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Abstract-The Poisson-lognormal model assumes that the intensity parameter of a Pois- 
son process has a lognormal distribution in a sample of observations. This model can 
yield highly skewed, discrete distributions, but must be estimated by numerical meth- 
ods. When applied to many of the empirical data sets related to the ‘laws’ of Lotka, Brad- 
ford, and Zipf, this compound Poisson model produces good to excellent fits. Discussion 
includes possible ‘causal’ processes and some implications for future bibliometric and 
scientometric studies. 

Bibliometricians and scientometricians have shown considerable interest in applying and 
relating the ‘laws’ of Lotka, Bradford, and Zipf (e.g., Haitun, 1982a, 1982b; Chen & Leim- 
kuhler, 1986, 1987a, 1987b; Nicholls, 1986, 1987a, 1989; Qiu, 1990). Among others, Haitun 
(1982a) suggests that these different laws can be reduced to a common form: 

f, = k/xb, x = 1,2,3,. . . (1) 

where f, is the number of scientists producing x articles (Lotka’s law) or the number of 
journals containing x articles in a comprehensive bibliography on a particular topic (Brad- 
ford’s law) or the number of words used x times in a document (Zipf’s law). This equa- 
tion gives the ‘frequency form’ of Zipf’s law, where k and b are constants to be estimated 
(often by taking the log of eqn (1) to produce a linear log-log form). Lotka’s ‘inverse- 
square’ law specifies that b is approximately 2.0, but allowing b to vary gives a ‘general- 
ized’ form of Lotka’s law. Haitun (1982a) states that Bradford’s law reduces to the above 
form under certain conditions. 

Attempts to test these laws have encountered a number of problems. First, there is con- 
siderable diversity in their precise formulation (e.g., Qiu, 1990, reviews and tests differ- 
ent forms of Bradford’s law). Such variation in these laws often arises from pressures 
created by empirical tests; for example, extreme values might be ignored or treated differ- 
ently (Pao, 1985; Brookes, 1969), additional parameters to the basic equations might be 
introduced (Brookes, 1969; Griffith, 1988), and adjustments are needed for the discrete 
nature of the counts and maximum possible scores (Tague & Nicholls, 1987). Second, 
researchers have used a variety of significance tests and estimation techniques, which range 
from simple inspections of graphs to maximum likelihood methods (Nicholls, 1987b). 
Third, the data sets often include a diverse mix of, say, scientists of different ages and dis- 
ciplines, counts including or excluding coauthorships, or measurement over very different 
time intervals. This diversity makes it unlikely that stable (and comparable) parameters will 
be estimated. Finally, almost all of these applications use ‘truncated’ data sets missing the 
count for scientists with zero articles, fXzO (or non-used words or journals with no articles 
on the topic). This count is ignored because of data-collection difficulties and/or model- 
testing problems (e.g., division by zero in eqn 1 or taking the log of zero). Yet in a repre- 
sentative sample of, say, scientists, zero productivity would be both a legitimate and a 
conceptually important value. Thus, some researchers avoid the mathematical problems 
by adding a third parameter, c, and using (x + c)~ in eqn (1). 

A few researchers have fitted the lognormal distribution to the productivity of scien- 
tists (Shockley, 1957), to articles in different journals (Karmeshu et al., 1984), or to word 
frequencies (Carroll, 1967); but these efforts also have problems. First, the lognormal is 
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a continuous distribution, but articles or word use are discrete events. Second, zero counts 
again present problems because the log of zero is negative infinity, so an adjustment, such 
as adding 0.5 to all scores, is needed. Finally, these two problems are particularly acute 
for the typical, ‘reverse-J’ shape, bibliometric distribution with a mode of one or zero. 
However, several factors favor the lognormal distribution. It can model very skewed dis- 
tributions, it has simple parameters that are understandable in the context of normal dis- 
tributions, and the mechanisms that might generate lognormal distributions have possible 
bibliometric/scientometric interpretations. 

The Poisson-lognormal (PL) distribution retains the above advantages, but avoids the 
problems associated with fitting continuous, algebraic functions to discrete distributions 
that include x = 0 values. The PL is a compound distribution, where the underlying ‘pro- 
pensities’, 6, to, say, publish an article follow a lognormal distribution across scientists. 
Given a specific scientist’s publication propensity, 6, his or her probability of publishing 
x articles, P,, follows a simple Poisson model: 

x=0,1,2,3 ,... (2) 

The distribution of observed scores for all scientists having the same 6 value will have a 
distribution with a mean and variance of 6. 

In a sample of scientists, whose logged 6s are normally distributed with a mean of F 
and a standard deviation of (I, the P, in the total sample is given by: 

1 1 m p,=---- 
s UdGrX! 0 

(In 6 - ~1)~ 

202 
d6, x=0,1,2,3,.. . 

