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Quantitative methods for leaders' detection and overthrow are useful tools for decision-making in many
real-life social networks. In the given research, we present algorithms that detect and overthrow the
most influential node to the weaker leadership positions following the greedy method in terms of
structural modifications. We employ the concept of Shapley value from the area of cooperative game
theory to measure a node's leadership and to develop the leader's overthrow algorithms. Specifically, we
introduce a quantitative approach to analyze prospective structural modifications in social networks to
make the initially identified network leader less influential. The resulting mechanism is based on the
symbiosis of game-theoretic and algorithmic concepts. It presents a useful tool for the technical analysis
of the primary structural data in the initial steps of multifaceted quantitative network analysis where the
raw data (i.e., linkages) is frequently the only knowledge about interrelations in social networks.

Game theory
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1. Introduction

The variety of game and graph theoretical approaches plays an
important role in formalizing the leadership of agents in social
networks based on the analysis of node centrality metrics. In terms
of practical use, one of the first research applications of centrality
measures was introduced in the 1940s at the Group Networks
Laboratory, M.LT. Later, Cohn & Marriott [9] applied different cen-
trality metrics to analyze the diversity of Indian social life. Pitts [32]
used centrality-based concepts for examination of communication
paths in the context of urban development while Czepiel [12]
applied centrality computation in the analysis of a technological
innovation in the steel industry. The practical application of cen-
trality metrics has grown fast in the last fifty years. For example,
Moore, Eng & Daniel [29] used centrality scores for the estimation
of aid coordination between the non-governmental organizations
(NGOs) in Mozambique (i.e., NGOs involved in the flood opera-
tions). Estrada & Bodin [14] used network centrality metrics to
manage landscape connectivity. Faris & Felmlee [15] explored
gender segregation and cross-gender aggression based on cen-
trality measures.

In the given research, we present a quantitative analysis of
leadership in social networks employing the idea of network
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centrality. We use the term “node” as an equivalent to the terms
“agent” and “player” since we do quantitative social
network analysis (SNA) based on graph and game theoretical
approaches.

Agents' leadership is one of the core ideas in SNA. Different
evaluation methods exist. Degree [17], betweenness [3,16], and
closeness [5,34] are the most widely known metrics that assess the
structural centralities of nodes. The algorithmic measures of nodes’
leadership are well presented in Kleinberg [26] and Page et al. [31];
where the notion of leadership is given based on the analysis of link
structures. An interesting approach to characterize the role of
nodes within networks is given by Scripps et al. [38]; where the
community-based metric in the symbiosis with the degree-based
measure is introduced in the context of nodes' roles classification.
The problem of leadership analysis in networks is well described by
Balkundi & Kilduff [4] and Hoppe & Reinelt [23].

In contrast, there is yet another problem of understanding how
the network's structure should be efficiently modified in order to
overthrow the current network leader to the weaker positions.

Generally, modern social networks are presented by large-scale
structures with poorly formalized data flows due to their uncertain
social nature [41]. Consequently, basic information about a network
structure (i.e., presence/absence of links between nodes) is often
only the well-formalized data about the social network. In this case,
network structure presents basic knowledge about interrelations
that can be employed for the decision-making related to a net-
work's modifications.
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Consider large-scale terrorist networks that are often charac-
terized by the lack of knowledge about specific information flows
within existing interrelations. On the initial steps of network
analysis, the structural factor plays a key role for understanding
interrelations and detecting agents' leadership. In networks, such
as criminal networks with hidden patterns, or money laundering
networks, the overthrow of the detected leader may seriously
damage the network structure or even bring about irreversible
destruction [13,24,35].

In this paper, we consider the case when all nodes in the
network participate in the process of the leader's overthrow. Spe-
cifically, the main goal of the given research is to analyze what
sufficient set of links has to be established in a network (based on
the greedy approach) in order to decrease the leader's influence on
other nodes.

Agents establish links between each other for different socio-
economic reasons depending on the nature of the social network.
For example, in organizational networks [11], agents compete for
leadership positions in informal organizational networks by
creating new relations in order to improve their leadership posi-
tions in the formal organizational structures. Building leadership is
a competitive process that is based on establishing new relations
and overthrowing the existing leaders. Another example is related
to criminal and terrorist networks. A sleeper agent might incite
other agents to create new relations in order to improve their
leadership position and, simultaneously, to weaken current
network leaders [37].

Two agents in a network are motivated to create a link between
each other only if both of them make some profit from it. Specif-
ically, in our research we consider profit as an improvement of an
agent's leadership. To measure the level of a node's leadership we
employ the concept of Shapley value [39] from the area of coop-
erative games. Specifically, we use the Shapley value (SV) centrality
metric developed by Aadithya et al. [1].

In the context of our quantitative network analysis, we deter-
mine the leader as a node that has the highest SV. This means that it
has the highest SV-based leadership in the network where coop-
eration is presented by links between nodes. The leader's over-
throw is a procedure of structural modifications that results in the
leader's SV-decrease in terms of the distribution of a total surplus
generated by the coalition of all nodes.

The quantitative analysis of agents' leadership in terms of SV
distribution allows us to build potential scenarios for structural
modifications in a network. As a result, we get primary information
as part of the multi-faceted leadership analysis in networks. This
primary information regarding the leadership distribution (in
terms of SV) does not play a key role in the decision-making process
for network modifications, but it reflects quantitative SV-based
leadership distribution based on the structural factor.

