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Abstract -The paper discusses earlier attempts by Ajiferuke, Burrell, & Tague and by 
Englisch to define a single measure of collaboration. We show that the variables used in 
these papers are too rough and propose finer variables. We then formulate collaborative 
principles that good collaborative measures should satisfy and examine existing measures. 
Collaborative principles are designed in such a way that measures satisfying these prin- 
ciples can distinguish between (i.e., have different values for) different collaborative sit- 
uations. We then present new collaborative measures better than the existing ones, in the 
sense that they satisfy all the studied collaborative principles. Many examples are pre- 
sented and practical calculations are executed. 

1. INTRODUCTION 

Collaboration is usually expressed through a set of co-authored papers (e.g., written by a 
research team or another group such as a university, research center, etc.), but also relates 
in general to the cooperation or relations between individuals in social groups. In this pa- 
per we will not restrict ourselves to any viewpoint, but work within the general but clear 
frame of “boxes” in which one has “objects,” as in Fig. 1. Here one has that (in the ter- 
minology of co-authored papers) there is one paper with three authors (labelled 1,2,3), three 
papers with two authors (respectively, 3,4; 1,3; and 5,6), and three papers with one author 
(namely 3, 4, and 6). 

Intuitively, the situation as described in Fig. 1 looks more cooperative than the situ- 
ation in Fig. 2, although each individual contributes to the same number of papers. How 
are we to quantify “degrees” of collaboration? How “fine” must our variables be in order 
to distinguish as much as possible among different collaborative situations? 

In [l] (based on preliminary work of [6] and [7]), an attempt has been made to define 
a measure of collaboration as follows: Let fJ (j = 1,2, . . . , k) be the number of j-authored 
papers (in a certain discipline and a certain period of time) and let N be the total number 
of papers. Then the “collaborative coefficient” CC is defined as 

where q denotes the maximalj such thatfj # 0. It was shown in [I] that this measure sat- 
isfies several “good” properties: 0 S CC 5 1, CC = 0 if there are only single-authored pa- 
pers and it distinguishes between different levelsj of multiple authorship. We remark here 
that the numbers (fj)j=i,. ,k represent the dual of the more well-known distribution of 
Lotka: For Lotka, gj = number of authors with j papers, whereas fj deals with the num- 
ber of papers withj authors [3],[4]. 

In [5], the collaborative problem is studied from a different point of view. Here the 
variables are x,, ,, , where xi, ,, denotes the number of times author i has published a paper 
with author i’(i,i’ = 1,. . . , n; i # i’). Note that for every i # i’, Xi,,’ = Xi,,i. With these vari- 
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Fig. 1. Example of a collaborative system. 

ables, several collaborative measures are considered. The simplest of these (but the same 
properties as all the others introduced in [5]) is 

s= (;g, 4q (2) 
(#I’ 

where n denotes the total number of different authors. Englisch has two main requirements 
for collaborative measures: the function must be concave and increasing in x;, if. The lat- 
ter property will not be retained because this is more an aspect of productivity. 

Why concavity is required will be explained further on, but with regard to another 
function, since we will show that both function (2) and function (1) are too limited to dis- 
tinguish between different collaborative situations. In the next section we will introduce 
finer variables that can be used. 

In the third section we formulate eight collaboration principles that collaborative mea- 
sures must satisfy in order to be good measures. 

Then, in the fourth section, the two measures CC and s as well as two new measures 
f and h are studied. Normalization is needed to have values less than one. These normal- 
ized measures are denoted by CC*, s*, f *, and h*. CC* and f * each fail on two important 
principles, while s* and h* fail on only one principle. However, based on s* and h’, two 
new measures y1 and y2 are constructed that satisfy all eight principles. It is furthermore 
shown that these measures give a very good balance of scores between 0 and 1, around 0.5. 
We will also give many explicit calculations of these measures. 

Section five then summarizes the most important results. 

II. VARIABLES FOR COLLABORATIVE MEASURES 

The attempts in [l] and [5] to define variables for collaborative measures are quite dif- 
ferent: [l] uses 

Cfi)j=l,. ,q> (3) 

where fj denotes the number of papers withj authors. [5] uses 

(x!,,,h,i’=l,...( n, (4) 

where xi,;, denotes the number of times that author i and author i’ have co-authored a 
paper. 

Both approaches look very different and indeed they are: The one does not imply the 
other and vice versa, as the next two examples show. 

Example I I. 1 
Consider two collaborative situations, as shown in Fig. 3a and b (n = 3). In both cases 

we have xi,2 = x2,, = 2, xl,3 = x3,, = 2, x2,3 = x3,2 = 2. But in the first case f3 = 1 and 
f2 = 3 (all the other J; = 0), while in the second case f3 = 2 and all the other fJ = 0. Thus, 
equal values for (x,,,,);, ;,=,, ,,, do not imply equal values for (A),=,, ,k. 

p-q m [3 p-j r;l m m q m 
Fig. 2. Another collaborative system. 
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Fig. 3. Two collaborative situations. 

Example II.2 
Consider the two collaborative situations shown in Fig. 4a and b (n = 3). Here, 

in both cases fj = 1, f2 = 2 (and all the other& = 0), but in case (a) we have x1,2 = x2,r = 2, 

x1,3 = x3,, = 1, and x2,3 = ~3.2 = 2, while in case (b) we have: x1,2 = ~2,~ = 3, x1,3 = 

x3.1 = 1, ~2.3 = x3,2 = 1. Hence equal values of (fj)i=l,. _, ,4 do not imply equal values of 
(X;,i*)i,i*=r,, ,n. So the approaches in [l] and [2] are not equivalent. 

We can already conclude that, considering the above remark, neither of the attempts 
in [l] or [5] encompass all aspects of collaboration: the measures developed in terms of the 
variables (fj)+r, ,4 cv the variables (X,,i,)i,i’=r,, ,n are not fine enough to distinguish all 
different collaborative situations. Nor are the two together adequate, as the next example 
shows. 