This equation must be estimated by numerical methods, which may explain why it has 
not been used for bibliometric distributions, even though it has been used in ecological 
research to estimate the distribution of species (e.g., Bulmer, 1974; Pielou, 1969; Dennis 
& Patil, 1988; Shaban, 1988). Note that x can take on values of zero without creating any 
estimation problems. If the zero values are missing from the data set, then a truncated dis- 
tribution can be fit (Bulmer, 19’74), which can estimate the number of scientists who had 
a greater than zero propensity to produce articles, but did not actually do so during the 
measurement interval. (A FORTRAN program based upon Bulmer’s (1974) article is avail- 
able from the author.) 

In this article, I will illustrate that the PL distribution provides acceptable fits to a vari- 
ety of bibliometric and scientometric distributions. I then consider some of the possible ‘the- 
ories’ or ‘processes’ that might produce a PL distribution for bibliometric data. Finally, I 
discuss some of the limitations of these analyses and possible implications and elaborations. 

1. FITTING THE POISSON-LOGNORMAL DETRIBUTION 

Preliminaries 
The criteria for selecting the empirical distributions included (a) preference for those 

with x = 0 frequencies and ungrouped score categories, (b) used or discussed in recent lit- 
erature, (c) sampled from fairly specific populations and time periods, and (d) previously 
fit to the Generalized Inverse Gaussian-Poisson Distribution (GIGP) by Sichel (1975,1985, 
1992a,l992b). This last criterion is important because the GIGP model provides the best 
empirical fits to a diverse set of relevant distributions. 

Two ‘significance’ tests are used to assess the fit between the observed and predicted 
frequencies in the following tables. The chi-square test is commonly used, but it requires 
grouping of scores when the predicted scores fall much below 5.0. In particular, large sam- 
ples can lead to high chi-square values, even though the fit is quite good on the basis of 
the second test, the Kolmogorov-Smirnov (K-S) test. The K-S test uses the maximum dif- 
ference (D,,,) between the observed and predicted cumulative probability distributions. 
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The critical values of the K-S test at the .20 level were calculated with the following 
formula: 

DKa = l.O7/JN + m, 

where N is the sample size. This test does not require arbitrary groupings, is conservative 
for discrete distributions, is less sensitive to sample size, and provides a simple compari- 
son of the fits for different theoretical models to the same distribution. However, both tests 
assume random sampling, which is seldom the case. For these reasons, I report the results 
of both tests, but regard them more as measures of fit than as tests of significance. 

Lotka’s law: Article productivity by scientists 
The first distribution in Table 1 approaches the ‘ideal test’ because it is based upon 

random sampling from a well defined population (chemists receiving their Ph.D.s between 
1955-61), coauthored articles are counted, zero productivity counts are included, and the 
measurement interval is similar for all chemists: the first six years after the Ph.D. degree. 
(See Reskin, 1977, for a description of the data set.) The PL distribution fits very well, even 
slightly better than the Generalized Inverse-Gaussian Poisson (GIGP) distribution (Sichel, 
1985). Most empirical distributions lack f,=e information, but one can fit a truncated PL 
distribution, as done in Table 1 for the same distribution. This estimated the number of 
chemists with zero productivity to be 43.3 (with a standard error of 12.4, which includes 
the actual value of 37 chemists). 

Table 1. Observed and estimated number of scientists producing x articles 

X 
Observed 

number of 
articles 

Chemistsa Entomologistsb 

fx Estimated Estimated X fx 
Observed number of number of Observed Observed Estimated 

number of chemists chemists number of number of number of 
chemists using f,=0 W/O fxzo articles scientists scientists 

0 37 38.8 - 
1 50 46.3 48.9 
2 37 39.1 39.8 
3 31 29.6 29.4 
4 24 21.5 21.1 
5 13 15.5 15.1 
6 10 11.2 10.9 
I 7 8.2 1.9 
8 7 6.0 5.9 
9 3 4.5 4.4 

IO-11 5 6.0 5.9 
12+ 13 10.5 10.7 

Total 231 

Chi-square 
df & p value 

Observed D,,, 
DK_S Q p = .20 

Mean log S 
St. Dev. log 6 
Mean RAW count 
St. Dev. RAW count 
Maximum x value 

237.1 200.0 

3.01 2.46 
10 & .98 9 & .98 

,016 .014 
.069 .075 

.880 .826 

.866 .899 
3.460 4.100 
3.789 3.794 

19 19 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10-l 1 
12-13 
14-16 
17-20 
21-30 
31+ 

320 311.9 
92 111.5 
63 54.1 
32 31.8 
24 20.5 
10 14.2 
11 10.4 
7 7.8 
7 6.1 

10 8.8 
7 6.0 
6 6.0 
8 5.0 
5 6.1 
6 7.3 

608 608.0 

9.58 
13 & .73 

.019 

.043 

-1.953 
1.964 
3.319 
5.734 

66 

‘The data set is described by Reskin (1977). but the distribution and score groupings are given in 
Allison (198Oa) and Sichel (1985). 

bThe distribution is from Gupta (1987). 
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Table 1 also presents the article distribution from Gupta’s (1987) study of publishers 
on Nigerian entomology during a 73-year period, and includes coauthored articles. The PL 
fit is still very good, and the D,,, value is less than half of that obtained by Gupta, who 
used the ‘generalized’ Lotka law. The fit to this truncated distribution estimated that 1646 
(with a standard error of 435) scientists had a greater than zero propensity to contribute 
to this literature, but failed to do so during this period. 

