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Abstract- Because the Zipf size-frequency distribution is used so often as a mathematical 
model for bibliometric variables, it is important that the relationships among its param- 
eters and its sampling properties be understood by investigators in this fieId. This paper 
examines these relationships and properties. In addition, it provides tabfes for the sam- 
pling distribution of the maximal value of a finite Zipf distribution and an approxima- 
tion formula for confidence intervals. Confidence limits for the maximal value in a 
number of previous studies are determined. 

The Zipf distribution plays a central roie in the modeling of human activities, particularly 
of the variables studied in bibliometrics and scientometrics: productivity of researchers in 
a discipline, impact of authors or publications, use of words in a text or keys in a data base, 
and dispersion of a subject literature among sources. In general, it may be described as rep- 
resenting the distribution of a set of tokens over a set of types, for example, publications 
over authors, citations over authors or publications, word occurrences in a text over word 
forms, data base accesses over keys, and so forth. It has been represented in a number of 
functional forms, which may be distinguished by the number of parameters and by the 
nature of the property or variable described, whether a size (frequency) or a rank. 

In its most general form, the Zipf function describes the distribution of a set of m 
tokens over a set of t types using one of the following expressions: 

L?(X) = a 
(x + cp x = 1,2,. . . ,Xmax, a,b > 0, c L 0 

f 
f(r) = (r +y)b. f r= 1,2 ,..., t,a’,b’>O, c’r0 

where g(x) is the number of types with exactly x tokens andf (r) is the number of tokens 
for the rth ranking type when types are arranged in descending order of number of tokens. 
The function g(x) is commonly called a size-frequency distribution, as opposed tof(r), 
which is a rank-frequency distribution. 

This study is concerned with the parameters of the size-frequency Zipf distribution. 
The parameter x,, represents the maximum number of tokens for a type, or the maximal 
size or value of the productivity variable x. Note that x,,, =f( 1), that is, the frequency 
of the highest ranked type. In most applications, c is assumed to be 0, that is 

g(x) = 5, x = 1,2,. . .,x,,,,,, o,b > 0. 

In this case, the parameter a will represent the number of types with exactly one token. The 
larger the exponent b, the larger will be this number relative to the total number of types. 
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The Zipf size-frequency distribution can be expressed as a relative frequency or prob- 
ability distribution by dividing by a suitable constant. If X represents the number of tokens 
assigned to a random type, p(x) the probability X assumes a specific value x, and I the 
total number of types, then 

s(x) 
PfX) = -y- = 5, x = 1,2,. . . 9 &la, * 

The size variable X can be generalized to a continuous productivity variable, that is, pro- 
ductivity of a type rather than number of tokens of a type. The discrete Zipf distribution 
is then replaced by its continuous analo g, the Pareto distribution. In some applications, 
either when the number of tokens assumes a very large number of values or when fractional 
assignment of tokens to types can be made, the use of this continuous analog is appropriate 
and simplifies the derivation of some sampling properties, as shall be seen later. Such a 
replacement might arise, for example, in an author productivity distribution in which pages 
or words of text were counted rather than papers, or in which multiple authors were 
assigned fractions of papers. 

When a continuous productivity variable is used, the density function has the form 

g(x) = 3, 0 s x 5 xmax 

and the cumulative distribution has the form 

G(x) = .‘;p’v= -_.f- 
b-l 

bfl 

G(x) = Q log x, b = 1. 

A number of studies of the Zipf distribution have appeared since the initial presenta- 
tions by Zipf, Estoup, and Lotka, the most extensive being that of Haitun [I]. In these early 
studies, and in many Iater ones, it was assumed that there was no upper limit to the num- 
ber of types, that is, that x,, = CQ. In any particular data set, of course, the maximaf 
value is finite. However, in most discussions of the size-frequency model, it is assumed that 
no upper limit exists for the number of tokens. In many cases, this is a reasonable assump- 
tion; journals may be published and papers may be cited forever. In other cases, this is not 
a reasonable assumption; authors’ publications are limited by their lifespans. 

