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a  b  s  t  r  a  c  t

Characteristic  scores  and scales  (CSS)  – a  well-established  scientometric  tool  for the  study
of  citation  counts  –  have  been  used  to document  a striking  phenomenon  that  characterizes
citation  distributions  at high  levels  of aggregation:  irrespective  of  scientific  field  and  citation
window empirical  studies  find  a  persistent  pattern  whereby  about  70%  of  scientific  papers
belong  to the  class  of  poorly  cited papers,  about  21%  belong  to the  class  of  fairly  cited  papers,
6%  to that  of  remarkably  cited  papers  and  3% to the  class  of outstandingly  cited  papers.  This
article  aims  to  advance  the  understanding  of this  remarkable  result  by examining  it in
the context  of  the  lognormal  distribution,  a popular  model  used  to describe  citation  counts
across  scientific  fields.  The  article  shows  that  the  application  of  the  CSS  method  to  lognormal
distributions  provides  a very  good  fit to the  70–21–6–3%  empirical  pattern  provided  these
distributions  are characterized  by a standard  deviation  parameter  in  the  range  of  about
0.8–1.3.  The  CSS  pattern  is essentially  explainable  as  an  epiphenomenon  of  the  lognormal
functional  form  and,  more  generally,  as a consequence  of  the  skewness  of science  which  is
manifest in  heavy-tailed  citation  distributions.

© 2018  Elsevier  Ltd.  All  rights  reserved.

. Introduction

Citation analysis is an essential component of evaluative scientometrics and it is becoming the default mode chosen by
olicy and decision makers for the exploration and assessment of scientific research. Faced with the pressures of practical
equirements incumbent in international university rankings, national evaluation processes as well as institutional appraisal
riented towards funding and promotion decisions, the field of scientometrics has become increasingly saturated over the
ast decades with a myriad of aggregated indicators which purport to capture scientific performance by combining in
ften arbitrary and idiosyncratic ways the basic building blocks of citation analysis – published papers and citation counts.
owever, despite the popular success of some metrics, professional scientometricians have consistently warned against the
roliferation of single-number citation-based indicators such as the Hirsch index or impact factor and have sought instead to
romote more complex evaluation tools that maintain a multidimensional, pluralistic view of performance (see for instance

icks, Wouters, Waltman, de Rijcke, & Rafols, 2015; Moed & Halevi, 2015).

Against the pitfalls of aggregated indicators one tool increasingly advocated for evaluation and policy use is the method of
haracteristic scores and scales (Glänzel & Schubert, 1988; Schubert, Glänzel, & Braun, 1987) which offers a straightforward
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way of benchmarking the citation performance of individual units of assessment relative to their peers as well as to the
overall population of reference based on a common framework of algorithmically constructed performance classes. Since
their development in the late 1980s characteristic scores and scales – henceforth CSS – have attracted increased attention
from the scientometric community and have become an informative mechanism for conducting evaluations and comparisons
at various levels of analysis (journals, institutions, countries). The most important result that has emerged from the continued
application of this method over the past years is a remarkable empirical regularity detected in the context of aggregated
citation counts: irrespective of scientific field and citation window CSS tend to uncover an extraordinarily stable distribution
of papers across predefined classes of citedness. Virtually all empirical studies using CSS (see Section 2.1 below) show that
within most fields of science about 69–70% of papers seem to be poorly cited (i.e. are included in a citedness class I), 21% of
papers seem to be fairly cited (i.e. belong to class II), only about 6–7% seem to be remarkably cited (class III), and only about
2–3% seem to be outstandingly cited (class IV). Viewed against the general background of known discipline heterogeneity –
a heterogeneity attributable among others to variations in size, age, publication frequency, citation culture and other field
specific characteristics – the discipline and time window invariance of CSS represent an intriguing topic of investigation:
why is it that in spite of the many well documented specificities of each scientific field virtually all fields of science are shown
by CSS to be fundamentally similar in that they share an approximate 70–21–6–3% distribution of their papers across the
four CSS citation performance classes?

This article aims to advance the understanding of the remarkable pattern documented by characteristic scores and
scales in scientometrics by examining it in the context of the lognormal distribution, a popular model used to describe
citation counts across scientific fields. In technical terms, the article aims to show that the application of the CSS method to
observations drawn from lognormal distributions consistently yields a remarkable fit to the typical CSS empirical pattern
as long as these distributions are characterized by a standard deviation parameter close to a value of 1. The results of the
article cast a new light on the empirical regularity documented by CSS and support the conclusion that the CSS pattern may
be circumscribed to the broader phenomenon of the skewness of citation counts across the sciences. Fortunately, this latter
phenomenon has already been addressed in the literature and is more readily explainable than the CSS pattern.

The article is structured as follows: Section 2 provides the theoretical and empirical background of the paper, reviewing
the operation of CSS and the previous empirical literature that substantiates the remarkable CSS pattern which constitutes
the focus of the present study; this section also discusses the use of the lognormal distribution in scientometrics, reviews the
contentious universality claims associated with this distribution and articulates the research questions investigated in the
paper; Section 3 describes the methodological approach of the article which encompasses some preliminary mathematical
considerations and a description of an analytical process involving application of the CSS method to synthetic data derived
from hypothetical lognormal distributions within the R language and environment for statistical computing; Section 4
presents and discusses the results while a final Section 5 offers some concluding remarks.

2. Theoretical and empirical background

2.1. Characteristic scores and scales and the 70–21–9% pattern

The operation of the CSS technique revolves around a simple recursion of arithmetic means applied at the level of some
n papers published in a particular field of science.1 The corresponding citations to these papers – {Xi}ni=1– are first sorted
in descending order to obtain a list of the form X1 ≥ X2 ≥ . . . ≥ Xn. Parameters ˇ0 = 0 and v0 = n are defined to derive the
characteristic scores and scales of the citation distribution and ˇ1 is given by the initial sample mean of the full distribution
of citations:

ˇ1 =
n∑
i=1

Xi
n

=
n∑
i=1

Xi
v0

(1)

with v1 jointly defined by

Xv1 ≥ ˇ1 and Xv1+1 < ˇ1 (2)

The procedure can be iterated in the form

ˇk =
vk−1∑
i=1

Xi
vk−1

(3)
to define subsequent sub-sample means with the understanding that vk is chosen so that

Xvk ≥ ˇk and Xvk+1 < ˇk, k ≥ 2. (4)

1 The subsequent presentation follows the account given in Glänzel (2010, pp. 704–705).
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Although in theory the iterated truncation based on sub-sample means can continue indefinitely, practical application
sually limits the procedure to at most five classes of citedness (Schubert et al., 1987): class 0 made up by uncited papers,
he class of poorly cited papers defined on the interval (ˇ0, ˇ1), fairly cited papers defined on [ˇ1, ˇ2), remarkably cited papers
efined on the interval [ˇ2, ˇ3) and, finally, the class of outstandingly cited papers defined as belonging to the interval [ˇ3, ∞).
hese five classes can further be collapsed into only four by merging uncited papers with poorly cited ones and even to three
lasses by further merging outstanding papers with remarkable ones.