In the given research, we show the advantages of the SV-based
concept compared to the traditional centrality metrics and explain
why SV is employed to measure leadership in networks. Based on
the given SV-based game theoretic approach we develop two
overthrow algorithms that establish sets of links to overthrow the
initial leader with the highest SV to the weaker positions.

Next, we test the SV-based algorithms based on the trivial
network topologies and on the real-world structures retrieved from
the co-authorship networks of the Norwegian School of Economics
(NHH) and BI Norwegian Business School [6].

The scientific finding of the given research is based on the idea
of building a quantitative mechanism that detects prospective
structural modifications in social networks based on the game
theoretic approach. The advantage of the SV-based game theoretic
approach (compared to classical well-known network metrics) is
presented in the following section.

2. Shapley value as the network's centrality metric

Shapley value is one of the fundamental concepts of game
theory [33]. The core idea of SV is the payoffs' distribution among
players according to their personal contributions to the overall gain
in a cooperative game. Since SV measures players' leadership based
on their mutual cooperation, it is applicable in the domain of social
network analysis. Specifically, it reflects the real-world players'
interrelations since it counts mutual influence of players in all
possible coalitions in networks.

For large-scale networks with lack of detailed information
regarding internal processes, the structural factor becomes
important for a quantitative assessment of the leadership potential
of nodes. Often, structure is the only well explored factor. Therefore,
it is important to have an efficient measure that evaluates node
leadership based on the network structural characteristics.

To understand why the concept of Shapley value is employed for
the network leadership analysis, it is necessary to understand when
it is useful to employ it.

The SV-based centrality metric is not the unique or the only
solution to estimate leadership. Considering conventional cen-
trality metrics, e.g., those based on node degree, closeness, and
betweenness, it should be specified that each of them reflects a
node's leadership depending on the particular application.
Depending on the context of the problem, an appropriate cen-
trality metric should be employed. Consider an abstract trans-
portation network, where the set of locations (i.e., nodes) is
connected by roads (i.e., links). The degree-centrality reflects an
immediate influential power showing how many locations are
directly reachable from the current node, but it does not count
the global network structure, because it takes into consideration
only the neighboring nodes approachable in one hop (i.e., within
one-link distance). The closeness centrality measures how fast it
is possible to travel between different locations in terms of the
overall network. It is based on the calculation of the inverse sum
of the node's shortest distances to all other nodes. The
betweenness centrality reflects the leadership of the node in
terms of how often it is required to go through the location along
the shortest route between two other locations. In many real-life
networks there is a great proportion of nodes that do not appear
on the shortest paths between any other two nodes [30]. This
means that many nodes can get the betweenness value equal or
close to zero. Since closeness and betweenness centralities take
into account the overall network structure, they are more
advanced measures compared to the degree centrality, but
“prohibitively expensive to compute, and thus impractical for
large networks” [25].

The efficiency of conventional centrality metrics depends on the
application area. Nevertheless, they have a generic nature that is
characterized by an “individualistic” measurement approach. This
means that they “fail to recognize that in many network applica-
tions, it is not sufficient to merely understand the relative impor-
tance of nodes as stand-alone entities. Rather, the key requirement
is to understand the importance of each node in terms of its utility
when combined with other nodes” [1]. This means that conven-
tional centrality metrics do not consider the interdependencies of
nodes' failures. They reflect the resulting effect (i.e., after-effect) of
multi-node failures in terms of a network's structure. It is impor-
tant to specify a key point that “such an approach is inadequate
because of synergies that may occur if the functioning of nodes is
considered in groups” [28]. The SV-based centrality metric counts
the mutual effect of all possible nodes' combinations measuring the
leadership of nodes within a graph [19].

Aadithya [1] study found the following:
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“The SV of each agent (node) in the game is interpreted as a
centrality measure because it presents the average marginal
contribution made by each node to every possible combination
of the other nodes. This paradigm of SV-based network cen-
trality thus confers a high degree of flexibility (which was
completely lacking in traditional centrality metrics) to model
real-world network phenomena.” (p. 2)

The advantage of the SV-concept for the leadership measure-
ment is based on the idea of quantitative analysis of interpersonal
and intergroup cooperation in networks that originally comes from
the domain of cooperative game theory. In contrast to conventional
measurements, SV reflects internal collaborations occurring within
all possible combinations of network agents, i.e., all possible groups
of agents that can be formed within a network [20]. Consequently,
the SV-based leadership measurement encapsulates the effect of all
possible interrelations between agents (within groups) considering
how each of them (being a part of different coalitions in the
network) contributes to the leadership positions of other agents.
More details about advantages of SV compared to classical metrics
are well described in Michalak et al. [28].

The SV-concept is based on the analysis of cooperation games.
Since coalition building is a natural feature of agents' behavior for
leadership formation in social networks [7], SV has a practical
importance for real-life applications. For example, consider the
analysis of infectious diseases networks [28]. The main goal in this
type of networks is to detect agents who have the highest potential
to spread diseases and, subsequently, have to be monitored for

of the initial leader is called an overthrow procedure. The impor-
tance of the leader's overthrow is based on the practical need to
analyze the prospective network modifications required to change
the leader. The straightforward way to get a new leader is based on
the deletion of the agent from the network, for example, by dismissal
of the person in the organizational network, or killing the leader in
the terrorist/criminal network. In contrast, this research aims to
show the way for the “evolutional” leader's overthrow based on the
network modifications. In the real world this process can be pre-
sented by managerial decisions for structural transformations of the
organizational network [11] or by marketing decisions to rearrange
leadership positions in the customer networks [40].

