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a b s t r a c t

This paper introduces a novel methodology for comparing the citation distributions of
research units of a certain size working in the same homogeneous field. Given a critical
citation level (CCL), we suggest using two real valued indicators to describe the shape of
any distribution: a high-impact and a low-impact measure defined over the set of articles
with citations above or below the CCL. The key to this methodology is the identification
of a citation distribution with an income distribution. Once this step is taken, it is easy to
realize that the measurement of low-impact coincides with the measurement of economic
poverty. In turn, it is equally natural to identify the measurement of high-impact with the
measurement of a certain notion of economic affluence. On the other hand, it is seen that
the ranking of citation distributions according to a family of low-impact measures is essen-
tially characterized by a number of desirable axioms. Appropriately redefined, these same
axioms lead to the selection of an equally convenient class of decomposable high-impact
measures. These two families are shown to satisfy other interesting properties that make
them potentially useful in empirical applications, including the comparison of research
units working in different fields.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

From an operational point of view, a scientific field is a collection of papers published in a set of closely related professional
journals. A field is said to be homogeneous if the number of citations received by its papers is comparable independently
of the journal where each has been published. Consequently, if one paper has twice the number of citations as another in
the same homogeneous field, not only it can be said that it has twice the international impact but also that it has twice
as much merit as the other. Following a common practice in bibliometrics, the scientific performance of a research unit is
identified with the impact achieved by the papers the unit publishes in the serial literature, where the impact is measured by
the citations the papers receive. The main aim of this paper is to introduce a novel methodology for comparing the citation
distributions of research units working in the same homogeneous field. Since citation distributions of individual scientists
tend to be small and, therefore, noisy from a statistical inference point of view, it should be understood at the outset that
this methodology is only applicable to research units of a certain minimal size (a university department, research institute,
journal, region, country, or supra-national geographic area).

∗ Corresponding author. Tel.: +34 91 624 95 88; fax: +34 91 624 93 29.
E-mail address: jrc@eco.uc3m.es (J. Ruiz-Castillo).

1751-1577/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.joi.2010.08.002

dx.doi.org/10.1016/j.joi.2010.08.002
http://www.sciencedirect.com/science/journal/17511577
http://www.elsevier.com/locate/joi
mailto:jrc@eco.uc3m.es
dx.doi.org/10.1016/j.joi.2010.08.002


P. Albarrán et al. / Journal of Informetrics 5 (2011) 48–63 49

It is well known that citation distributions are highly skewed, that is, many papers receive zero or few citations, while a
few articles receive a disproportionate amount of all citations.1 Correspondingly, the upper and the lower part of any citation
distribution are typically very different. An important consequence is that a single statistic of centrality, such as the mean
citation rate (MCR hereafter) or the median, may not adequately capture this feature (see Bornmann, Mutz, Nehaus, & Daniel
(2008) and, in a different context, Glänzel (2002). Tijssen, Visser, & van Leeuwen (2002) and Aksnes and Sivertsen (2004)
also stress that average or median scores will tend to be inadequate for describing general features of scientific excellence).
This is why we suggest using two indicators to describe this key aspect of citation distributions. Assume we are given a
criterion for selecting a critical citation level (CCL hereafter). Articles in a homogeneous field with citations above or below
the CCL are referred to as high- and low-impact articles. Any citation distribution in that field will be described using two
real valued functions, or indicators: a high-impact and a low-impact measure defined over the corresponding subsets of high-
and low-impact articles.

Economists will readily recognize that the key to this methodology is the identification of a citation distribution with
an income distribution. The measurement of low-impact, which starts with the identification of low-citation papers as the
ones with citations below the CCL, coincides with the measurement of economic poverty that, as originally suggested in
Sen’s (1976) seminal contribution, starts with the identification of the poor as those individuals whose incomes are below
a certain poverty line. On the other hand, once low-impact has been identified with economic poverty, it is equally natural
to identify the measurement of high-impact with the measurement of a certain notion of economic affluence.

There are three measurement issues that deserve attention. Firstly, by borrowing results from the economic literature
on poverty analysis in Foster and Shorrocks (1991) – FS hereafter – it will be seen that the ranking of citation distribu-
tions induced by a family of low-impact indicators has been essentially characterized in terms of a number of interesting
properties. This is the FGT family of low-impact measures, originally suggested by Foster, Greeer, and Thorbecke (1984)
for the measurement of economic poverty. These same properties lead to the selection of an equally convenient class of
FGT high-impact measures that is the counterpart of the family just mentioned. Secondly, beyond the ranking of citation
distributions one is interested in cardinal comparisons between them. Although their cardinal aspects have not been equally
characterized, the properties that the FGT indicators satisfy justify their use in empirical work for both ordinal and cardinal
purposes. Finally, comparisons of citation distributions must be extended from the homogeneous to the heterogeneous case.
Since our methodology describes the shape of citation distributions, independently of their size and their scale, it will be
seen that it permits the comparison of research units working in different scientific fields, as well as the comparison of entire
heterogeneous fields.

The only information required from research units in the approach advocated in this paper is the homogeneous field to
which each unit’s publications belong and the number of citations they receive.2 In this scenario, the MCR is a good overall
indicator of scientific performance. However, as indicated above, the MCR is silent about the distribution characteristics
to either side of the mean—an undesirable feature when evaluating very skewed citation distributions. Scientometrics
literature offers three main ways of dealing with this situation. Firstly, recent evaluations of research units focus on the
upper tail of the citation distribution. We refer to measures such as the h-index, first suggested by Hirsch (2005) for the
evaluation of individual scientists (see the recent survey by Alonso, Cabrerizo, Herrera-Viedma, & Herrera, 2009). Secondly,
there are methods for evaluating citation distributions by partitioning them into subgroups of articles with different number
of citations. We refer to the technique of Characteristic Scaling, or Characteristic Scores and Scales (CSS hereafter) pioneered
by Schubert, Glänzel, and Braun (1987) and Glänzel and Schubert (1988a, 1988b), where a set of characteristic scores defined
independently of any preconceived rule or law are used to group papers in a given subject field into several categories of
citation. Thirdly, among the battery of indicators used by the Leiden group for the monitoring of research groups (see, inter
alia Moed, Burger, Frankfort, & van Raan, 1985; Moed, De Bruin, & van Leeuwen, 1995; Moed & van Raan, 1988; Van Leeuwen,
Visser, Moed, Nederhof, & van Raan, 2003; Van Raan, 2004), one could select the most appropriate according to the limited
information assumed to be available in this paper. One possibility, which will be referred to as the Leiden triad, would be to
complete the unit’s MCR in a given field with the percentage of uncited papers, and the percentage contribution to the set
to the top 5% of highly cited papers (for similar proposals, see Aksnes & Sivertsen, 2004; Tijssen et al., 2002).

The problems with these alternatives are as follows. Firstly, one important feature of the h-index (shared by its many
variants, extensions or alternatives) is that, in the terminology of Pinski and Narin (1976), it is size dependent: the greater
the number of articles published by a group of researchers, the greater the value of the h-index will tend to be. This, of
course, precludes the direct comparison of the h-indices of, say, Chemistry articles published in 2000 and cited during
2000–2005 by authors working in countries like the Netherlands and the U.S. with vastly different sizes. Secondly, CSS lacks
the monotonicity property according to which a new citation is always desirable (see, inter alia, Marchant, 2009; Quesada,
2009, 2010; Woeginger, 2008a, 2008b). Thirdly, what we call the Leiden triad is an evaluation procedure insensitive to

1 See inter alia Seglen (1992), Schubert, Glänzel, and Braun (1987) for evidence concerning scientific articles published in 1981-85 in 114 sub-fields,
Glänzel (2007) for articles published in 1980 in 12 broad fields and 60 sub-fields, Albarrán and Ruiz-Castillo (2009) for articles published in 1998–2002 in
22 broad fields, and Albarrán, Crespo, Ortuño, and Ruiz-Castillo (2010a) for these same articles classified in 219 sub-fields and some aggregates.