Example II.3 
Consider the two collaborative situations as in Fig. Sa and b (n = 5). Now, in both 

cases both the xs and the fs are equal. We now formulate the following definition. 

Definition II.4 
We define a collaborative situation over a set of objects as a family of subsets of these 

objects. Suppose we have two collaborative situations, each involving n objects i = 1, . . . , n. 
We say that these two situations are indistinguishable if there exists a permutation 7r of the 
objects 1,. . . ,n such that, when rr is applied to the first situation, we get the second one. 
An example is given in Fig. 6. The situation in Fig. 6a, when transformed via the permu- 
tation a: n(l) = 3, ~(2) = 2, ~(3) = 4, n(4) = 1 yields the situation in Fig. 6b. 

It is clear that the collaborative structure of both situations in Fig. 6 is the same; in 
fact, this will be one of the principles for good collaboration measures: the values in in- 
distinguishable situations must be the same (see section 3). 

Now, do we have indistinguishable situations in Fig. 5? Certainly not; because if they 
were, the image of the box with elements 1 and 4 (occurring twice) should be two equal 
boxes of two elements in Fig. 5b. But all the boxes with two elements in Fig. 5b are dif- 
ferent. Thus we have here two different (i.e., distinguishable) situations. This is also clear 
intuitively: in Fig. 5a, the object 5 appears only in one box, namely 112-1, while in 
Fig. 5b, all the elements in the box )123] appear at least once more in one of the boxes 
with two elements-a different collaborative situation indeed. So we conclude that 

(a) 

Fig. 4. Two collaborative situations. 
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Fig. 5. Two collaborative situations (n = 5). 

definition II.4 makes it clear which collaborative situations are the same and which 
are not, 
the variables (fj)+r,, ,q and (Xi,;‘)i,i’=l,, ,n together do not suffice to describe a 
collaborative situation completely (cf. Fig. 5). 

In this paper we study the possibility of describing a collaborative situation using only 
the indices i, i’ and j, where, as above, i,i’ = 1,. . . , n, j = 1,. . . ,q. 

The finest variables (i.e., distinguishing between as many distinguishable collabora- 
tive situations as possible) are the variables 

(X~<‘)i,i’=I ,,.., n;j=l,..., 43 (5) 

where xi’{! denotes the number of times objects i and i’ are together in a box with j items. 
The numbers (x$!) are a reinforcement of the numbers (f’) as well as of the numbers 
(Xi,i’)- 

PROPOSITION II.5 
Giuen u system of numbers (X~~!)i,i’=~,.,,,n;j=~,_,.,rjr then we know the systems of 

bombers (Xi,r’)i,i’=f ,.._, n and Cfj)j=i ,,.., q* 

Proof. The proof follows from the obvious relations 

Xi,? = ,g XlI? (6) 

and 

(74 

(bt 

Fig. 6. Two collaborative situations (n objects i = 1,. . , n). 
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forj# 1 and 

Vb) 
cl 

Although the variables (xl{!) are very detailed, they are not distinguishing between 
every two distinguishable collaborative situations. This is shown by the next example, con- 
structed by H. Englisch: 

Example II.6 
The first collaborative situation consists of five times the boxes in Fig. 7. The second 

collaborative situation consists of all combinations of seven elements in boxes of three ob- 
jects. Now, in both situations, al/x$! = 5 (i # i’), x$’ = 15 and a/,x$! = 0 (j # 3). But 
both situations are distinguishable because the first situation contains the same boxes, 
whereas the second does not. 

It is, however, true that, when only using the indices i, i’, j, one cannot have finer 
variables than xl{!. To cover all distinguishable situations would require variables of the 

form xi,,,, ,..., i,, denoting the number of times objects ii, i2, . . . , i, are together in one box 

(ii,. . . , i, all different and I = 2, . . . , n). These intricate variables are not studied in this 
article. 

Now that we have a set of variables convenient for describing a collaborative situation, 
we can turn our attention to functions of these variables that can serve the role of collab- 
orative measures. But first we determine “good” principles that collaborative measures must 
satisfy. 

III. COLLABORATIVE PRINCIPLES 

Definition II I. 1 
A collaborative measure is a function g of the variables (x$)~,~,=,,. ,n;,=l,. ,4 where 

x$ denotes the number of times that objects i and i’ are together in a box that contains 
j objects. x/y! = ,!;‘,’ f x 1 or every i, i’, and j; and q is the maximal number of objects in a sin- 
gle box. 

Examples will follow in the next section. Note however that the function CC in [l], 
which we mentioned already in section 1, is of the above form: 

(1) 

Fig. 7. Example 11.6 (first collaborative situation). 
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Based on this, 

where Ci,i,,j denotes C~i’=l,ifi’ cjg=, . Similarly, the function s in [5] is also of this form: 

s= (ii, a$ (2) 
ifi’ 

s= (&&G 1 (9) 

using (7) and (6), respectively. Thus CC and s satisfy our criterion of being a collaborative 
measure. 

111.2. PRINCIPLE (P,) 

If all xi-$ = 0 for j = 2,. . . ,q, and i # i’, then g(x!l!) = 0. 1, 1 (10) 

Here we use the more compact notation 

g(x!{!) = g(x!J!-i i’ = 1 
1,, ’ ’ ,..., n;j= l,...,q). 

This means that if there are only boxes with one object (e.g., there are only single- 
authored papers) then g = 0. 

III. 3. PRINCIPLE (P2) 

If there is “maximal collaboration,” then g = 1. (11) 

What do we mean by maximal collaboration? In collaboration studies we do not measure 
the total number of boxes (e.g., papers); the latter aspect is more an aspect of productiv- 
ity. By maximal collaboration, we mean, given n > 1 (the number of objects) and N(the 
number of boxes-fixed but arbitrary), we have that all n objects are in all boxes. Hence 
we mean a situation as in Fig. 8. Based on (Pi) and (P2), it is logical to require 

111.4. PRINCIPLE (P3) 

OSgSl (12) 

always. 