The application of CSS is potentially very diverse but it usually considers high levels of aggregation, most often entire
cientific fields which in practice tend to be identified with Web  of Science subject categories. The method was  originally
roposed and subsequently employed as a tool for the comparative evaluation of scholarly journals within different fields
f science, based on the number of citations to their papers (Glänzel, 2011; Glänzel & Schubert, 1988; Schubert et al., 1987)
ut more recently it has also been employed to assess the research productivity of academic departments and individual
cholars (Abramo, D’Angelo, & Soldatenkova, 2017; Perianes-Rodriguez & Ruiz-Castillo, 2014; Ruiz-Castillo & Costas, 2014).
he analysis of citation distributions within and across different scientific fields has nonetheless remained the prevalent use
f the method and it is in this specific area that the CSS approach has yielded the most interesting and at the same time
nexpected general result, namely that citation counts across the sciences are not only highly skewed (a feature already
ecognized at least since Seglen’s 1992 work) but also very similar in overall shape to one another. This insight can be found
n several large scale studies which use citation records from the Web  of Science.

In the original paper outlining the CSS method (Schubert et al., 1987) the then 114 scientific fields covered by the Institute
or Scientific Information’s Journal Citation Reports were studied within a citation window of five years; although nowhere
xplicitly mentioned by the authors of the work, a careful retrospective analysis of the annex to that paper shows that, on
verage across the 114 fields, about 72% of papers were allocated to the poorly cited class (including uncited papers), 19%
o the fairly cited, 6% to the remarkably cited and 3% to the outstandingly cited class. A later study (Glänzel, 2007) focusing
n 60 subfields across a citation window extending up to 21 years found a similar trend whereby about 75% of papers
ere poorly cited, 18% fairly cited, 5% remarkably cited and 2% outstandingly cited. A subsequent comprehensive study

Albarrán & Ruiz-Castillo, 2011) using only three instead of four CSS citation classes and focusing on a sample of 3.9 million
rticles (five year citation window, 22 broad fields) reported very similar results: 70% of papers in the poorly cited class
including uncited papers), 21% in the fairly cited class and 9% within the conglomerate class pooling together remarkable
nd outstanding papers. This approximate 70–21–9% pattern – which has become a hallmark result of the CSS approach –
s also reported in a related study (Albarrán, Crespo, Ortuño, & Ruiz-Castillo, 2011) which uses two  alternative classification
chemes to group articles across granular disciplines and broader fields of science.

A further large scale study that confirms the empirical validity of the 70–21–9% rule is Li, Radicchi, Castellano, and Ruiz-
astillo (2013) where about 2.9 million publications indexed in the Web  of Science between 1980 and 2004 and grouped
ithin 172 subject categories are analyzed; the overall data covered in this study actually comprise six yearly datasets and

t is apparent that the 70–21–9% rule is closely observed by the articles from the more recent years (1995, 1999, 2004)
han by the older ones which have had a longer time to accumulate citations (1980, 1985, 1990); for these older articles
n approximate 73–19–8% configuration is reported. A somewhat more limited study focusing on 20 subfields and two
istinct publication years (2007 with a five year citation window and 2009 with a three year window) again confirmed the
0–21–9% rule, not only at the level of each individual field but also when combining the papers from all fields (Glänzel,
hijs, & Debackere, 2014).

More recently a 69–22–9% pattern was reported for citation counts as well as for Mendeley readership counts based on
bout 1.1 million articles published in 2012 and classified into 30 disciplines (Costas, Perianes-Rodriguez, & Ruiz-Castillo,
016). Glänzel (2011) had also reported some nuanced results based on a restricted sample of papers published in 2006 in
nly three selected fields (with a three year citation window): papers in biophysics/molecular biology closely followed the
0–21–9% pattern but those in applied mathematics showed a 75–18–7% distribution and those in electrical and electronic
ngineering deviated substantially, having a 63–25–12% configuration. A more recent study also considering a restricted
ample of papers published over the 2009–2013 period (Vîiu, 2017) found further support for the more typical 70–21–9%
attern in four Web  of Science subject categories.

While variations across smaller scale studies are to be expected, a final large scale study that confirms the 70–21–9%
attern deserves separate mention due to its markedly different methodological approach: whereas most of the studies
reviously mentioned worked within the framework of the predefined Web  of Science categories Ruiz-Castillo and Waltman
2015) take a more innovative approach that involves determining scientific fields of variable granularity via algorithmic
lustering: based on 3.6 million articles from 2005 to 2008 (a subset arrived at from a more comprehensive pool of about
.4 million publications from 2003 to 2012) up to 12 distinct classification systems are constructed with between 231 and
1,987 significant clusters (i.e. clusters having at least 100 publications); remarkably, for most of these 12 granularity levels
he 70–21–9% pattern is obeyed quite closely, significant departures occurring only in the more fine-grained classifications
granularity levels 9–12) which have a high prevalence of small clusters and where an approximate 67–22–11% pattern
eems to prevail.
The preceding paragraphs make it clear that by now there is a substantial body of work attesting to the recurrence of the
SS pattern embodied by the approximate 70–21–9% distribution when focusing on citation counts aggregated at the level of
cientific fields. While virtually all studies confirm the fact that citation distributions across narrow fields as well as broader
isciplines are skewed and fundamentally similar, an explanation for why the specific 70–21–9% result keeps emerging has
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yet to be provided. The recurrence of this pattern seems to have acquired the status of an ultimate result, one so eagerly
integrated into current scientometric lore that it defies further inquiry. However, in this article the competing premise is
pursued, namely that instead of viewing the CSS pattern as a final result which does not require further exploration, the
remarkable result incumbent in the application of the CSS algorithm can and should be understood further, not merely by
further empirical confirmation of the pattern across scientific fields, but by considering whether it could naturally emerge
from an underlying statistical distribution that could plausibly be used to describe the citation counts within each of these
fields.