3. Leader's overthrow algorithm

In the given chapter, we use the adapted version of SV for
network analysis [1,28] and introduce two algorithms that employ
the SV-concept.

Consider graph G(VE) and v;V. All nodes (i.e., neighbors),
which are reachable from v; in at most one hop within G(V,E) are
denoted by N¢(v;). The degree of node v; is defined by degg;(v;).
According to Aadithya et al. [1]; the SV definition for node v; in
G(VE) is the following (see Eq. (1)):

1
SV(y) = v )
l ”J'E{"iZ}U:NG(Vi) 1+ degg(v))

Based on Eq. (1) Aadithya et al. [1] introduced the algorithm to
measure nodes' leadership in a network (see Algorithm 1).

Algorithm 1: SV-COMPUTING (G)

1 FOR each v € V(G) do
1
ShapleyValue [v]= Tidese
FOR each u € N;(v) do
ShapleyValue [v] +
END
END
return: L= List of SV-s for all nodes

Nouoh~ woN

prevention purposes. SV-based analysis considers the involvement
of each agent in all possible coalitions in the network detecting who
has the biggest influence on other agents and plays a key role in
passing on diseases.

Another example is co-authorship networks [2,18], where
research collaboration can be tracked based on bibliometrics. SV-
based analysis helps to detect how agents form scientific co-
alitions and what their leadership positions are based on joint
publications.

In the following section, we present the formalization of the SV
concept adopted for network analysis by Aadithya et al. [1] and
Michalak et al. [28]. The latter shows the transition from the clas-
sical interpretation of SV to the network-based interpretation
accompanied by formal proof. Next, we introduce two Shapley-
based algorithms that aim to detect an agent with the highest SV
(i.e., network leader) based on Michalak et al. [28] approach and to
find a set of links required to decrease the leader's influence on
other nodes (measured by SV). First, we introduce an algorithm,
where the decision-maker can specify the number of links to be
established in the network in order to diminish the leader's influ-
ence. Second, we present an algorithm that detects a set of links in
order to overthrow the initial leader to the weakest position.

In the given research, the process of nodes' linking to decrease SV

- 1+degg(u)

Algorithm 1. Algorithm 1 returns the SVs for all nodes and re-
flects their leadership positions within the analyzed network.
Based on the given mechanism we introduce two algorithms that
identify sets of links to be established in order to overthrow the
strongest node (i.e., leader).

Algorithm 2. Algorithm 2 iteratively detects links to be estab-
lished in order to overthrow the initial leader in terms of SV allo-
cation within a network. Following the greedy approach, the
algorithm establishes k links. The practical importance of the k-
parameter is that it gives a flexibility for the decision-maker to
choose how many links should be created.

Algorithm 3. Algorithm 3 iteratively detects links to be estab-
lished in order to overthrow the initial leader to the weakest po-
sition in terms of SV allocation within a network. The number of
created edges can be much bigger than the existing number of
edges in the network. Establishing that many links is unlikely in the
real-life scenarios, but the purpose of the algorithm is to show the
ultimate set of links required to overthrow the node to its lowest
leadership position. Algorithm 3 detects the set of links for the
ultimate overthrow, which is applicable in the analysis of how it is
hard to decrease an agent’s leadership (in terms of required num-
ber of links to be created).



Algorithm 2: XOVERTHROW-COMPUTING (G, k)

1 L= SV-COMPUTING (G)

SVsup = SV (Target)
Delete trial link (v,u) from G(V,E)

append Link— EAND append Link— E,q4 // Include Linkto Eand E 44

2 Target=node with MAX(L)

3 SVeup = SV (Target)

4 Link= ()

5 Eqaa =9

6 n=0

7 WHILE 2 < k&

8 FOR each v € V(G):

9 FOR each u & N;(v):

10 Create trial link (v,u)
11 L = SV-COMPUTING (G)
12 IF SV, > SV (Target):
13 THEN: Link = (v,u)
14

15 ELSE:

16 END

17 END

18 END

19

20 Link=@

21 n=n+1

22 END

23 return: Egqq

Line 2:

MAX(L) detects the maximal Shapley Value (SV) in the list L.
Target is the initially detected leader that has to be overthrown. Its
value is constant in the algorithm.

Line 3-5:

SVi,up is @ temporary variable used to compare the leader’s SVs
before and after the trial link was created.

Link is a temporary variable that contains the link approved on
the current iteration.

Egqq is a set of approved links.

Lines 6—7:

Counter n is initially equal to zero. It is used to control the
number of established links.