The PL fit to the original Lotka (1926) data from Chemical Abstracts (not shown here) 
had an acceptable Q,,,X (p > .20), but a chi-square probability less than .Ol, whereas the 
GIGP fit was excellent by both criteria (Sichel, 1985). However, Lotka’s data pertain to 
a very diverse group, which is unlikely to be characterized by a shared mean and variance. 
Sichel (1985) had an excellent GIGP fit to one other productivity distribution (from Coile), 
but the PL fit (not shown) was equally good. 

More extensive comparisons to the fits produced by Lotka’s law are possible. Nicholls 
(1986) fit the generalized Lotka’s law to 15 different productivity distributions using max- 
imum likelihood estimation. The PL fit to these same distributions all had D,,, scores 
with probabilities greater than .20, including the two distributions that Nicholls could not 
fit at the .Ol level. All the obtained D,,, scores were less than or equal to those obtained 
by Nicholls and averaged less than half. 

Distribution of citations to articles and scientists 
Despite some reservations, there is increasing interest in using citations to study the 

distribution of the ‘recognition’ or ‘influence’ of scientists (e.g., Smith, 1981; Seglen, 1992; 
Peritz, 1992). However, citations are generally to specific articles, which provide the most 
fundamental unit of analysis for citation studies. Thus Table 2 first gives the PL fits for 

Table 2. Observed and estimated number of articles receiving x citations 
and number of chemists receiving x citations 

Israeli physics articlesa 1970 Geoscience articlesb Chemists’ 

Y 

Observed 

number of 

citations 

f, 
Observed Estimated Obszrved 

fx x fx 
Observed Estimated Observed Observed Estimated 

number of number of number of number of number of number of number of number of 

articles articles citations articles articles citations chemists chemists 

0 

‘! 

3 

4 

5 

6 

7 

8 

9 

IO-11 

12-13 

14-16 

17-20 

21-29 

30-60 

61+ 

Total 

Chi-square 

df& p value 

Observed D,,, 

D&S Q p = .20 

Mean log 6 

St. Dev. log 6 

Mean UAW count 

St. Dev. UAW count 

Maximum x value 

60 54.5 

34 43.2 

27 30.7 

28 22.1 

16 16.4 

I2 12.6 

7 9.9 

13 7.9 

9 6.4 

6 5.3 

8 8.2 

9 6.0 

4 6.4 

2 5.6 

6 6.8 

7 6.5 

3 2.5 

251 251.0 

14.82 

15 & ,464 

.0294 

.0669 

,890 

1.374 

6.092 

12.130 

99 

0 

I 
^ 

4 
c 

6:7 

8-9 

IO-12 

13-16 

17-22 

23-32 

33-65 

66+ 

7 8.1 0 102 loo.5 

II 9.4 I 36 38.0 

8 8.5 2 16 20.3 

5 7.3 3 I5 12.9 

10 6.2 4 9 9.1 

6 5.3 5 6 6.8 

8 8.4 6 6 5.3 

4 6.3 7 6 4.3 

7 6.8 8-9 II 6.5 

6 6.1 IO-12 4 6.7 

6 5.7 13-17 7 6.9 

6 5.1 IS-24 6 5.6 

5 5.4 25-33 5 4.1 

2 2.5 34+ IO 12.3 

91 91.1 

4.77 

12 & .97 

.0332 

.I104 

I .733 

I.276 

12.648 

22.527 

153 

239 239.2 

7.09 

12 & .85 

.0195 

.0685 

-.026 

2.164 

Grouped data 

Grouped data 

Grouped data 

‘This distribution is from Arunachalam et al. (1984). 

bThe data set is described in Stewart (1987). 

‘The data are from Reskin (1977). The distribution is given in Allison (1980b) and Sichel (1985) 
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citations to articles in two disciplines (physics and geosciences). The third distribution is 
for citations to individual chemists. None of these distributions is zero-truncated. 

Arunachalam et al.3 (1984) data on 251 articles published by Israeli physicists in 1977 
includes citation counts for five years after publication. The PL fit has a chi-square prob- 
ability of .46. This increases to .97 for the random sample of geoscience articles published 
in 1970 with citations counts from 1971-1974-see Stewart (1987). Sichel (1985) has not 
fit the GIGP distribution to citations to articles, only for the 1966 citations for Reskin’s 
sample of chemists. He obtained an excellent fit, but as shown in the last column of Ta- 
ble 2, the PL model yields equally good results. However, these citations are only to first- 
author publications, and those chemists without such publications must have zero citations, 
and should be excluded from the distribution. Although this number is not available, Ta- 
ble 1 indicates that it should be approximately 37. The PL fit (not shown) to the chemists 
in Table 2 improves slightly if fXXO is changed to 65 (=102 - 37). 

Bradford’s law: Journal scattering 
Bradford’s law was developed to describe the distribution of articles on a specific sub- 

ject among different journals. Table 3 gives the fit of the PL distribution to three such dis- 
tributions, which have also been fit by the GIGP distribution (Sichel, 1985, 1992a). The 
PL distribution provides a good fit to all three distributions, and equals or beats the GIGP 
fit on all but the Bradford data, where the GIGP’s chi-square probability is .83 (Sichel, 
1985), compared to .56 for the PL distribution. 

