
Contents lists available at ScienceDirect

Technological Forecasting & Social Change

journal homepage: www.elsevier.com/locate/techfore

The relation between knowledge accumulation and technical value in
interdisciplinary technologies

Praveena Chandra⁎, Andy Dong
Faculty of Engineering and Information Technologies, Civil Engineering Building (J05), University of Sydney, Sydney, NSW 2006, Australia

A R T I C L E I N F O

Keywords:
Knowledge accumulation
Patent value
Technology forecasting
Technical value
Patent citation network

A B S T R A C T

A challenging task in technology management is the early identification of potentially valuable inventions. The
depth, breadth, and age of the body of knowledge underlying an invention are theorized to indicate the technical
experience of the sectors relevant to the invention. Prior research assessing this body of knowledge have focused
on the content of knowledge through bibliometric and semantic indicators but neglected the structural role of
knowledge underlying a patent. Focusing on technical value, we propose a new metric that accounts for the
structural maturity of knowledge preceding an invention. Using a composite patent value and multiple gen-
eration citation networks, we compare knowledge accumulation in 60 originating patents for inventions in the
energy-harvesting sector over a 100-year observation period, resulting in an analysis of 1900 patents. The results
indicate that our metric for knowledge accumulation reveals a statistically significant correlation between the
structural maturity of the knowledge that contributes to the specific invention and technical value of a patent.
The structural view on knowledge accumulation explains at least as much variance in the composite value of
patents as current knowledge content-based indicators, and, unlike those indicators, is useful as a leading rather
than lagging indicator. This metric can therefore find application in technology forecasting as a forward in-
dicator of the technical value of inventions.

1. Introduction

The need to identify superior inventions has fuelled studies in patent
valuation techniques. These techniques value a patent based upon the
importance the patent holds for other inventions (Albert et al., 1991;
Carpenter et al., 1981; Hall et al., 2005; Harhoff et al., 1999) or the
commercial strategy of the company that applies the patent (Baron and
Delcamp, 2012; Harhoff et al., 2003; Lerner, 1994). Even though the
limitations of using patent indicators for assessing patent value have
been raised (Reitzig, 2004; Van Zeebroeck, 2011; van Zeebroeck and
van Pottelsberghe de la Potterie, 2011), the increasing number of stu-
dies in this domain point to the fact that patents can be valuable sources
of information on the potential value of inventions.

Patent valuation techniques may broadly be divided into single-
level relationship and multiple-level relationship based methods.
Single-level relationship methods use surface-level metadata about the
patent (such as citations, claims, classifications etc.) while multiple-
level relationship methods consider indirect factors that affect patent
value (such as knowledge background and technological complexity).
While single-level relationship techniques are useful in understanding a
broad picture of the sector, they can fail to differentiate the technical

feasibility of inventions that perform similar functions. For example,
citation counts will reveal that thin-film photovoltaics based on Cd-Te
technology have been referenced more often than Ga-As technology;
however, within Cd-Te technologies, citation counts alone cannot in-
dicate if physical-vapour deposition based inventions are more feasible
than chemical-vapour deposition based inventions. Valuation techni-
ques that utilise single-level metadata about the patent do not account
for the differences in the knowledge content between inventions. It is
also important to note that a majority of these techniques are post hoc
in their predictive ability as they use indicators that are time depen-
dent. For example, citations received by the patent and its family size
may increase with time. Patent renewal decisions come into force only
after a certain number of years after the grant of the patent. For a va-
luation technique to be practical and useful, one should be able to apply
it at the early stage of the invention. However, the information used by
patent-based indicators becomes available about 18 months after the
filing date of the patent (Reitzig, 2004). This time frame may vary
based on the patent office. Hence, these techniques cannot be used to
evaluate an invention when the patent in question is new.

The use of references may be seen as an exception to this approach.
References, also known as backward citations, describe the knowledge
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upon which the invention is based. The idea is that the more references
a patent has and the more mature those references are, the likelihood of
the technical viability of the patent increases. The patent will have a
higher probability of being implemented into products (Beierlein et al.,
2015; McNamee and Ledley, 2012; McNamee and Ledley, 2013).
Nerkar (2003) showed that it is important that both old and new
knowledge are applied toward the target patent, though. The author
argues that recombining knowledge from broad time periods enables
uncovering of valuable knowledge that is forgotten or whose time has
not come yet. The age of the knowledge indicates that it has had the
time to be tested and perfected. Nonetheless, it is generally true that the
age of the knowledge preceding an invention is an essential factor that
may have an effect on the technical value of inventions (Karlsson and
Åhlström, 1999).

There are at least two significant problems with a reference-based
approach to evaluating the technical value of a patent. First, the
amount of knowledge in any domain will always increase with time. If
the age of knowledge preceding the target patent is referenced to the
registration date of the target patent, then newer inventions by defi-
nition, will always refer to more mature knowledge. Yet, it may not be
true that the newer patent is more technically viable at its date of re-
gistration than the older patent at its date of registration. Second,
scholars have argued that one needs to consider the relationship with
patents that have an indirect effect on the target patent. As such, they
have tried to define these indirect relationships and their effect on
patent value. Such thinking has given rise to a structural view of in-
ventions.