. 
n boxes 

Fig. 8. Maximal collaboration. 
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111.5. PRINCIPLE (PJ 
“Scale invariance”: Let (x,‘,!!) and (ul{!) represent two existing collaborative situa- 

tions such that there exists a E N such that 

y/-j) = ax!/) 
I,/’ ) (13) 

foreveryi,i’=l,..., nandj=l,..., q,then 

g(y!“!) = g(x!“) 
I,1 [,I’ * 

Again, this condition is introduced because we do not wish to measure “productivity,” and, 
apart from productivity, the collaborative patterns (13) are the same. 

111.6. PRINCIPLE (P5) 
The following property was already discussed in definition 11.4: If we have two col- 

laborative situations that are indistinguishable and suppose, hence, that a is the permuta- 
tionof (I,... ,n) that transforms the first situation into the second, then 

g(x!i!) = g(x”? 
[,I a(r) r(i’) ) (15) 

foralli,i’=l,..., n;j=l,..., q. 
On the other hand, if two situations are not indistinguishable, we will prefer that the 

collaborative measure tends to give different values for different situations. The next prin- 
ciples expand this idea. 

111.7. PRINCIPLE (P6) 
If more boxes with one object are added to a situation where boxes with more than 

one object exist, g decreases strictly. This is reasonable; if two collaborative situations are 
the same except that in the second there are more single-authored papers, then g (of the sec- 
ond situation) is strictly smaller than g (of the first situation). 

We now define an important principle that deals with the fine structure of collabora- 
tive situations. 

111.8. PRINCIPLE (P,) 
“Strict Concavity.” We start by recalling the definition of the insufficient, but better 

known property of “concavity.” 
Let u: RP + R be any real-valued function, defined on the p-dimensional space RP 

(p fixed). Let us denote X,Y E RP for X = (xi,. . . ,x,), Y = (yl, . . . ,yp). We say that the 
function u is concave if, for every X,Y E RJ’ and every h E [O,l], 

u(hX + (1 - X)Y) 2 Xv(X) + (1 - h)u(Y). (16) 

This means that the value of v in a point on the line segment between two points is at least 
as much as the same linear combination of the values of v in the two points. For p = 1 it 
is easy to depict this situation (see Fig. 9). 

Why is this a property that collaborative measures should fulfill? The property ex- 
presses the fact that the collaborative value of a situation that is a (weighted) average of 
two collaborative situations is higher than the (weighted) average of the respective collab- 
orative values. In other words, the more equal collaboration links there are between the 
members of a group, the higher collaborative value. 

Note: Concavity (together with (P,)) also implies properties such as, for every 
(XI,. . . ,x,) E RP: 

( x1 +x2 x1 +x2 
u------ 2 f 2 ,x3,...,xp 

1 

2 U(X[,X~, . . ,x&J 
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X xx+/?-X]y Y 

Fig. 9. The ordinate of A is u(Xx + (1 - h)y), The ordinate of B is Au(x) + (I -. X)u(y) 

(cf. inequality (3) in [S]), which again expresses the fact that more equal collaborative links 
give higher collaborative values. To prove the above inequality, just apply concavity and 
(P,) to the vectors X = (x, ,x2,. . . ,x,,), Y = (x2,x1,. . . ,x,,) and h = 0.5. 

Of course, in unequal situations, a strict inequality in (16) would be preferred. But this 
can only be true if X and Y themselves represent different situations. Indeed, if X and Y 
represent collaborative situations with equal collaboration strength (e.g., Y = aX for a cer- 
tain CI f PI (cf. section III.S)), then X + (1 - X)Y is also a situation with equal collabora- 
tion strength. In fact, we can prove: If there is an a E N such that Y = ax, then for every 
x E [O,l]: 

u(hX + (1 - A)Y) = u(hX + (1 - h)aX) 

= v((X f (1 - X)a)X). 

Since u must satisfy principle (P4), we conclude 

u(hX + (1 - h)Y) = u((X + (1 - X)a)X) 

= u(X) 

= Au(X) c (1 - X)u(X) 

= Xv(X) + (1 - h)v(Y). 

Of course, the same is true for every X,Y E W with X = 0 or 1. 
Thus the strongest possible definition of “strict concavity” is as follows. A function 

u : IF’ + R is strictly concave if it is concave and if, for every X E ] 0, 1 [ (the open interval 
from 0 to 1) and every X,Y E RP, for which there is no a E R+ such that Y = ax, we have 

u(hX + (1 - h)Y) > Xv(X) + (1 - X)u(Y). (17) 

This is the content of principle (P,), to be checked for every candidate coilaboration mea- 
sure g. Note that here the maximal dimension 

Note 1: As requested by one of the referees, we give an example of the purpose of the 
strict concavity principle. Suppose we have two collaborative situations as in Figs. 10a and 
lob (n = 3). The average (X = 0.5) of these situations is the collaborative situation in 
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(a) 

185 

(b) 

Cc) 

Fig. 10. Two collaborative situations (n = 3) and their average (10~). 

Fig. 10~. It is clear that the collaborative value of Fig. 1Oc is much higher than the aver- 
age of the (in fact equal) collaborative values of Figs. 10a and lob. Any collaborative mea- 
sure that satisfies (P,) will fulfill this requirement. Many other examples in the line of the 
above show that (P7) is an important property. 

Note 2: As remarked to me by H. Englisch, principle (P,) is not always “perfect.” 
This is, however, linked with the imperfection of the variables xi’{! (cf. example 11.6). Re- 
turning to this example, we feel (with Englisch) that the collaborative value of the first col- 
laborative situation is strictly less than the collaborative value of the second situation; yet, 
because the (xl{!) are the same for both situations, the values of any collaborative mea- 
sure studied here will be the same. We can even obtain the reverse inequality (as commu- 
nicated to me by Englisch): take the first situation in example II.6 as our first collaborative 
situation. As our second collaborative situation we take the second situation in example 11.6, 
but changed as follows: 

replace box [m by one more box 11231. 