Table 3. Observed and estimated number of journals containing x articles in Bradford’s geophysics, 
Kendall’s operational research, and Rao’s economics data sets 

Bradford’s data seta Kendall’s data setb Rao’s data setC 

Y f. x fx x fx 
Observed Observed Estimated Observed Observed Estimated Observed Observed Estimated 

number of number of number of number of number of number of number of number of number of 

articles journals journals articles journals journals articles iournals iournals 

2 

4 

5 

6 

8 

9-10 

II-12 

13-15 

16-20 

21+ 

Total 

Chi-square 

df & p value 

Observed D,,, 

&_.$ @ p = .20 

Mean log 6 

St. Dev. log 6 

Mean RAW count 

St. Dev. RAW count 

Maximum x value 

169 163.8 

49 56.9 

23 28.3 

17 16.9 

I2 11.1 

I1 7.9 

7 5.9 

8 4.5 

8 6.5 

3 4.4 

6 4.5 

6 4.5 

7 10.9 

326 326. I 

9.66 

I1 & .56 

.0246 

.0588 

-2.484 

2.253 

4.086 

9.049 

93 

I 203 200.0 

2 54 60.1 

3 29 28.8 

4 I7 16.9 

5 10 11.2 

6 6 7.9 

7 8 5.9 

8 8 4.6 

9 4 3.7 

10-14 11 11.0 

15-19 7 5.4 

20-29 6 5.4 

30-49 2 4.1 

50+ 5 5.0 

370 370.0 

6.15 

I2 & .91 

.Ol59 

.0552 

-4.212 

2.740 

4.165 

16.296 

242 

I 229 

2 138 

3 88 

4 61 

5 40 

6 29 

7 20 

8 14 

9 10 

10 12 

11 7 

12 9 

13 II 

14 6 

15-16 10 

17-18 8 

19-21 12 

22-24 8 

25-27 8 

2s+ 24 

744 

234.4 

132.6 

83.2 

56.4 

40.4 

30.2 

23.3 

18.5 

14.9 

12.3 

10.2 

8.6 

7.4 

6.4 

10.3 

8.0 

9.0 

6.6 

5.0 

26.2 

743.9 

9.07 

18 & .96 

.0127 

.0390 

,120 

I.573 

Grouped data 

Grouped data 

Grouped data 

‘The distribution is from Bradford (1948). as grouped by Sichel (1985). 

bThe Kendall (1960) distribution was taken from Chen and Leimkuhler (1986), as grouped by Sichel (1985). 

‘The distribution is taken from Sichel (1992a). who gives Rao (1989) as the source. 
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Although not shown, the PL distribution was also fit to Sichel’s (1985) summary of 
the Goffman and Warren (1969) distribution on ‘mast cells’. This gave an acceptable prob- 
ability of .23, but the GIGP probability was three times larger (Sichel, 1985). Both mod- 
els provided equally good fits (p = .93) to the Goffman and Warren (1969) distribution 
on ‘schistosomiasis’ articles (see Sichel, 1992a). Two additional journal scattering distribu- 
tions were fit with the PL model - Bradford’s (1948) ‘lubrication’ data and Lawani’s (1973) 
agriculture data (from Basu, 1992). The PL fits had chi-square probabilities above .40. 

Zipf’s law: Word frequencies 
Zipf’s law was developed to describe the frequency of word use in documents. Table 4 

provides the PL fit to three classic sets of word frequency data: Eldridge’s distribution of 
word use in four American newspaper articles, Brugmann’s study of four plays in Plau- 
tine Latin, and noun frequency in Macaulay’s essay on Bacon (Yule, 1944). Again the PL 
provides acceptable to excellent fits to these data sets. Although not shown, the PL ade- 
quately fit the distribution of Chinese words (Zipf, 1935) with a probability of .20. Sichel 
(1975) reports the results of fitting the GIGP to these four frequency distributions, among 
others. His chi-square probabilities (vs. those for the PL model) were .023 (vs. .88) for 
newspaper English, .I91 (vs. .64) for Latin words, .832 (vs. .24) for nouns in Macaulay’s 
essay, and .912 (vs. .20) for Chinese words. Thus, the PL model seems to offer equally 
acceptable, perhaps complementary, results. 

Fits to other distributions 
Some other distributions are simple extensions of the more traditional topics covered 

above. For example, Tables 1 and 2 indicated that total productivity (N) and total cita- 
tions (C) among scientists are both lognormal, so the average citations per article (C/N) 
across scientists might be as well. The simple lognormal distribution provided a good fit 
(not shown) to the C/N data for those chemists with one or more publications, even though 
the discrete nature of both articles and citations made the C/N distribution very uneven. 