Since the application of the CSS method is essentially interlinked with the more general problem of statistical analysis of
citation counts it seems warranted to explore the CSS pattern from the standpoint of the existing statistical models proposed
and successfully used in the previous literature to describe citation distributions. In other words, the key to advancing our
understanding of the CSS pattern should be found in the body of work devoted to the mathematical modelling of citation
counts. Since a variety of distributions have been proposed for this task the fundamental question to be answered is whether
or not there exists a specific statistical distribution such that the application of the CSS algorithm to this distribution yields
the precise 70–21–9% pattern (or an equivalent 70–21–6–3% form if considering four classes instead of only three). If such
a distribution can be identified then the pattern documented by CSS in citation analysis could be re-conceptualized as a
necessary epiphenomenon of the application of CSS to the specific distribution in question, rather than as a stand-alone
result.

2.2. Modelling citation counts and the lognormal distribution

There are several types of statistical distributions which have been proposed to model citation counts in an accurate
manner. These include the power law distribution (Price, 1976) and the so-called “hooked” or shifted power law distributions
(Thelwall & Wilson, 2014), the negative binomial and the Waring distribution (Glänzel, 2009), a modified Bessel function
(Van Raan, 2001), the double exponential-Poisson (Vieira & Gomes, 2010), a stretched-exponential and a form of the Tsallis
q-exponential function (Wallace, Larivière, & Gingras, 2009), stopped sum distributions (Low, Wilson, & Thelwall, 2016), the
generalized inverse Gaussian-Poisson distribution (Sichel, 1992) and, last and most influentially, the lognormal distribution.
Recent studies (Thelwall, 2016b, 2016c; Thelwall & Wilson, 2014) indicate that of these and other distributions, the one that
is best able to capture the full spectrum of citation counts is the (discretized) lognormal. This is an important point because
the application of the CSS method always takes into account the full set of citation counts and the resulting 70–21–9% pattern
emerges from this premise, not from partial sets which disregard zero citations or citation counts below a certain value.2 For
this reason this article will concentrate only on the lognormal distribution but the general approach employed here could
conceivably be applied to other distributions as well.

While there are many scientific areas where lognormal processes seem to prevail – aerobiology, ecology, environment,
geology and mining, medicine, linguistics, social sciences and economics among others (Limpert, Stahel, & Abbt, 2001) – in
the case of scientometrics the lognormal distribution has been used for some time to model a wide range of phenomena. In
general the distribution has been used under its standard two parameter continuous form or under discretized versions to
successfully model citation count data of individual journals in a single year (Stringer, Sales-Pardo, & Nunes Amaral, 2010),
citations of individual researchers and academic departments across multiple years (Moreira, Zeng, & Amaral, 2015) and
citation counts across broad scientific subject categories (Thelwall, 2016a). The lognormal distribution was also found to
adequately capture the distribution of citation-based indicators, including the h and g-index (Perc, 2010), a generalized h
index (Wu,  2013), as well as the total research impact (Tori) indicator (Kurtz & Henneken, 2017). This distribution has also
been found to offer a good fit for citation age data (Burrell, 2002; Egghe & Rao, 1992; Matricciani, 1991), for the number of
references made in scientific papers (Egghe & Rao, 2002; Morris, 2005), as well as for Mendeley readership counts (Thelwall
& Wilson, 2016).

A feature that strongly individualizes the lognormal distribution within the scientometric landscape is the fact that it
has been a recurring vehicle for several controversial universality claims. There are in fact several such claims which target
different scientometric topics: the distribution of normalized citation counts across different scientific fields, the distribution
of raw citation counts across different scientific fields, the distribution of normalized citation counts across institutions, as
well as the distribution of scientific productivity have all been claimed to follow a lognormal pattern.

Radicchi, Fortunato, and Castellano (2008) initiated the lognormal universality debate for citation counts by arguing
that if one divides the citations of individual papers by the average of the field (thereby obtaining a relative indicator
labelled cf ), then inter-field variability essentially vanishes and a universal lognormal curve emerges irrespective of the
scientific discipline; this curve is characterized by a �2 parameter of 1.3 (equivalent to a � of about 1.14). The universality

claim of Radicchi and his coauthors was further elaborated and extended to the level of individual journals (Castellano &
Radicchi, 2009) and it was further scrutinized at the micro level of chemistry subfields (Bornmann & Daniel, 2009) where
the advantages of the cf indicator were discussed compared to z-scores.

2 Power law models are typically fitted with success only to the higher tail of citation distributions which means that they fail to capture citation counts
in  the lower tail, including uncited articles which are relevant for CSS.
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There is also substantial empirical evidence against this universality claim, most notably Albarrán et al. (2011) who refute
he claim based on a large sample of 3.7 million articles from 219 Web  of Science categories (the original universality claim
as based on a very limited sample of only 14 fields), Waltman, van Eck, and van Raan (2012) who show that important

eviations from the lognormal hypothesis are especially common for fields with a low average number of citations (for
nstance social sciences) as well as Thelwall and Wilson (2014) who  argue based on citation data from 20 Scopus categories
hat the lognormal distribution does not offer a universal fit. Despite the persuasive rebuttal of the initial claim, in a follow-up
tudy (Radicchi & Castellano, 2012) the authors of the universality thesis reinforce their argument and extend their claims
o include raw citation counts by appealing to a novel methodological approach: they resort to aggregating the citations to
apers across all scientific fields to then derive a transformed citation count for each individual field, based on the cumulative
istribution of citations within the all-sciences aggregated set which is taken as a reference; by studying the properties of
he transformed citation counts for the individual fields Radicchi and Castellano conclude that raw citation distributions
eem to be universal in the sense of being part of the same family of univariate distributions (i.e. the log-location-scale family
hich includes the lognormal and Weibull distributions).