Four different views of the data have been taken in earlier studies in determining the 
particular Zipf model that is most appropriate in a given circumstance. The data are 
regarded as being one of: 

1. a complete set of tokens from a finite population 
2. an incomplete set of tokens from a finite population 
3. a random sample of tokens from a finite population 
4. a random sample of tokens from an infinite population 

The number of tokens for each type is then determined. In a size-frequency analysis, 
the number of types for each of the possible numbers of tokens or sizes is tabulated. From 
this tabulation, the values of the parameters of the Zipf model are determined using one 
or more of the following techniques: 

1. 
2. 
3. 
4. 
5. 

visual scanning of a plot of the tabulation 
least squares estimation of the parameters 
maximum likelihood estimation of the parameters 
minimum chi-square estimation of the parameters 
moment estimation of the parameters or estimates involving a subset of the 
frequencies 
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Visual scanning is useful as a preliminary step, but for more reliable estimators of the 
parameters, one of the other methods is usually employed. Frequently the parameters u and 
x,, are fixed and c as indicated earlier assumed to be 0. Estimation is then concerned 

with the parameter b, because, for fixed a, x,~, and 6, t will be completely determined. 
Maximum likelihood estimates of b in general produce distributions with good fits to the 
empirical data [2]. Strictly speaking, when complete or incomplete populations of tokens 
are involved, the parameter values obtained by these techniques are more properly consid- 
ered as approximations, rather than estimates in the statistical sense, because they are not 

based on random samples. It is the purpose of this paper to examine the sampling distri- 
bution of the maximal sample value x,,. Our reason for doing so is to indicate the errors 
that may be made in using a sample value of the maximum number of tokens assigned to 
a type as an estimate of the population value. The magnitude of the error in using this esti- 
mate will be shown to depend on the other parameters and on the sample size. 

Random samples are relatively unusual in bibliometrics, at least at the present time. 

However, Allison [3] uses random samples of chemists and biochemists and tracks their 
publishing productivity over a number of years using Lotka’s law and the negative binomial 
as a model; Potter [4,5] describes studies by the Library of Congress and University of Illi- 
nois using random samples from the library catalogs and modeling with Lotka’s law. 
Richardson [6] does the same thing with an Australian academic library. Subramanyam 
[7,8] uses random samples from abstracting services to study the productivity of computer 
scientists. From the Samson and Bendell study [9] it does not seem unusual for random 
samples to be employed in the design and investigation of information retrieval systems. 
Even if random samples are not utilized frequently at the present time, it is obviously desir- 
able to use them in the case where large catalogs, author populations, and data bases are 
involved. They may not now be used because not enough is known about sampling from 

such populations. 
The ability to estimate the population maximal value from its sample counterpart is 

useful in designing the file structure for an online index or catalog. Whether an inverted 
file or hashed structure is used, it is important, in the design phase, to estimate the max- 

imal number of postings for an author or a keyword. Where such systems are developed 
from existing printed indexes or card catalogs, this parameter may be estimated from a ran- 
dom sample of entries in the manual system, using the procedures developed in the follo\s-- 
ing paragraphs. The use of Zipf-type distributions in file design is discussed in Tague, 
Nelson, and Wu (lo] and Nelson and Tague [ 111. 

Because the Zipf distribution assumes a central role in bibliometrics, it is important 
that the magnitude of estimation errors be known when using sample data to draw con- 
clusions about a Zipf model. Bibliometricians are increasingly engaged in developing precise 
fitting techniques for Zipf-type distributions. It is hoped that this paper will be a contri- 
bution to this development. 

Following this introduction and brief review of the Zipf distribution, the meaning of 
and the relations between the parameters for the simple Zipf distribution will be discussed. 
Previously suggested methods for estimating the parameters will be reviewed. Finally, the 
results of a computer derivation of several quantiles of the maximal size distribution will 
be presented. We seek to determine what relationships characterize this distribution and 

the extent to which these are dependent on the sample size. The application of these results 
in setting up a confidence interval for the maximal population value will then be indicated. 

PARAlMETERS OF A SIMPLE SIZE-FREQUENCY ZIPF DISTRIBUTION 

The simple Zipf size-frequency distribution, then, has three parameters: a, b, and 
X max. When this function is used as a model for the distribution of tokens over types, x,, 
represents the maximal size, that is, the largest number of tokens that can be assigned to 
a type. The parameter a represents the number of types with a single token. The parame- 
ter b, to some extent, represents the dispersion of the distribution of tokens over types. The 
larger the b, the larger the number of types with only one token and the more rapid the 

decline, with increasing x, of the frequencies g(x). If b is small, the numbers g(x) decline 
very slowly with x, and the distribution has a very long tail. Hence a higher proportion of 
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the tokens are concentrated among a few highly productive types. As b approaches 0, all 
sizes approach an equiprobable state. In a compilation of 105 distributions of human activ- 
ities, using least squares to estimate b, Haitun [l] found that 33% had b I 1, 62% had 
b 5 2, and only 5% b > 10. With regard to the c parameter in the more general Zipf dis- 
tribution, Samson and Bendell [9] note that the effect of increasing this parameter is almost 
indistinguishable from the effect of reducing the b parameter. 

