
J. Eng. Technol. Manage. 32 (2014) 185–205

Contents lists available at ScienceDirect

Journal of Engineering and
Technology Management

journal homepage: www.elsevier.com/locate/jengtecman
Tipping points in science: A catastrophe model of

scientific change

S.W. Cunningham *, J.H. Kwakkel

Faculty of Technology, Policy and Management, Delft University of Technology, 2600 GA Delft,
The Netherlands
A R T I C L E I N F O

Article history:

Received 4 February 2013

Received in revised form 22 January 2014

Accepted 23 January 2014

Keywords:

Scientometrics

Diffusion modeling

Scientific growth

Logistic

Catastrophe

A B S T R A C T

In this paper we discuss the capabilities for scientific knowledge to

demonstrate explosive growth in short periods of time. In one

notable example the field of engineering and technology manage-

ment grew more rapidly in the 4 years after 1980 than it was

expected to grow for the next 40 years. We provide 22 examples

drawn widely from science, demonstrating that this phenomena is

pervasive throughout science. We propose a new model, based on

the idea of folds from mathematical catastrophe theory, a

phenomenon that is more popularly known as tipping points. This

model is then fit using non-linear regression in the presence of

Poisson noise. While the tipping point does not occur in all fields of

science, in those cases where it does occur the resultant model

overwhelmingly supports the idea of catastrophic growth within

scientific knowledge. We describe the differential equations

underlying the fold catastrophe and relate these equations to a

process of communication and interaction. We relate this dynamic

to other word of mouth models such as the Bass diffusion model.

We further discuss why scientific, and to a lesser extent news,

articles are subject to this behavior while the same phenomenon is

unlikely to occur when solely measuring the sales of a physical

product. We provide evidence of the phenomenon in one brief

sociological sketch of scientific activity. Finally, we discuss the

relevance of the model in terms of innovation forecasting. In

particular, we evaluate the possibility for ex ante anticipation of the
bifurcation point.
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Introduction

The field of scientometrics attempts to create both static and dynamic measures of knowledge
production. Previous scientometric research into dynamic measures of knowledge production has
examined a range of alternative measures including word usage (Noyons and van Raan, 1988), citation
usage (Boyack et al., 2007; Garfield, 2004), and patterns of collaboration (Reid, 1997). Scientometricians
often use a sociology of science perspective when modeling the growth of knowledge (Zitt, 1991). This
perspective, in turn, is strongly influenced by semiotics and linguistics (Rip and Courtial, 1984; Zitt,
1991). Our principal concern in this paper is the quantitative modeling of the growth of scientific
knowledge. This concern in scientometrics dates to the onset of the field, and is perhaps best credited to
the great philosopher and sociologist of science Derek de Solla Price. In this paper we discuss the
capabilities for scientific knowledge to demonstrate explosive growth in short periods of time.

Studying the dynamics of science can be done at different levels of granularity. For example, one
can look at the past development of a scientific field, at the research front currently faced in a
particular research field, alternatively, one can study the broader disciplinary structure of the sciences,
or instead in much more detail delve into a subfield and its dynamics. That is, one can study, the
disciplinary structure, the fields within a discipline, the subfields that constitute a field, and research
topics in a particular subfield (van den Besselaar and Heimeriks, 2006). Much of the current literature
on science dynamics is of the macro-dynamic character. This literature is significant both for policy as
well as of science. de Solla Price’s (1961, 1963). contributions are of this character, and the work of
Katz and Hicks (Hicks and Katz, 1996) representative of the policy relevant strand of research.

De Solla Price, musing upon a complete collection of the Philosophical Transactions of the Royal

Society of London, observed that science has been growing exponentially. These observations were first
noted in a 1963 book and then more famously in his 1963 work Little Science, Big Science (de Solla Price,
1961, 1963). This later book, which endorsed quantitative methods for analyzing science, fortuitously
occurred at the birth of a new discipline of scientometrics. Not surprisingly, given its time and its
content, the book became a citation classic for the field (de Solla Price, 1983).

De Solla Price, who was trained as a physicist, well knew the consequences of unending exponential
growth. In de Solla Price’s own words ‘‘the exponential growth business needled me a lot (de Solla Price,
1983).’’ He therefore postulated that eventually science must reach a steady state. His argument is that
there is a finite population of potential scientists. Further, there will be decreasing returns to productivity
as increasing numbers of scientists are trained and recruited by society. This occurs because of a gradation
in scientific talent. The first scientists are the most talented, and are therefore trained in the most cost-
affordable manner, producing the greatest marginal gains in scientific output. Recruitment and training
for subsequent scientists becomes more difficult, with lesser gains in output achieved a greater expense.
Publications here are taken as a measure of scientific output. De Solla Price, like many others after,
understood the limitations of publication as the sole measure of scientific output. Nonetheless he
convincingly describes the use of publication output as a partial indicator of scientific progress.

The logistic curve is an obvious choice for modeling diffusion limited growth. The dynamics of the
logistic are compounded from two processes. The first process involves growth in proportion to an
existing population. This is variously known as the dispensatory or replication process. The second
process modifies the growth so that, as the population approaches its limit or stable carrying capacity,
the growth rate approaches zero. The second process is known as the compensatory or inhibiting
process (Miranda and Lima, 2010). The combination of these two processes results in the
characteristic S-shape curve. Growth starts low, expands rapidly, passes through an inflection point,
slows down and asymptotically approaches a saturation limit. See Fig. 1 for an example of how this
might apply to the dynamics of publication output.

Verhulst first studies this dynamic in light of population biology (Verhulst, 1838). These dynamics
were later rediscovered by Pearl (Pearl and Reed, 1920). Fisher and Pry described technological
substitution behavior in light of logistic growth, although without direct reference to the earlier
ecological applications (Fisher and Pry, 1971). Pearl and Fisher Pry curves are one form of trend
extrapolation among many referenced by a premier text on technological forecasting.

