same time, tra-
ditional bibliometric approaches (e.g., co-occurrence, co-citation, and
bibliographic coupling) and information visualization techniques have
been involved in various kinds of automated software routines to help
build more intelligent TRM composing models (Zhu and Porter, 2002;
Chen, 2006;Waltman et al., 2010). A general observation is that IT tech-
niques take active roles in data pre-processing and expert knowledge
makes good sense for result evaluation and refinement (Zhang et al.,
2015). Hybrid TRM models that blend qualitative and quantitative
methodologies have become a trend in current TRM studies (Yoon
and Park, 2005; Lee et al., 2008; Choi and Park, 2009; Lee et al., 2009a;
Lee et al., 2009b; Porter et al., 2010; Zhang et al., 2014c). In addition,
considering the shortages of terms and phrases, subject–action–object
structures have been introduced to probe for relationships among
TRM components (Choi et al., 2011; Choi et al., 2013; Zhang et al.,
2014b), and these novel attempts hold out the possibility tomore deep-
ly understand underlying development chains to help compose TRMs.

2.4. Comparison with related work

Based on a 2.15-million-MEDLINE-publication dataset, Boyack et al.
(2011) presented an outstanding comparison study on several text-
based similarity approaches, e.g., TFIDF, Latent Semantic Analysis,
Topic Models, BM25, and PubMed's own Related Articles (PMRA)
approach. The study covered almost allmainstream text clustering algo-
rithms and included a detailed discussion summarizing the advantages
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and disadvantages of these approaches. However, Boyack et al.'s (2011)
study only applied single word based analyses, and one possible reason
that the PMRA approach achieved the highest accuracy would be that it
wasMEDLINE data-oriented. In addition, the TFIDF analysis was used as
a separate similaritymeasure approachwhen a combination with other
approaches could have provided more benefit.

Yau et al. (2014) used the LDA approach and its extensions to group
labeled scientific publications from the Web of Science (WoS) data
source, and they also compared the model with a basic K-Means ap-
proach in a clustering experiment and showed excellent precision and
recall values with their approach. Comparably, Newman et al. (2014)
proposed a similar comparison between LDA and PCA on Dye Sensitized
Solar Cell (DSSC)-related publications from WoS data, and then ana-
lyzed possible reasons and discussed benefits of both approaches.
They both considered combining the Term Clumping process (Zhang
et al., 2014a) with LDA and PCA. Since LDA and its extension were
only able to deal with single words, the attempt on this combination
was to simply use underlining to link words in phrases; Additionally,
the seven pre-set categories in Yau et al.'s (2014) experiment –
e.g., solar cells, RNAi, tissue engineering, graphene – were only lightly
coupled, while the DSSC data in Newman et al.'s (2014) research was
very narrow and highly coupled, which required deeply engaged expert
knowledge tomake judgments.Moreover, Yau et al.'s (2014) study only
emphasized topic identification and did not provide more thoughts on
the understanding of topics.

Gretarsson et al. (2012), in another interesting work related to our
research, proposed a Topic Model approach “TopicNets” for visual anal-
ysis of large amounts of textual data. They also selected NSF grants to
the University of California as one data sample. This is one of the few
existing text analysis studies onNSF data, and the TopicModel approach
they used held our interest. However, their emphasis was to construct
adaptive software for textual visualization, while our research pays
more attention to clustering. Also of considerable interest is the NSF
“portfolio explorer” using topic modeling to overview research empha-
ses (Nichols, 2014).

Small et al. (2014) introduced citation and co-citation analysis for
topic identification and validated these emerging science topics via
multiple data sources, e.g., Nobel prizes and other awards on selected
topics. They contributed excellent work on identifying emerging topics
and exploring the insights they hold. Comparing with document simi-
larity measures, citation and co-citation analysis was another way to
think about the clustering, and Small et al.'s (2014) empirical study
addressed an entity of science and technology domains and related
more to national R&D strategy and science policy.

There is a large number of contributions on hybrid TRM approaches,
and we briefly compare our method with two representative models:
Forecasting Innovation Pathways (Porter et al., 2010; Guo et al., 2012;
Huang et al., 2012; Porter et al., 2013; Robinson et al., 2013) and
Keyword-based Patent/Knowledge Mapping (Yoon and Park, 2005;
Lee et al., 2008; Choi and Park, 2009; Lee et al., 2009a; Lee et al.,
2009b; Jeong and Yoon, 2015). Both models provided systematic
methodologies to apply TRM for topic identification and visualization
in industrial applications. These match the scope of our model closely.
However, our method also seeks to improve the clustering algorithm
in accuracy. Rather than automatic application of the IT techniques
[e.g., keyword-based self-correlation analysis (Zhu and Porter, 2002;
Lee et al., 2008)], we emphasize the term–record pair for record-based
clustering — the term vector included in one record would have more
complete semantic meanings than isolated keyword clumps. This strat-
egy shares similarities with the “word–topic–record” structure in the
LDA approach.

3. Methodology

This study develops a methodology which contains a data pre-
processing approach, a K-Means-based clustering analysis approach,
and a forecasting approach. It uses NSF Awards data as a case study.
Themethodology seeks to define an ST&I textual data-driven, but adap-
tive, method for topic analysis and forecasting. The general research
framework is given in Fig. 1.

Step 1. Data pre-processing

Normally, ST&I textual data have common fields (e.g., Title, Abstract)
and special ones (e.g., International Patent Classifications in patent data,
Program Element/Program Reference codes in NSF Awards data). Our
purpose, in this step, is twofold: to remove meaningless data and
retrieve relevant fields from raw data records.

In our previous study, we developed a Term Clumping process for
technical intelligence that aims to retrieve core terms (words and
phrases) from ST&I resources by performing term cleaning, consolida-
tion, and clustering approaches (Zhang et al., 2014a). This paper intro-
duces a modified Term Clumping process for feature extraction (core
term retrieval), and generates a term–record-matrix at the end of this
step.