Two other parameters that characterize empirical distributions of tokens over types, 
namely the total number of types t and the total number of tokens m, are related to these 
three fundamental parameters. If the continuous approximation to the Zipf is used, these 
relationships can be described by a simple function. The total number of types t is given by 

%nali yrna< 
t = C g(x) = a C l/xb. 

X==l I= I 

If x is treated as a continuous variable and the summation replaced by an integration, then 

s x,.3* 

t= g(x) dx. 
I 

Thus, 

t = & L&: - 11, for b < 1 

t = a log,x,,,, for b = 1 

a 

t = b - 1 
l-Lb-l, 

maY 1 forb> 1. 
X 

If b and x,, are fixed, the total number of types t varies directly with a, the number 
of types with one token. If a and xmax are fixed, t varies inversely with b, that is, the 
larger the b, the smaller the total number of types. As b -+ 0, t approaches its maximum 

ax,,, - 1 value. If a and b are fixed, then t will increase with increasing x,,, so that the 
larger the maximum number of tokens per type, the larger the total number of types. For 
b> 1, ifx,, is large, the total number of types will be approximately t = a/( b - 1). 

Since we must have g(x,,) 2 1 and therefore a z- x:,,, t must satisfy the inequality 

The total number of tokens is given by 

.~rnax xrnall 

m = C xg(x) = aC l/xb-‘. 
X=1 X=1 

If the variable X can be approximated by a continuous productivity variable, the total pro- 
ductivity m will be as follows: 

m = -!- [x&,b- 11, 
2-b 

ifb<2 

m = a log, x,,, , ifb=2 

a 1 
m=b_2 1-z ’ 

[ 1 if b > 2. 
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In all cases, the total number of tokens increases with x max if a and b are fixed, and with 
a if b and x,, are fixed. If x,, is very large and b > 2, m is approximated by a/( b - 2). 
If Q and x,, are fixed, the total number of tokens varies inversely with 6. Thus, if the 
number of types with lowest productivity and the maximum productivity for a type are 
known, a farge population of tokens will be associated with low b values and a small pop- 
ulation of tokens with high b values. 

The ratio m/t represents the average number of tokens per type or average productivity 
of the population, that is, a type-token ratio. When x,, is large and X is represented by 
a continuous productivity variable, this average productivity will be approximately given by 

m/t = x,,,/log, x,,, , ifb=l 

m/t = log, -Fna”~ 7 if b=2 

b-l 
m/t = - 

b-2’ 
if b > 2. 

Thus, for values of tr greater than 2, the average productivity is approximately indepen- 
dent of the maximal productivity when this is large. However, the average is dependent on 
the maximal value when b is less than or equal to 2, 

We have seen that the maximal size and exponent parameters of a Zipf distribution 
are important in characterizing the nature of a Zipf population. In general, high values for 
average productivity will be found in populations where the exponent is small and where, 
consequently, many of the tokens are distributed among the highfy productive types. Low 
values of average productivity will be found in populations where the exponent is large and 
where, consequently, most tokens are distributed among types of low productivity. 

ESTfMAftON OF THE EXPONENT AND THE MAXIMAL SIZE 

FOR A ZiPF POPULATION 

Estimation of the exponent and maximal size of a Zipf population from a random 
sample of values will now be discussed. As indicated earlier, in many cases, bibliometric 
sets cannot be considered to be random samples but, rather, incomplete populations. How- 
ever, this paper will limit itseIf to the random sample situation. ~nfo~unately~ most incom- 
plete populations cannot be regarded as populations with random omissions, because most 
often the omissions are of a particular nature, for example, involving types of low 
productivity. 

Previously suggested methods for estimating the parameters will first be reviewed. In 
the following presentation, xr , x2,. . . ,x, represent a random sample of sizes from a pop- 
ulation that can be described by the simple Zipf distribution. We let g’(x) represent the 
observed number of tokens of size x. 