The knowledge structure of an invention is comprised of inter-
connected and interdependent knowledge elements. Scholars have ar-
gued that the technological background, which makes up the knowl-
edge structure of an invention, is an important indicator of its value
(Harhoff et al., 2003; Hu et al., 2012; Lin et al., 2007). In prior studies,
authors used patents' immediate references as its knowledge base. Hu
et al. (2012) included two generations of references to include the in-
fluence of technological complexity on the value of the invention.
Bosworth (2004), on the other hand, included many more generations
of references in his study to demonstrate that such structures can be
used to explore the ancestral roots of a patent. Ellis et al. (1978) drew
out a similar patent citation network to study the important milestones
in a technological field. It is unclear how many generations of citations
were included in their study. A partial structure cannot give a complete
view of the influencing factors of patent value. This research considers
the complete knowledge structure of an invention by including all the
generations of references in evaluating the patent value. In order to
account for the maturity of the complete knowledge structure, we
propose a new indicator to measure knowledge accumulation (KA) in a
patent citation network. We use this new indicator to distinguish be-
tween high value and low value patents. We compare our method with
some of the other known patent evaluation techniques given in litera-
ture.

This article is organized as follows. Section 2.1 describes the lit-
erature on existing patent valuation techniques. Section 2.2 explains
knowledge accumulation and leads to our hypothesis. Section 3 outlines
the methodology employed, with Section 3.1 describing the process of
constructing the patent citation network and Section 3.2 describing the
derivation of KA based on that knowledge network. Section 3.3 de-
scribes the calculation of composite patent value. Section 4 describes
our data followed by a discussion of results in Section 5. Finally, Section
6 presents the conclusions and recommendations for future study.

2. Patent valuation

2.1. Existing patent valuation methods

Patent analysis, which probably started in legal firms as a prior-art
search, has now found application as a management tool. As a

management tool, patent analysis informs managers about the compe-
titive landscape of the technology (Choe et al., 2013), technological
trends of a sector (Wu and Leu, 2014), potential collaborators (Lee,
2010), infringement possibilities (Reitzig, 2004), and future product
development pathways (Su et al., 2009). The literature contains dif-
ferent techniques to assess patents to meet these purposes. These
techniques may be broadly divided into bibliometric approaches and
content-based approaches. Content-based analysis uses text-mining
techniques such as text segmentation, summary extraction, and co-word
analysis to detect technological trends (e.g. see Gerken and Moehrle,
2012; Tseng et al., 2007; Yoon et al., 2011). Bibliometric approaches,
on the other hand, analyse patent value indicators such as citation
counts (Carpenter et al., 1981; Verspagen, 2007), claims (Baron and
Delcamp, 2012; Lerner, 1994), patent life (Bessen, 2008), family size
(Harhoff et al., 2003; Sternitzke, 2009), processing time (Lin et al.,
2007) and other metrics using statistical and mathematical techniques.

Many companies hold a patent portfolio rather than a single patent.
To understand the value of a patent portfolio, the evaluation methods
assess the portfolio from bibliometric-technological and economic-
strategic perspectives (Grimaldi et al., 2015) in order to manage the
portfolio strategically and optimize its full potential. Whether the
analyst is considering the value of a particular patent or a patent
portfolio, the analyst is typically concerned with two forms of value.
They consider the commercial value of market transactions (Hall et al.,
2005) with respect to internal business strategies (Harhoff et al., 2003).
Commercial value is the perceived value of the invention in the market
and depends on various factors such as the ability of the company to
market it, market conditions, and the socio-economic environment. The
technical value on the other hand is associated with the practical rea-
lization of the technology described by the patent at a commercial
scale. The technical value is generally revealed through the importance
of the patent to the implementation of successive technologies
(Carpenter et al., 1981; Harhoff et al., 1999). The technical value re-
sults from the maturity of the technology.

This research focuses on assessing the technical value of an inven-
tion. We focus on technical value because inventions employing highly
mature technologies generally result in successful products (Beierlein
et al., 2015; McNamee and Ledley, 2012; McNamee and Ledley, 2013)
and find application in future technologies, thus likely demanding a
higher net present commercial value. Different techniques have been
demonstrated to evaluate the technical value of an invention. These
measures have attempted to consider the underlying technical base of a
patent rather than its surface-level metadata alone. Hu et al. (2012)
used indicators based on a patent citation network, also termed an “ego
patent citation network”. Hu et al. (2012) defines the Technical Interest
Index (TII) of a patent as an indicator of the innovative density of the
technological knowledge flow. It is measured as the squared root of the
total number of citations of its references.

=TII CIT (1)

where CIT denotes the total number of citations received by the refer-
ences of patent A. Hu argues that a patent's technical value reflects its
technological knowledge base, knowledge flow, and technological
complexity.

The technical value of an invention has also been defined through
its “basicness” or its closeness to science. Trajtenberg (1997) suggests
that “basicness” can be measured through the following equation:

∑= +
=

−IMPORTB NCITED λ NCITING
j 1

ncited

A 1,j
(2)

where NCITED is the number of patents cited (references) by the target
patent A, λ is a discount factor (0 < λ < 1) meant to down weight
the second-generation patents, A − 1 indicates the cited patents, and
NCITING is the number of patents citing the originating patent. In other
words, NCITING is the citations received by the references of the target
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patent. IMPORTB reflects the extent to which a given patent stands on a
wide base of previous inventions that are themselves important. Traj-
tenberg argues that more basic patents would have fewer important
predecessors and therefore lower values of IMPORTB. Academic patents
are considered more basic in nature. Such patents, while introducing
new or radical knowledge, do not result in commercial products im-
mediately (Czarnitzki et al., 2009) as the technology is not mature
enough yet. This indicates a nascent level of research/knowledge un-
derlying the invention.

Narin (1993) uses technology cycle time (TCT) to determine the
length of time it takes a firm to use a new technology. It is measured as
median age of the patents cited by a given patent. A shorter TCT in-
dicates a higher patenting activity in the area implying higher tech-
nological strength. Bierly and Chakrabarti (1996) showed that a high
knowledge base level in a firm will lead to faster technology cycle time
by allowing members of the firm to better understand and interpret
external advances in the field and allowing the firm to combine new
technologies effectively with other complementary technologies.