Whereas the original lognormal universality claim was derived based on citation data from Web  of Science subject
ategories, Evans, Hopkins, and Kaube (2012) confirm the claim at the level of a specific research institute, at the sub-level
f departments, but also for data from the arXiv e-print archive. Perianes-Rodriguez and Ruiz-Castillo (2016) also verify the
niversality claim at the institutional level, focusing on 500 universities from the 2013 edition of the Leiden Ranking; these
uthors point out that in the case of universities the universality claim is untenable. Chatterjee, Ghosh, and Chakrabarti
2016) also verify the universality claim at the level of institutions (only 42 in their case) and ultimately find that although
t seems to be present “universality is not very strong, and holds only in an approximate sense” (p. 9).

Finally, evidence in favor of another type of lognormal universality – contingent on a � parameter of 0.94 ± 0.23 – has been
rovided recently for the scientific productivity of scholars working in either soft or hard scientific disciplines (Bonaccorsi
t al., 2017).

.3. Research questions

Setting aside the issues of productivity and institutional performance, the universality claims relevant to the present
rticle are the ones concerning the distribution of citation counts across scientific fields. Based on the paragraphs from
he previous section we may  distinguish between a strong universality claim and a weak universality claim. The former is
haracterized by the fact that it not only specifies a functional form which citation counts in all fields of science allegedly
ollow (i.e. lognormal), but it further specifies concrete parameters of the functional form (i.e. � of about 1.14). The weak
niversality claim on the other hand is more diffuse: it only asserts that citation counts follow the general lognormal

unctional form.
Although significant evidence has been offered against the universality claims (especially against the strong version, as

xplained above) it is important to recognize that these claims, developed under the strong version in the context of normal-
zed citation counts and then extended – under the weaker version – to raw citation counts, have immediate consequences
or the CSS empirical pattern, a fact which seems to have been overlooked in the previous literature: if the lognormal univer-
ality claims are accurate – i.e. if the lognormal distribution indeed offers a good depiction of raw empirical citation counts
cross scientific fields, as many recent studies in fact suggest – then it must also explain the CSS pattern since this pattern
tself ultimately also professes the (near)universal similarity in shape of raw citation count distributions across the very
ame scientific fields.3 In other words, if the lognormal universality claims are true then the CSS pattern should be a specific
anifestation of universality, and the pattern can essentially be understood as a consequence of lognormality rather than

s a stand-alone result.
To advance our understanding of the CSS pattern it is necessary to explore within a formal mathematical and statistical

ramework the following inter-related research questions:

1) Does the 70–21–9% CSS pattern – or a pattern that is reasonably close to this one – actually arise under the specific
scenario of the lognormal universality claim?

2) Assuming that in general the lognormal distribution is a plausible model for raw citation counts, under what specific
circumstances (i.e. parametrizations) does the CSS pattern emerge?

The first of these questions is directed towards the strong version of the lognormal universality claim (it is focused on the
ognormal distribution with the specific � parameter of 1.14) while the second is concerned with the weaker version (i.e. it

tarts from the softer premise that citations could be modelled by a general lognormal functional form, but this form could
ave many different parametrizations, not only a rigid � of 1.14). Note that while the universality claims play an important
ole in articulating the research questions (and therefore serve as a convenient expositional device for the results) they are

3 Note that although CSS were devised to be applied to raw citation counts, their application to normalized values yields the exact same results in terms
f  the distribution of papers across the citation classes because the CSS method is scale-independent.
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not an essential premise of the paper. Aside from the existence of the CSS pattern the essential premise of the paper is the
idea that the lognormal functional form is a very plausible model for empirical citation counts.

3. Methodological notes

3.1. Preliminary calculations

An important point to consider towards the end of exploring the CSS pattern in the context of the lognormal distribution is
the idea that given its fixed, algorithmic nature, the CSS method will naturally produce specific configurations across its per-
formance classes when applied to particular distributions having a known functional form and a predefined parametrization.
Consider as an intuitive illustration the case of the most widely known distribution in statistics, i.e. the normal distribution.
We know that for this distribution perfect symmetry relative to the mean and identity of the three indicators of central
tendency (arithmetic mean, median and mode) are defining characteristics. Starting from this information alone it becomes
evident that application of the CSS algorithm to any normal distribution would always allocate 50% of the observations to the
lowest ranking class; clearly this is far below the 70% value which we  would expect based on the CSS empirical pattern and
therefore, irrespective of the composition of the other classes, we can conclude that the normal distribution can only offer
a very inadequate fit for empirical citation counts. We can therefore also reject the possibility that the typical CSS pattern
could originate in normally distributed citation counts.

The same reasoning can be used to investigate the explanatory power of other types of distributions, bearing in mind
their specific properties and considering reasonable parametrizations. For the specific case of the lognormal distribution we
can start from the known functional form of the probability density function p(x) which, for the standard two-parameter
lognormal distribution with mean �� and standard deviation ��, is given by4

p (x) = 1

x��
√

2�
e

− (Log[x]−��)2

2�2
� (5)

Note now that integrating this function over the interval [0,�] essentially yields the share of observations that fall within
the CSS class of poor performers; if we call this quantity Cp and consider the case when the parameters of the lognormal
distribution are taken to be �� = 0 and �� = 1 we  have

Cp =
�∫

0

e− 1
2 Log[x]2

x
√

2�
dx, (6)

and, since for the lognormal distribution the arithmetic mean � = e��+
�2
�
2 , Cp becomes

Cp =

√
e∫

0

e− 1
2 Log[x]2

x
√

2�
dx (7)

The integral in Eq. (7) evaluates5 to approximately 0.69146, meaning 69.15% of the observations derived from such a
distribution fall in the CSS class of poor performers. This is remarkably consistent with the CSS pattern discussed in Section
2.2 and is what we should expect to obtain if the continuous lognormal distribution (with �� = 0 and �� = 1) were to offer
a good overall fit for citation data. However, as also mentioned in the previous section, according to the strong universality
claim citation counts in various scientific fields are modelled by lognormal distributions whose �� parameter corresponds
to about 1.14. For this specific case, holding �� = 0,6 the probability density function p(x) becomes

p (x) = 0.34995e−0.38473Log[x]2

(8)

x

4 The defining characteristic of the lognormal distribution is the fact that the natural logarithm of the raw values follows a normal distribution. Note in
this  context that the use of the � subscript is meant to help avoid confusion between raw values and logarithmic ones: in the following equations � denotes
the  arithmetic mean of the raw values (equivalent to the threshold value that separates the CSS class of poorly cited papers from that of fairly cited papers)
while  �� denotes the mean of the same values in logarithmic space.