It is clear that the collaborative value of situation 2 is higher than the one of situation 1; 
yet, due to strict concavity, any measure satisfying (P7) will give oppositely ranked values. 
We leave it as an open problem to give a “perfect” statement of principle (P7). 

The last “natural” collaborative principle is a property that could be called the “Bridg- 
ing Principle.” 

111.9. PRINCIPLE (P,) 
Suppose we have two identical collaborative situations, described by the numbers 

(x$). Suppose we add one box (e.g., one more paper) with two objects to each situation. 
Suppose that in situation 1, the objects in the new box appeared already together in at least 
one of the other boxes, while in situation 2 the two objects in the new box are coupled for 
the first time. Then the collaboration value of situation 2 is strictly higher than the one for 
situation 1. An example makes this principle clear: 

To the common situation depicted in Fig. 1 la we add, 
in the first case 112) and in the second case m, 

yielding the two situations shown in Figs. llb and llc. Principle (Ps) now requires that 
the collaborative value of Fig. 11 b be strictly smaller than the one of Fig. 1 lc. 

This ends our survey of “natural” collaborative principles. By stating them we are not 
assured of the existence of measures that satisfy these principles. In the next section we will 
investigate a few of the known ones and introduce new ones. 

IPH 27:2/3-D 
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(11 p-F-q 
6) 

(b) 

Fig. 11. Illustration of the “Bridging Principle.” 

IV. COLLABORATIVE MEASURES 

We will study the following possible functions, defined in section I: 

where N = Cy,, fj and 

An evident additional measure to study is 

where Xi, i,,j denotes Ct ;,=r, ifiS Cj4,2. 
Inspired by (2), but preferring the variables xi{! (cf. section II), we introduce 

h = (;~jw)2. 

(1) 

(2) 

(19) 

(20) 

These will not be the final form of the functions; when necessary for normalization 
(mainly because of principle (P2)), we will need to multiply these functions by a fixed fac- 
tor. It is our purpose to develop good collaborative measures in a logical way. At the end 
of the paper we hope to have presented the final forms of good collaborative measures. 

IV. 1. The collaborative coefficient CC 
Formula (1) implies that, if we have only single-authored papers, then CC = 0. How- 

ever, CC for the maximal situation as described in (Pz) is 

N. L 
cc,,, = 1 - -z = 1 

N 

Consequently, we redefine 

(21) 
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so that CC* will satisfy (Pz) (and also (P,), of course) as we11 as (P3). We will henceforth 
work with CC*. 

For (P4), consider two existing collaborative situations, represented by (xi{?) and 
( y$ ), such that there is a E N for which 

y.v? 
I,1 

= @~!i' !,f' * 

This implies that j-j(‘), the (A) of the second system, relates tofj(“, the (A) of the first sys- 
tem, as 

foreveryj= t,...,k. 

$2’ = &&V (22) 

Indeed, according to (7a) and (7b) one has, for everyj Z 2, 

and the same ifj = 1. Consequently, denoting CC,* for CC* in the ith situation, i = 1,2, 

Hence (P4) is satisfied. 
Principle (P,) is trivially satisfied. We will now prove that CC* satisfies (P6). Hence 

suppose that 

and 

where N’ -N=f;-f,>O(andhence~=fj’foreveryj=2,...,q)andalsoatleastone 
fJ > 0 (j = 2, _ . . ,q). Now 
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if and only if 

L. EGGHE 

Hence, this is true if and only if 

This is clearly true since 

and since at least one fj > 0 (j = 2,. . . , q). This proves that CC* satisfies (P6). 
We now turn our attention to the principle (P,). That CC* is concave is clear: 

N 

using (l), (7a) and (21) (N, n and k are fixed here). So CC* is a linear function of x$! and 
hence concave. But the linearity obviously implies that CC* is not strictly concave. So an 
important aspect is lacking here. Finally, principle (P,) is also not satisfied since both sit- 
uations keep the same number of boxes, and hence CC* cannot distinguish between the 
two situations as described in (P,). 

IV.2. The Englisch measure s 
In [.S], Englisch defines more general functions than function (2), but this generality 

does not yield more collaborative properties; so we restrict our attention to the simpler form 
of s: 

Principle (PI) is obviously satisfied. For the “maximal cooperation” as described in 

(Pz) we now find 

s,,, = (n(n - 1) m)’ = n2(n - 1)2N. 

Consequently, we define 

Written in terms of xl{? this yields, by (6), 

(23) 

We will henceforth work with s*. Clearly (PI), (Pz), and (P3) are satisfied by s*. If, for 
(P4), (x$) and (y$) represent two existing collaborative situations such that there exists 
a E N for which 
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foreveryi,i’= l,..., nandj= I,... ,q, then N, the number of boxes, is also muItipIied 
by a. Hence, for the ( yilQ ) case we have 

with the as cancelling. 
Clearly (P,) is true. (P6) is also true since adding papers with a single author increases 

N but leaves the xi,;, invariant. Hence s* decreases (strictly, if at least one x$ # 0). This 
brings us to the study of principle (P,). We first show that s* is concave. In order to sim- 
plify the notation we will denote (~il~!);,i,=~,.,.,~;;~i';j=2,...,~ by X = (~~'),=,,...,~;j=~,...,~ 
and similarly for the (uj,j!). We furthermore denote C = l/[n2(n - 1j2N], In this 
notation 

Let hE [O,l]. Then 

s*( AX + (1 - X)Y) = c z: J_/(j)) 
( 

-- 2 

f .i J 

= c c 

i i 

c (Xx)” + (1 - A)yfq 

f j 1 

+ C,?, c (xx:” + (1 - A)#‘) 
.i )i 

2 (Xx,!” + (1 - A)#)). 
j 

So the proof is finished if we can show that 

For this it is sufficient to show that, for every I # I’, 

If we take the square of both sides and simplify, we find (if X # 0 or 1; if X = 0 or 1, 
the concavity is trivial) 
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or, equivalently, for every 1 f f’, 

L. EGGHE 

(24) 

which is always true. This shows that s* is concave. Formula (24) can also be used to 
test for strict concavity; for at least one couple (I, I’) with I it I’ one should find (29, but 
with I replaced by >. Thus, S* will not be strictly concave if there exist any vectors X and 
Y for which there is no a > 0 such that Y = ax, and such that, for every I # I’, 

Denoting CjX/” by U/ and (A CjY/ by vI, we have the condition 

for every I * P9 l, f’ = 1,. . . , n. Hence 

Consequently, 

UI a2 u3 f& -_=t-=__=: . ..= -. 