Johnson and Kotz [I21 present three methods for estimating b when x,, is infinite 
and these may also be applied when x,,, is known. The methods are as follows: 

1. The maximum likelihood estimator of b is the sample statistic b’ that satisfies the 
folIowing equation: 

,$log,x, ‘Z (log&/.@ 
= 

n .Ymax 
c l/3+’ 
x= I 
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2. An estimator b’ based on the first two empirical frequencies: 

b, = bL(g’(l)/g’(2)) 
log,2 * 

3. The moment estimator 6’ obtained by equating the empirical and theoretical means: 

If 4rl2.x is assumed to be infinite, then we must have b > 2; otherwise the right-hand side 
cannot be determined. 

In general, a Zipf variable has moments of order k > b if x,,, is infinite. The equa- 
tions in 1 and 3 cannot be solved exactly, unless b = 2 or b = 4 and x,,,, is infinite, so that 
iterative solutions are necessary. A table in Johnson and Kotz [12] provides solutions to 
one decimal place for the maximum likelihood equation for 1.1 5 b 5 5.0, assuming infi- 
nitely large sizes. Johnson and Kotz also give the expression for the variance of the maxi- 
mum likelihood estimator: 

-I 

Again, a table is provided to determine this value for 1.5 I b I 4.0 when x,, is infinitely 
large. 

Linear least squares approximations of LI and b in the frequency function may be deter- 
mined by taking logarithms to linearize the Zipf frequency function. Pao [13] has reviewed 
this approach when x,, is infinite. The expressions are then 

-~rna, ~~ln,X XrlmY 

c log,xlog,g’(x) - c log,xC log,g’(x) 
.v= I x= I X=1 

h' = n’ 

where n’ is the number of distinct values of x,,, in the sample. 

If &lax is infinite, then the summation l/xb in the above two expressions is given by the 
Riemann zeta function and will converge only for b > 1. In this latter case, exact values 
of the summation exist only for b = 2 (i.e., n’/6) and b = 4 (i.e., s”/90). Pao [13] gives 
a method for estimating the sum to a desired degree of accuracy. 

In one of the few papers to consider simultaneous estimation of all four parameters 
of the generalized Zipf distribution, Samson and Bendell [9] suggest that minimum chi- 
square estimates be used, that is, the values of a, 6, c, and x,,,,, that minimize 

xma* (g’(x) - a/(x + c)b)2 
x2= c a,b > 0. 

x= I a/(x + c)b 
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Again, exact solutions for o, b, c, and x,, cannot be determined. A time-consuming pat- 
tern search method and a simpler heuristic method for determining these minimizing val- 
ues are suggested in the paper. 

Little attention has been paid apart from the Bendell and Samson [9] paper to the 
problem of the estimation of the maximal population value from its sample counterpart. 

The maximum likelihood estimate is the maximal sample value xr;lax. However, no analyt- 
ical results on the reliability of this estimator are known to the authors. Knowledge of the 
extent to which the maximal sample value may deviate from the population value is impor- 
tant in bibliometric discussion. Frequently, the sample value is assumed to be the same as 
that in the population, with no concern for the extent of the error of the estimate. 

The remainder of this paper is a development of the cumulative probability distribu- 
tion of the maximal sample value given population values for b, xmax, and t (thus deter- 
mining a). From these distributions, it is possible to construct confidence intervals for the 
population maximal value based on a sample value. 

DISTRIBUTION OF THE MA,YIMAL SAMPLE VALUE 

If we let Y = x;,, represent the largest number of tokens possessed by a type in a 
sample of n types from a Zipf population oft types, then the cumulative distribution func- 
tion for Y represents the probability that the maximal sample value will be less than or 
equal to a specified value. This probability, that is, the probability that the random vari- 
able Y assumes a value less than or equal to y is given by the following expression: 

Prob[Y 5 yl = F(yln.t&,x,,,) 

where n is the sample size, t is the number of types, x,,, is the maximal population size, 

and 

a( t, b,x,,,) = t/ c l/x’. 
x=1 

Notice that this distribution is independent of m, the total number of tokens. The deriva- 
tion of this distribution is given in the Appendix. An example of the distribution for b = 
1.5, x,,= 100, t = 1000, and n = 10, 30, 50, 100, 500 is shown in Fig. 1. By calculating 
this cumulative probability for each value of Y in turn, for fixed n, t, 6, and x,,,, it is 
possible to determine the appropriate pth quantile values of Y that is, the smallest value 
yp such that 