We have focused on terms and phrases for quite a long time, andwe
value more meaningful semantic structures over single words. Howev-
er, the increasing popularity of the LDA approaches pulls researchers
back to rethink the desirable balance between phrases and single
words. This prompts us to revisit consideration of which one is better
for ST&I textual studies. In the context, it becomes promising to com-
pare unigrams to n-grams via our method. At the same time, although
it has been decades since TFIDF analysis was first introduced to weight
terms for information retrieval, it is still critical to fully consider such
techniques in our studies. Thus, we compare the efficiency of TFIDF
with normal TF for clustering analyses. There are quite a few variations
of TF and IDF weighting (e.g., log normalization of TF, inverse frequency
smoothing, and probabilistic inverse frequency), but, in our design, the
TFIDF value goes with the term-record pair, and the extreme cases
(e.g., total record number in the set is 0, total number of records with
specified term is 0, or total instances of specified term in a specified re-
cord is 0) would not happen. Thereupon, we apply the classical formula
of TFIDF analysis (Salton and Buckley, 1988) to our method:

TFIDF ¼ TF� IDF ¼ frequency of rerm ti
total instances of terms in record Dj

� log
total records number in the set

total number of records with term ti
:

Step 2. Topic analysis

This step sets up a training set of labeled data for machine learning
and proposes a data-driven K-Means-based clustering approach. Sever-
al aiding models are added as described below:

1) Cluster validation model

Referring to the common performance measures in information re-
trieval, Recall, Precision, and F Measure are three target values for clus-
ter validation. However, in our framework, the Recall value for the
whole dataset is meaningless, since all records have been clustered
and there is no missing record. In this context, we only use Total Preci-
sion as the target value in our model. The definition is given as follows:

Total Precision ¼ number of records clustered to the correct category
total number of records in training set

:

It is also necessary to mention that, in the cluster validation model,
we label all records with the real category of the Centroid into which
they are grouped. Therefore, the selection of the Centroid is one
sensitive issue that will influence the cluster validation process, and
generally we set the records with the largest Euclid length as the initial
Centroids.
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2) Feature selection and weighting model

This step uses NSFAwards as the sample to present ourmethod. Title
and Abstract (described as Narration in NSF Awards) are themost com-
mon fields used for text analysis. For NSF Awards datawe also introduce
the Program Element (PE) Code and Program Reference (PR) Code for
our study. In NSF Awards, one record will be classified to at most 2 PE
codes and at least 1 PR code, both of which are comprised of semantic
terms. However, whereas these codes sometimes make good sense to
help explore relations between records, sometimes they mislead. E.g.,
in the case of PR codes, most relate to techniques or methodologies
while one or two codeswould beused to describe the empirical domain.
We develop an automatic way to assemble the best Title terms, Narra-
tion terms, PE codes, and PR codes. Six assembled sets are compared
in this model:

• #1 Narration + Title terms
• #2 Narration + Title terms + PE code
• #3 Narration + Title terms + PE/PR code
• #4 Narration + weighted Title terms
• #5 Narration + weighted (Title terms + PE code)
• #6 Narration + weighted (Title terms + PE/PR code).

We set the six assembled sets for comparing three aspects: 1) are
title-terms better than abstract ones? 2) Do the PE and PR codes help
improve accuracy (both or only one of them)? 3) Does the weighting
approachmake sense? Thus, the comparison between #1 and #4 focus-
es on aspect 1; the comparison between/within #2 & #3 and #5 & #6 is
for aspect 2, and#1–3 and#4–6 are used to indicate the efficiency of the
weighting approach as we designed in the 3rd aspect.
We treat these four kinds of terms separately and introduce a
weighting model into #4, #5, and #6 in order to calculate similarities.
Normally, in the first three assembled sets, we calculate the similarity
for Narration terms, Title terms, PE codes, and PR codes respectively,
and use the mean as the final similarity value of the assembled set. In
the last 3 assembled sets, with the help of the weighting model, the in-
verse ratio of the term amount is engaged. Let #4 serve as an example
and we come out with the weights below:

V Dnð Þ ¼ VN Dnð Þ þ VT Dnð Þ

VN(Dn) is the Term–Record Vector with only Narration terms, while
VT(Dn) with only Title terms

Let TN ¼ VN Dnð Þ∩ VN Dmð Þ and TT ¼ VT Dnð Þ∩ VT Dmð Þ

wN ¼ TT

TNþTT

;wT ¼ TN

TN þ TT
:

Weighted similarity value: sw(Dn,Dm)=wN×S(VN(Dn),VN(Dm))+
wT×S(VT(Dn),VT(Dm)).

This model also attempts to compare additional topics in text analy-
sis: the clustering accuracy of words and phrases, and normal TF and
TFIDF values.

According to common sense, comparing to use of single words,
phrases should be more specific and would help create a more accurate
cluster, since relations among phrases seem more meaningful than
among individual words. However, phrases appear much less frequent-
ly, leading to less overlap between records, and thus, might be detri-
mental to a similarity measure.
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Our data-driven clustering approach is comprised of the above
models and the clusters, identified as topics, to be generated at the
end of this step. We also compare our clustering approach with two
popular mainstream text clustering algorithms: LDA and Hierarchal Ag-
gregative Clustering (HAC).

3) K-local optimum model

A traditional K-Means algorithm needs to set the K-value manually,
and this value affects the clustering results heavily (Jain, 2010). Aiming
to reduce this influence and tofind thebest K-value in a specific interval,
our approach situates the cluster validation model in the loop for a
specified interval, and decides the best K-value in the interval based
on its F Measure.

The main concepts of K-Means are described as follows:

A. Initialization: Select the top K records with the highest Euclid length
as the Centroid of K clusters;

Let t f in as the frequency of term ti in Record Dn

Record–Term Vector : V Dnð Þ ¼ t f 1n; t f 2n;…; t f i−1ð Þn; t f in
n o

Euclid length of Record Dn : ELEN Dnð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t f 2in

q :

B. Record assignment: Classify each record to the Centroid with the
highest similarity value;

Let V Dnð Þ and V Dmð Þ as the Record–Term Vector of Record Dn and
Centroid Dm

Similarity value : S Dn;Dmð Þ ¼ cos V Dið Þ;V Dmð Þð Þ:

C. Centroid refine: Calculate the similarity between a record and its
cluster; set the record with the highest similarity value as the Cen-
troid of this cluster;

Let cluster C={D1,D2,… ,Dl−1,Dl}

Similarity value : S Dn;Cð Þ ¼
Xl

k¼1
S Dn;Dkð Þ
l

:

D. New& old Centroid comparison: If all new Centroids are the same as
the old ones, the loop ends. Or else, return to Step B.