01 v2 v3 V* 

So (27) is equivaIent with: there exists b > 0 such that, for every I= I,. . ~ ,n, 

hence 

or, in the detailed notation: 

(25) 

(26) 

(27) 

(30) 

for all i 7t: i’, i, i’ = 1,. . . , n. We will now present an example of vectors X and Y for which 
there is no CI > 0 such that Y = aX but for which (31) is valid for even b = 1, hence show- 
ing that s* is not strictly concave. The example is contained in Fig. 12 (n = 4). We have 
here: 

1 2 3//l -~-- 2! 1’ 4! I2 4l I’ 2l I’ 4l _____ 

Fig. 12. An example showing that s* is not strictly concave. 
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cx:,q = 3 = c y:;‘:; c*l’;i: = 1 = 2 yl’;‘:; 
j j i .i 

cx;;i4) = 1 = 5; y:;‘a; 
i 

cx:;i4’ = 0 = FY,'id. 
j 

But X # aY for any a, where X = (xi{!), Y = (y$), since (only denoting the coor- 
dinates with i # i’) 

=(2,0,1,0,1,0,1,1,0,1,0,0) 

while 

=(2,1,0,1,0,0,1,0,1,0,1,0) 

and furthermore, there is no permutation K of (1,2,3,4) such that Fig. 12a is transformed 
into Fig. 12b: indeed, in Fig. 12a one has two times two equal boxes with two elements, 
while in Fig. 12b only the box 1121 appears twice. Hence s* is not strictly concave. We 
finally check principle (P,). 

Let (xJJ!)~ i’=l __ n.j=l,, ,q represent the common situation before the new box is ,,, , . 0 , 
added. Let m denote the new box added in the first case. Of course, ir, i; E { 1, . . . , n J 
since in the first case i, and i,’ were already coupled. Let li2,iil be the new box added in 
the second case. Here we can also suppose that iz, ii E ( 1, . . . , n ) (otherwise increase n and 
adapt (xi’<!) of the common situation accordingly). Denote C = l/[n’(n - 1)2iV]. Then 
s* in the ‘first, respectively the second, case is: 

Hence 

4 -4 =2+2@k2J5z>o, 

since, for every (Y > 0, 1 + fi > &&i (and since Cj”=, ~i’;r’!.~ > 0, since the box [ml 
existed already in the common situation). Hence also ST > SF. So s* satisfies principle (Ps). 

IV.3. The simple measure f 
We defined the measure f as 

f= c xl{!. 
r,i',j 

We introduced f because of its simplicity. Principle (PI) is obviously satisfied. Further- 
more, in the maximal situation, we have 

f max = n(N- l)N 
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so that again we define 
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f* = ;Fjx:i, , I 

n(n - 1)N . 

(29) 

Hence, forf*, (Pi), (P2), as well as (Ps) are satisfied. (P4) is also true, by the same argu- 
ment as in section IV.2 and (P,) and (P6) are trivial. Since (29) is linear in xi’{! (since k, n 
and N are fixed), we have here a concave function that is not strictly concave. Hence (P,) 
is not valid. Furthermore, principle (Ps) is not valid, since in (29), one simply adds the 
value x!i) 1.1’ * 

IV.4. The function h 
Certainly (Pi) is valid. For (Pz) we must again divide by 

h max = n2(n - l)2N, 

since this is the value of h in the case of Fig. 8 (cf. also section 4.2). Hence, we define 

(30) 

However, even h’ is not always inferior to 1. 

Example: 
Consider the system in Fig. 13. Then h’ = 1.1657. The reason we can find values above 

one (contrary to the case of s*) is that the more boxes with different number j of objects 
we have, we add more terms in h’ before the r-sign, then in the “maximal” case above, 
which only looks at boxes with the same number n of objects. Otherwise said, if we only 
have boxes with j objects (one j, fixed) then h’ 5 1 always. We therefore define 

K = [jl j 5 2,f, # 0) 

and k = #K, the cardinality of the set K. Note that, for our calculations (cf. (19)), 

i,i',J ;,;‘=I j=2 ~,r’=l jEK 

ifi’ I#/’ 

We show now that dividing h’ by k2 gives a function 

h* = 

such that in all cases: h* 5 1. The proof goes as follows: By definition of K and k: 

(31) 

p---s-q (12 pr-q fT7j p-7-j 

Fig. 13. A case where h’ > I. 
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by the Cauchy-Schwarz inequality (see, e.g., [2]) (take (C$.=,,i+i, v6@ljEK and (l,l, 
.“, 1) E Rk as the two vectors). 

h* S 
1 

?7*(n - l)*Nk’ j+zK 

(32) 

Now, dealing with a fixedj, we have by the above reasoning (leading to (30)) that 

(33) 

Hence, (32) and (33) imply 

As will be seen in proposition IV.7.2, the division of h’ by k2 is also necessary for 
reasons of comparison with s*. 

Obviously for h”, principles (Pr), (P2), and (P3) are satisfied. The validity of (P4) is 
proved as in section IV.2. (P,) is obvious and (P6) too (since N(and possibly k) are the only 
parameters that change in (30): they increase, hence h* decreases if at least one x$! # 0). 
h* is strictly concave. The proof is similar to that of section IV.2; therefore we omit it. 