Thus, if yp is obtained in a sample and used as an estimate of x,,,, the error of estimate 
is e, = x,,, - yp. The probability the error will be less than or equal to this value is the 
probability the sample maximal value is greater than or equal to yp, that is, approximately 
1 - p. Thus, if we obtain a sample maximal value y’, not knowing the population max- 
imal value x,,, , we can be lOO( 1 -p) % confident the interval y’ + ep contains the true 
population maximal value. In general, we will not know ep. However, if e, is seen to con- 
verge under certain conditions, it may be possible to set up approximate confidence 
intervals. 

In order to examine the behavior of Y particularly as the sample size n increases, 
several values of yD were determined for the values of t in the body of Table 1, for each 
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Fig. 1. Sampling distribution of the maximal sample value [F(Y)] for 6 = 1.5; x,,, = 100; 
t = 1,000; n = 10, 30, 50, 100. 500. 

value of b specified in the rows and each value of x,, specified in the columns. For each 

such value of t, the values of n are given in Table 2. Recall from the earlier discussion that 

and that, of course, n I t. Samples constituting a high proportion of the population of 
types were considered, as well as samples that were small compared to the population. The 
reason for this choice has been mentioned earlier: In many bibliometric studies, the data 
represent an incomplete population rather than a small sample. Of course, the results will 
be valid only if the omissions are random. 

The results of these calculations are shown in Table 3, for p values of .OOl, .Ol, .05, 
and . 1. For each combination of b, x,,, , and t values, once a sample size has resulted in 

r, = G-lax for all p, no further rows are indicated, because all remaining Y, will be equal 

to 4-IW. 

Table 1. Values of I used in exact calculations of y, 

b 10 100 1,000 

1 100, 1,000, 5,000, 10,000 1,000, 5,000, 10,000 10,000 

1.5 100, 1.000, 5,000, 10,000 5,000, 10,000 

2 1,000, 5,000, 10,000 

2.5 1,000, 5,000, 10,000 

3 5.000, 10,000 



Maximal value of a Zipf size variable 

Table 2. Values of n used in exact calculations of y, 

I n 

163 

100 10, 30, 50, 90 

1,000 10, 30, 50, 90, 500, 900 

5,000 10, 30, 50, 90, 500, 900, 2,500, 4,500 

10.000 10, 30, 50, 90, 500, 900, 2,500, 4,500, 5,000, 9,000 

If the number of types t is large, then the sampling distribution may be approximated 

by 

In other words, the distribution is independent of the total number of types t. 
If the number of tokens per type or productivity can be approximated by a continu- 

ous distribution, the expression is simplified even further: 

~(Yl~,b~-Gn,,) = 
l%Y n 

[ 1 log, &lax 
b=l 

This distribution, for b = 1.5, x,, = 100, and n = 10, 30, 50, 100, 500 is shown in Fig. 2. 

If we set F(y;] n, b,x,,,) = p, using these two expressions, and then solve for y;, we get 

y; = [l - (p)““(l - l/x&;)]-“‘b-“, b#l (1) 

kY;, =(P)“nlo&xm,, b = 1. (2) 

The values of y; determined from this approximation may be considered limiting values 
of the pth quantiles when the number of types and of productivity values is large. Figure 
3 shovvs the difference yP - y,J, which represents the error introduced by the approxima- 
tion, for t = 10,000, p = .05, and various values of b and x,,. As expected, the error 
decreases as t increases. It also appears least for small values of b and x,,. Its behavior 
with increasing n needs further study. For small n, the error is large and erratic; as n 
increases, the error declines to 0. 

If &l,X also becomes very large, then we have a second approximation: 

y6’ = [1 _ pl/n]-l/(b-l~ 
, b f 1. 

This approximation cannot be used if b 5 1 since, in this case, y; will increase without 
limit. As the sample size n increases, yP increases to x,,, as would be expected. Similarly, 

as b increases, yP will decrease to 1, another indication that large values of b are associ- 
ated with a dispersion of the tokens among the types in the lower productivity values. 