4) Topic analytic model

In thismodel, our endeavors are to explore statistical information on
topics and provide these objective results for expert knowledge-based
forecasting studies in the next step. We weight the topics via the
TFIDF value (we apply the TFIDF formula of Step 1), where both the re-
cord number and the total term frequency of each topic will be counted.
The TFIDF value would be used as the Y axis of topics in the TRM pro-
cessing. Although it is critical to treat high-TFIDF weighted topics as
important ones, the phenomenon that the TFIDF values of related topics
increases or decreases in a time series indicates that the topics are
becoming more important or not.

We also apply the similarity measure approach in the K-Means opti-
mum model to calculate the semantic relationships between topics in
the adjacent years. We define the highly similar topics as related topics,
since it is not always easy to locate the same topics. We trace the dy-
namics of the statistical information of related topics, and we consider
such changes as a kind of evolution in specific ST&I fields. In addition,
we introduce a prevalence value (Zhang et al., 2014b) to identify the
most representative terms for labeling topics, rather than labeling as
the highest frequency term directly.

Step 3. Forecasting

In the past, based on terms, we proposed a semi-automatic TRM
composing approach (Zhang et al., 2013). We also engage expert
knowledge and understanding with external factors, e.g., policy, tech-
nique and development status. In particular, as mentioned by Kostoff
et al. (2001), quantitative results are considered as objective evidence
to assist decision making by domain experts. Expert knowledge plays
a more important role in forecasting studies. The general steps of this
section are outlined below:

1) Sort the generated topics by year and consolidate possible duplicate
topics;

2) Send the topic list to domain experts for assessment, which includes
topic names, representative terms, record numbers, and TFIDF
values. Then, the experts are asked to mark the topics as “1” for “in-
teresting topic at that time,” “0” for “not interesting at that time,”
and “0.5” for “not sure” — there is no specific definition for “interest-
ing,” but our purpose is to let domain experts think about whether
the topic relates to “emerging technology,” “hot research question,”
or “it just makes sense to them;”

3) Calculate the marks for each topic and obtain rankings;
4) With the help of experts, consolidate similar topics, classify topics

into appropriate phases of TRM, and locate them on the map;
5) Discuss the draft TRM (only the part of historical data-oriented ana-

lytic results)with domain experts viamulti-round interviews,work-
shops, or seminars; obtain insights for future-oriented technology
evolution and external relationships; and address specific concerns
on forecasting studies.

The final output of our method is a TRM that blends both historical
data-oriented analytic results and forecasting insights.

4. Empirical study

This section details the processes in the empirical study,which dem-
onstrates the feasibility and efficiency of our methodology. This study
uses NSF Awards data and focuses on computer science-related tech-
niques, which dives into the origins of scientific innovation and draws
reference for technical intelligence studies on other mature technolo-
gies or even emerging technologies.

4.1. Data

In the book Lee Kuan Yew: The Grand Master's Insights on China, the
United States, and the World, the founding father of modern Singapore
mentioned that “America's creativity, resilience and innovative spirit
will allow it to confront its core problems, overcome them, and regain
competitiveness” (Allison et al., 2013). Researchers and institutions
are trying to evaluate the status of the competition for global innovation
and to date no conclusion has been made. Undoubtedly, the United
States currently is, and still will be, the world leader for a while to
come due to its powerful capability to produce innovation.

As arguably the most important government agency in the US for
funding fundamental research and education, in most fields of science
and engineering, the US National Science Foundation accounts for
about one-fourth of federal support to academic institutions for basic
research. It receives approximately 40,000 proposals each year for
research, education and training projects, approximately 11,000 of



Table 2
List of the ten selected categories.

No. Category Record num. Notes

1 AF 46 Algorithmic foundations
2 CIF 51 Communications and information foundations
3 CPS 46 Cyber-physical systems
4 CSR 42 Computer systems research
5 III 47 Information integration and informatics
6 MRI 52 Major research instrumentation program
7 NeTS 66 Networking technology and systems
8 RI 75 Robust intelligence
9 SHF 94 Software and hardware foundations
10 TC 69 Trust worthy cyberspace
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which are granted as awards (United States National Science Founda-
tion, 2014). Understanding of NSF Awards data, which contains the
most intelligent and innovative basic research and is more advanced
than other regions by several years, could be considered an express
path to revealing how the innovation evolution pathways of the US
work. Such a research approach brings the core of the world's innova-
tion and research to the forefront and the resulting knowledge could
strongly support R&D management plans and science policy both in
the US and other countries.

The NSF Awards database is open access, and all data can be
downloaded from the NSF website. All awards are classified according
to specific award type and division, and our study concentrates on
Standard Grants, the most meaningful and the largest part of the NSF
Awards. Moreover, most NSF Awards data is labeled by its Program
Type, while a lesser part is unlabelled. Program Type sometimes entails
very extensive classification (e.g., Collaborative Research or Early Con-
cept Grants for Exploratory Research), or is very specific (e.g., Cyber
Physical System, Information Integration and Informatics). Statistically,
less thanhalf of theNSF Awards data is labeled in detail orwith any kind
of “usable” classification, while others have common or meaningless
labels or no label at all. As a result, we have treated the NSF Awards
data as semi-labeled.