Trajtenberg (1997) describes the value of a patent through its Ori-
ginality and Generality. Originality is a measure of the technological
roots of a patent. A large “Originality” value indicates broader tech-
nological roots of the underlying research (Trajtenberg, 1997). The idea
behind this measure is that highly original research is an outcome of
coming together of divergent ideas. This relationship is expressed as:

∑= − ⎛
⎝

⎞
⎠=

ORIGINAL 1 NCITED
NCITEDm 1

M
m

2

(3)

where m is the index of patent classes, and M the number of different
classes to which the cited patents belong. NCITED is the total citations
made by patent A and NCITEDm is the citations made in each patent
class m. Originality is a measure of the diversity of the knowledge roots
of a patent and not necessarily of the quantity of that knowledge. The
Generality of a patent is the extent to which the follow up technical
advances are spread across different technological fields, rather than
being concentrated in just a few of them. This has been represented as:

∑= − ⎛
⎝

⎞
⎠=

GENERAL 1 NCITING
NCITINGm 1

M
m

2

(4)

where m is the index of patent classes, and M the number of different
classes to which the citing patents belong. NCITING is the total citations
received by patent A and NCITINGm is the citations received in each
patent class m associated with patent A. The value of GENERAL ranges
from 0 to 1, with 1 indicating less concentration and 0 indicating high
concentration within patent classes. Trajtenberg argues that a highly
general patent provides a base for numerous subsequent technological
changes. Such patents may receive high social returns. Fischer and
Leidinger (2014) observed that a higher generality increased the
probability of a patent to be traded, and Mathew et al. (2012) observed
that the generality of a patent is positively correlated to its price. While
the generality of a patent indicates that more subsequent inventions
from different technology classes can be based upon it, generality is not
necessarily an indicator of the knowledge base of the patent itself.
However, a high GENERAL has been observed in highly cited patents.
This indicates that the technical maturity of an invention contributes to
its generality at some level.

While all these techniques attempt to value a patent based on its
knowledge base, certain shortcomings exist in them. Primarily, these
techniques consider only the first-level references of the patent, which
represent the direct knowledge influencing the invention. They fail to
account for the knowledge that has an indirect effect, that is, the re-
ferences of references, and so on. Such knowledge is found in the
multiple-level references of the patent. Also, techniques such as TII and
IMPORTB rely on forward citations of the references in their mea-
surement of the technical value. This would pose a problem in the
evaluation of patents that cite latest prior art, as this knowledge

wouldn't have had the time to accrue enough citations. Therefore, the
value indicated by these techniques would change with time making
them unsuitable for forecasting purposes. Other techniques such as
those based on technology life cycle have attempted to take into ac-
count the entire knowledge accumulation of the sector (Beierlein et al.,
2015). However, these techniques have been used to assess the devel-
opments of the technological field and not for the assessment of in-
dividual inventions. In sum, while these prior techniques have de-
monstrated the importance of examining the knowledge structure
underlying an invention, they have done so only to a partial degree.

2.2. Knowledge accumulation and knowledge structure

Another way to quantify the maturity of the knowledge structure
underlying an invention is through its knowledge accumulation.
Knowledge accumulation may be defined as the collective body of
knowledge, know-how, and experiences gathered in a sector over time.
Knowledge accumulates through a process of diffusion and upgrade
(Zhuang et al., 2011). Knowledge diffusion happens when knowledge is
absorbed from another agent while knowledge upgrade happens when
new knowledge is created based on existing knowledge. Accumulation
of knowledge is associated with increased firm performance (Forés and
Camisón, 2016; Jiménez-Jiménez and Sanz-Valle, 2011), enhanced
productivity (Evenson and Kislev, 1973) and business longevity
(Chirico, 2008). Knowledge accumulation in inventions is visible in the
form of methods, procedures and experiences of success and failure that
have led to the creation of the invention (Dosi, 1982). For example, the
steam engine as we know today is the outcome of the collective work of
many inventors over three hundred years working on various aspects of
the engine (Kerker, 1961). The success of Ethernet lay in the coming
together of various technologies including coaxial cables, bus topology,
packet switching, layering, and network interfaces (Fontana and
Nuvolari, 2009).

Knowledge accumulated in inventions becomes apparent by obser-
ving the knowledge structure of the invention. The structure of an in-
vention has been described as an intricate network of core and sup-
porting technologies (Arthur, 2007). These supporting technologies in
turn are comprised of other core and supporting technologies. In a
patent citation network, the knowledge structure becomes visible
through multiple-generation references of a patent. Multiple-generation
citations are references of references and have also been termed as
“indirect citations” (Atallah and Rodriguez, 2006) and “multiple-round
citations” (Bosworth, 2004). Studies based on patent analysis have
hinted on the existence of a structure behind inventions. This can be
seen in the work of Bosworth (2004), Atallah and Rodriguez (2006), Hu
et al. (2011, 2012), Rousseau (1987), von Wartburg et al. (2005) and
others. These studies explored various features of the knowledge
structure of the invention and amongst other things, differed in terms of
“how much” of the knowledge structure is included in the study. When
one consolidates all the knowledge elements leading to this assembly,
both direct and indirect, the accumulation of knowledge behind the
invention becomes apparent. Hence, the total direct and indirect
knowledge accumulation should be a suitable indicator of the technical
value of an invention. This knowledge is present at the conception of
the invention, making this a suitable indicator for evaluating new in-
ventions. Hence, we hypothesize that:

The total direct and indirect knowledge accumulation is positively cor-
related to the technical value of the invention.