5 Calculations performed using the Wolfram|Alpha computational engine (https://www.wolframalpha.com/).
6 Note that the �� parameter is in fact inconsequential from the perspective of CSS class composition; for instance, given a fixed �� = 1, there is no

difference in the Cp value between a lognormal distribution with �� = 0 and a distribution with �� = 1 or 15: they all evaluate to about 0.69146 because in

each  case Cp = 1
2

(
1 + erf

(
1

2
√

2

))
, where erf(x) is the error function. This property follows from the fact that the �� parameter “affects only the location of

the  distribution. It does not affect the variance or the shape (or any property depending only on differences between values of the variable and its expected
value)” (Johnson, Kotz, & Balakrishnan, 1994, p. 208).

https://www.wolframalpha.com/
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and

Cp =
1.91516∫

0

0.34995e−0.38473Log[x]2

x
dx (9)

The integral in Eq. (9) evaluates to approximately 0.71566, meaning 71.57% of the observations derived from such a
istribution fall in the CSS class of poorly cited papers. This value is also essentially consistent with the CSS pattern.

.2. Exploring the CSS pattern with synthetic data

It is obvious that by incrementally shifting the �� parameter potentially infinitely many parametrizations of the lognormal
istribution can be considered and for each specific case a corresponding configuration of the CSS classes can be determined.

 critical question which then arises is to what extent departures of the �� parameter from the baseline value specified by
he strong universality claim (1.14) still yield CSS class configurations that are reasonably consistent with the CSS pattern.
umerical evaluation of integrals following the structure outlined above could answer the question regarding the percent

hare of observations that fall in the poorly cited class under various parametrizations. However, in addition to the Cp value
e must also determine the other quantities of interest, namely the percentages of papers in the fairly cited class Cf , in the

emarkably cited class Cr , and in the outstandingly cited class Co.
An effective way of determining the CSS class configurations produced by various parametrizations of the lognormal

istribution is to iteratively generate large samples of synthetic data conforming to hypothetical distributions constructed
ollowing the specific parametrizations, apply the CSS algorithm to each sample and then identify the values towards which
onvergence occurs. To answer the research questions of the present article this process was  undertaken in the R language
nd environment for statistical computing (R Core Team, 2016) using the rlnorm function and custom code designed to
mplement the CSS algorithm with four classes. The rlnorm function generates a desired number of random observations
hat conform to a continuous lognormal distribution whose �� and �� parameters are specified in advance.

For the present article the �� parameter was fixed to 1 and values of the �� parameter between 0.15 and 2.00 were
ested, in 0.05 increments; more extreme �� values of 3, 4 and 5 were also considered leading to a total of 41 distinct
arametrizations. To ensure reliability of the results 10000 distinct synthetic samples consisting of 1000, 10000, 30000 and
0000 observations7 each were generated for every individual lognormal parametrization; then, the CSS method was  applied
o each of the 10000 samples and the resulting Cp, Cf , Cr and Co quantities were recorded. The basic R code used for the
pplication of the CSS algorithm to the synthetic lognormally distributed data is available as Supplementary material 1. As

 final step, the mean Cp, Cf , Cr and Co values across the 10000 synthetic samples considered for each parametrization were
omputed together with the coefficient of variation (CV) for each of the four quantities across the 10000 samples. Minimum,
aximum, 1st and 3rd quartile as well as median values could also be considered for the four quantities of interest but the

V is a more concise measure of the variability of these quantities and it was therefore the sole statistical indicator to be
etained. The full results for each specific scenario are provided as Supplementary material 2; see also Table 1 for specific
xamples.

One additional aspect to be accounted for when investigating the CSS pattern in the context of the lognormal distribution
s the fact that citation counts are discrete quantities, not continuous ones. To address this issue, for each of the data
imulations described in the previous paragraph a counterpart was  also considered based on a discrete version of the
ognormal distribution. To obtain this discrete version lognormally distributed real values obtained in R with the rlnorm
unction were rounded to the nearest integers8 and the resulting values were offset with 1 to address the fact that lognormal
istributions cannot accommodate null values since the natural logarithm is available only for positive numbers.

Overall, given the 10000 iterations for each of the 41 parametrizations and given the 4 sample size variations and the

wo circumstances of continuous and discrete variable types a total of 328 distinct scenarios were explored leading to
4.62 billion synthetic observations. The following section reports the results obtained by applying the CSS method to these
ynthetic data.

7 These sample size values were selected because they roughly approximate the number of publications that constitute actual scientific fields throughout
 reasonable citation window ranging from three to five years, as usually employed in studies using the CSS method. For example, for the current 252

eb  of Science subject categories considered throughout the five year period 2009–2013 the median number of publications (articles, reviews and letters)
s  about 30000, while the mean is about 47000. While most categories – about two  thirds (162 of the 252) – are made up of fewer than 50000 records,
here  is significant variation across the 252 categories: about one seventh have fewer than 10000 records (Slavic literature has the minimum number:
75)  throughout this five year window but another one seventh have in excess of 100000 records (multidisciplinary materials science has the maximum
umber of items: 403246).
8 The idea of approximating a discrete lognormal distribution by rounding continuous lognormal real values is also used by Brzezinski (2015). Note

hat  alternative strategies are available to obtain discrete lognormally distributed observations (Thelwall, 2016d) but these are more computationally
emanding and cumbersome to implement in R.
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Table 1
Percentage of observations in each CSS class and corresponding coefficient of variation across selected parametrizations of continuous lognormal
distribution.