2 In particular, the knowledge of the journals where the papers are published, or the number of citations received by the papers citing an article in the
original distribution are not required. However, the weighting of citations by their importance as a function, for example, of where the citing paper was
published, can be easily incorporated into our framework.
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distributional changes that leave the mean constant. Instead, among other desirable properties, the FGT high- and low-impact
measures introduced in this paper are size independent, monotone, and sensitive to distributional considerations.

The rest of this paper is organized into five Sections and an Appendix A. Section 2 introduces some notations and a
number of properties high- or low-impact measures should satisfy. Section 3 presents a number of basic high- or low-
impact indicators, as well as the FGT families that we recommend for empirical applications. A more detailed discussion of
the technical results characterizing the FGT rankings is relegated to the Appendix A. Section 4 is devoted to the evaluation of
research units in the heterogeneous case. Section 5 reviews the properties satisfied by the comparable procedures available
in the literature, and Section 6 offers some conclusions.

2. Properties of low- and high-impact indicators

2.1. Notation and definitions

Consider discrete citation distributions represented by vectors x = (x1, . . ., xi, . . ., xn), where xi ≥ 0 is the number of citations
the ith article receives. Denote the total number of articles, the total number of citations, and the MCR by n(x), X =

∑
ixi,

and �(x) = X/n(x), respectively. In the sequel, a CCL will always be a positive number, say z > 0. For any given CCL, z, and
distribution x, classify as low- or high-impact articles all papers with citation xi < z, or xi ≥ z, respectively. Once the sets of
low- and high-impact articles have been identified, the next step consists of combining this data to obtain a number that
indicates the overall or aggregate low- and high-impact level of a citation distribution. A low-impact index is a real valued
function L, whose typical value L(x;z) indicates the low-impact level associated with the distribution x and the CCL z, while
a high-impact index is a real valued function H, whose typical value H(x;z) indicates the high-impact level associated with
the distribution x and the CCL z.

Given a citation distribution x and a CCL z, we can think of the (citation) deprivation associated to any low-impact article.
A convenient measure of such deprivation for any article with xi citations is the low-impact gap:

gi(x; z) = max
{
z − xi,0

}
. (1)

Thus, gi(x;z) > 0 for low-impact articles, while gi(x;z) = 0 for high-impact articles. As seen below, given the value of the
CCL z many low-impact indices may be defined as functions of the vector g(x;z) = (g1, . . ., gi, . . ., gn). But many of these indices
depend on the CCL only through the ratio of each deprivation gap to the CCL. Therefore, it is convenient to define the
normalized deprivation gaps as follows:

�i(x; z) = gi(x; z)
z

= max
{

(z − xi)
z

,0
}
, i = 1, . . . , n. (2)

Similarly, we can think of the (citation) affluence associated to any high-impact article. A convenient measure for any xi
is the high-impact gap

g∗
i (x; z) = max{(xi − z),0}. (3)

Thus, g∗
i
(x; z) ≥ 0 for high-impact articles, while g∗

i
(x; z) = 0 for low-impact articles. Again, given the value of the CCL

z many high-impact indices may be defined as functions of the vector g∗
i
(x; z) = (g∗

1, . . . , g
∗
i
, . . . , g∗

n). Since many of these
indices depend on the CCL only through the ratio of each affluence gap to the CCL, it is convenient to define the normalized
affluence gap by:

� ∗
i (x; z) = g∗

i

(x; z)
z

= max
{

(xi − z )
z

,0
}
, i = 1, . . . , n. (4)

There are clearly many conceivable functions that do not correspond to anyone’s notion of low- and high-citation impact,
and so the first question we should ask is: what properties should these measures satisfy? For later reference, Table 1
contains a list of the 12 properties – referred to as axioms – that are used in the paper. For expository purposes, it is useful to
distinguish between basic and subsidiary properties. The following four sub-sections include an informal, intuitive discussion
of all axioms, while the formal definitions of those necessary in a number of crucial results are relegated to Appendix A. To
facilitate the comparison, the presentation stays as close as possible to the economic poverty literature.

2.2. Basic properties

The first six axioms form the core of the low- and high-impact notions. The first one requires that if two citation distri-
butions are identical except for the fact that one is a permutation of the other, then the low- and high-impact level of both
distributions should be the same. For the record, we have:

A1. Symmetry: Low- and high-impact measures are invariant to permutations.

This property allows articles to be reordered without affecting the low- or high-impact values. In the sequel, any distri-
bution x will be taken to be ordered, so that x1 ≤ x2 ≤ . . .≤ xn. The next axiom is a version of the size independent property
discussed in Pinski and Narin (1976). The idea is that if a citation distribution is exactly replicated any number of times, say
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Table 1
A list of axioms.

Basic axioms
A1. Symmetry: Low- and high-impact measures are invariant to permutations.
A2. Replication invariance (size independence): Low- and high-impact measures are invariant to replications of the citation distribution.
A3. Continuity: Low- and high-impact measures are continuous functions.
A4. Focus: Low- and high-impact measures are invariant to changes in the set of high- and low-impact articles, respectively.
A5. Monotonicity: A new citation of a low-impact (high-impact) article reduces (increases) the low- impact (high-impact) level of a citation

distribution.
A6. Normalization: A low- or a high-impact measure takes the zero value when the set of low or high-impact articles is empty, respectively.

Subsidiary axioms
A7. Subgroup consistency: Consider a partition of a citation distribution into two subgroups, and assume that the low-impact (high-impact)

level in one of the subgroups increases while it remains constant in the other subgroup. Then in the new situation the overall low-impact
(high-impact) level increases.

A8. Decomposability: For any partition of a distribution, a low- or a high-impact index is decomposable if the overall low- or high-impact level
is the weighted average of the low- or high-impact levels of the subgroups, with weights equal to the subgroups’ publication shares.

A9.Transfer axiom: If a citation transfer takes place between two high- or low-impact articles, then the high- or low-impact level increases.
A10. Invariance to equal proportional variations (scale invariance): Low- and high-impact indicators are invariant to equal proportional changes

in the citations received by all articles and the CCL.
A11. Invariance to equal absolute variations (translation invariance): Low- and high-impact indicators are invariant to equal absolute changes in

the citations received by all articles and the CCL.
A12. Increasing CCL axiom: If the CCL increases, then the low-impact (high-impact) level increases (decreases).

twice, the low- and high-impact level of the resulting distribution should be equal to that of the original one. Consider the
distributions x = (0, 0, 2, 5, 8) and y = (0, 0, 0, 0, 2, 2, 5, 5, 8, 8). If, for example, the CCL is equal to 4, then the set of low-impact
articles for the two distributions are (0, 0, 2) and (0, 0, 0, 0, 2, 2), while the sets of high-impact articles are (5, 8) and (5, 5, 8,
8) in the two cases. The citation per article has not changed, the only difference being the number of times a certain citation
sequence appears in each case. Since clearly the shape of the distribution has remained constant, there are reasons to say
that the structure of the low- and high-impact phenomena has not changed. Hence:

A2. Replication Invariance (Size Independence): Low- and high-impact measures are invariant to replications of the citation
distribution.

Of course, like any axiom, this one is debatable. Some observers may say that the two distributions of the example should
not be equally ranked. Insofar as the research unit with twice the number of articles can be said to be more productive,
either the low-impact aspect of distribution y can be said to be smaller than that of x, and/or the high-impact aspect of y
can be said to be greater. In any case, this property is crucial, since it allows us to compare the low- and high-impact aspects
of two citation distributions of different sizes. Consider two distributions x and y with n and m articles, respectively. They
are not directly comparable, but we can always replicate the first one m times and the second one n times. Let us denote the
result by x′ and y′. Thanks to A2, the low- and high-impact levels of distribution x′ are equal to those of distribution x, and
similarly with y′ and y. But the two new distributions now have the same size: n times m. Thus, by comparing x′ and y′ the
original problem is solved.3

It is technically convenient to ensure that small changes in citation distributions generate small changes in low- or
high-impact levels. This is the content of the third axiom:

A3. Continuity: Low- and high-impact measures are continuous functions.

The next two axioms are very important because they serve to differentiate low- from high-impact indicators. The first
one captures the idea that low- and high-impact measurement should be completely independent of what takes place in
high- and low-impact articles, respectively. Hence:

A4. Focus: Low- and high-impact measures are invariant to changes in the set of high- and low-impact articles, respectively.