The loop continues while the number of established links (i.e.,
n) is not equal to the allowed number of links (i.e., k). In each
iteration of the WHILE loop, the algorithm approves the link that
gives the maximal decrease of SV(Target)-value. We consider k as
a constraint for the number of links to be established. To reflect
the real-life cases, the value of k cannot be greater
than the existing number of edges in the initial network G:
1 <k<IE

Algorithm 3: MAX-OVERTHROW-COMPUTING (G)

1 L= SV-COMPUTING (G)

SVeuy = SV (Target)
Delete trial link (v,u) from G(V,E)

append Link— EAND append Link— E,44 // Include Linkto Eand E 44

2 Target = node with MAX(L)

3 SVeup = SV (Target)

4 Link=0

5 Eqaa =9

6 WHILE SV (Target) + MIN(L) OR

7 [SV (Target) = MIN(L) AND [SV (Target) = SV (j) AND j # Target]
8 AND Gis NOT complete]:

9 FOR eachv € V(G):

10 FOR each u & N;(v):

11 Create trial link (v,u)

12 L= SV-COMPUTING (G)
13 IF SV, > SV (Target):
14 THEN: Link= (v,u)
15

16 ELSE:

17 END

18 END

19 END

20

21 Link=0

22 END

23 return: Egqq4
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Line 2:

MAX(L) detects the maximal Shapley Value (SV) in the list L.
Target is the initially detected leader that has to be overthrown. Its
value is constant in the algorithm.

Lines 6—8:

WHILE SV(Target) = MIN(L) OR

[SV(Target) = MIN(L) AND [SV(Target) = SV(j) AND j # Target]

AND G is NOT complete]

In each iteration of the WHILE loop, the algorithm approves the
link that gives the maximal decrease of SV(Target)-value. The
compound WHILE loop checks two main conditions:

1. SV(Target) + MIN(L)

MIN(L) detects the minimal Shapley Value (SV) in the list L.
The loop continues while SV of the initially detected leader is
not the minimal one.

2. [SV(Target) = MIN(L) AND [SV(Target) = SV(j) AND j + Target]
AND G is NOT complete]

This condition is required to control cases, when the Target-
node approaches the lowest SV, but there exist other node(s)
with the same SV: SV(Target) = SV(j) AND j # Target. In other
words, it is required to check if Target has a potential to get a lower
Shapley Value. It is possible only if the updated G-graph is not
complete (G is NOT complete).

It is important to notice that the given overthrow algorithms are
applicable to connected graphs.

In the following section, we show how they work on the trivial
topologies. Next, we test them on the real-life networks retrieved
from Belik & Jornsten [6].

4. Testing on the trivial topologies

Any large-scale network consists of the trivial topologies with
different characteristics [21]:

- “point-to-point”, or “line”

- “star”

- “ring”

- mixed, i.e., topologies that are based on the previous three types

Trivial topologies form a basement for large-scale networks. In
the given section, we present the detailed explanation of the
overthrow mechanism based on the given structures. Since the
number of links in the tested trivial topologies is small (i.e., in the
range between two and eight), we show how the SV-based leader's
overthrow procedure works running Algorithm 3. Our main goal in
this section is to explain the computational SV-based mechanism
step-by-step.

Later (in Section 5) we give the detailed results running both
algorithms (i.e., Algorithm 2 and Algorithm 3) on the real-life
networks.

Fig. 1. “Point-to-point” network topology in the initial state.

Fig. 2. Modified “Point-to-point” network topology.

Table 1
Results for the “point-to-point” topology.
Initial Overthrow Final
Node Shapley value Link SV(Target) Decrease Node Shapley value
1 0.83 (1,3) 1.00 033 1 1.00
2 133 2 1.00
3 0.83 3 1.00

Fig. 3. “Star” network topology in the initial state.

Table 2
Results for the “Star” topology.
Initial Overthrow Final
Node Shapley value Link SV(Target) Decrease Node Shapley value
1 1.75 (23) 142 033 1 1.00
2 0.75 24) 117 0.25 2 1.00
3 0.75 (34) 1.00 0.17 3 1.00

Fig. 5. The initial state of the “Ring” network topology with even number of nodes.
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Table 3
Results for the “Ring” topology with even number of nodes.

Initial Overthrow Final

Node Shapley value Link SV(Target) Decrease Node Shapley value

1 1.00 (24) 083 0.17 1 0.83
2 1.00 2 1.17
3 1.00 3 0.83
4 1.00 4 1.17

Fig. 6. Modified “Ring” network topology with even number of nodes.

4.1. “Point-to-point” topology

The “Point-to-point” topology is presented in Fig. 1.

Initially, Algorithm 3 calculates the SVs for the given topology:. It
detects that node 2 is the leader (i.e., it has the highest SV). Next,
the link (1,3) is established in order to decrease the level of lead-
ership for node 3. Since we get the complete graph, the algorithm
stops, and we get SV(1) = SV(2) = SV(3) = 1. The results for all
algorithm's steps are presented in Fig. 2 and in Table 1.

4.2. “Star” topology

The “Star” topology is characterized by the existence of central
hub that is presented by node 1 in Fig. 3. Following Algorithm 3, we
get the results presented in Table 2.

Node 1 was detected by the algorithm as the leader. Algorithm 3
creates three links in order to overthrow node 1 to the weakest

Fig. 7. The initial state of the “Ring” network topology with odd number of nodes.

Table 4
Results for the “Ring” topology with odd number of nodes.

Initial Overthrow Final

Node Shapley value Link SV(Target) Decrease Node Shapley value

1 1.00 (2,5) 0.83 0.17 1 0.83
2 1.00 2 1.17
3 1.00 3 0.92
4 1.00 4 0.92
5 1.00 5 1.17

Fig. 8. Modified “Ring” network topology with odd number of nodes.

position (i.e., SV(1) = 1). It stops on the iteration when the graph
becomes complete and no more links can be established. The
resulting modified “Star” topology is presented in Fig. 4.