However, h* does not satisfy principle (Ps). Consider the exampIe in Fig. Ilb and 
I Ic. In both cases h* = 0.0181, contradicting the bridging principle. 

IV-S. A measure that satisfies al/principles (Pr) through (Ps) 
As is clear from Table 1, no measure studied above satisfies all principles (Pi) 

through (P,). Especially the measures CC* and f * lack the “fine” principles (P,) and (Ps). 
The functions s* and h* are better since they satisfy seven principles. However, from the 
above, it is easy to construct a measure that satisfies a// principles (Pr) through (P,), 
namely y* = (s* f h*)/2. 

THEOREM 

The function y* = (s* + h*)/2 satisfies the principles (Pi) through (Ps). 

Table 1. Results of discussed situations 

1)Fig. 1 CC*=O.3714, @=0.3694, p=O.2390, $F*=O.224.5, y1=0.3206, y2=0.2970 

2)Fig. 2 CC*=O.2000, @=0.2582, p=O.1491, w=O.1826, yl=O.2295, yz=O.2204 

3)Fig. 3a CC*=O.8125, w=O.8409, p=O.7071, @“=0.7071, y, =0.7825, y2=0.7740 
3b CC*= 1.000, $@=l.OOO, vif”= 1.000, $i*= 1.000, y, = 1.000, yz= 1.000 

4)Fig. 4a CC*=O.8333, $‘?=0.8584, p=O.7454, wzO.6936, ~1~0.7888, y1=0.7760 
4b CC*=O.8333, @=0.8475, p=O.7454, @?=0.6527, y,=O.7681, y2=0.7496 

5) Fig. 5a CC* = 0.6875, *?= 0.6489, df- = 0.4472, w = 0.4588, y, = 0.5770, y2 co.5539 
5b CC*=O.6875, @=0.6489, -jj-=0.4472, @?=0.4729, y, =0.5806, yz=O.5609 

6) Fig. 6a CC*= 0.5556, @= 0.6455, p = 0.4564, @*= 0.4564, y, = 0.5739, yz = 0.5510 
=6b 

9)Fig. 8 CC*=l.OOO, @=l.OOO, p=l.OOO, ~=l.OOO, y1=1.ooO, yz=l.OOO 

10)Fig. lla CC*=O.8000, w=O.5318, fl=O.4472, 4Jk”=0.5318, y,=O.5318, y2=0.5318 
lib 1X*=0.7333, e=O.4969, fl=O.3944, vK*=O.3670, y,=O.4460, y2=0.4320 
Ilc CC*=O.7333, ~=0.5191, Jf=O.3944, w=O.3670, y,=O.4615, y2=0.4431 

11) Fig. 12a CC* = 0.7037, @= 0.6467, p = 0.4714, w= 0.5732, y1 = 0.6132, yz = 0.6100 
12b CC*=O.7037, w=O.6467, p=O.4714, w=O.5973, yI =0.6235, y2=0.6220 

12)Fig. 13 CC*=O.8500, @=0.8801, p=O.7746, w=O.7347, y, =0.8171, y2=0.8074 
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Proof. Since s* and h* both satisfy the principles (Pr) through (P6), it is easy to see 
that y* also satisfies principles (P,) through (P6). Furthermore, it was shown that s* is 
concave and h* is strictly concave. Hence, y* is strictly concave. So (P7) is also satisfied. 
Lastly, s* satisfies (Ps), while h* satisfies a weaker form of (P,): let h; resp. h; be the val- 
ues of h* in the two situations described in (Ps). Then h,* ~5 h; (hence < in (P,) is only 5 
here). The proof goes as follows (we use the same notation as in the proof that s* satisfies 
(P,)): In situation 1, (il ,i[) appeared already together in a box of the common situation. 
If this box is of size 2, then, denoting D = l/[n*(n - l)*Nk*], 

h;=D (34) 

ifi' 
i,i'ti,,i; 

If this box is not of size 2, then 

h;=D( ;$, @$+2&75+2). 
j=2 

1#1' 
i,i'#i,,ii 

In all cases, h; is 

h,*=D 5 5&$+2. 
i,i'=l j=* 1 

l#i' 

Hence h; - h; is, in case (34) is valid: 

h;-h;=2+2%-2m+l>O 

(35) 

(36) 

since .Y$; > 0 (since the box mi; existed already in the common situation). In case (35) 
is valid, we simply have that h; = h; (cf. the example in Fig. 1 l), showing that, in general, 

h; 5 h* 2. 

This weaker form, together with the fact that s* satisfies (Ps), is enough to ensure that y* 
also satisfies (Ps). In conclusion, y* satisfies all principles (PI) through (Ps). 0 

y* is easily calculated via the formula (cf. (23) and (31)): 

y* = 2n2(n - 1)2N ’ [(;g&q+;(.$,yq] 
‘iZi’ 

= 
2n2(nl l,.[(;,@q+ :(.&_lrrl. (37) 

Although y* has all the good properties we have discussed, it is not our definitive 
measure of collaboration. 

IV.6. Polishing y* 
Since we had to divide s by n*(n - l)*Nto get s* and h by n*(n - l)*Nk* to get h*, 

the actual values of s* and h* are very small. Certainly in practice, actual collaboration 
situations are far from “maximal” and hence, the values of s* and h* are skewed in the di- 
rection of 0. Examples of this are found at the end of this paper in Table 1. However, it 
is easy to remedy this, without giving up the properties (Pr) through (P,). Good functions 
to use in combination with s* and h’ are the power functions xl/a = %‘X with a > 1. What 
a to use can be determined via the following “heuristic” property (it is certainly not a ninth 
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principle): if the collaborative situation is 50% of what it could be, then ??? and !$? 
must be 0.5, approximately. 