Using a single C/N value for each scientist ignores variation in the quality of the arti- 
cles produced by an individual scientist, but few scientists have sufficient productivity for 
statistical modeling. Seglen (1992), however, presents a distribution of citations to over a 
hundred publications by a single biomedical researcher, and the PL model provided a good 
fit (not shown) to this skewed distribution. Thus, the lognormal distribution may charac- 

terize variation in both the average quality between scientists and the quality among a sin- 
gle scientist’s articles. 

Sichel (1985) fits the GIGP distribution to several other types of data distributions. 
He obtained a very good fit (p = .95) to the number of Lending Library of England jour- 
nals receiving x requests from other organizations. The PL fit was not as good, but cer- 
tainly adequate (p = .63). He gives (in his Table 4) GIGP fits to three distributions on 
‘in-house’ use of chemistry or physics journals in different libraries. All PL fits were bet- 
ter: .92 vs. .31, .62 vs. .35, and .99 vs. .95. 

Finally, Sichel (1992b) examines the distribution of the number of references in a very 
diverse sample of articles: lO,OOO+ articles with at least one Hungarian (co)author. The 
GIGP model provided an acceptable fit with a probability of .5 1, whereas the PL fit was 
very poor with a probability less than .OOl. However, the selected articles are multidisci- 
plinary and unlikely to be characterized by a single mean and variance. Very acceptable 
PL fits to similar data were obtained for more consistently defined, but much smaller, sam- 
ples (e.g., the 1970 geoscience publications analyzed in Table 2). 

In summary, the PL model seems to work quite well for a great variety of bibliomet- 
ric/scientometric distributions, especially for more narrowly defined samples. Overall, it 
seems to produce equally good fits as the GIGP model. However, empirical adequacy is 
only one of several criteria that might be used to judge bibliometric models. Other crite- 
ria might include the plausibility of the causal mechanisms implied by the model, the impli- 
cations of the model for future studies in bibliometrics, and possible elaborations of the 
model. These are considered below for the PL model. 
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Table 4. Observed and estimated number of words used x times in American newspaper articles, 
Plautine Latin plays, and nouns in Macaulay’s essay on Bacon 

American newspaper Englisha Plautine Latin playsa Nouns in Macaulayb 

x f, fx fx 
Observed Observed Estimated Db&ed Observed Estimated Observed Observed Estimated 
frequency number of number of frequency number of number of frequency number of number of 

of use words words of use words words of use words words 

I 2976 3003.1 
2 1079 1032.0 
3 516 514.8 
4 294 307.9 
5 212 204.6 
6 151 145.7 
7 105 108.9 
8 84 84.4 
9 86 61.2 

10 45 54.8 
11 40 45.4 
12 31 38.3 
13 25 32.6 
14 28 28.1 
15 26 24.5 
16 17 21.5 
17 18 19.0 
18 10 16.9 
19 15 15.1 
20 16 13.6 
21 13 12.3 
22 11 il.2 
23 6 10.2 
24 8 9.3 
25 6 8.6 
26 10 7.9 
27 9 7.3 
28 6 6.1 
29 5 6.3 
30 4 5.8 
31 6 5.4 
32 4 5.1 

33-34 8 9.2 
35-36 8 8.0 
37-38 2 7.2 
39-40 6 6.5 
41-44 13 11.0 
45-50 15 13.0 
51+ 81 71.6 

Total 6001 

Chi-square 
df & p value 

Observed D,,, 
DK_S @ p = .20 

Mean log 8 
St. Dev. log d 
Mean RAW comtt 
St. Dev. RAW count 

6001.0 

28.16 
37 & .85 

.I3057 

.0138 

-2.702 
2.355 

(Censored at 61 +f 
(Censored at 61 if 

I 5429 5429.4 1 
2 1198 1177.6 2 
3 492 509.0 3 
4 299 285.1 4 
5 16l 182.9 5 
6 126 127.5 6 
7 87 94.1 7 
8 69 72.3 8 
9 54 57.3 9 

10 43 46.6 10 
I1 44 38.6 11 
12 36 32.5 12 
13 33 27.8 13 
14 31 24.0 14 
15 13 20.9 15 
16 25 18.4 16-20 
17 21 16.3 21-30 
18 21 14.6 31f 
19 11 13.1 
20 15 11.8 
21 10 10.7 
22 8 9.8 
23 8 8.9 
24 9 8.2 
25 li 7.6 

26-30 27 30.4 
31-35 18 21.8 
36-40 21 16.4 
41-45 9 12.7 
46-50 8 10.2 
51-55 8 8.3 
56-61 5 8.2 
62f 71 67.7 

8421 8420.9 

27.63 
31& .64 

JO28 
.0116 

-9.055 
3.562 

(Censored at 62+) 
(Censored at 62ff 

990 
367 
173 
112 
72 
47 
41 
31 
34 
17 
24 
19 
10 
10 
13 
31 
31 
26 

975.8 
374.2 
191.8 
115.1 
76.1 
53.7 
39.8 
30.5 
24.0 
19.4 
15.9 
13.2 
11.2 
9.6 
8.2 

28.4 
26.5 
34.7 

2048.1 

20.65 
16 & .19 

.OIZh 

.0236 

- 1.676 
1.983 
3.928 
8.627 

aThe distribution is from Zipf (1935). 
bathe distribution is from Chen and Leimkuhler (1987b). Score groupings follow Sichel (1975). 