Particularly noteworthy for our purposes are those papers which attempt to forecast growth in
science and technology (Bengisu and Nekhili, 2006; Daim et al., 2006). This work serves a useful



Fig. 1. Logistic curves and publication outputs.
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function for identifying new and emerging areas of research well prior to market commercialization. A
principal inspiration for these researchers are existing models of technology diffusion. The various
models used in these different field of research often postulate that growth is either linear,
exponential or S-shaped in character (Bass, 1969; Porter et al., 1991; Roper et al., 2011). These models
thus postulate a continuous growth, which, in case of exponential models constantly accelerates, and
in case of logistic models, slowly decelerates again.

These basic models thus cannot account for the discontinuous and sudden growth that is observed
in the real world. In one notable example, the field of engineering and technology management grew
more rapidly in the 4 years after 1980 than it was expected to grow for the next 40 years (Cunningham
and Kwakkel, 2011). Other examples can easily be found across the sciences. Various explanations for
this discontinuous behavior can be offered. Adopting a Kuhnian perspective on the dynamics of
science, terminology merely reflects the wider dynamics. Thus, scientific revolutions are accompanied
by sudden increases in very specific terminology, associated with the new paradigm. Another, more
bottom up explanation is that scientists are searching for words and phrases to describe their work. In
particular in a new area of study, a variety of words and phrases can be used to denote roughly the
same idea or object. Scientist might start to discuss harmonizing terminology, to facilitate the
exchange of ideas, leading to small shifts in which terms are being used. At some point, one of
the candidate words or phrases reaches a critical mass, sufficient to swamp the competition. Resulting
in the rapid adoption of that word or phrase. Yet another explanation is the fact that new terminology
might bring together different research fields that before that point worked in isolation using their
own terminology. The new terminology is then able to tap into these different research fields,
facilitating the exchange of ideas across these fields and leading to a quick spread over these fields that
up until then used their own research field specific terminology. A fourth explanation for this dynamic
comes from the distortive effects of national science funding. Funding agencies put out calls inviting
research proposals on particular topics. Scientists will write their proposals to fit these calls, adopting
the terminology of the call to describe their own research. A prime example of this dynamic comes in
the form of the various ‘‘nano’’ related terms. There is ample evidence that a large part of nanotech
funding goes to well established research areas that had their own terminology, which because of
funding reasons is being rebranded as nanotech research.

Alternative models may be equally effective summarizations of empirical data. For instance in the
early stages of growth, hyperbolic, exponential, and logistic growth may be indistinguishable despite
having very different growth dynamics, and very different results even over the medium term (Fig. 2).
Theories of underlying growth, as well as empirical evidence in support of the theory, are necessary to
choose between alternative explanations of phenomena. In the following paragraphs we consider
three epiphenomena of scientific growth. When these phenomena are present, logistic models are
poor representations.



Fig. 2. Coincidence of alternative publication models.
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The first epiphenomena in the empirics of scientific knowledge is coalition growth. In the world
science example given above, there was a period of very rapid scientific expansion starting in the
1940s. Scientific output grew by an order of magnitude in 25 years. Previously such growth would
have taken 75 years (see Fig. 2). It is telling that faster than exponential growth is known as hyperbolic
or ‘‘coalition growth’’ and such growth has been characteristic of human population growth for a long
span of time (von Foerster and Mora, 1960). Hyperbolic growth is enabled by positive returns to scale
from cooperation. This phenomenon has previously been noted in science, where a particular
manifestation is known as the Matthew effect (Merton, 1960). Others have noted how urbanization
provides a dramatic multiplier on economic activities, presumably facilitated by intense interaction in
a circumscribed space (Bettencourt et al., 2007). Such growth is inexplicable given the dynamics of the
logistic. In logistic growth there is always a deceleration, but never an acceleration in absolute
numbers over time.

The second epiphenomena is two-level growth. The limit or carrying capacity of science is not a
fixed quantity. De Sola Price fixed scientific carrying capacity at a fixed proportion of population,
acknowledging that it may be many years still before full recruitment of scientists is realized, and
therefore a steady state achieved. Further, although population growth has slowed it has not reached a
steady state. The production of Ph.D.s is to a large degree, a phenomena of the developed world,
suggesting that Ph.D. researchers are intensive on public goods such as national science funding and a
university system. Thus the economy could also form a basis for fixing the carrying capacity of science.
However like world population the world economy is not at a steady state. Both population and the
economy are time-varying quantities. Thus the assumption of a finite pool of knowledge given a fixed
resource base is inappropriate. However this assumption of a fixed carrying capacity is inherent in the
logistic growth model.

The third epiphenomena are intellectual migration. Researchers are broadly capable, and thus can
select from a range of different research specialties as need, circumstance, or opportunity require. This
is very different from the assumptions of the logistic equation where a given species has a single
resource base. When the resource base is exhausted, growth is permanently curtailed. The assumption
of a single species with a single resource base is relaxed when modeling ecological webs. The resulting
models, like actual species distributions over time and place, may display punctuated equilibria
(Hubbell, 2001). A further manifestation of intellectual migration is achieving a critical mass of
scientists to solve a difficult problem. We address this point further below.

For three reasons then, the logistic model should be questioned. Scientific growth involves
coalition behavior, where there is positive returns to scale. Scientific growth is in itself dependent on
other quantities of population and economy. Scientific growth is conditioned on intellectual
migration, and epistemic relationships between fields of study. Empirical findings may be effectively
and naively summarized in any number of ways. A theoretical account of the underlying dynamics of
the trend is the only principled means of choosing between alternative explanations.



Fig. 3. Annual number of articles for medical fields and natural sciences and engineering.
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Fig. 3 shows a very typical dynamical trajectory of annual number of articles in two major fields of
science and technology. The original data is reported in Lariviere et al (2008) and further discussed in
Han et al. (2010). Note the only superficial relationship to a logistic, or other S-shaped curve. The chief
departure of the curve is either the very slow growth from initial conditions, or the extremely rapid
growth which occurred between 1950 and 1970. Either (but not both) phenomena are consistent with
logistic growth. De Solla Price observes qualitatively very similar trends in publication, reporting total
rather than annual output (de Solla Price, 1963). In this paper we examine scientific growth at a much
narrower level, corresponding to the usage of single words or phrases by scientific authors. The same
qualitative dynamics are apparent, although the inflationary period displays much more extreme
behavior. We identify the field/subfields through co-word analysis. The underlying rationale of this
approach is that co-word analysis gives direct access to the research topics in terms of concepts as
used by the researchers (van den Besselaar and Heimeriks, 2006).