4.3. “Ring” topology
The “Ring” topology is characterized by sequential connections

of odd or even numbers of nodes forming the cycle. First, we
consider the structure with an even number of nodes (see Fig. 5).

OO

Fig. 9. Mixed network topology in the initial state.

Table 5
Results for the mixed topology.
Initial Overthrow Final
Node Shapley value Link SV(Target) Decrease Node Shapley value
1 0.92 (14) 1.08 0.17 1 1.24
2 0.92 (24) 095 0.13 2 1.04
3 1.25 (1,5) 0.90 0.05 3 0.7
4 0.83 (2,5) 085 0.05 4 1.24
5 1.25 (1,6) 0.82 0.03 5 0.99
6 0.92 (2,6) 0.78 0.03 6 0.99
7 0.92 (46) 0.75 0.03 7 0.82
(47) 073 0.02
(1,7) 0.70 0.02

Fig. 10. Modified mixed topology.
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Fig. 11. The NHH largest component.

Running Algorithm 3, we get the results represented in Table 3.

According to Table 3, initially all nodes have equal SVs. The al-
gorithm chooses node 1 as the Target. By establishing link (2,4)
SV(1) decreases by 0.17, and the resulting SV(1) becomes equal to
0.83. Link (1,3) is not created by Algorithm 3, because it increases
SV(1) back to the initial value that is equal to one. For the given
“Ring” network topology with an even number of nodes the
SV(Target) is decreased to its minimum value of 0.83. The resulting
network is presented in Fig. 6.

Next, we test the “Ring” structure with an odd number of nodes
(see Fig. 7). Applying Algorithm 3 to the graph presented in Fig. 7,
we get the results represented in Table 4.

According to Table 4, link (2,5) is sufficient to overthrow node 1
to the weakest position in the network. Specifically, ASV(1) = —0,17.
The resulting graph is presented in Fig. 8.

4.4. Mixed topology

We analyze the symmetric mixed topology that includes “Point-
to-point”, “Star” and “Ring” based sub-graphs. The given network is
presented in Fig. 9.

According to the results in Table 5, node 3 is the leader (the
initial SV(3) = 1.25). Following Algorithm 3, nine links are created
to overthrow node 3 to the weakest position with SV = 0.7. The
resulting network is presented in Fig. 10.

5. Testing on the real-life networks

In the given section, we illustrate Algorithm 2 and Algorithm 3
based on two real-life networks. The first network is the largest

connected component of the NHH interdepartmental co-

Table 6
Initial results for the NHH largest component.

Node Shapley value Node Shapley value Node Shapley value Node Shapley value

9 141 40 0.62 58 0.71 69 0.98

21 0.67 45 1.02 60 0.87 70 1.99

26 1.73 50 1.03 61 0.83 73 135

34 0.82 52 0.67 65 149 130 0.67

37 0.7 53 0.99 67 0.71 142 0.67

39 1.07
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Table 7
Established links in the NHH network following Algorithm 2.
k Link Target k Link Target
Y% Decrease Position Y% Decrease Position

1 (40,58) 1.742 0.248 1 17 (21,67) 0911 0.014 11
2 (40,60) 1.608 0.133 2 18 (21,40) 0.897 0.014 12
3 (40,67) 1.508 0.1 2 19 (21,58) 0.883 0.014 13
4 (53,58) 1.425 0.083 2 20 (21,60) 0.869 0.014 14
5 (58,67) 1.358 0.067 2 21 (26,58) 0.858 0.011 14
6 (40,65) 1.301 0.057 4 22 (26,40) 0.847 0.011 14
7 (53,60) 1.244 0.057 6 23 (26,60) 0.836 0.011 14
8 (60,67) 1.196 0.048 6 24 (26,67) 0.825 0.011 15
9 (9,58) 1.149 0.048 6 25 (9,21) 0.816 0.009 16
10 (9,40) 1.107 0.042 6 26 (21,53) 0.807 0.009 17
11 (40,53) 1.071 0.036 7 27 (34,40) 0.798 0.009 17
12 (58,65) 1.036 0.036 7 28 (26,65) 0.789 0.009 17
13 (9,60) 1.004 0.032 8 29 (34,58) 0.78 0.009 17
14 (53,67) 0.972 0.032 8 30 (34,60) 0.77 0.009 17
15 (9,65) 0.947 0.025 9 31 (34,67) 0.761 0.009 17
16 (53,65) 0.925 0.022 9 32 (37,58) 0.754 0.008 17

authorship network and the second one is the largest component of
the BI interdepartmental co-authorship network. The detailed
analysis of the NHH and BI networks is presented in Belik &
Jornsten [6].

5.1. NHH network

The network structure of the NHH largest component is pre-
sented in Fig. 11.

First, we test Algorithm 2 in order to detect and overthrow a
leader applying different k-values. Since the NHH largest compo-
nent has 32 links connecting 21 nodes, we run the algorithm for all
values of k in the range [1, 32].

First, the algorithm calculates the initial SVs (see Table 6).