Cp Cf Cr Co

�� = 0.50 % 59.87 25.45 9.41 5.27
CV  0.00 0.01 0.01 0.02

�� = 0.55 % 60.84 25.06 9.10 5.00
CV  0.00 0.01 0.01 0.02

�� = 0.60 % 61.80 24.66 8.80 4.74
CV  0.00 0.01 0.01 0.02

�� = 0.65 % 62.74 24.26 8.50 4.49
CV  0.00 0.01 0.01 0.02

�� = 0.70 % 63.68 23.86 8.21 4.26
CV  0.00 0.01 0.01 0.02

�� = 0.75 % 64.62 23.44 7.91 4.03
CV  0.00 0.01 0.01 0.02

�� = 0.80 % 65.54 23.02 7.63 3.81
CV  0.00 0.01 0.01 0.02

�� = 0.85 % 66.46 22.60 7.35 3.59
CV  0.00 0.01 0.01 0.03

�� = 0.90 % 67.37 22.16 7.08 3.39
CV  0.00 0.01 0.02 0.03

�� = 0.95 % 68.26 21.73 6.81 3.20
CV  0.00 0.01 0.02 0.03

�� = 1 % 69.15 21.29 6.54 3.02
CV  0.00 0.01 0.02 0.03

�� = 1.05 % 70.02 20.85 6.29 2.85
CV  0.00 0.01 0.02 0.03

�� = 1.10 % 70.88 20.41 6.04 2.68
CV  0.00 0.01 0.02 0.04

�� = 1.14 % 71.56 20.05 5.84 2.55
CV  0.00 0.01 0.02 0.04

�� = 1.20 % 72.57 19.51 5.55 2.37
CV  0.00 0.01 0.02 0.04

�� = 1.25 % 73.40 19.06 5.32 2.22
CV  0.00 0.01 0.02 0.04

�� = 1.30 % 74.21 18.61 5.09 2.08
CV  0.00 0.01 0.02 0.05

�� = 1.35 % 75.01 18.17 4.87 1.96
CV  0.00 0.01 0.02 0.05

�� = 1.40 % 75.80 17.72 4.65 1.83
CV  0.00 0.01 0.02 0.06

�� = 1.45 % 76.57 17.27 4.44 1.72
CV  0.00 0.01 0.03 0.06
�� = 1.50 % 77.34 16.82 4.24 1.61
CV  0.00 0.01 0.03 0.06

4. Results

4.1. The CSS pattern across lognormal distributions

Table 1 presents the mean values of the Cp, Cf , Cr and Co quantities obtained across the 10000 applications of the CSS
method to each of the corresponding 10000 synthetic samples derived from continuous lognormal distributions under
various �� parameter values (note that for conciseness results for only 21 of the 41 parametrizations considered are shown).

The table is based on the scenario involving sample sizes of 30000 observations but it must be noted that the results
obtained under the four sample sizes of 1000, 10000, 30000 and 50000 observations are virtually identical; therefore,
to avoid redundancy, the discussion within this section and the figures referenced below also rely only on the scenarios
involving sample sizes of 30000 observations.



G.-A. Vîiu / Journal of Informetrics 12 (2018) 401–415 409

C
p
c
n
T
t
b
t

i
p
g
w
C
(
e
1
m
�

b
l
w
v
o
3

a
s
a

Fig. 1. CSS class composition across different parametrizations of continuous lognormal distribution.

For the case where �� = 1.14 – which corresponds to the strong version of the universality thesis – Table 1 shows the Cp,
f , Cr and Co values to be about 71.57, 20.05, 5.84 and 2.55%. Overall this is in good agreement with the 70–21–6–3% CSS
attern but an even closer fit to the pattern emerges for the case when �� = 1.05 and a 70.02–20.85–6.29–2.85% CSS class
onfiguration is obtained. Note that in both these cases the CV values associated with each individual quantity of interest is
egligible (at most 4%) meaning the variability of the results over the 10000 applications of the CSS algorithm is very limited.
his is in fact the case for all the four quantities across nearly all of the parametrizations considered: with the exception of
he more extreme cases (�� = 3–5) the CV for Cp, Cf and Cr is below 5%; more variability is present in the case of Co values
ut even here it is only for �� values greater than 1.3 that the CV moves beyond 5% and only for �� values greater than 1.8
hat the CV moves beyond 10%.

The different �� values considered yield diverse CSS class configurations but from the selected parametrizations presented
n Table 1 a clear trend is visible: as the value of the �� parameter increases the size of Cp also increases and this leads to the
roportional decrease in Cf , Cr and Co values. A visual rendition of this trend across the 41 parametrizations considered is
iven in Fig. 1. With each 0.05 incremental increase of the �� parameter the Cp value also increases, moving from about 53%
hen �� = 0.15 to almost 84% when �� = 2; for more extreme values (�� = 3–5) the percent of observations placed by the

SS algorithm in the class of poor performers increases to the point of almost encompassing the entire set of observations
Cp≈ 93, 97, 99%). In the case of Cf values between about 28% (when �� = 0.15) and 12.5% (when �� = 2) are obtained, with
xtreme �� values leading to ever decreasing Cf shares: about 6% when �� = 3 and 1% when �� = 5. For Cr values of about
1% are obtained in the lower spectrum of �� and values of about 2.5% are obtained when �� = 2, while extreme �� values
ake the Cr shares drop below 1%. Finally, in the case of Co values between about 7.5% (when �� = 0.15) and 0.8% (when
� = 2) are obtained; extreme �� values of 3, 4 and 5 also push Co near 0%.

The analysis of the distribution of the Cp, Cf , Cr and Co values – see the density graphs in Supplementary material 2 for a
etter illustration – reveals two additional facts: first, the 41 parametrizations considered yield more variability in the two

ower CSS classes (captured by Cp, Cf ) while the two higher classes (Cr , Co) tend to be more compact; second, despite the
ide range of values considered for the �� parameter, values for all four quantities tend to be clustered around some typical

alues which correspond to the general CSS pattern: most Cp values are concentrated between 60 and 80%, i.e. in the vicinity
f 70%, most Cf values are concentrated around 21%, most Cr values are concentrated around 6% and most Co values around
%.

Having presented these overall results – recall that they are based on continuous lognormal distributions – it is useful to

lso perform a reliability check of the large scale data simulations given the mathematical considerations from the previous
ection. Specifically, it is important to establish whether or not the Cp values obtained with the aid of computer simulations
re a good match for the more precise Cp values which can be obtained through integration of the lognormal probability
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Fig. 2. Comparison of Cp estimates over 41 lognormal parametrizations.

density function, as illustrated in Section 3.1. Fig. 2 shows that there is a near-perfect overlap of Cp estimates obtained
through integration with the Cp estimates obtained with computer simulations based on the continuous lognormal scenario.
However, this figure also shows that for the scenario involving discretized lognormal data the Cp estimates obtained tend to
deviate from the precise, integration-based values; the deviations occur for �� values below 1.5 and are more pronounced
for �� values close to 0.5 and especially for those below 0.5.