APPROXIMATE CONFIDENCE INTERVALS 

The final topic to be considered is that of a confidence bound for the maximal pop- 
ulation value given a maximal sample value. From the definition of yP, we know that the 
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Table 3. pth quantlle values yp of the maxmum sample value 

b = 1, xmar = 10 

100 10 
30 
50 

1,000 10 2 4 5 6 
30 6 7 8 8 
50 7 8 9 9 
90 9 9 10 10 

500 10 10 10 10 

5,000 10 2 4 5 6 
30 6 7 8 8 
50 7 8 9 9 
90 8 9 10 10 

500 10 10 10 10 

10,000 10 2 4 
30 6 7 
50 7 8 
90 8 9 

500 10 10 

i 
9 

10 
10 

6 
8 
9 

10 
10 

b = I. xmav = 100 

1,000 10 8 15 26 35 
30 35 49 62 69 
50 52 64 75 80 
90 70 79 85 89 

500 95 97 98 99 
900 99 99 100 100 

5,000 10 8 15 26 35 
30 35 48 61 69 
50 52 64 74 80 
90 69 78 85 88 

500 94 96 98 98 
900 97 98 99 99 

2,500 99 100 100 100 
4,500 100 100 100 100 

10,000 10 8 15 26 35 
30 35 48 61 69 
50 52 64 74 80 
90 69 78 85 88 

500 94 96 98 98 
900 97 98 99 99 

2,500 99 100 100 100 
4,500 100 100 100 100 

b = 1, x,,, = 1000 

10,000 10 
30 
50 
90 

500 
900 

2,500 

24 63 144 215 
215 345 492 576 
382 519 648 715 
577 690 784 829 
905 936 958 968 
937 965 977 982 
983 989 993 995 
992 995 997 998 
993 996 997 998 
998 999 1,000 1,000 

4,500 
5.000 
91000 

b = 1.5, x,,, = IO 

100 10 
30 
50 
90 

1,000 10 
30 
50 
90 

500 

3 4 5 6 
6 7 8 9 
8 9 9 10 

10 10 10 10 

2 2 3 4 
4 5 7 7 
6 7 8 9 
9 9 10 10 

2 
3 
5 
7 

10 

2 

i 
8 

10 

3 4 
6 7 
7 8 
9 9 

10 10 
contrnued 
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Table 3. continued. 

b = 1.5, .r,,, = 10 continued 

5,000 10 
30 
50 
90 

500 

10,000 10 
30 
50 
90 

500 

6 = I .5, x,,, = 100 

5.m 

10,000 

b = 2, x,,, = 10 

1,000 

5,OQO 

10,000 

10 2 3 6 8 
30 8 14 22 28 
50 15 24 35 42 
90 28 39 52 59 

500 15 82 88 91 
900 86 90 94 95 

2,500 96 97 98 99 
4,500 99 100 100 100 

10 2 3 6 8 
30 8 14 22 28 
50 15 24 35 42 
90 28 39 52 59 

500 14 82 88 90 
900 85 90 93 95 

2,500 95 97 98 99 
4,500 98 99 99 100 

5,ooo 98 99 99 100 
9,000 100 100 100 100 

10 1 I 
30 2 3 
50 3 4 
90 5 6 

500 9 9 
900 10 10 

2 

: 
8 

10 
10 

10 1 I 
30 2 3 
50 3 4 
90 5 6 

500 9 9 
900 9 10 

2,500 10 10 

2 
5 
6 
7 

10 
10 
10 

10 1 1 
30 2 3 
50 3 4 
90 5 6 

500 9 9 
900 9 10 

2,500 10 10 

2 
1 
5 
7 

10 
10 

2 
1 
5 
7 

10 
10 
10 

2 
4 
5 
7 

10 
10 
10 

2 
5 
6 
1 

10 
10 
10 

b = 2.5, x,,, = 10 

1,000 10 
30 
50 
90 

500 
900 

5wJ 10 
30 
50 
90 

500 
900 

2,500 
9,000 

2 2 3 4 
4 5 6 7 

5 6 7 8 
7 8 9 9 

10 10 10 10 

, 

; 
5 
7 

10 

2 

: 
8 

10 

3 4 
6 7 
7 8 
9 9 

10 10 

I 
2 
3 
4 
8 

10 

I 1 
2 2 
2 3 
3 4 
7 8 
8 9 

10 10 
86 90 

I 
3 
d 

; 
10 

1 
3 
4 

; 
9 

10 
91 

2 
3 
4 
5 
9 

10 

2 
3 
4 
5 
9 

10 
10 
95 
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Table 3. contmued. 