2. PROCESSES THAT COULD GENERATE LOGNORMAL DISTRIBUTIONS 

Sichel(1975) provides a justification for why word frequencies should follow a com- 
pound Poisson process, and Allison (1980b) does the same for scientists’ productivity. If 
we accept this aspect of the PL model, the remaining issue is what ‘causal processes’ might 
produce a lognormal mixing distribution. 

A possible model for the lognormal productivity of scientists is given by the ‘law of 
proportionate effects’ (Aitchison & Brown, 1957; Shimizu & Crow, 1988; Karmeshu eC al., 
1984), where the underlying propensity to publish is a multiplicative function of many inde- 
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pendently distributed factors, such as intelligence, training, motivation, and available 
resources. That is, such factors do not add together, but are multiplied together, so a weak- 
ness in any one factor reduces the effects of all the other factors. Empirical support is given 
by Reskin’s (1977) analyses of her chemists’ productivity levels, where she found many sig- 
nificant interactions among her predictors. If the multiplicative model is correct, she should 
have used the log of productivity in her linear regressions. 

The same model could apply to citations to articles (e.g., for an article to be cited 
highly it must not only have good methods, but also good theory and be published in a 
good journal and on an important topic, etc.). Empirical support comes from Stewart’s 
(1983) use of the Box-Cox test (Maddala, 1977), which indicated that logged citations was 
the best functional form for predicting citations to articles. The multiplicative model also 
might be appropriate for word frequencies, where the probability of using a particular word 
is a multiplicative function of, say, the topic, the specific context, author preferences, recent 
usage in the text, and its length (to follow Zipf’s ‘least effort’ explanation). 

Bulmer’s (1974) version of the ‘broken stick’ model might apply to the bibliometric 
scattering of articles among journals. Applying this model to bibliometric scattering would 
suggest that the collection of articles on a particular topic is broken into groups, and then 
each group is broken into subgroups in such a way that the number of created subgroups 
is independent of the original group size, and the subgroups have the same relative sizes 
as existed in the first ‘breakage’. This process is repeated for each subgroup, and so on. 
This model might apply to how articles on a particular topic get distributed among jour- 
nals, as the number of articles and journals expand to meet the needs of specialized re- 
searchers. Karmeshu et a/. (1984) use this model for a lognormal distribution and relate 
it to Bradford’s law, but they do not mix it with a Poisson process. Basu (1992) employs 
a similar model and relates it to Bradford’s law, but uses neither the lognormal nor a Pois- 
son process. Koch (1966) provides some models that would produce lognormal distributions 
of biological variables ‘directly’ from underlying normal distributions, so other analogies 
for bibliometrics may be possible. See also Shimizu and Crow (1988). 

Thus there are plausible causal models that could produce a lognormal distribution 
for the intensity parameter in a compound Poisson process. Sichel (1975) argues that plau- 
sible causal processes are less important than empirical adequacy in the comparison of mod- 
els in bibliometrics. However, when two models are equal empirically, as are the PL and 
GIGP models, then this secondary criterion becomes more important. This aspect appears 
to be lacking for the GIGP model. 

3. LIMITATIONS, IMPLICATIONS, AND ELABORATIONS 

Even if the PL distribution provides very good fits to diverse bibliometric/scientomet- 
ric distributions, this does not imply that the above causal processes are at work. Many 
possible processes might produce a lognormal distribution of propensities, and these pro- 
cesses might have very different implications (e.g., intrinsic heterogeneity vs. social rein- 
forcement processes). Furthermore, other distributions, such as Sichel’s GIGP, might 
provide equally good fits with different implications about causal processes. At best, one 
can say that the empirical results are generally ‘consistent’ with the PL model and the var- 
ious causal processes. 

What is to be made of the results clearly inconsistent with the PL model (e.g., Lotka’s 
Chemical Abstracts data and the number of references in articles with Hungarian 
(co)authors)? Although these are particularly diverse samples, some researchers (e.g., Pot- 
ter, 1981; Haitun, 1982c) argue that Lotka’s and Zipf’s laws apply only to large, diverse 
samples with long-term, even life-time, measurement intervals. An alternative view is also 
plausible: The PL model is valid, but these particular samples were mixtures of diverse pop- 
ulations, so it is unreasonable to expect a common mean and variance or a good PL fit. 

The case for the PL model may be advanced by considering some of its useful impli- 
cations. The first two characterize all compound Poisson distributions, which include both 
the PL and GIGP distributions. First, there is a simple way to measure how reliably the 
observed scores reflect the underlying propensities to publish articles, be cited, use partic- 



Poisson-lognormal model for bibIiometric/scientometric distributions 247 

ular words, or contain articles on a particular topic. For all compound Poisson processes 
the observed variability in, say, publications has two sources: (a) a ‘systematic’ component 
based on the variance of the underlying propensities, and (b) a ‘random’ component due 
to the Poisson process. Our data are reliable when most of the observed variability is due 
to variability in the underlying propensities. Allison (1978b) has shown that for compound 
Poisson processes this reliability (R) can be estimated from the mean (M) and variance 
(V) of the observed scores with the following formula: 

R=l-M/V. (5) 

This formula requires the complete distribution of scores, including f,+ (With zero- 
truncated data the above formula always underestimates the reliability.) Applying this for- 
mula to the productivity data of chemists and entomologists in Table 1, we find reliabilities 
of 0.76 and (at least) 0.90, respectively. The lower reliability of the chemists’ productivity 
probably stems from the shorter measurement interval (Allison, 1978b): six years vs. 70+ 
years for the entomologists. 