3. Methodology

The purpose of this study is to show that knowledge accumulation is
an indicator of the technical value of an invention. In order to do so, we
first construct the knowledge structure of the invention through its ci-
tation network. Using this knowledge structure, we then calculate the

P. Chandra, A. Dong Technological Forecasting & Social Change 128 (2018) 235–244

237



knowledge accumulation behind the invention.

3.1. Patent citation network

Patent data for the purpose of building citation networks was col-
lected from Espacenet. This database was ideally suited for our purpose
because the intention was to capture the knowledge background of the
inventions on a global level. Patents sometimes cite other patents that
come from different jurisdictions. In such situations Espacenet provides
access to a consolidated database with over 90 million patent pub-
lications from 90 countries. We collected US patent data from three
sectors: Inductive vibration energy harvesting (IV), piezoelectric energy
harvesting (PZ), and carbon nanotubes (CNT). The time period for the
search was 1989–1991 for PZ and 2000–2002 for CNT. We chose a later
time period for CNT patents since research and patenting in this sector
picked up only after mid 1990s. In case of IV energy harvesting, due to
scarce patenting activity, we broadened the search to patents published
after 1988. The oldest patent in our dataset from this sector was pub-
lished in 1989. The choice of the time frames ensured that these in-
ventions had had enough time to accumulate citations and at the same
time there was an observable period of knowledge accumulation.

We used a combination of keywords and International Patent
Classification (IPC) codes to search for patents in each sector. The goal
was to find as many patents as possible in the sectors. For example, to
search for patents in the PZ sector, the keywords “piezoelectric”,
“piezo”, “energy” and “harvest” were used in various combinations and
searched in the title and abstract of patents along with a combination of
IPC H02N2 and H01L41. Unique combinations were used until no new
patent was found in the search. Similarly, we used the keywords “in-
ductive”, “vibration”, “induction”, “energy” and “harvest” in various
combinations along with IPC H02K35 for IV sector. For CNT sector, we
used IPCs C01B31 and D01F9 in combination with keywords pertaining
to this technology such as “Carbon nanotube”, “Nanotube” and “CNT”.
The search results in each sector were consolidated and duplicates were
removed. Thus, the initial search yielded us 289 PZ publications, 101
CNT publications, and 140 IV publications.

The patents in each sector were then screened to limit the results to
patents that have at least one of the above-mentioned IPCs as the main
classification and preferably the only classification. We verified that
none of the patents in our list had the same priority number. This en-
sures that the patents belong to different families thus described dif-
ferent inventions. Finally, the resultant patents were manually screened
to ensure that they described inventions pertaining to the field chosen.
Thus, in the period 1989–1991, we found 52 PZ US granted patents, and
from 2000 to 2002 there were 96 CNT US publications that met our
criteria. Of the 96 CNT publications, 33 were granted patents while the
remaining were patent applications. In the IV sector, there were 38
granted patents and 26 patent applications that met our criteria. To
determine a relevant sample size, we used the software G*Power 3.1.
G*Power is a stand-alone power analysis program for statistical tests.
Details about this program are can be found in Faul et al. (2009). Using
the parameters effect size (f2 = 0.35), type I error rate (α = 0.5), and
power (1 − β = 0.8), we calculated a sample size of 20. Based on this
number, we randomly chose 20 granted patents from each sector.

We then created a citation network based on patent co-classifica-
tion. Studies in the past have demonstrated the use of co-classification
for the purpose of tracing prior knowledge (Curran and Leker, 2011). In
each of these inventions, the backward citations were identified. Only
patents carrying the core IPC of the field were recorded while the re-
maining were discarded. This formed the first generation of backward
citations. The process was repeated with each one of the patents in this
level to form the second-generation backward citation network. Such
multiple generation citations have also been termed as “indirect cita-
tions” (Atallah and Rodriguez, 2006) and “multiple round citations”
(Bosworth, 2004) in the literature. The process was continued until no
new relevant patent was found in the references. All of the patents

across multiple generations formed the knowledge structure of the
originating, target invention. This process was carried out for all the
patents in the sample set. The year of application of each patent in the
knowledge structure was recorded. Knowledge accumulation was then
calculated for each sample as described in the following section.

3.2. Indicator for knowledge accumulation

Assuming patent A represents invention A, then the knowledge ac-
cumulation (KA) for patent A can be given as:

=
∑ =

n
N

KA A

m
A

m 1
M

where nA is the total number of patents in the knowledge structure of
the target patent, i.e., the volume of knowledge that has been used in
creating this patent. Nm represents the number of patents existing in
patent class m up to the year of filing (Tx) of the patent A and M re-
presents the number of patent classes that together describe the tech-
nology of the sector. The equation aggregates the efforts that have
taken place in the sector before the target patent. A larger nA indicates
that the target patent sources a larger body of knowledge. A larger Nm

indicates more knowledge existing in the sector and hence more pos-
sible solutions from which to choose.

However, the knowledge for the target patent should be scaffolded
by mature technology. Each piece of knowledge associated with the
patent is itself scaffolded by other technology, and the maturity of this
overall knowledge structure is relevant in calculating knowledge ac-
cumulation. We therefore introduce a time factor to take into account
the age of the knowledge that precedes the target patent. The time
factor permits the measure of knowledge accumulation to account for
structural maturity rather than a simple chronological measure of
(knowledge) age for the target patent.