A final point of confusion with the logistic modeling of scientific growth is whether the model is
appropriate at the level of single papers, or cumulative numbers of papers published. Both styles of
modeling are present in the literature, yet both cannot be true as they present mutually contradictory
hypotheses of growth. A model of total publication is intended in de Solla Price’s original vision (de
Solla Price, 1963). Logistic growth in total papers implies absolute long-term declines in year over year
production of scientific literature, something which is comparatively rare in the data. Other authors
use the logistic as a model of annual not total publication (Bengisu and Nekhili, 2006; Daim et al.,
2006). The two models are mutually inconsistent; both cannot be true unless they are describing two
distinct publication phenomena.

We propose a new model, based on the idea of folds from mathematical catastrophe theory. This
model postulates a slow growth process leading up to a point at which the growth curve suddenly
changes dramatically. This point at which the growth shows a sudden discontinuous jump is more
popularly known as a tipping points. This insight can be used for various purposes ranging including
individual scientists updating their vocabulary, funding agencies tailoring research calls, and
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technology management. In section ‘Method’, we present the model. In Section ‘Application of the
model’, we select a set of cases and apply the model to these cases. Section ‘Discussion’ contains a
discussion of the results. Such a model can be used in the context of monitoring scientific
developments, and can provide early warning that a particular word or phrase has passed a tipping
point. Section ‘Conclusion’ presents the conclusions, and its relevance for the broader field.

Method

The origins of catastrophe

Catastrophe theory in mathematics is a branch of bifurcation theory, which is part of the wider
domain of dynamical systems. Bifurcation theory studies how massive changes can arise out of small
shifts in conditions. Catastrophe theory studies the situation where the long-run stable equilibrium is
identifiable. The point at which the system suddenly shifts to a different type of behavior is also, more
popularly, known as a tipping point. Different types of catastrophes have been identified, based on the
number of control parameters in the equation. For example, if there is only a single control parameter,
one speaks of a fold catastrophe, while if there are two control parameters, one speaks of a cusp
catastrophe.

Tipping points have become popular, among others, through the work of Malcom Gladwell
(Gladwell, 2002). There are also studies in the complexity sciences concerning tipping points in the
context of complex networks. Tipping point behavior has for example been found in scale free
networks. Scale free networks are networks that have no characteristic scale. They are characterized
by power law distributions. That is, the degree of the nodes in the network follows a power law. The
result of this is that scale free networks have a few nodes with a very high degree, the variance of the
degree of the nodes is very large, the network is self-similar, and has the small world property.

Tipping point behavior in this context, are points at which some process starts to either increase
dramatically, or can completely disappear. Both dynamics are driven by a positive feedback loops. A
prime example of such behavior is the accumulation of citations (Mitchell, 2009). Tipping points are
easily introduced into ecological models by means of the Allee effect. The Allee effect a positive
relationship between density and population growth. Such a relationship may be related to herding,
the benefits of a diverse gene pool, or the mutualism of highly communal or social species (Mendez
et al., 2011).

Our approach examines local dynamics in the context of gradual systemic change. Slow-fast vector
fields are one approach for understanding dynamical change in ‘‘systems of systems.’’ A slow-fast
vector field has the form

eẋ ¼ f ðx; y; eÞ (1)

ẏ ¼ gðx; y; eÞ (2)
with x2Rm and y2Rn. The variable x is the so-called fast variable, and the variable y is the slow
variable. One such dynamical system in x and y, which gives rise to prominent fold catastrophes, is
represented by the following model

ẋ ¼ y � x2 þ j (3)
ẏ ¼ az þ bx þ h (4)
ż ¼ 1 þ z (5)

We wish to understand the dynamic behavior of x, y and z in the presence of j, h, j,, or higher-order
terms. This system can be written to first approximation with the following set of equations

ẋ ¼ y � x2

ẏ ¼ az � x
ż ¼ 1

(6)



Fig. 4. Fold dynamics in scientific production.
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Dynamical preserving transformations of these systems are studied in Arnold et al. (1994) and
Guckenheimer and Haiduc (2003). Arnold is well-known for earlier contributions in the field of
catastrophe theory (Arnold, 1984). A sample dynamic trajectory of this system of equation is given in
Fig. 4.

This is a solution to the differential equations given in (1), when a=1. Research production starts
low, but in a few years dramatically ramps upwards, ultimately resulting in a high and constant rate of
growth. Note that the growth rate in this figure is proportional to the square root of time. We will
return to this in a simple time series model of publication behavior, below. In an actual time series the
date of bifurcation might vary, and the initial and tipping point growth rates might also vary. Further,
the bifurcation need not be at the square root – even more rapid transitions are possible given the
dynamics.

The actual dynamics of scientific growth need further formalization. At the heart of the matter is
the negative density dependence assumed by s-shaped curves. Restating this assumption, these
models assume that publication growth will uniformly decline as more research is conducted. In
ecology, where logistic growth modeling was first pioneered, there is an increasing recognition that,
under some circumstances a population benefits from increased numbers. As a result, periods of very
rapid or coalitional growth are possible. This phenomena is known as the Allee effect. The effect is
most pronounced in social species such as birds, bees, fishes and herd animals.

Finding an equivalent phenomena in science and technology may require linking the numbers and
careers of scientists to research output and specialization. Resource levels may play a role, as well as
the minimum number of scientists required to maintain a productive research discipline.
Maleszewska (2013) describes trend following behavior in the field of physics. Scientific research
can be intensely social, and therefore it would not be surprising if the Allee effect were present in the
sociology of science much as it is seen in ecology.

In the next section we report a simple empirical model which captures some of the salient features
of the fold catastrophe.

An empirical model

Data about word usage in general and keyword usage in particular is sparse and count-like in
character. Normal approximations to the data, even using continuity corrections, fail when rates are
less than five (Berenson et al., 1998). There are concerns with error-modeling, parsimony and
predictive validity when using Gaussian models if these models are inappropriate. In particular,
Gaussian models over-weight high count and high variance years. As a result critical information at
the start of new publication trends is effectively discarded. Gaussian distributions, when used
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inappropriately, result in excess model parameters, and therefore an inability to generalize models
when new data is present. Gaussian noise, when added to model structure, may result in negative
predictions. Predictions of ‘‘negative’’ publication count are suspect both conceptually as well as
validity-wise.