t n Y WI YOI .” “5 .” I 

b = 7.5, x,,, = 10 continued 

10,000 10 
30 
50 
90 

500 
900 

2,500 
4,500 

b = 3, s,,, = 10 

5,000 10 
30 
50 
90 

500 
900 

2,500 
4,500 

10,000 10 
30 
50 
90 

500 
900 

2,500 
4,500 
5,000 
9,000 

8 
9 

10 

6 
7 
9 

10 

1 I 

1 2 
2 2 
2 3 
5 6 
6 7 
8 9 
9 10 
9 IO 

10 10 

2 
3 
3 
7 
8 
9 

10 

1 
7 
; 
3 
7 
8 
9 

10 
10 
10 

s 
10 
10 

I 
z 
3 
4 
7 
8 

10 
10 
10 
10 

-N= 

. . = 

-___ NN- --- N= 
---NE 

IO 
30 

EL 
500 

1. - 

.75 - 

.25 

I I I 

0. 25 50. f5. 100. 

Y 

Fig. 2. Approximate sampling distribution of the maxlmal sample value [F(Y)] for b = 1.5; 
x,,, = 100; t = 1,000; ” = 10. 30, 50, 100, 500. 
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30. 

25. 

20. 

15. 

>- 

-; 10. 

5 

C 

-5 

,I 
I ’ 

I \ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

- (1,lO) 
. . . . . . . . . . (1, 100 ) 

---- (1,1000) 

- (1.5,10) 

-.-.- (1.5,100) 

------ (2,101 
--- (2.5,10) 
--- (3,101 

I I I I I I I I I 

*cI loo 200 .300 ,400 500 600 700 .000 900 

SAMPLE SIZE 

Fig. 3. Error y’ -y for p = .OS; I = 10,000; various (b,x,,,). 

probability the maximal sample value will be greater than yp is 1 - p. Thus, in repeated 
sampling we would expect that 1 - p proportion of the sample maximal values will be 
within the interval [y;,x,,,] . So, if we assume y = yp and solve for x,,, in eqns (1) and 
(2) in the previous section, the interval from the observed y to the calculated x,!,,,, will be 
a lOO( 1 - p) Vo confidence interval when the number of types and of values for the num- 
ber of types per token are both large. The expressions for x,&, are then as follows: 

l/n 
x‘ 

P 
I/(&l) 

max = 
P 

I/n - 1 + l/yb-’ 1 ’ 
bfl 

10&X,,, = 10&Y/P"", b = 1. 

Table 4 shows the upper limit for a 95% confidence interval based on the previous values 
of b and n and withy values of 10, 100, and 1,000. Particularly marked in this table is the 
unreliability of sample estimates of x,,, when b = 1 and the sample size is small. This 

wide range of possible x,, values results from the concentration of productivity at the 
high end of the scale when b = 1 and, of course, the low reliability of small samples. 

Finally, Table 5 shows the upper bound for x,, for some data sets published in con- 

nection with studies of the distribution of scientific productivity assuming different val- 
ues of b. Of course, not all these data sets were intended to be random samples; however, 
it is instructive to see the extent of the difference between the empirical value and the the- 
oretical limit. Whether the interval is realistic depends, of course, on the particular kind 
of bias the sampling procedure exhibits and, indeed, whether they are samples at all from 
a large population of authors. 



168 _I. TACUE and P. NICHOLLS 

CONCLUSIONS 

This paper has discussed some of the properties of Zipf-type distributions, in partic- 
ular, those relating to the estimation of the parameters of the distribution. The maximal 
size or productivity is one such parameter that has not, in the past, been studied extensively. 
The ability to estimate this parameter reliably is important is data base design. 