A collaboration of 50% could be expressed as in Fig. 14: Take n E N even and N boxes 
each containing the objects 1,2,. . . , (n/2) E N. Since in this case all boxes have the same 
size, s* = h* = y* (cf. the important note in section IV.4). In order to have that these 
functions, composed with v, are 0.5 (approximately) in the case of Fig. 14, we must have 
that (use ?@ or w ) 

i 
ni(n~1)‘N(Gv~(~-1))2)14=o.5. 

This yields 

Using that (n - 2)/(n - 1) = 1, we find 

1 
- = 0.5, 
16”” 

hence a = 4. We can now introduce two collaborative measures that satisfy all principles 
(Pi) through (P,) together with the above heuristic property 

or 

y2= e+ w 
2 * 

(39) 

It is clear that y, as well as yz satisfy all collaborative principles (Pi) through (Pp) 
(mainly since r is strictly increasing and concave) and that their values are reasonably 
spread around 0.5, which is good to have (in a heuristic way). 

This last heuristic remark can also be made forf*. Here one finds, for the situation 
in Fig. 14: 

for a = 2. Hence use fl (if you want to use it; better not, since p lacks principle (P,) 
as well as (P,)). For CC*, a cannot be found since, in the case of Fig. 14: 

N2 

cc* = n 
n-l i 1 1-x =l, 

hence no reasonable a exists such that ?@? = 0.5. This reveals another drawback of CC* 
(or CC) : In the “50%” collaboration case, CC = CC* = 1, hence a value close to the value 
of the “maximal” collaboration. 

Fig. 14. “50%” collaboration. 
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IV.8. Relations between the collaborative measures 
From the above it follows that the measures CC, f, s, and h are best represented by 

CC*, fl, %?, and %?, while the measures yl and y2 are the ultimate best collaborative 
measures (in this paper). In this section we will investigate some mathematical inequalities 
that exist between the measures %?, m, yl, and y2. 

PROPOSITION IV.8.1 

-YlZ Yz- (40) 

Proof. Using the Cauchy-Schwartz inequality in R2 on the vectors (x,y) and (1, f ) one 
sees that, if x,y > 0, 

x2 + y2 cq- 
2 - _’ 2 

hence 

Now this inequality will be applied twice: once for the vectors (&, $‘y) and (i,;), and 
then once for the vectors (a, .&) and (4,;) (each time for x,y > 0). This gives: 

*x + ?.Q 
JZ 

5m 

Hence 

So, for every x,y > 0, 

4 x-i-y > tK+* J-- -= 
2 2 . 

interpreted for x = s* and y = h” this is 

YI 2 72. q 

PROPOSITION IV.8.2 

h* 5 s*. (41) 

Proof. Using the Cauchy-Schwarz inequality with second vector (1,1, . . . , 1) f Rk we 
find, for every i f i’: 
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Hence 

Consequently 

which is 

h* S s*. q 

COROLLARY IV.8.3 

We have the following inequalities: 

Proof. Both yI and y2 are intermediate between the values ?J’?? and $? by their def- 
inition (formulae (37), (38) and (39)). Furthermore, (41) implies 

hence (42) is proved. 0 

It is not clear what the relation between CC*, p and the better measures above are. 

IV. 9. Examples 
To see better how the above measures CC*, $?, p, w, yl, and y2 act in prac- 

tical examples, we have calculated their values in some examples of collaborative situations 
we came across so far (referring to the figure number) as well as in new examples, some 
of which are collected in Table 1. One should notice that in many cases of comparison, the 
measures CC* and fl usually give no different values, while %?, %?, y,, and y2 do. 

The reader can verify the discussed principles and see that the measures yI and y2 are 
ultimately best. Examples in addition to those in Table 1 follow. 

1. We repeat that in case of Fig. 14 we have 

Yl = 0.5, y2 = 0.5. 

2. Consider the situations with respect to Fig. 15: (a) n = 2, (b) n = 3 (objects: 1,2,3). 
Then we have 

(a) CC* = 1.000, XP = 1.000, fl = 1.000, $P = 1.000, yr = 1.000, y2 = 1.000. 
(b) CC* = 0.7500, $? = 0.5774, fl = 0.5774, @? = 0.5774, y1 = 0.5774, y2 = 

0.5774. 

3. Consider the situations (n = 3) with respect to Fig. 16. So, in comparison, to form 
the collaboration in Fig. 16b, one collaboration (12( of Fig. 16a has been disconnected, 
but one collaboration 12 has been added. We have the following values. For Fig. 16a: 
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Fig. 15. a. n = 2. b. n = 3. 

(2.4'~ + 2@)')'" (call this u,). 

For Fig. 16b: 

= 
i 

3z22(i + p) (2&L? + 2v’B+-i)2)l’4 (call this v,). 

Then u1 < v2 if and only if & + fl< &?+ dmif and only if ,lE - m< 
m - @ if and only if CY > p + 1. Since we deal here with OJ,/~ E N, this inequality is 
equivalent to 

l+PS.cu-1. (43) 

This condition expresses that we can “add” more collaborations (2 as long as we 
do not end up with more collaborations 12 than collaborations 1121. So our measures 
are so sensible that they more highly value the cases with more equal balance of collabo- 
ration. This is a very good property and is a consequence of the concavity of these mea- 
sures (note that, since here $? = $‘??, this concavity is also valid for @, but only 
because we only have boxes with the same number of objects (here, 2)). The measures 
CC* and fl lack this property: In both cases (Fig. 16a and b) we have CC* = 0.75 and 
fl = 0.5774, hence even independent of o/P (which would be the least to be expected!). 

4. Consider the situations presented in Fig. 17. Here we have, in the case of Fig. 17a: 

CC* = 0.6222, e = 0.3523, x,? = 0.2582, %? = 0.2491, 

yI = 0.3132, y2 = 0.3007. 