Step 1. Raw data retrieval & feature extraction

Although the NSF funds more than 10,000 proposals per year and
online, open-access data dates back to 1959, considering our back-
ground, social networks, and the purpose of this paper, we only selected
awards relating to computer science under the Division of Computer
and Communication Foundationswith an organization code that fell be-
tween 5,010,000 and 5,090,000. This narrowed the data set to 12,915 re-
cords. Since one of the main motivations for topic analysis is to address
the innovation possibilities from NSF Awards data, we removed awards
granting support for travel, summer school, and further education to ar-
rive at a final total of 9274 records. We then applied the Term Clumping
steps (Zhang et al., 2014a) for core term retrieval. The process for each
step is given in Table 1. However, we did not choose the clustering
steps, including Term Cluster Analysis and Combine Terms Network,
from the Term Clumping steps because that reduces the number of sim-
ilar terms and increases the difficulty of seeking similar pairs.

Before further processing, we dealt with a training set first. Given
that the NSF Awards data are semi-labeled, we screened all 1124 re-
cords in 2009, chose 10 categories (shown in Table 2) associated with
587 records, and established a training set, which included 369 Title
terms and 2161 Narration terms. We also imported 56 PE codes and
64 PR codes associated with these 587 records. After that, we calculated
the TFIDF value for each Term–Record vector and generated a Term–
Record matrix. We note that the 10 chosen categories (Table 2) are
Table 1
Steps of Term Clumping processing.

Step # of N.
terms⁎

# of T.
terms⁎

1 9274 Records, with 9274 Titles and 8975 Narrations – –
2 Natural Language Processing via VantagePoint

(VantagePoint, 2015)
254,992 17,859

3 Basic cleaning with thesaurus 214,172 16,208
4 Fuzzy matching 184,767 15,309
5 Pruning (remove terms appearing only in one record) 42,819 2470
6 Extra fuzzy matching 40,179 2395
7 Computer science based common term cleaning 38,487 2311
8 Deep Cleaning: expert-aided screening^ 30,037 –

⁎ N. = Narration, T. = Title.
^ DeepCleaning:One computer-relatedPhDcandidate andonedata analyst help to screen

and refine the term list.
highly-coupled, which is generally considered a big challenge for
existing text clustering approaches (Yau et al., 2014).

Step 2. Topic analysis

Based on the training set in the K local optimum model and consid-
ering the balance of the best number of clusters to treat at a time (fewer
topics make results easier to understand, but more topics lead to a
greater degree of accuracy), we set the interval of K value as [15, 20].
We compared the accuracy of the six assembled sets in Fig. 2. We also
listed the maximum and mean of Total Precision of six Assemblies
against Word & TFIDF, Phrase & TF, and Phrase & TFIDF in Table 3.

Before looking into Table 3 and Fig. 2, comparison between the re-
sults with/without the Deep Cleaning step is interesting. Our previous
approach did not apply the Deep Cleaning step to the training set,
where general thinking is that the TFIDF might yield surprising results
with good precision, but this kind of “surprising” is not stable and the
target value is lower than those with normal TF. However, after the
Deep Cleaning step in the Term Clumping process, it is obvious that
the deep-cleaned terms benefit significantly in the TFIDF analysis. This
is because the TFIDF analysis introduces document frequency into
the feature space along with term frequency, and helps increase the
weighting of special terms. Thus, the more special terms there are, the
better the results in the TFIDF. As discussed in Zhang et al. (2014a),
we reaffirm that a good term cleaning step can be considered as basic
pre-processing for TFIDF analysis.

Generally, the combination of phrases and TFIDF values were the
most accurate assembled sets, and the phrase-based onesworked better
than thosewithwords as shown in both Table 3 and Fig. 2. In comparing
the efficiency of feature combinations, #5 and #6 were the best assem-
bled sets. We try to explore the reasons behind these differences and
outline some of our deductions below:

1) Comparison between phrase and single word

Comparison between #B and #C indicates the advantage of phrases.
The lower term frequency that a phrase might have does not influence
the clustering approach in generating accurate results, and TFIDF analy-
sis alsoweakens the gap in term frequency. Phrases holdmuch stronger
semantic relationships for similarity measures, and the possible nega-
tive effects from single words – for example the word “mining” occur-
ring in both “data mining” and “mining industry” – are substantially
reduced. In this case, based on theNSF Awards data and our text cluster-
ing approach, phrases matched our scope better.

2) Comparison between the TFIDF and normal TF value

The assembled sets #2, #3, #5, and #6 generated better results on
#A, and both #A-5 and #A-6 arrive at the highest value of Total Preci-
sion. This helps to claim that the TFIDF analysis makes good sense for
feature extraction, which weights common terms as lower value and
is positive on cutting down noise terms. However, an interesting excep-
tion still exists in #1 and #4— the only two assemblages without PE/PR



Fig. 2. Total Precision of the 6 assembled sets with TF and TFIDF.
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codes. We will discuss the significance of the PE/PR codes in the next
comparison, but our understanding is that our training set includes 10
high-coupling categories, and the narration and title might contain siz-
able noise terms, and the TFIDF analysis will mishandle these special
terms. An example is that “neural network” is a basic algorithm for
computer techniques and is applied in various domains (as shown in
Table 2, it might belong to AF, CIF, CSR, III, MRI, NeTS, RI and SHF), but
this term will be ranked highly by the TFIDF analysis.

3) Comparison among the six assembled sets of feature combinations

PE and PR codes can be treated as keywords of publications. They are
special and meaningful, but far fewer terms originate from them than
from the narration and title texts. Thus, it is beneficial to engage the
PE/PR codes, but the difference between a PE code and PR code is not
as obvious as other comparisons. We also attempted to read the PE
and PR codes manually to distinguish differences among them, and dis-
covered that the PE code acts as themain keyword for a proposal, while
the PR codes contain a large amount of noise which might obfuscate
relationships among proposals. For example, it is common to add one
or two terms describing the empirical study, such as earthquake
engineering or gene and drug delivery, or to use some general terms
to emphasize the purpose of the research, such as science, math, eng.
& tech education, and science of science policy. This may explain the
reason that #2 and #A-5 are slightly ahead of #3 and#A-6, respectively.
Additionally, if we also consider TFIDF scores, the minor reversion
between #B-5 and #B-6 could be due to reducing the TFIDF-weights
of the common and empirical study-related PR codes.