Knowledge used in this patent can hence be represented by:

∑= −
=

n n T T( )A i x i
i 0

x

where ni is the number of patents filed in year Ti in the knowledge
structure of patent A. The subscript i takes the values 0, 1, 2, 3, …,
x − 2, x − 1, x, where T0 indicates the year of application of the ear-
liest patent in the knowledge structure and Tx indicates the year of
application of the target patent A. We also take into consideration that
while both long-term knowledge and recent knowledge are needed in
creating inventions, recent knowledge is more influential (Nerkar
(2003)). To take into account the influence of recent knowledge we
introduce the weighting factor αi:

= − −
− +

α T T
T

1
T 1i

x i

x 0

Making the appropriate algebraic substitutions, the knowledge ac-
cumulation of patent A can be represented by:

∑=
∑

−
= =N

α n T TKA 1 ( )A
m

i i x i
m 1
M

i 0

x

(5)

Eq. (5) has been used in this study to calculate the knowledge ac-
cumulation of the sample patents.

3.3. Composite technical value of patent (PV)

We determine the technical value of our sample patents by com-
bining various patent value indicators. This process yields a composite
technical value, the use of which has been demonstrated in various
studies (Hall et al., 2007; Lanjouw and Schankerman, 2004; Thoma,
2014; Van Zeebroeck, 2011). Researchers of these studies claim that
since all the patent indicators correlate with patent value with some
variance, combining the indicators would help localize that value.

P. Chandra, A. Dong Technological Forecasting & Social Change 128 (2018) 235–244

238



Hence, depending on which indicators are combined, one can extract
either the technical value or the commercial value of the patent. In this
study, to extract the technical value, we combined the following patent
variables:

a) Citations: A patent receiving citations from subsequent patents is an
indication of its technical value. The difficulty with using citation
counts is that they take time to accrue and patents continue to re-
ceive citations even after their term. This makes comparison be-
tween patents filed in different years difficult. One of the solutions
adopted in the literature to overcome this difficulty is to limit the
citations to the first few years of the patent life (Lanjouw and
Schankerman, 2004; Van Zeebroeck, 2011). Our dataset shows two
different filing behaviours. Patents from PZ and CNT sectors were
filed within three years of each other. Hence, we consider the total
citations received by these patents while calculating the composite
technical value. On the other hand, patents from IV sector have a
longer time period between their filing dates. Thus, for these sam-
ples we only consider the citations received in the first five years
after their filing to calculate the composite technical value.

b) Family and survival term: Size of the patent family, represented by the
number of countries in which protection is sought for an invention,
and its survival term have been shown to be positively correlated to
the patent value (Harhoff et al., 2003). This implies that the in-
vention is technically strong and has commercial importance in a
larger geography. Hence the family size and survival term of a pa-
tent indicates technical value of invention. We utilise the scope-year
index (van Pottelsberghe de la Potterie and van Zeebroeck, 2008) to
capture the geographical scope and term survival of the patent. This
indicator is expressed as:

=
∑ ∑

∗
= =SY

G (ry)

R YA
y 1
Y

r 1
R

i

(6)

where SYA stands for the Scope-Year index of a given patent A over R
countries and Y years of maintenance. Gi(r,y) is a variable that takes the
value 1 if the granted patent i in the patent family of A was active in
country r in year y from its filing date, and 0 otherwise. The index is
normalised to its maximum value representing Y years of maintenance
in R countries. We set Y to 10 years, which takes into account 2 renewal
periods of the patent.

c) References: References, also known as backward citations, represent
the knowledge foundation of the patent. Studies have shown that
patents referring to more prior art tend to be more valuable (Harhoff
et al., 2003; Lin et al., 2007). Hence, a longer and more diverse
reference base indicates a larger technical knowledge base, which
should be indicative of the technical value of the patent. This study
does not take into account non-patent references such as journal
articles.

3.4. Calculation of PV

In patent studies, scholars have used factor analysis (Hall et al.,
2007; Lanjouw and Schankerman, 2004; Thoma, 2014; Van Zeebroeck,
2011) to create a composite patent value. However, due to the limita-
tions of sample size, we use a more generic mathematical approach
(Song et al., 2013). In this approach, the sum of the z scores for each of
the above-mentioned patent variable is transformed to a T score to
create the composite technical value of the patent. A z score is a nu-
merical measurement of value's relationship with the mean in a group
of values. z score is calculated by subtracting the observation with the
mean of all observations and dividing the result by the standard de-
viation of all observations. The z scores have a mean of 0 and a standard
deviation of 1 and range from positive to negative numbers. A z score of
0 implies that the score is identical to the mean value. This normalises

the distribution of the values. Converting these values to T score then
returns the results from between 0 and 100.The composite technical
value of patent, PV, is thus calculated as:

= ′ +
∑

′= z
PV X

V
(SD )iv 1

V

(7)

where V denotes the number of patent variables, zi denotes the z scores
of these patent variables, ′X is the new desired mean and SD′ is the
desired standard deviation. We set ′X to 50 and SD′ to 10 as suggested
by Song et al. (2013). For each patent in our sample set, we calculated
the composite technical value as per the method described above.

We perform a multiple linear regression analysis to determine the
predictive power of KA. We estimate patent value through the following
equation:

= + + + + +B B B BPV B KA DIV DPZ DCNT εKA IV PZ CNT0 (8)

where PV represents the composite technical patent value and DIV,
DPZ, and DCNT are the dummy variables representing the sectors stu-
died.

3.5. Other patent value indicators from literature

For each patent in our sample set, we calculated TII, IMPORTB,
TCT, GENERAL, and ORIGINAL as per Eqs. (1)–(4) as described in
Section 2.1. We then check for correlation between KA and these patent
value indicators.