This reliability calculation might provide useful information in bibliometrics (e.g., Alli- 
son, 1978b, illustrates how to estimate the length of the measurement interval for collect- 
ing productivity data of a desired reliability). Perhaps it provides a simple measure of the 
‘completeness’ of the compilation of a bibliography. For example, the estimated reliabil- 
ity of the Bradford and Kendall data sets in Table 3 are both at least 0.95 or higher, whereas 
Bradford’s (1948) ‘lubrication’ data (not shown here) has a minimum possible reliability 
of 0.75, which suggests this bibliography is less complete or a longer observation period 
is needed to allow journals to show their propensity to publish articles on lubrication. 

A second result for compound Poisson distributions is the simple formula for E( 6 1 x) , 

the expected value of 6 given an observed x score: 

am = (x + l)P*+,/p,, 

where the P, terms are those in eqn (3). In effect, this estimates the true score, or actual 
propensity by correcting for the unreliability of the observed count due to the randomness 
of the Poisson component. (This estimate has some error, because eqn (6) applies to com- 
pound Poisson distributions with known mixing distribution and parameters, whereas these 
are assumed and estimated in practice.) In particular, when the observed score is zero, 
Efslx = 0) = P,/PO is greater than zero and can be logged, so one can avoid adding an 
arbitrary constant to the observed counts before taking logs. (This adjustment could be 
used for all the observed x scores, especially if the estimated PL distribution had a mode 
at or above 1.0, which would give an E(6(x = 0) above 1.0.) 

The specific lognormal aspect of the PL model has additional implications when cou- 
pled with the above distinction between observed x scores and underlying propensities 
(6 scores). First, when comparing different distributions, it is better to work with the esti- 
mated parameters of the logged propensities. For example, in Table 2 the variance of the 
observed citations to the geoscience articles is over three times larger than the variance for 
the physics articles, which suggests that the geoscience articles had much more variation 
than the physics articles in their ‘basic tendency’ to be cited. However, since the variance 
of a simple Poisson process is equal to its mean, some of the observed x score variability 
for the geoscience articles arises from their higher mean pro~nsity to be cited. In fact, the 
variances of the logged propensities indicate slightly more variability (or inequality) among 
the physics articles (1.89 vs. 1.628). Statistical tests for differences between fields that rest 
upon assumptions of normal distributions (e.g., F tests for differences in variances) are 
more appropriate for the logged parameters. Similarly, attempts to standardize scores 
between disciplines before studying the determinants of, say, productivity (e.g., Cole, 1978) 
should use estimated parameters for the propensities. For example, an article with four cita- 
tions would have negative z scores in both the observed physics and geoscience citation dis- 
tributions in Table 2, but a positive z score in the physics distribution of logged propensities. 

The PL model provides information related to indices of concentration or inequality 
in bibliometrics (e.g., Egghe & Rousseau, 1990; Hustopecky & Vlachy, 1978). Since the 
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variance of a logged variable provides a ‘scale-free’ measure of the inequality in the vari- 
able’s distribution (Allison, 1978a), the estimated variance of the logged propensities (a*) 
measures the intrinsic inequality (or concentration) existing in the sampled population. 
‘Intrinsic’ is used because the estimated u2 avoids contamination from random variability 
due to the Poisson component, which would be included if one used the variance of the 
logs of the observed scores. This would also apply to studies using inequality in citations 
to measure the level of ‘consensus’ in fields (e.g., Cole et al., 1978). (Allison, 1980b, uses 
the negative binomial model to remove Poisson variability from the coefficient of varia- 
tion-another good measure of inequality, but the PL model generally provided better fits 
than the negative binomial model. Also Bulmer’s discussion of PL-based measures of spe- 
cies ‘diversity’ may be relevant to concentration measures.) 

The PL model also has some implications for the traditional scatterplots that stimu- 
lated the ‘discovery’ of the various bibliometric ‘laws’ (e.g., plots of Logx vs. Logy,). 
There is considerable disagreement on what variables should be plotted to produce a lin- 
ear plot, how to define the transitions from ‘core’ journals or the start of the Groos’ droop, 
and the meaning of different shapes in such plots. For simple lognormal distributions, a 
linear plot is produced with (Log x) vs. ZNVCDF( CP,) plots, where CP, is the cumula- 
tive proportion of the sample with scores of x or less, and ZNVCDF is the inverse cumu- 
lative distribution function for a standard normal curve (Aitchison & Brown, 1957). The 
regression line intercepts at Jo and has a slope equal to u. Unfortunately, the Poisson com- 
ponent of the PL model invalidates this linear relationship for typical bibliometric distri- 
butions, especially at the lowest x scores. Despite this problem, the correlation between 
these two variables is generally above .98, and higher than the correlation between other 
variables that are commonly plotted. Further research is needed to see how much the dif- 
ferences in the shapes and other features of Bradford plots are simply the effects of discrete 
counts, zero truncation, different reliabilities, plotting different variables, and differences 
in the basic PL parameters. 