Table 4. Upper limrt for 95% confidence interval for x,,, 
based on approximate sample maximal value Y 

n 

b 10 30 50 100 500 1000 

y’= 10 

1 
1.5 
2 
2.5 
3 

y’ = 100 
1 
I.5 
2 
2.5 
3 

y’ = 1,000 
1 
1.5 
2 
2.5 
3 

22.3 12.7 11.5 10.7 10.1 10.1 
11.6 10.5 10.3 10.1 10.0 10.0 
13.5 11.0 10.6 10.3 10.1 10.0 
15.7 11.6 10.9 10.4 10.1 10.0 
18.2 12.2 11.3 10.6 10.1 10.0 

499.5 162.2 132.9 llS.0 102.8 101.4 
116.6 105.1 103.0 101.5 100.3 100.2 
134.9 110.5 106.2 103.0 100.6 100.3 
156.7 116.2 109.4 104.6 100.9 100.5 
182.1 122.1 112.7 106.2 101.2 100.6 

1164.7 2065.6 lS31.9 1233.8 1042.4 1020.9 
1161.6 1051.2 1030.4 1015.1 1003.0 1001.5 
1349.3 1105.0 1061.7 1030.4 1006.0 1003.0 
1567.3 1161.6 1094.0 1045.9 1009.0 1004.5 
1820.6 1221.1 1127.3 1061.7 1012.1 1006.0 

Table 5. .95 upper confidence limit for populatton x,,, 

Study 

Total No. 
Authors 

(1) 

Sample 
hlaximum 

(Y) 

Exponent 

(b) 

.95 Upper 
Confidence 

Limit* 

Dresden (1922) [14] 278 70 
Lotka (1926) (151 1,325 48 
Lotka (1926) (151 6,890 346 
Dufrenoy (1938) [16] 1,529 8 
Hersh (1942) [17] 826 131 
Williams (1944) [IS] 411 10 
Williams (1944) [18] 1,537 11 
Leavens (1953) (191 721 46 
Mantel1 (1966) [ZO] 2,255 16 
Mantel1 (1966) [20] 97 9 
Windsor (1975) [21] 93 4 
Windsor (1975) (211 71 8 
Coile (1975) [22] 1,282 7 
Coile (1975) [22] 1,339 8 
Coile (1975) 1221 1,666 10 
Coile (1975) 1221 3,206 10 
Coile (1975) [22] 3,512 10 
Radhakrishnan/Kernizan (1979) [23] 301 7 
Radhakrishnan/Kernizan (1979) [23] 599 5 
RadhakrishnaniKernizan (1979) [23] 1,021 7 
Radhakrishnan/Kernizan (1979) [23] 851 7 
Rao (1980) (241 1,111 23 
Hubert (1981) [25] 754 19 
Hubert (1981) l2Sl 1,630 21 

1.80 
2.05 
1.95 
2.55 
1.85 
2.15 
2.45 
2.10 
2.75 
2.25 
2.50 
2.35 
3.50 
3.45 
3.40 
3.50 
3.30 
3.05 
3 .?O 
3.10 
3.00 
2.15 
2.35 
2.45 

112 
__ 

3;: 
8 

177 
12 
11 
62 
18 
15 
5 

18 
8 

10 
13 
11 
11 
10 
6 
8 
8 

2S 
23 
23 

*Numbers rounded up to the next higher integer value. 
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The tables of the sample maximal size distribution derived here serve as a warning that 
only large samples are likely to provide a maximal size that is close to the population value. 
The tabulated results also illustrate the significant part played by the exponent parameter 
as an indicator of inequality and in determining the extent to which the sample maximal 
value may be used as the population maximal value. It is hoped that the tables, approxi- 
mation formulas, and confidence intervals will prove useful in assessing the reliability of 
empirically derived models. 
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APPENDIX 

Derivation of the distribution function for the maximal sample value 
To prove: 

Prob[YIyl =F(yln,t,b,x,,) 

where 

a( t, b,x,,) = t/c l/xb. 
X=1 
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Given a random sample of n types from a population of t types, where the number of types 
with exactly x tokens, x = 1,2, . . ,x_ is given by 

~(~,b,&L,) 
g(x) = Xb , 

the probability that the largest value in the sample, X assumes a value less than or equal 
to y is equal to the probability of selecting n types from t types such that all n types have 
y or fewer tokens. The number of types tv in the population of t types with y or fewer 
tokens is 

(1) 

Thus, the required probability is a hypergeometric probability equal to the ratio of the num- 
ber of ways of selecting n types from 1, types to the number of ways of selecting n types 
from t types. This means 

P[Ysy] = ty t ( n ,i( 1 n 

= 
r,!n! (t - n)! 

n! (ty - n)!t! 

n 

= 4 t,-i+ 1 

i=l t-i+1 I 
Since t = tx,,,, from (1) and (2), we have 

$, Q(t,b,x,,,)/xb - i + 1 

;E;a(t, b,x,,,)/xb - i + 1 

(2) 