The sequence of #B-5 (weighted PE code), #B-2 (non-weighted PE
code), and #B-4 (without PE code) definitively proves the advantages
derived from PE codes. However, when exploring the reason why #A-
2 was worse than #A-4, we ran Feature Combination #A-5.1 which
uses a direct ratio to weight the PE code. The highest Total Precision of
#A-5.1 was 0.8739, which was worse than those of #A-2 and #A-4.
Table 3
Maximum and average value of Total Precision of the six assembled sets with Word &
TFIDF, Phrase & TF, and Phrase & TFIDF.

#1 #2 #3 #4 #5 #6

#A Phrase & TF Max 0.9574 0.8910 0.8910 0.9574 0.9693 0.9693
Avg. 0.8456 0.8440 0.7666 0.8289 0.9106 0.8998

#B Phrase & TFIDF Max 0.9148 0.9608 0.9557 0.9421 0.9744 0.9744
Avg. 0.9015 0.9401 0.9350 0.9390 0.9554 0.9710

#C Word & TFIDF
Max 0.8501 0.9319 0.9336 0.9131 0.9438 0.9370
Avg. 0.8064 0.8731 0.8964 0.8018 0.8833 0.8941

The italicize data are the highest accuracy combination in this comparative study.
Therefore, a reasonable explanation is that the narration terms are
more negatively misleading in the clustering analysis than the PE/PR
code, and a direct ratio enlarges this negative impact while an inverse
ratio weakens it.

In addition, considering #B-1, a remarkable improvement exists
with #B-4. The possible driving force is that the title terms are much
more specific than the narration terms, while the former one has a
fewer amount, which enlarges the advantage in inverse-ratio weighting
assemblages.

Based on the results and analysis of the above experiments, we
chose “Phrases,” “TFIDF value,” “#6 Feature Combination of Narration
terms, and weighted Title terms and PE/PR code,” and “K = 15” as the
most suitable K-Means Clustering approach for NSF proposal data.

4.2. Comparison with two text clustering algorithms

Aiming to demonstrate the accuracy and adaptability of our ap-
proach with NSF Awards data, we used the cluster validation model
above to compare our resultswith those derived from the LDA approach
and the HAC approach. One promising feedback on our comparison
study was that the PE and PR codes were generated by human experts
for classifying topics of NSF Awards, and these human-intervened
codes would be a possible factor to improve the clustering results. At
this stage, in order to avoid a higher extent of human intervention and
ensure the fairness of this comparison, we compared LDA and HAC ap-
proaches with the results of the #0 assembled set, which did not distin-
guish Narration terms and Title terms and just combined them together
for clusteringwithout TFIDFweights.We recorded the results in Table 4
(#29, #50, and #58 were specifically used for comparing with related
configurations in LDA or HAC approaches).

1) Comparison with the LDA approach

The purpose of this comparison is to focus on the efficiency of the
clustering ability of the LDA approach and the possible usability of the
Term Clumping process for the LDA approach. Since the only permissive
input of the LDA approach is a set of single words, we set the input as:
the raw content of the combined title and narrations; and the Term
Clumping-cleaned core phrases. Both of them were pre-processed by
their own Natural Language Processing (NLP) function in the LDA ap-
proach. We used the basic LDA approach proposed by Yang et al.
(2013), and also set the fixed topic number as the interval [15, 20].
The results of the LDA approach are listed in Table 5.

We concluded that the LDA approach, which is effective for text
clustering, has increased efficacy with single words, large data sets
and low-coupling domains. The LDA approach is single-word based



Table 4
Total Precision of the results with #0 assembled set.

Topic number #15 #16 #17 #18 #19 #20 #29 #50 #58

#A-0 Phrase & TF 0.8010 0.8120 0.8090 0.8103 0.8341 0.8341 0.8474 0.8622 0.8883

The italicize data are the highest accuracy combination in this comparative study.

Table 5
Total Precision of the results of the LDA approach.

Term Clumping-cleaned Phrases Raw content of Title and Narration

Topic number #15 #16 #17 #18 #19 #20 #15 #16 #17 #18 #19 #20 #50
Total Precision 0.3782 0.4736 0.4617 0.4838 0.4225 0.5451 0.4566 0.5145 0.5145 0.4855 0.3867 0.5247 0.4682

The italicize data are the highest accuracy combination in this comparative study.
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and therefore term frequency is its most important factor, however, re-
moving and consolidating terms during the Term Clumping process
drastically reduce the term frequency and render the cleaning process
pointless. Our training set only contained 587 records with approxi-
mately 3000 single words, which just met the bottom of LDA's data re-
quirements. As mentioned above, the training set involved 10 high-
coupling sub categories in the computer science-related domain,
which also posed extreme challenges for theword-based LDA approach.
E.g., “neural network,” “social network,” and “computer network” be-
long to different sub domains, but the shared word “network” made
them relate at a high possibility. We also tried to run the LDA approach
in our dataset with 50 topics to confirm the “large fixed topic number”
preference, since Yau et al. (2014) fixed the topic number as 50, but
the results were not prospective and even worse than those with 20
topics.

2) Comparison with the HAC approach

In previous studies, the HAC approach has received rave reviews for
its accuracy. In our study, we ran a basic HAC approach for comparison.
The algorithm used is shown below.

A. Initialization: to set each record as a cluster;
B. Iteration: to calculate similarity among clusters and group the two

clusters with the highest similarity value;
C. Terminal condition: to set the cluster number as the terminal condi-

tion, where a threshold will be used to illustrate the percentage of
the cluster number in the record number.

The results of the HAC approach are shown in Table 6, and it is obvi-
ous that the HAC approach had better efficacywith large topic numbers
and the Term Clumping process, but was not as accurate as our K-
Means-based clustering approach. Another interesting reference value
was that we spent hours running this basic and raw HAC approach for
the small 587-record data set while our approach only took several
minutes to generate results.

This comparison study highlights that our K-Means-based clustering
approach adapted to the NSF Awardswell, but we did not decry the LDA
and HAC approaches. In this comparison, we first emphasize that the
Term Clumping process played nicely to retrieve meaningful terms
and phrases and helped increase the accuracy of clustering. It is also
obvious that the Term Clumping process usefully involves human
Table 6
Total Precision of the results of the HAC approach.