Node 70 is detected as the Target-node with SV = 1.99. Next, the
algorithm establishes k-links allowed to build in order to overthrow
node 70. Table 7 shows the list of consequently established links.
For each link, we provide the following details:

1. Current SV of the Target-node for the latest established link.

2. The difference between SVs of the Target-node before and after
the link was established (i.e., “Decrease”).

3. The current position (i.e., SV-based rank) of the Target-node
within the network.

For example, “Position = 3” means that the node is the third-
most influential (out of 21 nodes) in terms of SV-based analysis.

Each value in the “Link” column shows the latest link estab-
lished for the current k. For example, for k = 3 three links were
established. The first two links (i.e., (40,58) and (40,60)) are re-
flected in the previous rows, and the latest link (i.e., (40,67)) is
presented in the row k = 3.

Table 8
Resulting SVs for the NHH largest component based on Algorithm 3.

It is important to notice that each approved link guarantees the
SV-decrease of the initial leader (i.e., Target-node), but it is not
necessary that each approved link gives a decrease in terms of its
“Position” value. In fact, each approved link makes the Target-node
weaker, but it also affects the rearrangement of SVs for all other
nodes in the network. Therefore, it is a very common situation
when more than one link has to be established in order to decrease
the “Position” value of the Target-node.

Next, we apply Algorithm 3 to the NHH largest component in
order to detect and overthrow the current leader to its weakest
position.

First, the algorithm calculates the initial SVs. The results are
presented in Table 6.

Node 70 is detected as the Target-node with SV = 1.99. Next, the
algorithm establishes the set of links in order to overthrow node 70
to the weakest position. The list of consequently established links is
presented in Appendix A. For each link we provide the details about
the current SV(Target) and the difference between SVs of the Target-
node before and after the link was established.

According to Appendix A, sixty-seven links were created to
overthrow node 70 from the position of the leader to the SV-based
weakest position in the network. The resulting SVs for all nodes are
presented in Table 8.

5.2. BI network

The network structure of the BI largest component is presented
in Fig. 12.

Applying Algorithm 2, we get the initial SVs on the first step (see
Table 9). Since the Bl largest component has 38 links connecting 28
nodes, we run the algorithm for all values of k in the range [1, 38].

According to Table 9, node 242 is detected as the most

Node Shapley value Node Shapley value Node Shapley value Node Shapley value
9 1.87 40 1.37 58 1.37 69 0.6

21 0.56 45 1.06 60 1.37 70 0.56

26 1.23 50 1.04 61 0.61 73 0.72

34 0.97 52 0.59 65 1.44 130 0.56

37 0.78 53 1.37 67 1.37 142 0.59

39 0.96
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Fig. 12. The BI largest component.

Table 9
Initial results for the BI largest component.
Node Shapley value Node Shapley value Node Shapley value Node Shapley value
66 0.84 167 0.98 181 0.7 230 0.61
138 1.17 168 0.88 182 0.83 233 0.83
155 0.83 169 1.08 184 0.68 234 0.78
157 0.83 171 0.89 187 1.21 235 0.83
162 1.93 175 0.88 224 0.88 242 2.46
163 1.08 176 0.64 227 0.75 248 0.94
166 1.25 179 1.26 229 1.33 249 0.61

influential (SV(242) = 2.46). Next, the algorithm establishes k-links position.

allowed to build in order to overthrow node 242. Table 10 shows First, the algorithm calculates the initial SVs. The results are
the list of consequently established links. presented in Table 9.
Next, we apply Algorithm 3 to the Bl largest component in order Node 242 is detected as the Target-node with SV = 2.46. Next,

to detect and overthrow the leader to its SV-based weakest the algorithm establishes the set of links in order to overthrow

Table 10
Established links in the BI network following Algorithm 2.
k Link Target k Link Target
NY Decrease Position NY% Decrease Position

1 (230,249) 2.128 0.332 1 20 (175,248) 1.003 0.025 10
2 (230,234) 1.961 0.167 1 21 (248,249) 0.980 0.023 10
3 (234,249) 1.828 0.133 2 22 (187,234) 0.958 0.022 11
4 (230,248) 1.728 0.100 2 23 (66,224) 0.946 0.011 12
5 (168,249) 1.644 0.083 2 24 (66,168) 0.935 0.011 14
6 (224,230) 1.578 0.067 2 25 (66,175) 0.924 0.011 16
7 (234,248) 1.511 0.067 2 26 (66,230) 0.913 0.011 17
8 (175,249) 1.444 0.067 2 27 (66,249) 0.902 0.011 18
9 (168,234) 1.397 0.048 2 28 (66,187) 0.893 0.009 18
10 (175,230) 1.349 0.048 2 29 (66,234) 0.884 0.009 18
11 (187,248) 1.302 0.048 2 30 (138,224) 0.875 0.009 18
12 (224,249) 1.254 0.048 4 31 (138,168) 0.866 0.009 18
13 (168,230) 1.218 0.036 6 32 (138,175) 0.857 0.009 18
14 (175,234) 1.183 0.036 7 33 (138,230) 0.847 0.009 18
15 (187,249) 1.147 0.036 8 34 (138,249) 0.838 0.009 18
16 (224,248) 1.111 0.036 8 35 (155,234) 0.831 0.008 21
17 (187,230) 1.083 0.028 8 36 (66,248) 0.823 0.008 21
18 (168,248) 1.056 0.028 10 37 (138,187) 0.816 0.008 21
19 (224,234) 1.028 0.028 10 38 (155,168) 0.808 0.008 21
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Table 11
Resulting SVs for the BI largest component based on Algorithm 3.