Next, consider a situation in which a low-impact article receives a new citation. What should we require from a well-
behaved low-impact measure? Surely that the low-impact level is reduced in the new situation. Similarly, if a high-impact
article receives a new citation we expect the high-impact level to increase. Hence:

A5. Monotonicity: A new citation of a low-impact (high-impact) article reduces (increases) the low-impact (high-impact)
level of a citation distribution.

As will be seen in Section 3, perhaps the most important implication of the monotonicity axiom is that it rules out
measures based upon a simple counting of the low- or high-impact articles. The sixth axiom is elementary and innocuous
and introduces a normalization rule according to which, when the set of low- or high-impact articles is empty, the low- or
the high-impact measure takes the value zero.

3 Dasgupta, Sen, and Starrett (1973) first discussed this axiom in their seminal contribution to income inequality. Chakravarty (1983) and Thon (1983)
introduced it into poverty measurement.
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A6. Normalization: A low- or a high-impact measure takes the zero value when the set of low or high-impact articles is
empty, respectively.

2.3. Subgroup consistency and decomposability

There are many L and H indices satisfying properties 1–6. As a matter of fact, the sheer quantity of possible indicators
makes it difficult to select those to be used in practice. Therefore, it would be useful to count on other interesting axioms
that help restrict the class of admissible indicators, that is, the functional form that L and H indices can take. The next axiom
is a case in point.

Consider any partition of the set of articles under evaluation into a number of non-overlapping subgroups.4 The subgroup
consistency property for high-impact measures requires the overall high-impact level to fall if a subgroup experiences a high-
impact reduction, while the high-impact levels in the rest of the population subgroups remain unchanged. The subgroup
consistency axiom for low-impact measures is analogously defined. This property –which has not yet been discussed in
scientometrics literature– is desirable for a number of reasons. From a practical point of view, consider a situation where the
object of study is the citation distribution of articles in a certain homogeneous field published by research units in a certain
country. Subgroup consistency is needed to coordinate the efforts of the country’s decentralization strategy towards, say,
a high-impact increase in the field in question. Such a strategy may typically involve a set of policy measures targeted at
specific research units. If the high-impact indicator is not subgroup consistent we may be faced with a situation in which
each targeted research unit achieves the objective of increasing its own high-impact level, and yet the country’s high-impact
level decreases. Subgroup consistency may therefore be viewed as an essential counterpart to a coherent low- or high-
impact policy program. This requirement may also be regarded as a natural analogue of the monotonicity condition 5, which
requires that the aggregate high- (or low-) impact level increases (falls) if one article receives a new citation, ceteris paribus,
while subgroup consistency demands that the aggregate high- (or low-) impact level increases (falls) if one subgroup sees
its high-impact increased (or its low-impact reduced), ceteris paribus; in this sense, Zheng (1997) suggests that subgroup
consistency can be also termed subgroup monotonicity.

A7. Subgroup consistency: Consider a partition of a citation distribution into two subgroups, and assume that the low-
impact (high-impact) level in one of the subgroups increases while it remains constant in the other subgroup. Then in the
new situation the overall low-impact (high-impact) level increases.

Thus, subgroup consistency merely ensures that the aggregate, or overall low- (or high-) impact value does not respond
perversely to changes in the level of low- (or high-) impact within one subgroup while the level of the other stays constant.
Note that a principal restriction of the conditions under which subgroup consistency applies is that subgroup sizes are fixed
to rule out any changes in subgroup low- (or high-) impact due entirely to inter-groups shifts of articles. On the other hand,
the constraints on the number of subgroups and the precise way the subgroups’ low- (or high-) impact levels alter are less
restrictive than they appear at first glance. The number of fixed-sized groups may be extended to any number greater than
two, on the condition that the overall low- (or high-) impact level increases if the low- (or high-) impact does not fall in any
subgroup and increases in at least one. Finally, the subgroup consistency property is closely allied to the stronger condition
of decomposability, originally defined by Foster et al. (1984) as follows:

A8. Decomposability: Consider any partition of a distribution x into K ≥ 2 subgroups so that x = (x1, . . ., xk), where xk is
the citation distribution of subgroup k, and ωk = n(xk)/n(x) is the proportion that the articles in subgroup k represent in the
total volume of articles in the original distribution. A low- or a high-impact index is decomposable if the overall low- or
high-impact level is the weighted average of the low- or high-impact levels of the subgroups, with weights equal to the
subgroups’ publication shares ωk; that is, a low- or a high-impact index, L or H, is decomposable if the overall low-impact
level can be written as

L(x1, . . . ,xK ; z) =
∑
k

ωkL(x
k; z),

and the high-impact level as

H(x1, . . . ,xK ; z) =
∑
k

ωkH(xk; z).

Of course, decomposable measures are also subgroup consistent, but not vice-versa. Given a partition, if we are merely
interested in comparing the subgroup low- or high-impact levels with one another, the decomposability requirement is
quite unnecessary. On the other hand, if the analysis involves comparisons between subgroup and overall levels, then

4 Consider the world distribution of articles in Chemistry and its partition into the Chemistry papers attributed to the different countries in the world. Or
consider a country’s citation distribution in Mathematics and its partition into the Mathematics articles attributed to the different university departments
and research institutes active in that country.
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decomposability can be very useful indeed. To appreciate this, consider a situation in which the citation distribution of a
given scientific discipline, x, is partitioned into the citation distributions of K countries, so that x = (x1, . . ., xk, . . ., xK). If the L
and H indicators are decomposable, then given a certain CCL z, each country’s observed relative contribution to the low- or
high-impact measure at the worldwide level is equal to ωkL(xk; z)/L(x; z) or ωkH(xk; z)/H(x; z), respectively. Each country’s
expected contribution can be taken to be its publication share ωk. Therefore, the ratios [ωkL(xk; z)/L(x; z)]/ωk = L(xk; z)/L(x;
z) and [ωkH(xk; z)/H(x; z)]/ωk = H(xk; z)/H(x; z) will be greater than, equal to or smaller than one whenever country k’s
contribution to the overall low- or high-impact level is greater than, equal to, or smaller than its publication share.

Decomposability can also be useful to express, say, the high-impact differences between two distributions as the sum of
two terms involving differences in publication shares and differences in subgroups’ high-impact levels. Consider the world
citation distributions x and y in two periods of time, equally partitioned into K countries: x = (x1, . . ., xK), and y = (y1, . . ., yK).
Let zx and zy be the possibly different CCLs in the two periods, and denote by�H the difference between the corresponding
overall high-impact levels, that is, let

�H = H(y; zy) −H(x; zx).

Denote by ωk(x) and ωk(y) the publication shares of country k in the two periods. Using A8, the quantity �H can be
expressed as

�H =
∑
k

[ωk(y) −ωk(x)] H(y; zy) +
∑
k

[H(y; zy) −H(x; zx)]ωk(x).

The first term in the above expression captures the changes in publishing shares, while the second term captures the
change in the countries high-impact levels.

From this discussion it can be concluded that conditions A7 and A8 constitute interesting properties for our measures
to have.5 On the other hand, as will be seen in the Appendix A, FS show that under some reasonable conditions subgroup
consistent and decomposable measures order equally all citation distributions, and that subgroup consistency is essential
to characterize the class of indicators singled out in this paper for its use in empirical applications.

2.4. Sensitivity to distributional considerations

The next two axioms address the role that distributional considerations might play in the evaluation of citation dis-
tributions (the only two papers we know that stress the interest of distributional considerations in citation analysis are
Allison, 1980, and Bornmann et al., 2008). Consider two research units whose citation distributions have the same size, the
same MCR, and the same percentage of high-impact articles. Assume also that the total number of citations achieved by
the high-impact articles is the same in both cases. Assume, however, that the high-impact articles of the first research unit
receive a similar number of citations, while the number of citations among the high-impact articles in the second unit is
very unequally distributed in the sense that most articles receive citations barely above the CCL while there are a few of
Nobel prize quality because of the large number of citations they receive. It seems reasonable to conclude that the second
research unit has a greater high-impact level than the first one.