Raw Phrases Term Clumping-cleaned Phrases

Threshold 0.1 0.05 0.035 0.1 0.05 0.035
Topic number 58 29 20 58 29 20
Total Precision 0.7462 0.7428 0.7172 0.8556 0.8391 0.8187

The italicize data are the highest accuracy combination in this comparative study.
intervention, which would lead to better clustering results. Second,
our method, including the Term Clumping process and the K-Means
clustering model prefers terms and phrases. This preference would be
unfair for the LDA approach in this comparison; thus, the unfavorable
results above are understandable. Third, the purpose for the clustering
model is to identify ST&I topics for further studies; therefore, we also
prefer to control the number of topics, which facilitate qualitative
follow-on approaches. This comparison helps demonstrate the advan-
tage of our K optimum model.

4.3. Sensitivity analyses for topic analysis

We compared six assembled sets and three feature extraction
approaches (e.g., words & phrases, and TF & TFIDF) to select best combi-
nations, and also compared our method with the LDA and HAC ap-
proaches. We noticed that several factors would influence our analytic
results, thus, aiming to help extend our method to a broader scope,
we summarize such contingent factors here:

A. ST&I data sources: diverse ST&I data sources have different biases for
title terms and abstract terms, and also have different special
features. Thus, depending on actual research targets and data, it is
necessary to consider which is preferred — title terms, abstract
terms, or some other content?

B. ST&I fields: analytic results vary with diverse ST&I applications. As
an example, for NSF Awards, a vertical case in a specific technical
field might prefer to use only the PE codes (PR codes are noisier).
However, multidisciplinary studies would be fine for both PE and
PR code analyses. In addition, clustering on a high-coupling field
would need to enlarge the weights on distinctive features, while
low-coupling cases would favor other content treatments.

C. Term cleaning: well-cleaned terms support TFIDF weighted results,
while normal TF based analyses fare better using raw terms;

D. Topic number: almost all approaches prefer larger topic numbers.
However, lager topic numbers increase difficulties in understanding,
thus, it is vital meaningful to figure out an appropriate topic number
for further studies;

E. Record volume: our method has no preference for record volume,
but a larger dataset would help avoid possible negative impacts
from data distribution or other abnormalities;

F. Words and phrases: the present comparisons favor the advantages
of phrases, especially for analyses of large-scale data set.

Step 3. Forecasting

We applied our method to NSF Awards datasets from 2009 to 2013,
numbering approximately 1000 each year and 4847 in total. After theK-
Means clustering approach, we obtained 75 topics, then consolidated
six duplicate topics, and retrieved 69 topics for further processing.
The topic list (a selected sample is shown in Table 7) included topic
label, description, record number, TFIDF value, and the similarity
information—we recorded the top 2most similar topics in the last year.



Table 7
Interesting topics and their statistical information (2009 and 2013 as samples).

Year Topic label Topic description #R TFIDF Similarity Rank Lvl.

2009 Adaptive grasping & machine learning Automatic speech recognition, computer vision, hierarchical
visual categorization, robotic intelligence

102 0.1292 N/A 0.9306 1.5

Behavior modeling & static analysis Software maintenance, human centered computing, citizen
science, dynamic environments, programming verification

142 0.1585 N/A 0.8861 1.5

online social networks Large scale, social network, machine learning, measurement 258 0.2115 N/A 0.8417 2.0
Trustworthy cyber space
& computer system research

Comparative analysis, internet, public security, software tools 120 0.1458 N/A 0.8013 2.5

High performance computer
& major instrument research

Computer engine, certifiably dependable software,
consortium, virtual organization

83 0.1766 N/A 0.7722 3.0

Cyber physical device & data mining Cyber Physical system, research instrument, database system,
trust worthy cyber, large scale

188 0.1857 N/A 0.7528 2.5

Bayesian model computation & peta
scale data

High dimensional data sets, information integration, computer
supported cooperative work, computer graphics

95 0.1538 N/A 0.7278 1.0

Human centered computing &
virtual world

Social interaction, human computer interaction, computer
vision, internet, virtual environment

57 0.1246 N/A 0.7252 2.0

Hidden web databases &
future internet

Internet, programmable measurement architecture, web data,
network coding

41 0.0864 N/A 0.6389 1.0

Ad hoc wireless networks & cross
layer protocols

Ad hoc wireless networks, cross layer optimization, data
centers, higher layer protocols, wireless sensor network

58 0.0940 N/A 0.6139 2.0

2013 Big data & machine learning Large scale hydrodynamic Brownian simulations, parallel
structured adaptive mesh refinement calculation,
asynchronous learning, scalable system software, complex
time series data

262 0.2345 Large scale data collection — 0.30
Robotic intelligence — 0.12

1 2.0

Robotic intelligence & large scale Robotics engineering, open source data center, data mining,
sustainable future, software needs

182 0.2185 Robotic intelligence — 0.93
RFID system — 0.21

1 3.0

Software system & automatic
graphical analysis

Machine learning, optimization, engineering practice,
prediction, software foundation

117 0.1817 Integrated system usage — 0.41
Heterogeneous architecture — 0.26

0.7972 2.5

Trustworthy cyberspace
& secure protocols

Cyber learning, computer security, internet, ethical
complexities, cyber security

162 0.1765 Cyber security — 0.91
Robotic intelligence — 0.21

0.7532 2.5

Cyber physical system
& power system

Software system, verification, semiconductor, cyber
infrastructure, major research instrument, software foundation

50 0.1302 Grid networks cyber — 0.86
Cyber infrastructure eco sys.— 0.11

0.7217 2.5

Supporting knowledge discovery
& social media

Scientific visualization, real time, mobile device, social science,
human computer interaction

81 0.1567 Cooperative activity analysis— 0.42
Grid networks cyber— 0.11

0.7028 1.5

Virtual organization & socio
technical system

System design, virtual world, design guideline, meta-analysis,
long tail science

24 0.0711 Artificial human agents — 0.08 0.6914 2.5

NSF smart health & signal processing Health influences, medical signals, pattern recognition,
information theory, communication and information foundation

47 0.1066 Algorithm foundation — 0.21
Robotic intelligence — 0.14

0.6833 3.0

187Y. Zhang et al. / Technological Forecasting & Social Change 105 (2016) 179–191
As mentioned in the Methodology section, we treated our auto-
generated results as objective evidence for decision-making, and sought
to combine quantitative and qualitative methods for topic analysis and
forecasting studies. Hence, we engaged experts on computer-related
subjects for topic confirmation andmodification. Nine experts, compris-
ing four senior researchers who have focused on computer-related
studies formore than 10 years and five PhD candidates, from the Faculty
of Engineering and Information Technology, University of Technology
Sydney (UTS), Australia, were invited to serve as our panel. Based on
their research experience and academic backgrounds, they helped us
to consolidate similar topics and confirmwhether the topicswere inter-
esting or not.