The CSS class configurations based on discretized synthetic data are in essence similar to those presented above for con-
tinuous data (see Supplementary material 2 for detailed data and graphical illustrations). While the results for the discretized
scenario lose the smoothness that characterizes continuous data (they are noisier, especially in the lower spectrum of ��
values where the effect of rounding in order to obtain discrete values has a significant impact on the resulting distribution
of observations) the same essential findings discussed for the continuous case also hold. First, under the strong lognormal
universality hypothesis (�� = 1.14) Cp, Cf , Cr and Co values close to the typical CSS pattern are obtained, namely 73.18%,
18.84%, 5.55% and 2.43%. Second, as the value of the �� parameter increases the size of Cp also tends to increase and this
leads to proportional decreases in Cf , Cr and Co values. Third, despite variation in the �� parameter the Cp, Cf , Cr and Co
values tend to be clustered around the typical CSS pattern.

4.2. Proportion of total accounted for by each CSS class

In addition to the way individual observations are allocated to specific CSS classes another type of analysis usually
presented when using the CSS method is the percent of total citations accounted for by each class. For example Albarrán and
Ruiz-Castillo (2011) report that on average class I accounts for 22.7% of total citations, class II for 33.3% and classes III and
IV for the remaining 44%. Very similar results are reported by Ruiz-Castillo and Waltman (2015). It is worth exploring what
shares of a total stock are accounted for by each CSS class when the underlying distribution the observations are derived
from is a lognormal one. These shares were computed for all computer simulations ran in the R software for the 41 lognormal
parametrizations and are reported in detail in Supplementary material 2. Table 2 and Fig. 3 offer a representation of the
results obtained for the continuous case (again, using mean results across the 10000 synthetic samples based on 30000
observations each). A complementary trend to the one affecting the percent of observations in each CSS class is present.

For the continuous case, as the �� parameter increases from 0.15 to 2 – and as the upper tail of the distribution becomes
increasingly heavy – the class of poor performers accounts for an ever decreasing share of the total (falling from about 47%
when �� = 0.15 to about 16% when �� = 2 and 1% when �� = 5) while the class of outstanding performers accounts for an ever
increasing share (rising from about 10% when �� = 0.15 to about 34% when �� = 2 and 70% when �� = 5). The intermediate
classes of fair and remarkable observations are substantially more stable than the extreme ones: the first accounts for about
30% of the total across most lognormal parametrizations, while the second accounts for about 20% of the total. For the specific
case of �� = 1.14 the first CSS class accounts for about 28% of the total, the second for 31%, the third for 20% and the fourth

for about 21%. Note that from Table 2 it is possible to see that for �� values close to 1 the results deviate from the empirical
findings cited in the previous paragraph: class I accounts for a greater share of the total than would be expected (roughly
30% instead of 23%) whereas classes III and IV, taken together, account for a lesser share than would be expected (roughly
38% instead of 44%). Note also that for all the parametrizations considered the CV associated with the per cent share of
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Table  2
Percentage of total accounted for by each CSS class and corresponding coefficient of variation across selected parametrizations of continuous lognormal
distribution.

Poor Fair Remarkable Outstanding

�� = 0.50 % 40.13 30.76 15.95 13.16
CV  0.00 0.01 0.01 0.01

�� = 0.55 % 39.17 30.88 16.27 13.69
CV  0.00 0.01 0.01 0.01

�� = 0.60 % 38.21 30.97 16.59 14.22
CV  0.00 0.01 0.01 0.01

�� = 0.65 % 37.26 31.06 16.90 14.78
CV  0.00 0.01 0.01 0.01

�� = 0.70 % 36.32 31.13 17.21 15.34
CV  0.00 0.01 0.01 0.01

�� = 0.75 % 35.38 31.18 17.51 15.92
CV  0.00 0.01 0.01 0.01

�� = 0.80 % 34.46 31.22 17.81 16.51
CV  0.00 0.01 0.01 0.01

�� = 0.85 % 33.54 31.24 18.11 17.11
CV  0.00 0.01 0.01 0.01

�� = 0.90 % 32.64 31.24 18.40 17.72
CV  0.00 0.01 0.01 0.01

�� = 0.95 % 31.74 31.23 18.68 18.35
CV  0.01 0.01 0.01 0.01

�� = 1 % 30.85 31.20 18.95 18.99
CV  0.01 0.01 0.01 0.01

�� = 1.05 % 29.98 31.15 19.22 19.64
CV  0.01 0.01 0.01 0.01

�� = 1.10 % 29.12 31.10 19.48 20.30
CV  0.01 0.01 0.01 0.01

�� = 1.14 % 28.44 31.04 19.68 20.84
CV  0.01 0.01 0.01 0.01

�� = 1.20 % 27.42 30.93 19.99 21.66
CV  0.01 0.01 0.01 0.01

�� = 1.25 % 26.60 30.82 20.23 22.35
CV  0.01 0.01 0.01 0.01

�� = 1.30 % 25.79 30.69 20.47 23.06
CV  0.01 0.01 0.01 0.01

�� = 1.35 % 24.98 30.56 20.68 23.77
CV  0.01 0.01 0.02 0.01

�� = 1.40 % 24.20 30.41 20.89 24.50
CV  0.01 0.01 0.02 0.01

�� = 1.45 % 23.42 30.24 21.10 25.24
CV  0.01 0.01 0.02 0.01
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�� = 1.50 % 22.66 30.06 21.29 25.99
CV  0.01 0.01 0.02 0.01

bservations accounted for by each CSS class is very low (at most 1%, even for the more extreme scenarios) meaning there
s a near complete homogeneity of these quantities across the 10000 applications of the CSS algorithm.

For the computer simulations involving discretized lognormal data the same general trends hold but, once again, with
he qualification that the overall results reflect the noise induced by the discretization process, especially in the lower end
f �� values.