Unfortunately there are few existing Poisson models to be used as exemplars in the scientometrics,
bibliometrics or informetrics literatures. Revolutionary work, dating back to 1976 and also due to de
Solla Price, offers a probabilistic explanation of many cumulative advantage processes in science (de
Solla Price, 1976). Much of the bibliometric work in probability borrows on an earlier tradition of
biometrics (Bensman, 2005). Another exception is (Cunningham and Kwakkel, 2011), which presents
a model for rapidly scanning or monitoring content areas of interest in order to trace dynamics and
better predict future evolution.

Consider the Poisson distribution, a discrete distribution suitable for modeling count-like sources
of publication data. The Poisson distribution is particularly suitable for modeling low frequency events
as seen in emerging publication growth in new research fields. The probability density function of the
Poisson distribution is as follows:

f ðk; lÞ ¼ lke�l

k!
(7)

In this function l is the Poisson rate, which may in turn be predicted by other independent variables.
The variable k takes on discrete quantities (k=0, 1, 2 . . . n) representing potential publication outputs.
The resultant function gives the probability of k publications occurring given a particular rate of
publication output.

We now operationalize these dynamics in a simple time series model. The model is suitable for
uncovering potential fold catastrophic dynamics in actual publication data. Our simple causal model
of the Poisson rate l is solely a function of time (t), and three parameters.

l ¼ expða þ Hbðt � cÞ1=2Þ (8)

where H is the Heaviside function and H is 1 if t>c, or 0 otherwise.
Note that the rate parameter l is a function of time. Given an estimate of l, shown as l̄, the

likelihood of the model under this data and given this model parameter can be calculated. It is useful to
report the logarithm of the likelihood, obtained by introducing the estimate to Eq. (7) above and taking
the log-likelihood.

LL ¼ klogðl̄Þ � l̄ � logðG ðk þ 1ÞÞ (9)

The presented model can be fitted to data using Poisson regression, analogous to the method used in
Cunningham and Kwakkel (2011). The model predicts annual publication, not total or cumulative
publication. The parameter a is the baseline growth at the intercept year, parameter b is associated
with the equilibrium growth after the tipping point, and the parameter c is associated with the
bifurcation year. This generalizes the bifurcation phenomenon seen in Fig. 4.

We are aware of two other structural models, which is notable for widespread collection of data
(Petersen et al., 2012). Petersen et al. also acknowledge periods of inflationary growth, but argue
through statistical mechanics that these epochs are caused by periods high variation before
standardization measures are taken. A further distinguishing feature is that Petersen et al. investigate
general word usage in indexed books, while this paper investigates scientific articles. Cunningham and
Kwakkel (2011) offer a forecasting model consistent with logistic growth in cumulative count of
articles. This result is telling because the forecasted model consistently fails to reach saturation. Across
all terms investigated the inflection point was near or at the end of the trend. In this context, although
not a structural model, the work of Schmoch is anotable (Schmoch, 2007). Schmoch investigates the
interwoven dynamics of scientific fields, scientific patenting, and technology sales. Particularly in
patent counts Schmoch recognizes double-boom cycles caused by early research, then renewed
interest in the underlying science during the commercialization phase. Schmoch’s model is richly
justified theoretically, but the paper does not offer an empirical model for trend forecasting.



S.W. Cunningham, J.H. Kwakkel / Journal of Engineering and Technology Management 32 (2014) 185–205 193
Application of the model

Case selection

In order to assess the extent to which the postulated bifurcation dynamic plays a role across the
sciences, we need a heterogeneous set of cases. That is, we need cases drawn from the full breadth and
width of the sciences, instead of focusing on a single branch of science. Broadly selected cases
eliminate the threat to validity that catastrophic change is limited in character, and that there is a case
selection bias. That is, we believe the worst threat to validity for this type of research comes from the
impression to ‘‘cherry pick’’ examples. Therefore, if in fact even a random sample demonstrates that
rapid, inflationary growth predominates in scientific activity, we have strong evidence to generalize
this claim. To this end, we analyzed a sample of 40,000 articles randomly sampled from the Web of
Science for a particular year. We indexed titles, author provided keywords, and abstracts. We looked at
phrases consisting of one word, two words, and three words. We excluded phrases containing stop
words, based on a list of 333 stop words for the English language.

In order to find interesting phrases, we decided to not look for the most frequently occurring
phrases. We identified the phrases that occurred between 130 and 150 times. This is a pragmatic
choice intended to achieve a useful balance between frequently occurring words, which are inherently
more representative of science, and narrowly specialized words. Narrowly specialized words use more
technical language, adopting more precision in the meaning of the word, and therefore can be more
readily mapped to activities at the research front in specific scientific subfields. This resulted in a list of
472 phrases. In order to identify a sample of cases that spans the sciences, we indexed the ISI subject
categories and made a cross table of phrases by ISI subject categories. This cross table was analyzed
using singular value decomposition and leading phrases by eigenvector are selected. This ensures a
sampling of words across a multitude of disciplines. This results in 63 phrases, shown in Table 1. We
choose 22 phrases from this list of 63, these are shown in gray in Table 1.

The search terms are exact and counts are reproducible by searches in the Web of Science database.
Ideally there would be a functional equivalence between the search term, and a community of
practicing researchers. A mismatch could occur because the term does not map to a functional concern
in science, or because the term is polysemous, indicating different fields of study to different
researchers. This could challenge a forecast by introducing additional conflicting signals in the
underlying growth model. To further reduce the threat to validity posed by misspecification of our
Table 1
Identified phrases, the grayed phrases are selected for further analysis.