The effort to blend expert knowledge with our analytic results
included:

A. We sent the raw topic list to the nine experts personally via emails,
and then, the experts marked these topics as interesting, not inter-
esting, and not sure;

B. We used an inverse ratio to weight the 4-researcher group and 5-
PhD-candidate group, and then, removed all topics marked below
“not sure — rank 0.5” resulting in 50 remaining topics. We list
some of the final topics – all 10 topics in 2009 and 8 topics in 2013
– in Table 7;

C. We re-ran the topic analytic model in Step 2, and TFIDF analysis was
applied to weight the topics (shown in Table 7);

D. Based on Table 7 and related information, we followed the TRM
composing model (Zhang et al., 2013) to draw the historical data-
oriented analytic results in Fig. 3 — X axis is the time series from
2009 to 2013, Y axis is the TFIDF value of the topics, and the topics
are linked with similar previous ones;
E. The statistical information derived from the topic analytic model
was used to identify several significant topics: six increasing topics
(marked by up-arrows), the record number of which was more
than similar topics in the past years, and seven most highly-
involved topics (marked with dark boxes), which had interactions
with two or more previous topics;

F. We separated interviews with one senior researcher and four PhD
candidates of our expert panel. They, based on their knowledge,
highlighted six significant topics (marked with stars), which were
considered as fundamentally important IT techniques or research
topics for Big Data. In this context, we finished a draft version of
the historical data-based analysis in Fig. 3.

G. A two-round workshop then was used for the modification of the
historical analytic results and the forecasting studies, where all
nine of our expert panel and two external experts were engaged.
We first presented the detailed statistical information of all topics
and a raw version of Fig. 3 to the experts, and then, they discussed
our analytic results, especially focused on the selected topics
(e.g., increasing, highly-involved, and significant topics). We led
the discussion with designed directions that included “do you
think the current increasing topics would maintain such trends
in the near future?” “Which topics/techniques revealed on the
graph hold strong potential over the next three to five years?”
and “Which topics/techniques that did not exist on the graph
would also be emerging ones?”. Finally, we summarized several
evolutionary trends and five Big Data issues — software tools,
techniques & algorithms, analytic scope, analytic capability, and
data management, and identified four Big Data-related emerging
topics, which would be considered as the future directions in the
following decade.
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H. Free discussion helped us select seven domains of computer sci-
ence and applied mathematics as highly-related techniques to
Big Data. This understanding was totally based on the personal
research background and subjective insights of the experts, and
we blended them in Fig. 3 to better understand the relationships
between Big Data techniques and existing knowledge.

The final output of our case study — the NSF Awards data-based
Technology Roadmapping for computer science is shown in Fig. 3.

4.4. Discussion and implications

Currently considered one of the hottest topics, it is interesting and
promising to explore and discuss Big Data in more detail. In March,
2012, the Obama Administration announced the Big Data Research and
Development Initiative (The White House, 2012) to improve the ability
to extract knowledge and insights from large and complex collections
of digital data and help accelerate the pace of discovery in science and
engineering, strengthen national security, and transform teaching and
learning. Six Federal departments and agencies announced more than
$200 million to launch the initiative — the NSF being one of them.
Concerning the general technology development pathway and the situ-
ation of Big Data, we first discussed the origins of Big Data techniques,
and evidence was discerned from Fig. 3. Then, we summarized several
possible directions to foresee the development of Big Data techniques.
Such insights were mostly derived from the analytic enhanced by the
expert knowledge derived from the interviews and workshop. We
attempted to extend the topic analysis to forecasting studies in such
manner, and hope it anticipates a capability to adapt changing require-
ments for multiple applications.

1) Big Data is not a pure invention, but a kind of evolution from previ-
ous techniques and a solution for real-word problems.

It is easy to link Big Data with its “3V” features — volume, velocity,
and variety (McAfee et al., 2012), and “large scale,” “real time,” and
“unstructured data” are listed as the hottest terms in Big Data-related
records. However, there is no entire invention here. In Fig. 3 we are
able to track the original techniques and models of these “new”
concepts. On the one hand, seven subdomains of computer science
and applied mathematics were identified as the foundation of Big Data
techniques— artificial intelligence, machine learning, datamining, opti-
mization, pattern recognition, statistics, and cloud computing, and we
could easily locate related topics of these seven subdomains in Fig. 3
or even in the data before 2009. On the other hand, large scale and
real time related concepts, algorithms, and systems have been generat-
ed continuously since 2009 — e.g., “peta scale data [2009]”, “quantum
mathematics and real time [2009]”, “large scale software tool [2010]”,
and “large scale data collection [2012].” At this stage, we assert that
the main concept of Big Data is not new, but rather the combination of
previously existing, but also emerging, technologies, theories and tech-
niques. This package plays active roles in dealing with real-world prob-
lems, and its applications have been and still will be one emergent
direction of the computer science domain in the following decade.

2) Cyber security and internet of things are two hot topics relating to
Big Data.