For a numerical example, consider the citation distribution x = (0, 0, 2, 4, 5, 9), and assume that the CCL is 3. Thus, the
set of high-impact articles is (4, 5, 9). Assume that a transfer of one citation takes place between the second article in this
set and the third, so that we reach a new distribution y = (0, 0, 2, 4, 4, 10). If distributional considerations matter, then we
would say that distribution y has greater high-impact level than distribution x. To explain this idea, let us begin by defining
a citation transfer as follows: given a distribution x = (x1, . . ., xn), a citation transfer between two articles with 0 < xi < xj is the
transfer of one (or more) citations from article i to article j. Intuitively, a citation transfer increases the citation inequality of
the original distribution.6 Hence:

A9.1. Transfer axiom for high-impact measures: If a citation transfer takes place between two high-impact articles, then
the high-impact level increases.

It should be noted that distributional considerations do not play the same role in the evaluation of citation or income dis-
tributions. In an economic context, income inequality, even among the rich, has negative normative connotations. Therefore,
the idea that greater income inequality should mean greater economic affluence would not be acceptable to economists. On
the contrary, in an economic context it is natural to require that an increase in income inequality among the poor should
also increase the economic poverty level. In our context, although this requirement is not so obvious, we believe that it is
still acceptable. If the citation inequality among low-impact articles increases because a transfer takes place between a less
cited to a more cited article, or in other words, from a more to a less deprived article, then in a straightforward sense the
overall relative (citation) deprivation is increased and it seems acceptable to expect that the low-impact measure should

5 It should be noted that subgroup consistency and decomposability require strong doses of independence or autonomy among subgroups in all
conceivable partitions. See Sen (1992, p. 106) for criticisms of this notion in an economic context.

6 A citation transfer might also be defined in terms of one (or more) citations from article j to article I without altering the ranking of the two articles, in
which case a citation transfer intuitively decreases the citation inequality of the original distribution.
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also increase. Although we see no major objection to using measures that satisfy it, it should be understood that the trans-
fer axiom is not a fundamental property that all low-impact indices are expected to possess. Correspondingly, we list it
separately here:

A9.2. Transfer axiom for low-impact measures: If a citation transfer takes place between two low-impact articles, then the
low-impact level increases.

For later reference, note that the distributional consequences of a citation transfer are the same for the two notions of
inequality usually distinguished by economists. To see this, consider the following conceptual experiment. Given a citation
distribution x = (x1, . . ., xn), assume that there is a change in scale where the number of articles remain fixed but the total
number of citations increases, say from X to X′ where X′ =�X for some �> 1. How should the excess number of citations,
X′ – X = (�− 1)X, be allocated among the n articles so that the citation inequality originally associated with distribution x
remains constant? Economists usually provide two answers. The first is that citation inequality remains constant if relative
positions remain unchanged, that is, if in the new distribution x′ = (x′

1, . . . , x
′
i
, . . . , x′

n) we have that x′
i
= �xi for all i = 1, . . ., n,

so that X ′ =
∑

ix
′
i
= �X . The second answer is that, instead of allocating the citation surplus in proportion to the originally

number of citations, the total amount available should be allocated equally among all articles so that the absolute positions
remain unchanged, that is, x′′

i
= xi + [(�− 1)X]/n for all i = 1, . . ., n, with X ′′ =

∑
ix

′′
i

= �X = X ′. The two answers are said to
capture a relative and an absolute notion of citation inequality. But note that if a citation transfer takes place, then citation
inequality in both senses would increase.

2.5. Properties when the CCL varies

So far, implicitly the CCL has remained fixed. The last set of axioms deal with situations in which the CCL changes. In the
first place, it is useful to introduce new properties to ensure the coherence of low- and high-impact values at different CCLs.
This is typically accomplished by requiring the low- or high-impact value to be invariant to certain kinds of simultaneous
changes in the citations to all articles and the CCL. As in the economic poverty literature, we consider here two types of
changes that will simultaneously apply to both types of low- and high-impact indicators. Firstly, given a citation distribution
x = (x1, . . ., xn) and a CCL z, consider a proportional, or relative change to a new situation in which x′

i
= ˛xi for all i = 1, . . ., n,

and z′ =˛z for some ˛> 0. There is, of course, a change in scale, or in the total number of citations, X ′ =
∑

ix
′
i
= ˛X , and hence

in the distribution mean,�(x′) = X′/n =˛X/n =˛�(x). However, the normalized low- and high-impact gaps defined in (2) and
(4), as well as the relative citation inequality of the citation distribution, remain constant. It could be said that in a clear,
“relative” sense the shape of the distribution remains constant, so that the low- and high-impact levels have not changed
either, which is the idea expressed in the following axiom (that defines what the natural sciences call an intensive property):

A10. Invariance to equal proportional variations (scale invariance): Low- and high-impact indicators are invariant to equal
proportional changes in all citations and the CCL.

Secondly, given a citation distribution x = (x1, . . ., xn) and a CCL z, consider an equal absolute change to a new situation in
which x′′

i
= xi + ı for all i = 1, . . ., n, and z′′ = z + ı for some ı> 0. Again, there is a change in scale, or in the total number of cita-

tions, X ′′ = ∑
ix

′′
i

= X + nı, and hence in the distribution mean, �(x′′) = X′′/n = X/n + ı= �(x) + ı. However, the un-normalized
low- and high-impact gaps defined in (1) and (3), as well as the absolute citation inequality of the citation distribution,
remain constant. It could be said that in a clear, “absolute” sense the shape of the distribution remains constant, so that the
low- and high-impact levels have not changed either, which is the idea expressed in the following axiom:

A11. Invariance to equal absolute variations (translation invariance): Low- and high-impact indicators are invariant to
equal absolute changes in all citations and the CCL.

Low- and high-impact measures that satisfy axioms A10 or A11 are said to be scale or translation invariant. In the
homogeneous case, MCRs from different research units are directly comparable. But this is not so in the heterogeneous case
in which citations are not directly comparable across fields with different publishing and citation practices, and hence with
different MCRs. However, both scale and translation invariance have very important practical consequences in this case
because, as we will see in Section 4, they allow us to compare the low- and high-impact aspects of two citation distributions
of the same size but different means.

Finally, it is also interesting to consider changes solely in the CCL. If the CCL, say increases, it is natural to expect the
low-impact level to increase and the high-impact level to decrease. This scarcely debatable observation is the last axiom in
our list:

A12. Increasing CCL Axiom: If the CCL increases, then the low-impact (high-impact) level increases (decreases).7

7 For a more detailed discussion of properties in the economic poverty literature that, after an appropriate reinterpretation, can be directly taken as
properties of low- and high-impact citation distributions, see Foster (1984) and Zheng (1997).
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3. A review of some specific L and H indicators and their alternatives

3.1. Two sets of L and H indicators

Given a citation distribution x and a certain CCL z, let l(x;z) be the number of low-impact articles, and let h(x; z) = n(x) − l(x;
z) be the number of high-impact articles. A first example of a specific low-impact indicator is the low-impact ratio, or the
percentage of low-impact articles:

LR(x; z) = l(x; z)
n(x)

. (5)

Similarly, we have the high-impact ratio, or the percentage of high-impact articles:

HR(x; z) = h(x; z)
n(x)

. (6)

Of course,

LR(x; z) +HR(x; z) = 1,

so that if LR(x; z) changes, then HR(x; z) must change in the opposite direction. Clearly, both indicators satisfy the basic
axioms A1–A4 and A6, as well as the convenient axioms A12, A8, and hence A7. Interestingly enough, both simultaneously
satisfy the invariance axioms A10 and A11, a fact we shall return to below. However, both violate two crucial conditions:
the monotonicity A5, and the transfers axioms A9.1 and A9.2 relating to the sensitivity of an indicator to distributional
considerations.