Node Shapley value Node Shapley value Node Shapley value Node Shapley value
66 0.9 167 0.79 181 0.59 230 1.46

138 1.03 168 1.46 182 0.59 233 0.6

155 0.68 169 0.66 184 0.6 234 1.34

157 0.63 171 0.57 187 1.67 235 0.64

162 1.82 175 1.46 224 1.46 242 0.54

163 1.1 176 0.57 227 0.75 248 1.82

166 0.79 179 1.02 229 1.14 249 134

node 242 to the weakest position. The list of consequently estab-
lished links is presented in Appendix B. Ninety-six links were
created to overthrow node 242 from the leader's position to the SV-
based weakest position in the network. The resulting SVs for all
nodes in the network are presented in Table 11.

6. Conclusion

An important factor in the analysis of leadership formation is to
use a suitable measure. For this purpose, we employed the concept
of Shapley value in the interpretation of Aadithya et al. [1]. The
adapted Shapley value for the analysis of leadership in networks is
based on the theory of cooperative games. Its advantages compared
to traditional metrics are described in section 2 and deeply
analyzed in Aadithya et al. [1] and Michalak et al. [28].

In the given research, we developed two algorithms (based on
[1] and [28] that detect the network's most influential nodes and
overthrow them to the weaker positions). Specifically, Algorithm 2
establishes k links allowed by the decision-maker and Algorithm 3
establishes the set of links to get the leader to the weakest lead-
ership position. Both algorithms are based on the greedy approach.
Checking all new possible links on each iteration, algorithms
approve the link that gives the maximum decrease of the leader's
SV in terms of the overall surplus distribution generated by the
coalition of all agents in the network.

Initially, we showed how our approaches work based on the
trivial network topologies. Next, we tested them based on two real-
life networks. Specifically, we applied algorithms to the NHH and BI
largest connected components.

The practical importance of the presented algorithms is based
on their applicability for the analysis of real-life networks. As
described in section 2, SV-based overthrow mechanisms help to
develop managerial scenarios for the “evolutional” leader's over-
throw based on the network modifications. In practice, this process
can be presented by managerial decisions for structural trans-
formations of organizational networks [11] or by marketing de-
cisions to rearrange leadership positions in the customer networks
[40]. The mechanisms introduced can also be employed for the
leadership analysis in criminal networks with hidden patterns [27]
or money laundering networks [36], where it is important to detect
prospective organization modifications based on the analysis of
initial structural (quantitative) characteristics. In this kind of net-
works, the overthrow of the detected leader may cause serious
damage to the functioning of the network.

It is important to notice that in real-life networks, the presented
algorithms are not the unique solutions, but they are useful
methods to detect and to plan the prospective modifications. They
present a useful tool for the technical analysis of the primary
structural data in the initial steps of multifaceted quantitative
network analysis [10] where the raw data (i.e. linkages) is
frequently the only knowledge about the network interrelations.

The results of the research point to an interesting direction for
future work.

Modern SNA requires the framework development for the
technical (quantitative) analysis [8,22,42]. Since many social net-
works are characterized by complex and large-scale structures, the
need for efficient quantitative methods of SNA is growing fast and,
respectively, it requires new interdisciplinary mechanisms to be
developed. In the given context, future work implies integration of
the developed overthrow algorithms to the modern framework of
multi-factor technical SNA and testing on the real-life large-scale
networks. Another direction for future work is based on the idea of
developing symbiotic models for leadership analysis combining the
introduced SV-based approach with other centrality metrics, e.g.,
those based on node betweenness, closeness, etc. This will give new
opportunities to extend multi-factor models of SNA and open new
opportunities for the comprehensive understanding of networks'
internal mechanismes.

Appendix A. Algorithm 3 applied to the NHH largest
component

#  Link SV(Target) Decrease #  Link SV(Target) Decrease
1 (40,58) 1.742 0.248 35 (3465) 0731 0.008
2 (40,60) 1.608 0.133 36 (37,40) 0.723 0.008
3 (40,67) 1.508 0.100 37 (37,60) 0.716 0.008
4  (53,58) 1425 0.083 38 (37,67) 0.708 0.008
5 (5867) 1358 0.067 39 (39,60) 0.702 0.006
6  (40,65) 1.301 0.057 40 (37,65) 0.696 0.006
7  (53,60) 1.244 0.057 41 (39,67) 0.689 0.006
8 (60,67) 1.196 0.048 42 (937) 0.683 0.006
9 (958) 1.149 0.048 43 (37,53) 0.676 0.006
10 (9,40) 1.107 0.042 44 (39,40) 0.670 0.006
11 (40,53) 1.071 0.036 45 (39,58) 0.663 0.006
12 (58,65) 1.036 0.036 46  (939) 0.658 0.005
13 (9,60) 1.004 0.032 47 (39,53) 0.652 0.005
14 (53,67) 0.972 0.032 48 (39,65) 0.647 0.005
15 (9,65) 0947 0.025 49 (4045) 0.641 0.005
16 (53,65) 0.925 0.022 50 (45,58) 0.636 0.005
17 (21,67) 0911 0.014 51 (45,60) 0.630 0.005
18 (21,40) 0.897 0.014 52 (45,67) 0.625 0.005
19 (21,58) 0.883 0.014 53 (945) 0.620 0.005
20 (21,60) 0.869 0.014 54 (40,50) 0.615 0.005
21 (26,58) 0.858 0.011 55 (45,53) 0611 0.005
22 (26,40) 0.847 0.011 56 (45,65) 0.606 0.005
23 (26,60) 0.836 0.011 57 (50,58) 0.601 0.005
24 (26,67) 0.825 0.011 58 (50,60) 0.596 0.005
25 (9,21) 0816 0.009 59 (50,67) 0.592 0.005
26 (21,53) 0.807 0.009 60 (9,50)  0.587 0.004
27 (34,40) 0.798 0.009 61 (4052) 0.583 0.004
28 (26,65) 0.789 0.009 62 (50,65) 0.579 0.004
29 (34,58) 0.780 0.009 63 (52,53) 0.575 0.004
30 (34,60) 0.770 0.009 64 (52,58) 0.571 0.004
31 (3467) 0.761 0.009 65 (52,60) 0.567 0.004
32 (37,58) 0.754 0.008 66 (52,67) 0.563 0.004
33 (934) 0.746 0.008 67 (9,52) 0.559 0.004
34 (3453) 0.739 0.008