Zro Grafts Integrin

Regimens suppressor Cyclin

Cisplatin cterminal Mcircle

Stents Astrocytes ism

Analog Transistors Allograft

Malignancies nf Cervical cancer

Self-assembly Lasers Transcription factors

Dwarf Cytology Receptor antagonist

rt Diodes Patients underwent

Malignancy Novo Cancer risk

Macrophage Planetary Mouse model

Confocal Nanotube Magnetic properties

Inducible Epitaxial Endothelial growth

Portal cdc Squamous cell

Pharmacokinetic Oncology Cell growth

Staging xps Published online

Transforming Trafficking Band gap

Adenosine Disks Solar cells

Mediates gd Photoelectron spectroscopy

Pathologic es Atomic force microscopy

Preclinical Nanostructured Vascular endothelial growth



Fig. 5. Number of publications per year for each of the selected phrases.
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terms, we have discussed them with various experts. The only term which raised concerns was
‘‘diodes.’’ This term changed in meaning, reflecting radical changes in technology. We will shortly
evaluate whether these trends are clear and unambiguous, and whether any model is sufficient for
modeling the growth.A second concern would be raised if we were to use our forecasts to evaluate the
health or promise the specific research communities involved. If care was not taken to
comprehensively scope the research community through an appropriate selection of queries,
incorrect inferences could be drawn concerning the community. We do not attempt such inferences in
this paper, and are therefore correspondingly modest that we are measuring term usage and not the
growth of scientific communities. Nonetheless we acknowledge results in sociology of science or
scientometrics which are attempting such recommendations. Despite curtailing the goal of the
modeling from scientific communities to scientific words, tracking word usage in science and the
internet remains of intense interest (Petersen et al., 2012).Next, we queried the Web of Science for
each of these 22 phrases under the topic field. We retrieved the number of publications per year for
each of these 22 phrases (queried on January 10 2012). Resulting in time series data for each of these
22 phrases specifying the number of publications per year for each of these 22 phrases. Fig 5 shows the
time series for each and a log scaled version of the same data. These results already suggest a rapid
sudden growth for at least some of the keywords. It also shows that for the most recent years, the data
is still incomplete. This is a known issue with ISI data. The data for 2011 is not complete yet, and the
data even contains already some 2012 publications. For the remainder of the analysis, we restrict
ourselves to data up to 2010.

Fitting the model

The model is implemented in the Python programming language (van Rossum, 1995). The
optimization is performed using the PyEvolve genetic algorithm library (Perone, 2009). Matplotlib
was used for the visualizations (Hunter, 2007).



Table 2
Results for fitting the bifurcation model to the 22 phrases.

Keyword Parameters of the model

Intercept Growth Year of bifurcation Growth of bifurcation Log likelihood

Adenosine 0.685053 0.003584 33 0.849211 �6173.25

Astrocytes 0.465187 0.01227 70 0.993455 �2599.59

Atomic force microscopy 0.208794 0.035534 86 0.989582 �2786.12

Cervical cancer 0.017917 0.049523 84 0.509058 �963.017

Cisplatin 0.880544 0.011849 70 0.961447 �2390.65

Diodes 0.151526 0.075837 90 0.197996 �3226.46

Endothelial growth 0.918966 0.028396 83 0.97932 �2716.32

Grafts 0.861294 0.075368 83 0.122493 �4403.63

Integrin 0.924806 0.019446 80 0.957764 �4095.69

Lasers 0.750283 0.01806 41 0.961276 �13,882.3

Macrophage 0.852808 0.008119 49 0.996081 �9348.23

Magnetic properties 0.370629 0.073569 87 0.243715 �3947.99

Malignancy 0.56042 0.052218 75 0.487983 �3436.57

Mouse model 0.184304 0.044947 79 0.871613 �5622.3

Nanostructured 0.133646 0.03584 94 0.99455 �1021.06

Nanotube 0.073023 0.048622 94 0.993213 �3426.08

Pharmacokinetic 0.723391 0.011218 54 0.9621 �4893.23

Photoelectron spectroscopy 0.00633 0.027406 67 0.870907 �3296.27

Self-assembly 0.032624 0.033073 88 0.998933 �578.17

Solar cells 0.001602 0.027189 72 0.86059 �2129.63

Squamous cell 0.91863 0.035228 75 0.664755 �1839.59

Stents 0.189862 0.02437 83 0.961222 �867.196
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The model contains the following parameters
� A
 constant (constant)

� A
 growth rate (growth)

� T
he year at which the bifurcation takes place (bifurcate)

� T
he growth rate after the bifurcation (growth of bifurcate).

The constant, growth rate, and bifurcation growth rate are constrained between 0 and 1. The year of
the bifurcation is unconstrained, meaning that the fitted model need not have a bifurcation over the
period taken into consideration in the analysis. All the data runs from 1900 up to and including 2009.
The maximum likelihood parameters for the model are calculated, using the parameters as listed
above, and the log-likelihood equation given in Eq. (9), above.

The algorithm is ran for 250 generations, and each generation contains 2500 members. The
crossover rate is set to 0.5 and mutation rate is set to 0.15. Table 2 shows the resulting
parameterization and likelihood for each of the 22 phrases. Looking at the bifurcate column, we notice
that the model always found a year of bifurcation in the data, this despite the fact that this parameter
was unconstrained. Fig. 6 shows an illustration of the model. The original data is shown in dots, and
the line is the model fit. The results suggest that the model fits the data well.

Fig. 5 shows one of the 22 models listed above, graphing the trend and the fit in the word ‘‘self-
assembly.’’

It is useful to further examine the parameters in the 24 models given above. This is displayed in a
matrix scatter plot, shown in Fig. 7, below. The model suggests our selected terms, although selected at
random, were derived from two populations – one which was still very new in the year 1900, and
another which was already quite mature in the year 1900. Growth is quite tightly constrained across a
limited growth range. Bifurcations have apparently grown more frequent over time. When
bifurcations do occur, very dramatic growth is the most frequent outcome. The scatter plots describe
other potential cross-correlations between parameters. Terms which are introduced later into the
scientific vocabulary may show more rapid growth and diffusion. The more the initial publication
output in 1900, the less time before bifurcation. Higher baseline growth is generally associated with a



Fig. 6. An illustration of the fit of the model for the phrase ‘self-assembly’The dots are the original data, the line is the fitted

model.