There is a second type of natural, low-impact index that satisfies monotonicity, namely, the low-impact gap ratio defined
as

LI(x; z) =
(

1
z

)[
l(x;z)∑
i=1

gi(x; z)
l(x; z)

]
= z −�L(x)

z
,

where gi(x; z) is the low-impact gap defined in (1), and �L(x) is the mean citation rate of low-impact articles. Similarly,
define the high-impact gap ratio as

HI(x; z) =
(

1
z

)⎡
⎣ n(x)∑
i=l(x;z)+1

g∗
i
(x; z)

h(x; z)

⎤
⎦ = �H(x) − z

z

where g∗
i
(x; z) is the high-impact gap defined in (3), and�H(x) is the mean citation rate of high-impact articles. These indices

satisfy all basic axioms A1–A6; they are scale invariant but, due to the way they are normalized with 1/z l(x; z) and 1/z h(x;
z) as a normalization factor, they are not subgroup consistent, a circumstance that might constitute a serious drawback in
practice. Consider, however, the per-article low-impact gap ratio in which the normalization factor is 1/n(x):

LG(x; z) =
[

1
n(x)

][
l(x;z)∑
i=1

gi(x; z)
z

]
=

[
l(x; z)
n(x)

]{(
1
z

)[
l(x;z)∑
i=1

gi(x; z)
l(x; z)

]}
= LR(x; z) LI(x; z). (7)

This index represents the minimum number of citations required to bring all low-impact articles to the CCL, and is equal
to the product of LR and LI. This convenient low-impact indicator satisfies the same properties as LI but it is decomposable,
and hence subgroup consistent. Define also the per-article high-impact gap ratio:

HG(x; z) =
[

1
n(x)

]⎡
⎣ n(x)∑
i=l(x;z)=1

g∗
i
(x; z)

z

⎤
⎦ = HR(x; z)HI(x; z). (8)

This high-impact indicator, which represents the surplus of citations actually received by high-impact articles above the
CCL and is equal to the product of HR and HI, satisfies also axioms A1–A8 and A10.

It can be said that LR and HR only capture the incidence of the low- and high-impact aspects of any citation distribution,
while LG and HG – the products of LR and LI and HR and HI, respectively – capture both the incidence and the intensity of the
low- and high-impact aspects of a citation distribution. The problem, of course, is that none of the four indices are sensitive
to distributional considerations. To observe this, consider two research units whose citation distributions have the same
size, the same MCR, and the same percentage of high-impact articles, that is to say, the same HR measure. Assume also that
the total number of citations achieved by the high-impact articles is the same in both cases, so that both distributions have
the same HG. If this were all, then the two research units should be equally ranked from the high-impact point of view.
Assume, however, that the citation inequality among high-impact articles is greater in the second research unit. It seems
reasonable to conclude that this unit has a greater high-impact level than the first one.
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3.2. The class of subgroup consistent low- and high-impact indicators

There are convenient decomposable, and hence subgroup consistent low- and high-impact indicators.8 Some of them,
such as LG(x; z) and HG(x; z) defined in Eqs. (7) and (8), are also monotonic and satisfy all the basic properties A1–A5. The
question is: are there many others simultaneously satisfying all these properties?

FS provide a definite answer to this question for poverty indices defined over income distributions which are equivalent
to our low-impact measures defined over citation distributions. As seen in more detail in Appendix A, symmetric, replication
invariance, continuous, focused, monotonic, and subgroup consistent low-impact measures are increasing transformations
of decomposable measures, a result that justifies the use of the latter. Furthermore, the ranking of distributions obtained from
a class of subgroup consistent low-impact indicators which satisfy axioms A1–A5 and other acceptable property introduced
in Appendix A coincides with the ranking induced by the FGT class of low-impact indices defined by

Lˇ(x; z) =
[

1
n(x)

] l(x;z)∑
i=1

[
gi(x; z)
z

]ˇ
,0 ≤ ˇ. (9)

The extension of these results to high-impact indicators is immediate, and the corresponding FGT class is defined by

Hˇ(x; z) =
[

1
n(x)

] n(x)∑
i = l(x;z)+1

[
g∗
i
(x; z)

z

]ˇ
,0 ≤ ˇ. (10)

Together with the properties already mentioned, all members of these two families are scale invariant and satisfy axioms
6 and 12. Interestingly enough, the members of these families corresponding to parameter values ˇ = 0, 1 coincide with the
indices already presented in this Section in Eqs. (5)–(8): L0(x; z) = LR(x; z), L1(x; z) = LG(x; z), H0(x; z) = HR(x; z), and HI(x;
z) = HG(x; z). What are novel are the cases in which ˇ is greater than 1. When ˇ = 2, the only case considered in this paper,
we have:

L2(x; z) =
[

1
n(x)

] l(x;z)∑
i=1

[
gi(x; z)
z

]2

, (11)

and

H2(x; z) =
[

1
n(x)

] n(x)∑
i= l(x;z)+1

[
g∗
i
(x; z)

z

]2

. (12)

The measures H2 and L2 are the only ones in this paper which satisfy axioms A9.1 and A9.2. To better understand their
sensitivity to distributional considerations, it is useful to realize that

L2(x; z) = LR(x; z){[(LG(x; z)]2 + [1 − LG(x; z)]2 (CL)
2]}, (13)

H2(x; z) = HR(x; z){[(HG(x; z)]2 + [1 −HG(x; z)]2(CH)2]} (14)

where (CL)2 and (CH)2 are the squared coefficient of variation (i.e. the ratio of the standard deviation over the mean). This
implies that over distributions with the same LR and LG (or the same HR and HG), L2 and (CL)2, or H2 and (CH)2 give precisely
the same ranking. The coefficient of variation is an inequality index that exhibits a transfer neutrality property based on
citation differences: a citation transfer of a given amount between two low- or high-impact articles a certain distance apart
will always have the same effect on low- or high-impact levels irrespective of the absolute number of citations of the
articles involved.9 Finally, expressions (13) and (14) clearly indicate that the measures L2 and H2 capture simultaneously
the incidence, the intensity, and the citation inequality aspects which have been discussed in Section 2.

4. The heterogeneous case

Assume we want to compare the performance of molecular biologists in MIT in the U.S. with mathematicians in
the University of Lisbon in Portugal. Molecular Biology and Mathematics are clearly heterogeneous fields. Because of
large differences in publication and citation practices, the number of citations received by articles in these two fields
are not directly comparable. In the study of economic poverty, the analogous problem would be the comparison of

8 For examples of low-impact indices that are subgroup consistent but not decomposable, as well as indices that are not subgroup consistent, see FS (p.
692–693). By taking into account how properties A4 and A5 work in both cases, it is not difficult to convert all these low-impact indices into high-impact
ones.

9 This property is emphasized by Allison (1980) when he recommends the coefficient of variation as an appropriate index of scientific productivity
inequality.
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poverty in the state of Massachusetts in the U.S., say, with poverty in the Lisbon region in Portugal. The heterogene-
ity arises from the differences in the standard of living between the two regions. The solution is to measure poverty
in these two geographical areas relative to the standard of living in the two countries, the U.S. and Portugal. The usual
way of proceeding in the poverty literature is to choose the poverty line of each country equal to some fraction of
its mean (or its median) income, say 50% of the mean (or 60% of the median) in Portugal and the U.S. The poor in
Massachusetts and the Lisbon region will be those individuals with incomes below the corresponding, relative poverty
lines.

In our approach, all that is required in the heterogeneous case is to work with scale (or translation) invariant indi-
cators and to fix appropriately the CCLs of the two fields in contention. Given the skewness of citation distributions
and the special interest of high-impact articles, it may be appropriate to fix the CCL for any field at some common
multiple b > 1 of the corresponding mean (or median) citation rates. Let x and y be the citation distributions of molec-
ular biologists in MIT and mathematicians in the University of Lisbon, let �MB and �M be the MCRs in the world
citation distribution of Molecular Biology and Mathematics, and let zMB = b�MB and zM = b�M be the CCLs in Molecu-
lar Biology and Mathematics fixed as a common multiple b of the corresponding MCRs. In principle, high-impact levels
in the original situation, H(x; zMB) and H(y; zM), appear not to be comparable. Let �=�MB/�M, which in practice may
be approximately equal to 10. If the high-impact measure is scale invariant, we can multiply by � the citations of all
articles in y, as well as the CCL in Mathematics, zM. Denote the new distribution and CCL by y′ and z′M . According to
A10, we now have H(y; zM) = H(y′; z′M). But z′M = �zM = �b�M = b�MB = zMB, so that H(y′ ; z′M) = H(y′ ; zMB). Therefore,
the original comparison is equivalent to the comparison of H(x; zMB) with H(y′; zMB). Hence, as long as scale invariant
indicators are used, in our approach the low- and high-impact levels of citation distributions representing the perfor-
mance of research units in different fields can be easily compared. Naturally, the same applies if the comparison is
between the low- and high-impact levels of entire heterogeneous fields, such as Molecular Biology and Mathematics at
the world level—or the analogous comparison in the economic area between poverty levels in the U.S. and Portugal as a
whole.