L J c J 

a boxes 6 boxes 

L J L J 

a-l boxes B+l boxes 

(b) 
Fig. 16. n = 3. 
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p---K--p-?-pqp--q~ 

(a) 

(b) 

Fig. 17. 

In the case of Fig. 17b: 

CC* = 0.6222, ?I? = 0.3494, fl = 0.2582, m = 0.2613, 

y, = 0.3145, y2 = 0.3054. 

5. Consider the situation presented in Fig. 18 (for n = 8, but only the objects 1,2,3,4 
collaborate). Then: 

CC* = 0.8571, ?.@ = 0.4629, fl = 0.4629, m = 0.4629, 

yI = 0.4629, y2 = 0.4629. 

We again see that CC* does not measure the heuristic “norming” principle of “50%” col- 
laboration very well. The same conclusion can be made in Fig. 19: n = 20. Here 

CC* = 0.9474, $? = 0.4867, fl = 0.4867, w = 0.4867, 

yi = 0.4867, y2 = 0.4867. 

In fact, the higher n, CC* -+ 1 while $?, p, m, y,, y2 --f 0.5 (for N = n/2) in the above 
examples. 

6. We close with an example, in Fig. 20, of two unequal situations (even unequal up 
to a permutation) that have the same values of the measures studied so far. 

In both situations we have the following set of measures: 

CC* = 0.6806, @ = 0.4690, fl = 0.3563, %? = 0.3316, 

yi = 0.4170, y2 = 0.4003. 

The attentive reader might note that we had this already with the examples 7a versus 
1 lb and 7b versus 1 lc. But in both these cases, the two situations are identical, up to a per- 
mutation (as is readily seen). In the above situation, however, such a permutation does not 
exist. Indeed, if a permutation of (1,2,3,4,5,6,7) existed such that Fig. 20a is transformed 
in Fig. 20b, then necessarily (look at the boxes with four elements) 1 is the image of 4, 5, 
6, or 7. This yields a contradiction when looking at the boxes with two elements. 

This is not a bad property, but just a remark: one cannot expect our measures yi, y2 
to make distinction between any two different situations; yI and y2 only make distinction 

Fig. 18. n = 8, but only objects 1, 2, 3, 4 collaborate. 
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-- 
12345678910 12345678910 

Fig. 19. n = 20. 

for the cases described in the principles (Pi). Besides, in the above example, it is not clear 
whether we are dealing here with two different situations (from the point of view of 
collaboration). 

V. SUMMARY 

In this paper we discussed collaborative measures. In order to be able to do this, one 
must first define the variables out of which such measures can be constructed. 

We showed that the variables (fi)l=l,. ,4 and (Xi,i’);,;‘=r, +, found in separate stud- 
ies in the past ([ 1],[5]) are not even sufficient together. Therefore we used the finer variables 

xi{! = the number of times objects i and i’ are 
together in a box that contains j objects 
(i,i’ = 1,. . .,n;j = 1,. . .,q). 

Given these variables, we next need to know what are “good” properties of collabo- 
ration. We distinguished eight principles, which are natural. 

Then two known measures (CC,s) as well as two new measures (f, h) were studied. 
Normalization was needed in all cases in order to have values less than one. These measures 
were denoted by CC*, s*, f*, and h*. 

We found that CC* and f * satisfy the first six principles and that s* and h* each sat- 
isfy seven principles: the first six principles; for s*, the Bridging Principle; and for h *, the 
strict concavity principle. 

We were then able to construct two measures yl, y2 that satisfy all eight principles: 

where 

Y1 =4 
s* + h* If--- 2 

V+W 
72 = 

2 

s* = 
n2(n : ,)2,i ii1 @9 )’ 

Ifl’ 

L3 1 14567/ 
(a) 

(45) 

(26) 

Fig. 20. Two unequal situations. 
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Table 2. Properties to the measures studied (Y = yes, N = no) 

201 

PI p2 p3 p4 PS p6 p7 PS H 

cc* Y Y Y Y Y Y N N N 

33 Y Y Y Y Y Y N Y Y 

dP Y Y Y Y Y Y N N Y 

w Y Y Y Y Y Y Y N Y 

YI Y Y Y Y Y Y Y Y Y 

Y2 Y Y Y Y Y Y Y Y Y 

and 

In addition, we could show that p, Jfl”, @?, yI, and y2 also satisfy the “heuristic” 
property (Cr) that one should find a value 0.5 (approximately) if we have “50%” collab- 
oration. CC* is not adaptable in this way. This “heuristic” property serves our purpose of 
comparing the different measures. 

Table 2 relates the properties to the measures studied (Y = yes, N = no). 
The following inequalities could be proved: 

An extensive number of examples was given, illustrating the properties proved earlier. 
It is our hope that, in studies of collaboration (e.g., science policy studies, social stud- 

ies, . . .) one of the measures yr , y2 will be preferred above the other ones; their calcula- 
tion is very simple and does not require human interpretation. 

It would be interesting to see whether other collaborative properties (principles) are 
needed and, together with this, if other good (better) collaborative measures can be 
constructed. 

Finatly, we end with a few open problems: 

1. 

2. 

3. 
4. 

5. 

Refine principIe (P,) (“strict concavity”) so that it becomes a “perfect” property 
for collaborative measures on the variables x$! . 
A thorough study of the “Bridging Principle” (P8) and extensions thereof must still 
be done. 
Develop collaborative theories on other variables than the variables x,ij!. 
As remarked to me by Prof. Englisch, a collaborative situation is nothing but a 
“hypergraph” (cf. 181). Therefore, it is an open problem to study collaborative mea- 
sures in the connection of hypergraphs. In fact, it is our opinion that hypergraphs 
must have their applications in more aspects of informetrics (such as citation 
analysis). 
Make a collaborative theory involving substructures (subgroups), as appears in the 
experimental work of H. Kretschmer 191 (and many other older references to 
Kretschmer’s work). 

Acknowledgement-The author is grateful to A. Bookstein and H. Englisch for numerous valuable comments 
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