A final implication of the PL model is that it keeps the study of bibliometric/scien- 
tometric topics in a Gaussian context (i.e., working with normal distributions, whose fea- 
tures are summarized by the well understood mean and standard deviation). The GIGP 
model has three parameters-one for the shape of each tail and one influencing the over- 
all shape. However, the meaning of these parameters is less clear (e.g., see Sichel, 1992a, 
pp. 7-8), and the GIGP model is mathematically complex. Haitun (1982b) argues that 
Zipf’s law applies to the distribution of many social characteristics, and that this law implies 
that social phenomena are inherently non-Gaussian. The good fits by the PL model in this 
paper suggest that this may be a premature conclusion, but only further tests can deter- 
mine whether these initial successes of the PL model will generalize to other variables and 
samples. Thus it is worthwhile to consider some of the possible elaborations available for 
the PL model. 

The three-parameter lognormal distribution introduces an adjusted ‘origin’ by subtract- 
ing a constant (the third parameter) from all the scores before taking the logarithm of the 
scores (Cohen, 1988). This might be compounded with a Poisson process to model distri- 
butions of word or sentence lengths having minimum possible scores above zero. The delta 
lognormal distribution (Aitchison & Brown, 1957; Dennis & Patil, 1988) might be used 
when ‘excessive’ zero counts are present. Here some proportion of the fXEO scores are 
assigned to a 6 = 0 status, with no chance of an event occurring, and the remainder are 
assumed to have small, but greater than zero, 6 values. The fraction assigned to the 6 = 0 
status would be a third parameter. An easy way to estimate this would be to ignore the zero 
counts and fit a truncated distribution, which would yield an estimate of fXEO, so those in 
a 6 = 0 status could be found by subtraction. Sichel(1992b) used this method for his GIGP 
fit to the number of references in articles with Hungarian authors. 

Another elaboration that stays within the ‘traditional’ scientometric approach would 
use a bivariate PL distribution to model bivariate distributions of discrete variables (Aitch- 
ison & Ho, 1989). For example, this might work for scientists classified by number of arti- 
cles published and total number of citations or journals classified by article counts on two 
subject areas. 
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A reviewer suggested another elaboration: Assume the basic propensities represent a 
mixture from two distributions. In this case, one would have to estimate five parameters: 
the means and variances for two distributions and the fraction of the sample in each. A 
natural extension of this approach would try to identify specific articles with each distri- 
bution, which would permit relating differences in population parameters to common fea- 
tures of the articles in each population. In other words, one would have a simple causal 
model. 

O’Connor and Voos (1981) carry this idea even further. They argue that rather than 
trying to infer the ‘causal’ processes by fitting univariate distributions, “[t]he analyses of 
bibliographic information should culminate in a [multivariate] causal model that accounts 
for variabilities in such phenomena as author productivity. . . .” (p. 15). This advice applies 
regardless of which statistical model best fits the univariate distributions. In fact, if one 
accepts the causal model assumption that productivity (or word usage, etc.) depends on 
many features of the scientists (or words) and their environments, then it is unreasonable 
to expect univariate models to fit bibliometric distributions because it is unlikely that all 
of the determinants have compatible univariate distributions. 

The PL model does suggest that the dependent variable in these multivariate, causal 
models should be the log of the observed counts of articles, citations, or words, or per- 
haps the Log of E( 61x). Logged scores are more likely to be a linear function of the pre- 
dictors and to have normally distributed residuals, which are assumed in most significance 
tests. However, even in the sociology of science, where causal modeling of scientific pro- 
ductivity is common, the use of logged counts is rare; Stewart (1983, 1990) and Lovaglia 
(1991) are exceptions. 

4. CONCLUSIONS 

This article illustrates that the Poisson-lognormal model provides good fits to a diverse 
set of distributions commonly studied in bibliometrics and scientometrics. Only the GIGP 
model seems to provide equally good fits for such a diverse set of distributions, but it lacks 
development of possible ‘causal’ processes, is more complex mathematically, and its param- 
eters are less well understood and do not directly relate to such key topics as inequality lev- 
els or how to standardize across fields. 

If further studies generalize the applicability of the PL model, then it would replace 
the ‘laws’ of Lotka, Bradford, and Zipf. The substantial efforts to test and relate these laws 
would be available for the development of multivariate causal analyses of bibliometric pro- 
cesses. The more likely outcome, of course, is that the simple PL model will fail to fit some 
distributions that it ‘should’ fit (i.e., from reasonably homogeneous samples). For a causal 
modeler, this would only imply that one or more determinants has an inconsistent distri- 
bution, so causal analyses could proceed. Those working in the more traditional univari- 
ate mode might increase the available univariate models by developing some of the PL 
elaborations mentioned earlier. 
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