4. Data

To test our hypothesis, we studied three different technological
areas that find application in energy harvesting: inductive vibration
energy harvesting, piezoelectric energy harvesting, and carbon nano-
tubes. Energy harvesting is the process by which energy is derived from
external sources (e.g. solar power, thermal energy, wind energy, sali-
nity gradients and kinetic energy), captured, and stored for eventual
distribution. The ever-growing demand for energy has been pushing
technological advancements in this sector for the past few decades.
Energy harvesting products cater to a wide market sector such as sen-
sors, consumer electronics, healthcare, and military amongst others.
With embedded and remote systems becoming more attractive, the
need to supply uninterrupted power to them has now become an en-
gineering challenge. Batteries suffer from a limited life span and hence
need to be replaced regularly. This has resulted in a need for advanced
energy harvesting devices. According to market studies, the global de-
mand for energy harvesters is expected to reach $3.3 billion by 2020
(CompaniesandMarkets.com, 2015).

IV energy harvesting involves the use of kinetic energy released by
vibrations in the environment to harness energy. While knowledge
about inductive power generation has existed for a long time, using the
knowledge to create a micro energy generating devices has been a re-
cent technical achievement (Beeby et al., 2006). In PZ energy har-
vesting, mechanical strain energy is transformed into electrical energy
through the use of piezoelectric materials. The earliest PZ devices ex-
tracted energy from impact (Beeby et al., 2006). There has been an
increased interest in this technology since early 2000s. CNTs are allo-
tropes of carbon with a cylindrical structure. These nanomaterials are
known to have unique properties valuable for many fields such as
electronics, optics, healthcare, etc. Due to their excellent electrical
properties, they have been gathering interest in energy storage and
energy harvesting applications (Kotipalli et al., 2010; Li et al., 2010; Li
et al., 2011; Umeyama and Imahori, 2008). Single walled carbon na-
notubes have been shown to increase the efficiency of solar panels (Li
et al., 2009; Molinaro, 2007).

The selection of this dataset for analysis has important economic,
environmental, and experimental implications. The inventions in these
sectors may be seen as eco-innovations since they not only boost the
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economic growth, but also lead to sustainable low-carbon systems. Eco-
innovations may be the key to reducing greenhouse gas emissions,
improving energy security and promoting a green economy. Research
shows that increased awareness toward environment-oriented lifestyle,
favourable government policies and private sector initiatives has sti-
mulated a growth in eco-innovations in many countries (Albino et al.,
2014). Such eco-innovations tend to be intrinsically interdisciplinary
and based upon both recent technological breakthroughs and long-term
durable knowledge. For example, photovoltaic systems and wind power
require suitable storage such as a battery bank; thus, advances in those
systems require a simultaneous interdisciplinary advance in battery
technology. Research in wind energy, batteries, and photovoltaic sys-
tems has been ongoing for quite some time and include more recent
breakthroughs in structure (wind power) and materials (batteries and
photovoltaic). Installed systems have taken slightly different tech-
nology choices such as the choice of blade design and electricity storage
chemistry. Therefore, the knowledge structures of eco-innovations will
be useful to investigate as they will be inter-disciplinary, have a long-
term history, and have slightly different knowledge structures due to
the technology choices of installed systems.

Interdisciplinary research can be defined as integration of in-
formation, data, techniques, tools, perspectives, concepts and/or the-
ories from two or more disciplines or bodies of specialised knowledge.
Such mixing of ideas is known to be a great way to stimulate generation
of new approaches to problem solving. Much work has been done to
understand and measure interdisciplinarity (Huutoniemi et al., 2010;
Kodama et al., 2013; Tijssen, 1992). Kodama et al. (2013) adopted the
Herfindahl–Hirschman Index (HHI) of control as a measure of inter-
disciplinarity in their study. Using this measure, we find that out of the
three technological areas being investigated, CNT (HHI = 0.866) is the
most interdisciplinary technology, followed by PZ (HHI = 0.844), and
IV (HHI = 0.767).

These technological areas also display different levels of research
activity. Patenting behaviour is an indicator of research activities in a
sector. Strong patenting activity is a result of active research, indicating
a potentially large volume of knowledge accumulation. Fig. 1 shows the
patenting activity of the three sectors in the last 100 years. Discovered
just a few decades ago, research in CNT picked up in early 1990s. Hence
patenting in this sector is a rather recent phenomenon. A study on
nanotechnology patenting trends (Dang et al., 2010) found that be-
tween 1981 and 2008, IPC C01B (which include carbon nanotubes)
ranked in the top 5 of the nanotechnology patent applications world-
wide. An analysis of the technology areas showed that in applications
filed in People's Republic of China in 2008, which ranked second in
worldwide nanotechnology patent applications, “carbon nanotube” was

a highly-mentioned topic. PZ sector has the most patents of the three
sectors with an average of over 200% growth decade on decade.
Compared to other sectors such as organic photovoltaic solar cells
(Lizin et al., 2013) and wind energy (Europe) (Kapoor et al., 2016), this
sector has experienced a higher patenting rate in the last two decades.
Growth in IV sector, on the other hand, has been slower. The research
activity seems to have picked up pace in the 2000s with 75% of the total
patents in this sector published between 2002 and 2017.

5. Results and discussion

Descriptive statistics of the sample set are given in Table 1. The
samples of IV sector have a mean KA of 0.89 (SD = 0.29), and each
patent has received an average of 3 citations (SD = 2.82) in the first
5 years of its life. These patents have an average of 10 generations of
backward citations with the earliest patent dating back to 1903. This
provided an observation period of around 100 years for each invention.
Thus, we found that the initial 20 patents of IV sector drew their
knowledge from over 1200 patents in their knowledge structure. In-
ventions in PZ sector have an average of 78 patents in their knowledge
structure over 8 generations. These 20 inventions drew their knowledge
from over 490 inventions. Patents in this sector displayed a mean KA of
0.28 (SD = 0.23). The earliest patent in this dataset dates back to 1926
for an observation period of 65 years.