Fig. 7. Matrix scatter plot of model parameters.
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later year for bifurcation, and slower growth after the bifurcation. The later the bifurcation year,
generally the slower the resultant growth after bifurcation. These results are only descriptive, and
drawn from a limited sample of models, but they are nonetheless suggestive.

Comparison with the Bass model

Having shown that the bifurcation model can be fitted reasonably well to data pertaining to word
usage, the next question is whether the model offers a better explanation then some of the other
possible models. Many models can in principle be used to describe the diffusion of word usage through
a community of scientists, including the Fisher-Pry, Pearl, Gompertz and Bass models (Bass, 1969;
Porter et al., 1991; Roper et al., 2011). These models differ in their postulated underlying non-linear
processes of diffusion and saturation. The underlying process is often justified using dynamic models
of population growth.

For instance, the Bass model was originally intended to describe the first adoption of a new
technology. The model assumes that there are two key adoption processes. Some fraction of
consumers will unconditionally adopt a new technology at a given period of time. This fraction is
known as the ‘‘coefficient of internal innovation’’. Another fraction of consumers will adopt a new
technology only if their peers have adopted the technology. This fraction is known as the ‘‘coefficient
of external innovation’’ Together the internal and external coefficient determine the ultimate speed
and extent of technology adoption. Since the model describes the first adoption only, once all
prospective customers have adopted the technology predicted new adoptions then cease. The Bass
model is closely related to the Pearl and Fisher-Pry models of technology adoption. The difference is
that the Bass model predicts the rate of new adoption, while the Pearl and Fisher-Pry models forecast
the cumulative new adoptions. The Bass model is given below.

AðtÞ ¼ M � Me�ð pþqÞðtþt0Þ

1 þ q
p e�ð pþqÞðtþt0Þ

Here M is the size of the potential users, p is the coefficient of innovation, q is the coefficient of
imitation, and t0 is the year in which the product appeared on the market. We fitted the Bass model to
Table 3
Results for fitting the Bass model to the 22 phrases.

Keyword Parameters of the bass model

p q m t0 Log likelihood

Adenosine 0.000118 0.051935 4373 19 �17,196.2

Astrocytes 0.000484 0.040808 1339 12 �22,654.3

Atomic force microscopy 0.000875 0.034507 2221 8 �58,905.2

Cervical cancer 0.00041 0.043822 1055 18 �21,784.1

Cisplatin 0.0009 0.039014 1632 1 �27,101.4

Diodes 0.000557 0.002909 2184 527 �165,128

Endothelial growth 0.000177 0.044728 5791 7 �49,583.3

Grafts 0.00107 0.025936 7134 24 �134,336

Integrin 0.000687 0.032938 1410 18 �33,556.6

Lasers 0.001141 0.010884 17,452 90 �537,632

macrophage 0.001125 0.017741 3356 88 �170,938

Magnetic properties 0.001035 0.035457 6023 3 �94,582.6

Malignancy 0.000496 0.039478 4957 8 �58,251.7

Mouse model 0.000421 0.044673 9075 1 �126,193

Nanostructured 0.000398 0.044137 1043 1 �21,636.1

Nanotube 0.000639 0.03134 3286 13 �95,054.5

Pharmacokinetic 0.000253 0.01797 3536 132 �105,080

Photoelectron spectroscopy 0.000802 0.037507 2625 4 �43,602.3

Self-assembly 0.000275 0.039636 1729 15 �28,446.8

Solar cells 0.000893 0.037394 1617 2 �29,322

Squamous cell 0.000473 0.041792 3334 3 �33,507.7

Stents 0.000775 0.030308 778 24 �22,366.3



Table 4
Comparison of quality of fit of the bifurcation model and the Bass model.

Keyword Fold model Bass model Log-odds

Cisplatin �2390.65 �27,101.4 24,710.71959

Astrocytes �2599.59 �22,654.3 20,054.66584

Lasers �13,882.3 �537,632 523,749.5359

Photoelectron spectroscopy �3296.27 �43,602.3 40,306.06975

Pharmacokinetic �4893.23 �105,080 100,186.722

Integrin �4095.69 �33,556.6 29,460.94394

Grafts �4403.63 �134,336 129,931.9136

Cervical cancer �963.017 �21,784.1 20,821.05962

Endothelial growth �2716.32 �49,583.3 46,867.02369

Diodes �3226.46 �165,128 161,901.5086

Atomic force microscopy �2786.12 �58,905.2 56,119.04462

Macrophage �9348.23 �170,938 161,590.0407

Selfassembly �578.17 �28,446.8 27,868.59109

Squamous cell �1839.59 �33,507.7 31,668.12734

Magnetic properties �3947.99 �94,582.6 90,634.6568

Malignancy �3436.57 �58,251.7 54,815.16083

Nanotube �3426.08 �95,054.5 91,628.40046

Solar cells �2129.63 �29,322 27,192.34149

Stents �867.196 �22,366.3 21,499.07411

Nanostructured �1021.06 �21,636.1 20,615.0359

Adenosine �6173.25 �17,196.2 11,022.94444

Mouse model �5622.3 �126,193 120,570.4395

Fig. 8. Comparison of the Bass model and the Bifurcation model. Green is the bifurcation model and blue is the Bass model.

Again, the dots are the original data.
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word use data using poison regression. We choose to compare the bifurcation model to the Bass model
for two reasons. First, the Bass model represents the state of the art in modeling diffusion processes in
science.

Second, the Bass model has the same number of parameters, thus allowing for a fair comparison. A
fundamental problem in model selection is how to compare two models with a different number of
free parameters. In this case, merely comparing on log likelihood skews the comparison in favor of the
model with more free parameters. There exists a range of metrics and associated motivating ides to
support in this process.

One such metric of quality is Akaike’s Information Criteria (AIC) (Akaike, 1974). This metric
rewards high likelihood models, while penalizing models according to the number of free parameters
assumed by the model structure. The AIC and related metrics bear more than a passing resemblance to
Occam’s razor – a heuristic which has served science well for many centuries. Our confidence in model
results is conditioned on the correctness of the structural explanation of the data as offered by the
model. Metrics like AIC supports the evaluation of competing explanations of the data, allowing us to
simultaneously evaluate both the structural and uncertainty issues with the model. However, since in
our case, both the Bass model and our model have the same number of free parameters, a comparison
of the log likelihood directly can be used. It will reveal which of the two models offers a better
structural explanation of the data.