In brief, since size independent and scale invariant low- or high-impact indicators – such as the members of the FGT
families – capture aspects of the shape of a citation distribution independently of its size and its scale, the performance
of research units across heterogeneous fields, or the fields’ citation distributions themselves, are directly comparable in
our approach. For brevity, the possibility of heterogeneous comparisons using translation invariant indicators is left for the
reader to work out.

5. Properties of alternative procedures

As indicated in Section 1, there are three alternative procedures in the literature for the evaluation of research units in a
homogeneous field: indices of excellence, such as the h-index, the CSS technique, and what we call the Leiden triad. Naturally,
the focus and normalization axioms A4 and A6, as well as A12 are not applicable in this case, while the monotonicity A5,
the subgroup consistency and decomposability properties A7 and A8, as well as the transfer and invariance axioms A9 and
A10 can be easily rephrased to apply to these alternative procedures by eliminating any reference to any CCL or to the
partition into low- and high-impact articles. Table 2 summarizes which axioms are satisfied by these three procedures, in
contrast to those satisfied by the three members of the FGT family of low- and high-impact indicators corresponding toˇ = 0,
1, 2.

Table 2
Axioms satisfied by the different procedures’ indicators.

(C) Leiden triad indicators FGT indicators

(A) h-index (B) CSS (1) % uncited articles, (2) Share of top 5% 3) MCR ˇ = 0 ˇ = 1 ˇ = 2

A1. Symmetry Y Y Y Y Y Y Y
A2. Replication invariance * Y Y Y Y Y
A3. Continuity Y Y Y Y Y Y
A4. Focus NA NA NA NA Y Y
A5. Monotonicity * * * Y Y Y
A6. Normalization NA NA NA NA Y Y
A7. Subgroup consistency * Y Y Y Y Y
A8. Decomposability * Y Y Y Y Y
A9.Transfer axiom * * * * * Y
A10. Scale invariance * Y Y Y Y Y
A11. Translation invariance * * E * * *
A12. Increasing CCL axiom NA NA NA NA Y Y Y

CSS = Characteristic Scores and Scales; MCR = Mean Citation Rate; Y = Yes, the axiom is satisfied; * = No, the axiom is not satisfied; NA = Not applicable.
E(xception) = An asterisk * applies for procedure (1), while Y is the case for procedure (2).
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Starting with the h-index, it clearly violates the replication invariance axiom A2.10 Moreover, it is not monotonic, sub-
group consistent, sensitive to distributional considerations, and neither scale nor translation invariant. However, it has been
characterized in terms of a number of interesting properties (Quesada, 2009, 2010; Woeginger, 2008a, 2008b). Moreover,
contrary to any of the high-impact indices introduced in this paper, it is robust to the presence of extreme observations, a fact
that may prove to be very important in empirical applications. Thus, the h-index and the replication invariant procedures
discussed in this paper serve very different purposes, and therefore constitute essentially complementary approaches to the
same evaluation problem in the homogeneous case. On the other hand, in the heterogeneous case the h-indices for research
units working in different fields are nor directly comparable.

Next, consider the CSS technique. In the original applications the following four characteristic scores are determined: s0 = 0;
s1 = MCR; s2 = mean citation rate of articles with citations above the MCR; s3 = mean citation rate of articles with citations
above s2. These scores are used to partition the set of articles into five categories of citedness:

Category 1 Articles that receive no citations;
xi = s0

Category 2 Articles that receive few citations, namely, citations lower than the MCR;
xi ∈ (s0, s1)

Category 3 Articles that receive a fair amount of citations, namely, at least the MCR but below s2

xi ∈ [s1, s2)
Category 4 Articles that receive a remarkable amount of citations, namely, no lower than s2 but below s3;

xi ∈ [s2, s3)
Category 5 Articles that receive an outstanding amount of citations, namely, greater or equal than s3

xi ≥ s3

In our view, the way to proceed with this approach in the homogeneous case is as follows; just as a fixed, common CCL
for all research units has been assumed in a given field, here we have four characteristic scores s0 to s3 and five categories
characterizing the world citation distribution. Therefore, one way to evaluate a number of research units is to compute their
percentage distributions over the five categories, and compare them among themselves and with respect to the one for the
entire field in question.11

The classification of any ordered distribution over the five categories satisfies axioms A1–A3, which means that it is
replication invariant. This technique is also additively decomposable, and hence subgroup consistent. On the other hand,
CSS is scale invariant because the multiplication by a common scalar of the citations received by all articles in a citation
distribution does not alter category 1, multiplies s1, s2, and s3 by the same factor, and therefore leaves unchanged the
percentage distribution over the citedness categories. However, after a common number of citations is added up to all articles
no articles remain uncited and category 1 is altered, so that the CSS procedure is not translation invariant. More importantly,
as the following examples show the procedure is neither monotonic nor sensitive to distributional considerations. Consider
distribution x = (0, 0, 0, 3, 5, 6, 8, 10), for which s1 = 4, s2 = 7.25, and s3 = 9. Thus category 1 represents 37.5%; category 2, 12.5%;
category 3, 25%, and categories 4 and 5, 12.5% each. In distribution y = (0, 0, 0, 4, 5, 6, 8, 10), where the fourth article receives
one more citation, s′1 = 4.25 rather than 4 as before, but the remaining characteristic scores are unchanged. Clearly, the
percentage distribution over categories is also unchanged, which shows that this procedure violates monotonicity. Finally,
consider distribution v = (0, 0, 0, 3, 4, 6, 9, 10), where the seventh article gets one more citation taken from the fifth one in
x. The MCR is the same, so that s′1 is still equal to 4, but the remaining characteristic scores change: s2 = 8.33, and s3 = 9.5.
However, the percentage distribution over the five categories remains unchanged, which shows that this procedure is not
sensitive to distributional considerations.12

It should be noted that the percentage distribution of the citations received by research unit k in field i over the citedness
categories is not direcyly comparable with the corresponding distribution of the citations received by research unit l in field
j. However, after appropriate normalization by the citedness categories of the two fields in question, the CSS approach is
able to deal with the heterogeneous case.

Finally, relative impact indicators have been used and recommended by many authors, notably, those from the Leiden
group (Moed et al., 1985, 1995; Van Raan, 2004), authors from the Budapest group (Braun et al., 1985; Glänzel et al., 2002;
Schubert & Braun, 1986; Schubert, Glänzel, & Braun, 1983, 1988), and Vinkler (1986, 2003). For a research unit working
in a number of sub-fields, a relative impact indicator is the ratio between the unit’s observed performance, measured by
the citations received by their published articles, and the expected citation rate of a relevant reference standard.13 As

10 For interesting attempts to correct for this feature in search of size independent indicators see Katz (1999, 2000) or Molinari and Molinari (2008a,
2008b) and Kinney (2007), as well as the discussion in Alonso et al. (2009).

11 Alternatively, Schubert et al. (1987) would compute the percentage distribution over the five categories for the world citation distribution in a given
(homogeneous) field, and would compare a set of research units by placing their the MCRs into the category they belong to determine if on average the
units receive a few, a fair, a remarkable or an outstanding number of citations. They actually do this for a number of journals that belong to one of the 114
subfields to which they applied the procedure.

12 On the other hand, note that if we choose a CCL z = s2, then the low-impact ratio LR defined in Eq. (5) coincides with the sum of the first three categories
of citedness in these authors’ approach, while the high-impact ratio HR defined in (6) coincides with the sum of the last two citedness categories. This also
serves to show that the procedure is not monotonic and not sensitive to distributional considerations.