In this research, the earliest patent cited in the CNT sector, was
published in 1915 giving us an observation period of 100 years. Though
the patenting activity started late in this sector, we found an average of
238 patents in the knowledge structure of the inventions in this sector.
These inventions displayed a mean KA of 0.11 (SD = 0.07).

Fig. 2 shows the citation distribution over multiple generations of
all the three sectors. Similar to what was discovered by Atallah and
Rodriguez (2006) with forward citations, we observe an inverted-U
shape distribution in backward citations. This result contrasts with the
prediction by Bosworth (2004) that tracing citations backwards in time
will produce a monotonically increasing number of patents. The reason
for this difference could be the time span of the data being observed.
Since Bosworth used US patent citations, his data was limited to the
mid-1970s. Hence, Bosworth could observe the backward citations up
to 24 years (1976–2000) or five generations only. Using patent data
from Espacenet, we were able to observe more than 13 generations of
backward citations.

5.1. Correlation and linear regression

Similar to other patent valuation studies (Gambardella et al., 2008;
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Fig. 1. Patenting activity in the sectors.
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Harhoff et al., 2003; von Wartburg et al., 2005), we carried out cor-
relation and regression analysis on our samples. Table 2 shows the re-
sults of correlation test between KA and PV for the three sectors. The
results show that KA has a positive correlation with PV in all the sectors
(IV: r(18) = 0.465, p < 0.05; PZ: r(18) = 0.714, p < 0.01; CNT: r
(18) = 0.475, p < 0.05). The correlations are statistically significant,
with a large effect size seen in PZ sector and a medium effect size seen
in IV and CNT sectors. According to Cohen (1992) a correlation coef-
ficient value above 0.5 represents a large effect size. This validates our
hypothesis that knowledge accumulation is an indicator of the technical
value of a patent.

To test the predictive power of KA, a multiple linear regression was
then carried out. We control for the technology sector using dummy
variables, as shown in Eq. (8). The results are presented in Table 3. A
significant regression equation was found (F(3,56) = 6.057,
p < 0.001), with an R2 of 0.245. Coefficients of regression for KA
(BKA = 13.407, t(54) = 4.263, p < 0.001) and the sectors
(BPZ = 8.197, t(54) = 3.266, p < 0.002; BCNT = 10.564, t(54)
= 3.573, p < 0.001) are significant, indicating that they are im-
portant predictors of patent value. However, a higher standardized
coefficient of KA (BKA = 0.939) shows that knowledge accumulation
has a stronger effect on patent value. Hence, while the sector is a sig-
nificant factor in influencing the value of a patent, the degree of
knowledge accumulation amplifies that value. A one standard deviation
increase in KA increases the value of a patent by 7.4% in IV sector as
compared to 5.1% and 1.6% in PZ and CNT sectors respectively. This
implies that the effect of knowledge accumulation on patent value is
less pronounced on highly interdisciplinary technologies.

A comparison with the regression results presented in other studies

(Table 4) shows that our model explains at least the same amount of
variance as other metrics and a higher R2 value than some other studies.
While it is not possible to compare our results directly with the other
studies, because the dependent variables, predictors, and sectors differ,
the results show that a satisfactory proportion of the variance in patent
value can be predicted by knowledge accumulation. As we will explain
later, our measure of knowledge accumulation has the benefit of being
a leading indicator.

5.2. Comparison of KA with other patent value indicators

In the next step, we test the correlation between KA and other pa-
tent value indicators mentioned in the literature. Studies have at-
tempted to define the technical value of an invention in various ways.
This has resulted in a number of different value indicators. It is yet
unclear whether these indicators together represent the total technical
value or if each one represents some aspect of the technical value. In

Table 1
Descriptive statistics of the sample set.

IV PZ CNT

Min Max Mean Std. dev. Min Max Mean Std. dev. Min Max Mean Std. dev.

KA 0.59 1.66 0.89 0.29 0 1.08 0.28 0.23 0 0.28 0.11 0.08
References 1 48 14 11.37 3 20 10 4.83 1 30 9 7.64
Citations – – – – 3 86 20 20.62 1 279 93 84.79
5 year citations 0 12 3 2.82 – – – – – – – –
PV 41.03 58.41 50.00 4.95 42.26 62.67 50.00 6.03 41.20 65.14 50 6.38
Valid N (listwise) 20 20 20
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Fig. 2. Backward citation distribution of patents over
generations.

Table 2
Pearson correlation test for KA and PV.

PV

IV PZ CNT

KA Pearson correlation 0.465⁎ 0.714⁎⁎ 0.475⁎

Sig. (2-tailed) 0.039 0.001 0.034
N 20 20 20

⁎⁎ Correlation is significant at the 0.01 level (1-tailed).
⁎ Correlation is significant at the 0.05 level (2-tailed).
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case of the second scenario, with the increasing number of these in-
dicators, the probability of multicollinearity between them also in-
creases. Hence, it is important to determine whether KA is a new value
indicator or if it is detecting a value that is already measured by an
existing indicator. The simplest method to answer this question is
through a correlation matrix. We calculated the technical patent value
of the sample set based on the metrics mentioned in Section 2.1. We
then checked for correlations between KA and these metrics. Table 5
shows the results of this test for the PZ sector dataset since the results
lead to the same conclusions for the other sectors. The results show that
there is a high correlation between TII and IMPORTB. Hence, these
indicators are essentially measuring the same value. We do not find
similarly high, statistically significant correlations between KA and any
other indicator. We find a significant positive correlation between KA-
TII and KA-IMPORTB. Though KA, TII, and IMPORTB all seem to be
good indicators of patent value, there exist some differences between
them. The measure of KA takes into account the entire knowledge

foundation of the invention, while TII and IMPORTB only consider the
immediate knowledge (first level references) that has led to the in-
vention thus ignoring the indirect effects of knowledge elements. Unlike
TII and IMPORTB, the value of KA does not change with time, as its
measurement does not depend on forward citations. This quality makes
it an ideal technical value indicator for the newly granted patents. We
do not find a statistically significant correlation between KA-GENERAL,
KA-TCT, or KA-IMPORTB, which means that these metrics are mea-
suring different dimensions of potential patent value.