For fitting the model, we again used a genetic algorithm. The algorithm is ran for 250 generations,
and each generation contains 2500 members. The crossover rate is set to 0.5 and mutation rate is set to
0.15. Table 3 shows the resulting parameterization and likelihood for each of the 22 phrases.

In order to compare the quality of fit of both models we can use the log likelihood directly since
both models have the same number of parameters. This results in Table 4, which shows univocally that
the bifurcation model offers a significantly better structural explanation of the data than the Bass
model. Fig. 8 depicts this visually for the phrase where the difference in quality of fit is the smallest. As
can be seen for this randomly selected case, the very rapid early growth is much faster than can be
explained by the Bass model, but fits very well with our bifurcation model. In general, the lower
Table 5
Results for fitting the bifurcation model with two additional dummy variables to the 22 phrases.

Keyword Parameters of the bifurcation model with dummies

Constant Growth Bifurcate Growth of

bifurcate

Dummy

constant

Dummy

growth

Log

likelihood

Cisplatin 0.669689 0.023483 67 0.650318 0.139093 0.005006 �2095.61

Astrocytes 0.46 0.001778 44 0.555268 0.47957 0.020433 �1172.11

Lasers 0.232106 0.010484 26 0.927189 0.444263 0.002604 �13,647.3

Photoelectron

spectroscopy

0.352981 0.029046 60 0.442384 0.459763 0.01368 �956.291

Pharmacokinetic 0.724355 0.053301 55 0.289834 0.164825 0.002581 �6579.39

Integrin 0.062998 0.024247 161 0.049241 0.931699 0.039487 �1409.6

Grafts 0.928309 0.030451 26 0.479524 0.422747 0.005058 �1398.49

Cervical cancer 0.143111 0.040673 75 0.405714 6.08E�01 0.003052 �503.454

Endothelial growth 0.25305 0.015876 75 0.720497 9.59E�01 0.015905 �709.278

Diodes 0.356129 0.022232 43 0.664294 0.286316 0.005951 �1753.73

Atomic force

microscopy

0.058199 0.011879 89 0.605017 0.386769 0.039718 �1155.76

Macrophage 0.597397 0.03529 28 0.433946 0.323006 0.00724 �9688.33

Selfassembly 0.994223 0.007885 89 0.995321 0.480642 0.012952 �632.723

Squamous cell 0.543567 0.006755 54 0.783854 0.563583 0.007954 �722.89

Magnetic properties 1.74E�01 0.073564 153 0.258647 0.636708 0.005565 �1115.13

Malignancy 0.225032 0.041286 48 0.364015 0.558141 0.007907 �736.465

Nanotube 0.4825 0.01196 99 0.982393 7.13E�01 0.034207 �1237.57

Solar cells 0.655114 0.04973 104 0.413614 2.64E�01 0.011174 �2490.93

Stents 0.304107 0.016622 79 0.649476 0.058132 0.017599 �510.901

Nanostructured 0.022005 0.002019 98 0.800522 0.354788 0.0437 �538.148

Adenosine 6.98E�01 0.002418 27 0.761 0.211643 0.004718 �6004.11

Mouse model 6.98E�01 0.003683 70 0.97089 5.92E�01 0.018443 �532.479
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likelihood and poorer fit for the Bass model derives from two sources. The Bass model consistently
over-estimates the rate of early growth of term usage, and consistently under-estimates the potential
for long-term growth in term usage. Further, the Bass model consistently estimates that the inflection
of the curve is at the end of the full and observed trend of data. All three observations are consistent
with modeling artifacts created as the Bass curve attempts to deal with short periods of inflationary
growth.

Indexing artifact

Next to comparing the bifurcation model to other models for diffusion processes, another threat to
validity of the model is that the results we see are entirely due to indexing artifacts. As is well known,
ISI data is not stable and the indexing has changed over time. One very important change is the year ISI
started to index abstracts. Fig. 8 already highlights this, for there is a strange jump around 1990. ISI
started to index abstracts in 1991. The indexing of abstracts affects the results of our topic query, for
from 1991 onward, the query is not only based on titles and author provided keywords, but also on
abstracts, thus increasing the potential number of papers that are returned for a particular query topic.
This indexing artifact can affect both the constant as well as the rate of growth. Thus, we extend to be
model with two dummy variables, one for the constant and one for the growth. The dummies are set to
zero prior to 1991. Model fitting is done identical to the foregoing. Thus, we use Poisson regression,
and use a genetic algorithm. The algorithm is ran for 250 generations, and each generation contains
2500 members. The crossover rate is set to 0.5 and mutation rate is set to 0.15. Table 5 shows the
results.
Fig. 9. Comparison of the bifurcation model and the bifurcation model with dummy. Green is the bifurcation model with

dummy and blue is the normal bifurcation model. Again, the dots are the original data.
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Fig. 9 shows visually the impact of adding the dummy to the data. From the log plot on the left, we
deduce that the year of bifurcation in the model with dummy variables is a few years earlier, then in
the original model. However, these results in Fig. 9 also clear show that the 1991 indexing artifact does
not invalidate the fact that there has been a tipping point after which the rate of growth was
substantially faster. Twenty out of twenty-two cases show a bifurcation even in the presence of the
1991 dummy.

Looking at Table 5, we observe that only for ‘integrin’ and ‘magnetic properties’, the model gives a
bifurcation year outside of the range of the model. Fig. 10 shows the ‘integrin’ case. It appears that the
number of articles using this keyword started to grow rapidly just prior to 1991. In fact, the first article
on integrin appeared in 1973, followed by another one in 1976 and one in 1977. In 1986, four articles
appear. In 1990, so prior to the indexing of abstracts, this had already risen to 147. So in 5 years, the
number of articles had increased more than 35 times. This suggests that there very well could have
been a tipping point for integrin, but that it is partly obscured by the fact that this point almost
coincided with the change in indexing. Moreover, looking at Fig. 10, it appears that the growth just
prior to 1991 is in fact faster than postulated by our bifurcation model. We return to this point in the
discussion below.