Outwardly, “trustworthy cyber space [2009, 2010 and 2013],” “pri-
vacy preserving architecture and data privacy [2011],” and “cyber secu-
rity [2012]” seem to have no direct relationship to Big Data, but in May
2014 theWhite House announced another report, Big Data: Seizing Op-
portunities Preserving Values (The While House, 2014), which involved
relationships among government, citizens, businesses, and consumers.
It focused on how the public and private sectors can maximize the ben-
efits of Big Datawhileminimizing its risks. Clearly, cyber security is con-
sidered a great risk in the Age of Big Data, and it is also obvious that in
Fig. 3 the cyber security topic kept dominating a large proportion of pa-
pers from 2009 to 2013. Therefore, it is reasonable to imagine that, in
the near future, privacy of Big Data and the corresponding privacy
protecting techniques should be a big concern for both government
and citizens in policy development and legal domains.

Another set of topics that attracts our eye is “adaptive grasping
[2009],” “AI supported diagramming [2011],” “supporting knowledge
discovery [2013],” and also application-related topics, including “ad
hoc wireless network [2009],” “sensor network [2010],” “access control
[2010],” “cyber infrastructure [2010],” and “RFID system [2012].” As the
most powerful competitor of the US, China has identified the internet of
things in its top 5 emerging industries, announced in the speech, Let
Science and Technology Lead China's Sustainable Development, by then
Premier JiabaoWen (2009). Not uniquely, in the 2014White House re-
port mentioned above, internet of things is highlighted as the ability of
devices to communicate with each other using embedded sensors that
are linked through wired and wireless networks. This is also linked
with Big Data. Thus, internet of things, including mobile device-related
techniques, is likely to be another hot research topic in the coming
years.

3) Big Data-oriented data centers or systems to apply Big Data tech-
niques for real-world requirements.

As part of the Obama Administration's Big Data program, the NSF
started its NSF “Smart Health and Wellbeing” program in 2012. This
“seeks improvements in safe, effective, efficient, equitable, and
patient-centered health and wellness services through innovations in
computer and information science and engineering” (United States Na-
tional Science Foundation, 2014). Although there is no direct topic relat-
ed to health &wellbeing, various data analytic techniques, systems, and
softwarewould likely be the foundation of this program, and “NSF smart
health” rose exponentially as a hot topic in 2013. With the push of the
NSF program and the enormous pull of wellbeing requests in modern
society, the application of computer techniques in health and wellness
services promises to be an emerging industry for a long time to come.
Although therewasno other representative example in Fig. 3, the devel-
opment of data analytic techniques and software tools is continuously
increasing the capability for large-scale data collection (e.g., EHR —
Electronic Health Records), processing, storage, and analysis, and we
foresee that growth of Big Data-oriented data centers and systems will
likely be a trend for both academia and industry in the near future.

4) The combination of robotic intelligence and Big Datawould be a pre-
dictable direction for both engineering and IT techniques.

It has been a long time since people started to imagine intelligent
robots. Although these topics are not new, and appear several times in
Fig. 3, e.g., “next generation robotics [2011]” and “robotic intelligence
[2012 and 2013]”, we foresee on-going robotic intelligence gains via
Big Data advances.

As shown in the forecasting part of Fig. 3, Big Data derives from quite
a fewmature subjects of computer science and mathematics, where ar-
tificial intelligence would be considered as one of the underlying ones.
Rapid change in the modern world and the increasing needs promote
exploring insights from large scale data, especially unstructured data,
e.g., audio, and video, resulting in interdisciplinary fusion, in some
sense. MapReduce and Hadoop, then, lead the revolution of analytic
software, perhaps likened to “the butterfly effect” of the Big Data Age.
On the one hand, Big Data techniques are required for knowledge dis-
covery, decision making, and even prediction, and business intelligence
attracts the eyes of both governments and industries, where data-
driven is highly praised, rather than objective. On the other hand,
“real time” is identified as another landmark of Big Data, where re-
searchers pursue the accuracy and efficiency of data analysis, and
cloud computing becomes a necessary tool for Big Data. Briefly, Big
Data is a management revolution, which builds upon the data and
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then results in a technical revolution, and the evolution of the tech-
niques themselves would be considered as underlying stories.

5. Conclusions and further study

In the current Age of Big Data, it is common sense to transfer tra-
ditional objective-driven research into a data-driven empirical
study, and this paper could be considered as this kind of an attempt.
We focus on NSF Awards, propose a clustering approach for topic re-
trieval, and then engage expert knowledge to identify developmen-
tal patterns. A combination of quantitative and qualitative methods
provides a promising approach to forecast potential advances. The
main contributions of this paper include: 1) an NSF data-driven K-
Means-based clustering approach with high accuracy and a local K
optimum; 2) a similarity measure function for relationship identifi-
cation of TRM components and a creative TRM model for visualizing
both objective results and expert knowledge-based qualitative
discussions. The empirical study to dive into the roadmapping of
computer science provided a quick means to obtain relevant techni-
cal intelligence pertaining both to academia and industry. This
served to identify core technology, trace technology evolutionary
pathways, and help forecast techniques and products in the next
generation. These possible advanced computing applications for
specified industrial issues present capabilities for R&D planning.
Such TRM modeling also generates Competitive Technical Intelli-
gence (CTI) to inform strategic management.

There are also several limitations of this paper requiring more de-
tailed and specific discussions. On the IT technical side, we emphasized
accuracy more than efficiency and scalability, and the current approach
would be time-consuming if dealing with larger record sets. Also, we
stopped pressing forward when we generated ST&I topics and simply
identified their relationships. We see promise in use of intelligent tech-
niques (e.g., concept drift detecting technique) to semi-automatically
train an algorithm to retrieve multi-dimensional relationships for fur-
ther trend analyses. On the technology management side, we engaged
experts for topic understanding and forecasting studies, but a systemat-
ic technology foresight process would be able to improve the efficiency
of qualitative approaches. At this stage, we anticipate further study
in four directions: 1) to continue to improve our clustering algorithm
in extended dimensions – i.e., efficiency, robustness, and scalability;
2) to introduce smarter IT techniques for relationship identification
among ST&I topics; 3) to introduce a systematic quantitative ap-
proach to weight/rank the analytic results – i.e., topics – to support
expert-based decision making in further steps; and 4) to extend
the empirical study to address multiple ST&I data sources and to
take into account external environmental factors (e.g., science poli-
cies and market forces).
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