13 It should be emphasized that, contrary to what is assumed in this paper, these authors define their measures counting on information about the journal
where each paper is published. In the case of the Leiden group, this information allows them to compare the observed behavior of relatively small research
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pointed out in Section 1, under the restricted information assumed to be available in this paper, judging research units in a
homogeneous field by their MCRs is in line with the literature on relative impact indicators. However, taking into account
the typical skewness of citation distributions, the authors of the Leiden group have completed their indicators based on
average values in two directions. Thus, what we have called the Leiden triad consists of the MCR, the percentage of uncited
articles, and the percentage contribution to the top 5% of the most highly cited articles.

The last two indicators satisfy several interesting properties (A1–A3, A7, A8 and A10), but are neither monotonic nor
sensitive to distributional considerations.14 As far as the MCR, it should be emphasized that it satisfies most applicable
axioms: it is symmetric and continuous, as well as replication invariant, decomposable, and scale invariant. Since it is also
monotonic, from the point of view of the properties discussed in Section 2 the only shortcoming of the MCR as an indicator
of scientific performance is that it is not sensitive to distributional considerations. To illustrate this feature, consider the
possibility of accepting the existence of a reasonable CCL and evaluating citation distributions by two different means: the
inverse of the MCR among low-impact articles, 1/�L, and the MCR among high-impact ones, �H. In the paper’s conceptual
framework, 1/�L and�H constitute a low-impact and a high-impact indicator, respectively. Consider a citation distribution
x = (0, 0, 0, 2, 3, 5, 7, 9) and a CCL equal to 4. Clearly, �L(x; z) = 1, and �G(x; z) = 7. Consider now the distribution y = (1, 1, 1,
1, 1, 7, 7, 7) for which �L and �G remain constant. Of course, the evaluation according to 1/�L and �H would rank equally x
and y. The same would be the case using the overall MCR. However, a high-impact index H satisfying A9.1 would indicate
that H(x; z) > H(y; z), while a low-impact index L satisfying A9.2 would indicate that L(x; z) < L(y; z).15

Because of large differences in publication and citation practices, the MCRs of research units of two different homoge-
neous fields are not directly comparable. But, of course, this is the problem originally addressed by relative indicators. After
appropriate normalization, the MCRs of research units in heterogeneous fields become comparable. However, this is not the
case if we are interested in the comparison of two entire heterogeneous fields: we lack an appropriate relative reference for,
say, the MCR of Molecular Biology and Mathematics.

6. Conclusions

This paper has addressed the evaluation of the scientific performance of research units of a certain size when the only
available information is the citation distribution of the papers published by the research unit in the serial literature in a
homogenous field, namely, when the number of citations received by each pair of articles directly reflects the different
merit, or international impact of each of the two articles. Given that citation distributions are typically highly skewed, we
introduce an evaluation procedure in which each (ordered) citation distribution is characterized in terms of two indicators, a
low- and a high-impact index defined to the left and to the right of an appropriate CCL. These indicators must be understood
as ‘partial indicators’ in the sense of Martin and Irvine (1983), or as potentially useful elements in the scoreboard approach
advocated in Tijssen (2003).

Which indicators should be used in practice? This is a question that must be answered after the purpose of the evaluation
exercise has been determined. However, we believe that in many contexts the FGT family of indicators, closely associated
with the family of economic poverty indices originally suggested by Foster et al. (1984), may prove to be very useful. The
reasons suggested in the paper can be summarized as follows. Firstly, the properties that characterize the ranking induced by
this family of indicators are known. Among them, the following three should be emphasized. Replication invariance ensures
that an indicator is independent of the size of the set of papers under evaluation. Monotonicity requires that a new citation
should lower the low-impact index, and should increase the high-impact indicator. Subgroup consistency, a property with
useful practical implications, ensures that the aggregate, or overall low- (or high-) impact value does not respond perversely
to changes in the level of low- (or high-) impact within the subgroups of any partition. Secondly, the first member of each
family coincides with the low- or the high-impact ratio and captures the incidence aspect of the two phenomena under
investigation; the second member coincides with the per-article low-impact gap ratio, and captures both the incidence
and the intensity aspect of each of the two phenomena, while the third member – in addition to these two aspects – is
sensitive to distributional considerations, in the sense that an increase in the citation inequality according to the coefficient
of variation, increases both the low- and the high-impact measures. Thirdly, all members of the two families of indicators
satisfy other convenient properties. In particular, they are all scale invariant in the sense that multiplying all elements of
a citation distribution and the CCL by a common scalar factor leaves the low- and high-impact measures unchanged. This
opens the door to the comparison of citation distributions with different means (medians, or other first order moments of
the citation distribution) in the heterogeneous case.

units, namely research groups, with the expected behavior of the set of journals where the research group is known to publish. The ratio of such expected
behavior to the behavior of the journals in the entire field constitutes another interesting indicator in this case. Finally, the possibility of ordering the
set of journals in a field in terms of their relative impact allows the authors in the Budapest group to graphically represent relative impact indicators in
two-dimensional relational charts (Glänzel et al., 2002; Schubert & Braun, 1986).

14 Note that the same applies to the median, a centrality statistic that is robust to extreme observations, a common feature of citation distributions.
15 Together with J. Crespo, in Albarrán, Crespo, Ortuño, and Ruiz-Castillo (2010b) we compare the U.S. and the European Union using their MCRs as well

as their percentage shares at many percentiles of the world citation distribution in 22 homogeneous scientific fields. Of course, this variant of the Leiden
triad is neither monotonic nor sensitive to distributional considerations.
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How do these indicators compare with some of the alternatives available in the literature? In the first place, it has been
shown that CSS for partitioning any citation distribution into a number of citation classes is neither monotonic nor sensitive
to distributional considerations. In the second place, within the Leiden triad the percentages of uncited articles or share of
the top 5% most highly cited articles have the same shortcomings as the CSS procedure. As far as the MCR is concerned, or
the possibility of computing two means among the low- and the high-impact articles, the only shortcoming is that average-
based indicators are not sensitive to distributional considerations. In the third place, note that if the CCL is fixed sufficiently
high, the high-impact indicator may be considered an index of excellence comparable with the h-index and its variants but
possessing very different properties. Thus, the replication invariant high-impact indicators presented in this paper and the
size dependent h-index constitute essentially complementary approaches to the same evaluation problem.

Of course, whether the extra properties enjoyed by the indicators we have introduced are of any interest is not merely a
formal issue. The value added by these properties, if any, can only be revealed by their use in practice (see Albarrán et al.,
2010c) for the first application of this methodology to articles published by the U.S., the European Union and the rest of the
world in 1998–2002, with a five year citation window in 22 scientific fields).
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Appendix A. The characterization of subgroup consistent low- and high-impact indicators (this Appendix
borrows heavily from FS)

In order to cover the more general case, consider discrete citation distributions represented by vectors drawn from the
set � = ∪∞

n=1 =˝n, where ˝= 〈a,b〉 is some nondegenerate real interval, and ˝n is the set of all n-tuples of elements from
˝. For any given CCL z ∈˝ and distribution x ∈ �, the low-impact domain is DL(z) = {t ∈˝|t < z} and the high-impact domain
is DH(z) = {t ∈˝| t ≥ z}. As in the text, the number of articles in x, and the number of low- and high-impact articles is denoted
by n(x), l(x; z) and h(x; z).

A low-impact index is a function L: � ×˝→ R whose typical value L(x; z) indicates the low-impact level associated with
the distribution x and the CCL z, while a high-impact index is a function H: � ×˝→ R whose typical value H(x; z) indicates
the high-impact level associated with the distribution x and the CCL z. In order to formally state some of the basic properties
introduced in the text, we say that x ∈ � is obtained from y ∈ � by a permutation if x = y� for some permutation matrix �;
by a (k−) replication if n(x) = kn(y) and x = (y, y,. . ., y) for some positive integer k; and by an increment to a low- (resp. high-)
impact article if xi = yi for all i /= j and xj > yj for some yj < z (resp. yj ≥ z). It is assumed throughout that the L and H indices
satisfy the following five basic properties for any given CCL z ∈˝.