6. Conclusion

Patent-valuation analysis is a growing field that is increasingly
finding applications in technology planning and management. The
techniques have grown from mere patent counts to complex models. We
contributed to this field of study by introducing the concept of
knowledge accumulation. The concept of knowledge accumulation

Table 4
Comparison with other regression models.

Sector Study Dependent variable Independent variable R2 Comments

Biotechnology (Lin et al., 2007) Citations Examination time, claims, references, dummy
variables for inventor location

0.14 to
0.36

Citations reflect the value of
invention

Manufacturing (Hall et al., 2000) Market value of firm R&D stock, patent stock, citations 0.16 to
0.25

Biotechnology (Lerner, 1994) Firm valuation Equity index, number of patents, breadth of patent
claims

0.11 to
0.12

Ordinary least square
regression model used

Multiple sectors (Harhoff et al.,
2003)

Patent value based on inventors'
response to questionnaire

Patent scope, citations, family size, references, non-
patent references, opposition, annulment

0.12 to
0.17

Ordered probit method used

Table 3
Regression analysis of patent value with knowledge accumulation.

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 0.495a 0.245 0.205 5.09973
a Predictors: (Constant), DCNT, DPZ, KA.

ANOVA

Model Sum of
squares

df Mean square F Sig.

1 Regre-
ssion

472.556 3 157.519 6.057 .001b

Resid-
ual

1456.4-
06

56 26.007

Total 1928.9-
62

59

a Dependent variable: PV.
b Predictors: (Constant), DCNT, DPZ, KA.

Coefficients

Model Unstandardized coefficients Standardized coefficients t Sig.

B Std. error β

1 (Cons-
tant)

38.036 3.03 12.554 0.001

KA 13.407 3.145 0.939 4.263 0.001
DPZ 8.197 2.51 0.681 3.266 0.002
DCNT 10.564 2.957 0.878 3.573 0.001

a Dependent variable: PV.
Base category: DIV.
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takes a knowledge structure view on the value of patents, that is, the
structure of the knowledge upon which a patent is based. The vast body
of knowledge that shapes a technological sector is partially responsible
for the technical viability of an invention. Hence, a higher knowledge
accumulation should lead to a higher technical value of the invention.
Our structural view attempts to find indicators of the structure inherent
in the citation network of a patent so as to disentangle the intrinsic
structural effects at work in mediating the transformation of knowledge
into practical products, i.e., innovation. In terms of advancing theory on
technology forecasting, our research implies that every technology,
even very complex ones such as energy harvesting and generation
technologies have some sort of underlying structure. The potential for
improvement in those technologies due to their structures is relevant to
questions of scientific interest in technological forecasting.

Based on the study of 60 inventions in three different technological
domains of the energy-harvesting sector, this study identified a positive
correlation between knowledge accumulation and the composite tech-
nical value of a patent. We created a multiple-generation citation net-
work to assess knowledge accumulation. The composite technical value
was calculated using patent indicators citations, references, family size,
and patent term. In the PZ sector, which was the most interdisciplinary
of the three chosen sectors, knowledge accumulation explained the
highest variance in patent value. A low strength of correlation in the
CNT and IV sector indicates that there are other dynamics in play that
affect the technological patent value in addition to knowledge accu-
mulation. While we observed that the sector is also a significant pre-
dictor of the value of invention, a larger study involving more inven-
tions and technology sectors will provide further insight into how
knowledge accumulation varies with sector characteristics. We detected
a correlation between KA and value indicators TII and IMPORTB. Most
significantly, our metric of knowledge accumulation was able to ac-
count for a higher proportion of the variance in patent value than some
existing metrics. Since the metric does not strongly correlate or does not
correlate at all with existing metrics, it is likely that our metric of
knowledge accumulation is measuring a different construct. In addition,
our metric is a leading indicator as it does not rely on future citations to
the target patent to predict its value.

The objective of this method was not to predict the absolute value of
a patent, but to identify a technically valuable patent amongst a cohort
of other patents. The implications of this study show that knowledge
accumulation can be a useful construct by which to evaluate the latest

patents. Current patent valuation techniques based on forward citations
or patent family fail to identify technically valuable inventions when
the patent in question is new. Methods based on processing time can
only be used on granted patents. Since our method attempts to take into
account the knowledge structure that makes up an invention, the
method is applicable as a leading indicator of technical value. Research
at pre-patent level can also be analysed similarly if sufficient informa-
tion on the prior knowledge is available. From a technology manage-
ment perspective, the identification of valuable inventions at an early
stage would lead to better planning and execution of the invention.
Inventions with no technical value will have no commercial value; thus,
identifying such inventions at an early stage would save resources and
time.

Finally, we would like to point out certain omissions made in this
study for the reason of simplification. We ignored the distinction made
by other authors between inventor-references and examiner-references.
The reason for this is that not every patent has these two types of re-
ferences listed out separately. To maintain uniformity in our analysis,
we counted both the references. We also excluded the non-patent re-
ferences from our analysis in order to keep this analysis limited to pa-
tents at this stage.
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