L. Belik, K. Jornsten / Socio-Economic Planning Sciences 56 (2016) 55—66 65

Appendix B. Algorithm 3 applied to the BI largest component

#  Link SV(Target) Decrease #  Link SV(Target) Decrease
1 (230,249) 2.128 0.332 42 (155,249) 0.778 0.008
2 (230,234) 1.961 0.167 43 (157,168) 0.771 0.006
3 (234,249) 1.828 0.133 44 (155,187) 0.765 0.006
4 (230,248) 1.728 0.100 45 (157,175) 0.759 0.006
5 (168,249) 1.644 0.083 46 (138,248) 0.752 0.006
6 (224,230) 1.578 0.067 47 (157,224) 0.746 0.006
7 (234,248) 1.511 0.067 48 (157,230) 0.739 0.006
8 (175,249) 1.444 0.067 49 (157,234) 0.733 0.006
9 (168,234) 1.397 0.048 50 (157,249) 0.726 0.006
10 (175,230) 1.349 0.048 51 (155,248) 0.721 0.005
11 (187,248) 1.302 0.048 52 (157,187) 0.716 0.005
12 (224,249) 1.254 0.048 53 (162,168) 0.710 0.005
13 (168,230) 1.218 0.036 54 (162,175) 0.705 0.005
14 (175,234) 1.183 0.036 55 (162,224) 0.699 0.005
15 (187,249) 1.147 0.036 56 (162,230) 0.694 0.005
16 (224,248) 1.111 0.036 57 (162,234) 0.688 0.005
17 (187,230) 1.083 0.028 58 (162,249) 0.683 0.005
18 (168,248) 1.056 0.028 59 (157,248) 0.678 0.005
19 (224,234) 1.028 0.028 60 (162,187) 0.673 0.005
20 (175,248) 1.003 0.025 61 (163,168) 0.668 0.005
21 (248,249) 0.980 0.023 62 (163,175) 0.663 0.005
22 (187,234) 0.958 0.022 63 (163,224) 0.659 0.005
23 (66,224) 0.946 0.011 64 (163,230) 0.654 0.005
24 (66,168) 0.935 0.011 65 (163,234) 0.649 0.005
25 (66,175) 0.924 0.011 66 (163,249) 0.644 0.005
26 (66,230) 0913 0.011 67 (162,248) 0.640 0.004
27 (66,249) 0.902 0.011 68 (163,187) 0.636 0.004
28 (66,187) 0.893 0.009 69 (166,168) 0.632 0.004
29 (66,234) 0.884 0.009 70 (166,175) 0.628 0.004
30 (138224) 0.875 0.009 71 (166,224) 0.624 0.004
31 (138,168) 0.866 0.009 72 (166,230) 0.619 0.004
32 (138,175) 0.857 0.009 73 (166,234) 0.615 0.004
33 (138,230) 0.847 0.009 74 (166,249) 0.611 0.004
34 (138,249) 0.838 0.009 75 (166,187) 0.607 0.004
35 (155,234) 0.831 0.008 76 (163,248) 0.604 0.004
36 (66,248) 0.823 0.008 77 (167,168) 0.600 0.004
37 (138,187) 0.816 0.008 78 (167,175) 0.596 0.004
38 (155,168) 0.808 0.008 79 (167,224) 0.593 0.004
39 (155,175) 0.801 0.008 80 (167,230) 0.589 0.004
40 (155,224) 0.793 0.008 81 (167,234) 0.585 0.004
41 (155,230) 0.785 0.008 82 (167,249) 0.582 0.004
#  Link SV(Target) Decrease # Link SV(Target) Decrease
83 (166,248) 0.578 0.003 90 (169,249) 0.556 0.003
84 (167,187) 0.575 0.003 91 (167,248) 0.553 0.003
85 (168,169) 0.572 0.003 92 (169,187) 0.550 0.003
86 (169,175) 0.569 0.003 93 (171,224) 0.547 0.003
87 (169,224) 0.565 0.003 94 (168,171) 0.544 0.003
88 (169,230) 0.562 0.003 95 (171,175) 0.541 0.003
89 (169,234) 0.559 0.003 96 (171,230) 0.538 0.003
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