The starting point for this paper was that the logistic growth that is often postulated to apply to
science ever since the work of de Sola Price is problematic for both theoretical and empirical reasons.
As we have shown, growth substantially faster than exponential is in fact to be found across the
sciences. The randomly selected keywords from across the breadth of the sciences show for all but a
few cases fold like dynamics, which is at odds with the postulated exponential or logistic growth
model. That is, we have provided systematic empirical evidence, on top of the more anecdotal
Fig. 10. Comparison of the bifurcation model and the bifurcation model with dummy for ‘integrin’. Green is the bifurcation

model with dummy and blue is the normal bifurcation model. Again, the dots are the original data.
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evidence offered in (Cunningham and Kwakkel, 2011), that the dynamics of scientific publication are
in fact rive with sudden burst of activity.

Discussion

The idea of a tipping point in the sciences implies that the rate of publication on a particular topic
can either rapidly increase, or even collapse. All the cases that have been shown in the foregoing show
a rapid increase only. Collapse dynamics are not present. This arguably is a consequence of the
sampling strategy that we utilized. We looked at phrases that have a relatively high usage in a random
sample of ISI data. We identified a set of phrases that are somewhere in the middle in terms of their
frequency, and then selected from this set a subset that spans the sciences. Phrases denoting topics
that have already collapsed would not show up in this middle tier and thus have not been selected. A
random sample, taken at some earlier year, say in the early nineties, might help in identifying phrases
that show a collapse.

A second issue is that the model we used postulates a single bifurcation. It is conceivable, however,
that a particular topic bifurcates more than once. That is, it bifurcates at some point in the past, for
example after its initial discovery. This bifurcation is followed by a rapid growth that stabilized at
some point. In Kuhnian terms, this process of stabilization can be perceived as normal science, or the
mopping up after the profound discovery or development has done its work. However, it is
conceivable that during this stabilization phase new discoveries or breakthroughs are made related to
the topic, thus sparking another round of frantic research on the topic. Fig. 11 shows a possible case of
this double bifurcation dynamic for diodes. To show that the second growth cannot be explained
Fig. 11. Potential double bifurcation for ‘diodes’. Blue is the bifurcation model with dummy. The dots are the original data.
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solely by the 1991 indexing artifact, we fitted the dummy model to the data. As can be seen, the rapid
second growth of the topic started a few years prior to 1991.

A third issue is that the current model postulates that the growth after the bifurcation is squared. If
one analyzes the results in detail, with a particular focus to the visualization of the fitted model, it
appears that the growth after the bifurcation in some cases might be faster than squared. A possible
simple extension to the model would be to turn the root into a free parameter in the optimization. This
would allow for the investigation of the growth after the bifurcation across the sciences.

Conclusion

The starting point of this paper was the claim that scientific knowledge can demonstrate explosive
growth in short periods of time. This explosive growth is significantly faster than the kind of growth
one would expect based on various existing diffusion modes, such as the Bass or Gompertz model.
These models cannot account for the discontinuous and sudden growth that is observed in the real
world. In one notable example, the field of engineering and technology management grew more
rapidly in the 4 years after 1980 than it was expected to grow for the next 40 years (Cunningham and
Kwakkel, 2011). This paper adds another set of cases to this that all show explosive growth well
beyond what would be expected according to the Bass model.

In light of the empirical observation of rapid growth, we formulated a model based on the idea of
folds from mathematical catastrophe theory. This model postulates a slow growth process leading up
to a point at which the growth curve suddenly changes dramatically. This point at which the growth
shows a sudden discontinuous jump is more popularly known as a tipping points. The presented
model was fitted to data using Poisson regression. We compared the model with two rival
explanations of the data. The first alternative explanation came in the form of the Bass model. Here,
the difference in the quality of fit of the model clearly demonstrated that the bifurcation model can
explain the data much better than the Bass model. The second alternative explanation was indexing
artifacts. To assess the impact of the single biggest indexing artifact in ISI data, the indexing of
abstracts in 1991, we extended the model and included two dummy variables. When we fitted this
modified model to the data, we were still able to find a bifurcation in all but two cases. Thus suggesting
that the rapid growth cannot be explained by indexing artifacts alone.

The extent to which the model can be used to predict future tipping points or bifurcations is
limited, for the model only postulates the presence of a tipping point. It does not open up how or why a
tipping point occurs. However, despite not offering an explanation for the bifurcation, the model still
can be used in the context of monitoring scientific developments, and can provide early warning that a
particular word or phrase has passed a tipping point. This insight can be used for various purposes
including individual scientists updating their vocabulary, funding agencies tailoring research calls,
and technology management. This research also contributes to the emerging subfield of innovation
forecasting, where dynamical trends in science and patenting are examined for leading indicators of
emerging fields of science and technology. Further research, however, is necessary to identify early
warnings, or signal, of a potential bifurcation. Possible directions for such research include the
assessment of the dispersion and variance of the data as compared to the model. Another direction of
research is to tie this scientific bifurcation dynamic to the wider avenue of research in the complexity
sciences. Here, there is active research into early signals of tipping points in all sorts of systems. There
is some evidence that systems close to a bifurcation point are slower to return to equilibrium if
perturbed.

Dynamic theories of knowledge generation are of intrinsic interest to a number of different fields of
research. The theory of dynamic capabilities is used by practitioners in strategic and technology
management; these researchers are interested in how firms acquire and broker knowledge for
economic advantage (Malerba, 2002; Teece et al., 1997). Direct knowledge acquisition from
universities to industry occurs rarely, yet it may constitute the primary source of fundamental sources
of knowledge in firms (Zucker et al., 2002). This theory within the strategic management literature
draws upon evolutionary economic approaches (Zollo and Winter, 2002). The community of practice
literature examines the technological and social strategies adopted by networks of experts attempting
to remain productive while dealing with rapid changes in knowledge (Fuhr and Fuchs-Kittowski,
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2004). The presented findings on the omnipresence of fold dynamics across the sciences have
ramifications for each of these fields. Topics in science can grow much faster than the exponential and
logistic model postulate, severely reducing the reaction time when monitoring these developments.
Moreover, these discontinuous jumps means that there will be surprises or black swans in future
scientific growth.
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