A1. Symmetry: L(x; z) = L(y; z) and H(x; z) = H(y; z) whenever x ∈ � is obtained from y ∈ � by a permutation.
A2. Replication invariance: L(x; z) = L(y; z) and H(x; z) = H(y; z) whenever x ∈ � is obtained from y ∈ � by a replication.
A3. Continuity: L(x; z) and H(x; z) are continuous as functions of x on �.16

A4. Focus: L(x; z) = L(y; z) and H(v; z) = H(w; z) whenever x∈� is obtained from y∈� by an increment to a high-impact
article, and v∈� is obtained from w∈� by an increment to a low-impact article.
A5. Monotonicity: L(x; z) ≤ L(y; z) and H(v; z) ≥ H(w; z) whenever x ∈ � is obtained from y ∈ � by an increment to a low-
impact article and v ∈ � is obtained from w ∈ � by an increment to a high-impact article (This weak form of the monotonicity
condition is closely related to the ‘Citations Do Not Harm’ axiom in Marchant, 2009).

The characterization argument in FS can be summarized in two steps. First, take the CCL z as fixed and omit it as an
argument in all expressions to simplify the notation. FS start by proving that any continuous subgroup consistent low-
impact index must be a continuous and increasing transformation of what will be called a canonical low-impact index, L�,
defined as

L�(x) =
[

1
n(x)

] n(x)∑
i= 1

�(xi) for all x ∈�, (15)

16 This strong version could be weakened to a notion of restricted continuity of the L and H indicators on the DL(z) and DH(z) domains, respectively—a
technical point to which we will return below.
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where �:˝→ R is a continuous and non-increasing function such that �(t) = 0 for all t ≥ z. The function � may be regarded
as a measure of (citation) deprivation—a non-increasing function that attains its minimum level of 0 at z, and maintains this
value for all high-impact articles. Consequently, the index L� takes overall low-impact to be the average deprivation for the
distribution x as a whole. Formally, in FS we have:

Proposition 1. L: ˝→ R is a continuous, subgroup consistent low-impact index if, and only if, there exist �: ˝→ R and F:
�(˝) → R such that

L(x) = F[L�(x)] for all x ∈ 

where F is continuous and increasing; L�(x) = [1/n(x)]
∑n(x)

i=1 �(xi);� ; � is continuous and non-increasing, and �(t) = 0 for
all t ≥ z.

The next observation is that canonical indices essentially form the subclass of continuous, decomposable low-impact
indices. For if L is continuous and decomposable it is also subgroup consistent and canonical, and applying Proposition 1 the
following result is easy to prove:

Corollary 1. L is a continuous decomposable low-impact index if, and only if, L = L� + c for some canonical index L� and some
constant c.

Therefore, combining Proposition 1 and Corollary 1 we obtain

Corollary 2. L is a continuous, subgroup consistent low-impact index if and only if L is a continuous, increasing transformation
of a continuous, decomposable low-impact index.

Therefore, there is a direct relationship between subgroup consistent and decomposable low-impact measures. All decom-
posable measures are subgroup consistent and all subgroup consistent, under some reasonable conditions, are increasing
transformations of decomposable low-impact measures. For those that regard decomposability as putting too detailed a
restriction on the functional form of a low-impact index, the FS results justify, from an ordinal point of view, the use of
low-impact measures satisfying this property. In FS’s own words, “subgroup consistency thus provides a means of justifying the
use of decomposable low-impact measures. For, corresponding to each continuous subgroup consistent index, there is a continuous
decomposable index17 which ranks distributions in precisely the same way” (p. 696–697).

These results can be immediately extended to the high-impact case by introducing the concept of a canonical high-impact
index, H� , defined as

Hϕ(x) =
[

1
n(x)

] n(x)∑
i=1

ϕ(xi) for all x ∈
, (16)

where˚:˝→ R is a continuous and nondecreasing function such that �(t) = 0 for all t < z. The function˚may be regarded
as a measure of (citation) affluence—a nondecreasing function that attains its minimum level of 0 at z, and maintains this
value for all low-impact articles. Consequently, the index H˚ takes overall high-impact to be the average affluence for the
distribution x as a whole. The FS procedures applied to high-impact monotonic indices would lead to the following result:

Corollary 3. H is a continuous, subgroup consistent high-impact index if, and only if, H is a continuous, increasing transformation
of a continuous, decomposable high-impact index.

In the second place, when variations in the CCL z are allowed we have introduced axioms A10 and A11 in Section 2.5 to
ensure the coherence of low- and high-impact values at different CCLs. An obvious question to ask is whether a subgroup
consistent low-impact index can be both a scale invariant and a translation invariant low-impact index. The answer by FS
is that the class of subgroup consistent, scale invariant, and translation invariant low-impact indices is not very interesting,
since it only includes monotonic transformations of the low-impact ratio LR(x; z) (see Proposition 6 in FS).18 However, a
natural generalization comes immediately to the forefront: a scale invariant index and a translation invariant index are said
to be compatible if, at any fixed CCL, they give the same ranking of distributions, although not necessarily the same values.
FS then ask if compatible pairs of indices exist that are subgroup consistent. It is shown that if a pair of subgroup consistent
low-impact indices is compatible, then the scale invariant index must be an increasing transformation of a member of the
FGT class defined by

Lˇ(x; z) =
[

1
n(x)

] l(x;z)∑
i=1

[
gi(x; z)
z

]ˇ
,0 ≤ ˇ. (17)

17 From a technical point of view, it is important to point out that by relaxing the continuity assumption as indicated in note 16, we gain only transformations
of the low-impact ratio, or of some combination of this ratio and a canonical index (see Propositions 2 and 3, and Corollaries 2 and 3 in FS).

18 For simplicity, FS prove this and the following results for distributions consisting of strictly positive elements; in our context, this implies the restriction
to articles with a positive number of citations.
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The equivalent result for high-impact indices can be stated as follows: if a pair of subgroup consistent high-impact
indices is compatible, then the scale invariant index must be an increasing transformation of a member of the FGT class of
high-impact measures defined by

Hˇ(x; z) =
[

1
n(x)

] n(x)∑
i=l(x;z)+1

[
g∗
i
(x; z)

z

]ˇ
,0 ≤ ˇ. (18)

Three comments are in order. First, the FGT class defined in (17) results from making �(t) = [(z − t)/z]ˇ for t < z in the
definition of a canonical low-impact index in Eq. (15), that is, from measuring the (citation) deprivation of any low-impact
article by means of its low-impact gap defined in Eq. (2) to the � power. Similarly, the FGT class defined in (18) results from
making �(t) = [(t − z)/z]ˇ for t ≥ z in the definition of a canonical low-impact index in Eq. (16), that is, from measuring the
(citation) affluence of any high-impact article by means of its high-impact gap defined in Eq. (4) to the ˇ power. Second, the
above results may be viewed as a complete axiomatic characterization of two important classes of rankings in the following
sense. If we choose to adopt a nontrivial scale invariant measure of low- or high-impact which is not an increasing function of
one of the members of the Lˇand Hˇ families, respectively, then the chosen index must either violate continuity or subgroup
consistency, or else have no translation invariant low- or high-impact index counterpart which ranks citation distributions
in the same way for any given CCL. Third, these characterization results mean that we know exactly which axioms or value
judgments are invoked when we use the FGT families to obtain a ranking of citation distributions. However, in practice we use
members of these families, for example those corresponding to the choiceˇ = 2, in order to establish cardinal comparisons of
the sort: distribution x has twice the low- or high-impact level as distribution y according to L2 and H2. But different indices
that induce the same ranking will typically lead to different cardinal statements. Consider the square of the above indices:
L′2 = (L2)2, and H′

2 = (H2)2. They will rank distributions x and y exactly as L2 and H2, but the cardinal statement would be
changed as follows: distribution x has four times the low- or high-impact level as distribution y according to L′2 and H′

2. The
characterization of the FGT indices is not yet known. In the meantime, a defense of its use for cardinal purposes only rests
on the interest in specific evaluation contexts of the properties they are shown to satisfy in Section 3 and Table 2.

Finally, it should be observed that many common indices widely used in the income poverty area, which in our context
can be taken as low-impact indicators, are functions of the normalized low- and high-impact gaps defined in Eqs. (2) and
(4).19 As indicated in footnote 8, by taking into account how properties A4 and A5 work in both cases, it is not difficult to
convert all those low-impact indices into high-impact ones.
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