.3. Discussion
Returning to the first research question formulated in Section 2.3 it seems that a pattern very close to the 70–21–9% rule
oes actually arise under the strong lognormal universality claim. With regard to the second question, which starts from
he premise of the weak version of the universality claim, it seems that the CSS pattern becomes manifest when the ��
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Fig. 3. Proportion of total accounted for by each CSS class under various lognormal parametrizations (continuous data).

parameter takes on values close to 1. Specifically, it seems that the CSS pattern or patterns very close to the most typical
one appear when the �� parameter takes values between about 0.8 (this leads to a 65.6–23–7.6–3.8% configuration for
continuous data) and 1.3 (74.2–18.6–5.1–2.1% configuration); �� values outside the 0.8–1.3 interval coincide with more
atypical CSS class configurations. One should bear in mind in this context that while the 70–21–6–3% pattern is the most
representative outcome empirically obtained through application of the CSS method, it is not a strictly ubiquitous one. In
fact, the studies mentioned in Section 2.1, beginning with Schubert et al. (1987), have found some scientific fields where
Cp can be as low as 60% or as high as 80%, meaning that for those fields Cf , Cr and Co also deviate from their typical values.
However, as the previous sections have shown, it is entirely possible to find parametrizations of the lognormal distribution
for which the application of the CSS method also yields atypical class configurations.

A direct implication of the current work is that in general it could be argued that virtually all field-level empirical results
obtained in previous studies with the CSS method – not only the typical 70–21–6–3% pattern but atypical class configurations
as well – could stem from particular realizations of a lognormal distribution. However, none of the studies making use of
the CSS method have also tested for conformity of the empirical citation counts to a lognormal distribution and, conversely,
no study demonstrating the fact that citation counts can accurately be modelled within the lognormal framework has also
analyzed the empirical data with the CSS method and presented the resulting patterns. This is an important knowledge gap
that should be addressed within future studies.

A critical aspect regarding the results obtained for the two research questions addressed in the present paper is the
connection between these results and the lognormal universality claims to which they relate. In essence, the results outlined
in the current work cannot be taken as confirmation of either the strong or of the weak universality claim. In fact, the
opposite may  be argued. First, the fact that the typical CSS pattern arises under an entire range (0.8 through 1.3) of ��
parameter values instead of only for the rigid 1.14 specification is a clear basis to reject the strong universality claim. Second,
although the results of the present work do not directly refute it, given the problem of indiscernibility of several heavy-
tailed distributions it is not possible to support even the weak universality claim. Several studies dealing with statistical
distributions demonstrate the fact that the lognormal distribution which is at the heart of the universality claims discussed in
this study is often indistinguishable from the power law distribution: Mitzenmacher (2003, p. 227) argues that “very similar
basic generative models can lead to either power law or lognormal distributions, depending on seemingly trivial variations”
and this often leads to debates about which model is more accurate in many fields of science; in a study focusing on citation
counts registered in Scopus Brzezinski (2015) notes that when the power law is a plausible model it is indiscernible from

alternatives such as the lognormal, Yule and power law with exponential cut-off distributions; Thelwall and Wilson (2014,
p. 837) also find that for articles published in one subject and one year (within the limits of a ten-year citation window) “the
hooked power law and lognormal distributions are approximately equivalent in their fit to citation data”. Consequently, while
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itation counts are generally well modelled by heavy-tailed distributions, these need not necessarily be of the lognormal
unctional form (which is what the weak version of universality would suggest), nor must they necessarily be characterized
y a single, rigid parametrization (as the strong version of universality would have us believe).

Given the problem of indiscernibility of several heavy-tailed distributions the truly remarkable scientometric fact may  not
e that the application of CSS consistently yields the 70–21–6–3% pattern, but rather that citation distributions in general
re severely skewed and amenable to modeling within the lognormal framework or with the closely related power law
istributions. Historically however, this latter issue has already been addressed. Its underlying explanation can be traced
o a phenomenon which has been discussed in the scientometric literature for decades under the guise of several avatars:
Matthew effect” (Merton, 1968), “cumulative advantage” (Price, 1976), “preferential attachment” (Barabási & Albert, 1999).
ll of these are different expressions for a principle better known as “success breeds success” which, in the case of citation
ounts, simply means that papers which already have a high number of citations will gain even more citations, while
hose with few (if any) citations will tend to retain this status. It has been shown (Redner, 2005) that a linear preferential
ttachment process can yield citation counts that are best accounted for by a lognormal model and much earlier work (Egghe

 Rao, 1992) has explained in a similar vein that lognormal distributions are in fact a logical consequence to be expected
henever processes obeying a law of proportionate effect are in operation. Thus, while the CSS pattern may  be somewhat

ew, the explanation for its underlying cause – i.e. for the phenomenon of skewed citation counts – seems to be relatively
ong-standing.

. Summary and concluding remarks

Previous empirical works leveraging the method of CSS at high levels of aggregation have documented a remarkable
attern in citation analysis: evaluating in terms of the four CSS hierarchical classes of citedness the scholarly output produced
cross most fields of science leads to a recurring 70–21–6–3% empirical pattern which indicates that despite their many
nherent differences most scientific fields are fundamentally similar in shape. This article has investigated whether or not
he CSS pattern can arise when citation counts are assumed to follow a lognormal distribution. This specific distribution
as singled out for analysis because, on one hand, it is the most successful distribution used to date for modelling citation

ata and, on the other hand, it is at the heart of several contentious universality claims in scientometrics. The results of the
resent article indicate that whenever citation counts are consistent with a lognormal model having a standard deviation
arameter close to a value of 1we  can expect the application of the CSS method to produce the approximate 70–21–9%
attern. If, however, citation counts are better captured by lognormal distributions with standard deviation parameters

urther away from 1 we can expect the application of the CSS method to produce class configurations that diverge from the
ypical pattern but even these more atypical configurations could still be representative for some scientific fields.

While it seems that in essence the CSS pattern is indeed explainable in the framework of the lognormal distribution of
itation counts across the sciences, this cannot in itself be taken as evidence in support of either the strong or of the weak
niversality claim. An important question which should be addressed by future work is whether or not the CSS pattern can
lso emerge from other distributions that could be used to model the full spectrum of citation counts. Some of the alternative
istributions mentioned in Section 2.2 are certainly worth a detailed comparative investigation.

As a final note, the answer to why virtually all fields of science are shown by CSS to be fundamentally similar may  be a
imple one: regardless of their technical or conceptual specificities, in all scientific fields the same cumulative advantage
rocesses are at work at the level of scholars and their scientific outputs. These cumulative advantage processes lead to
kewed productivity and skewed citation counts which the lognormal and perhaps other similarly heavy-tailed distributions
apture and which the CSS method simply translates to the specific four-point scale of poor–fair–remarkable–outstanding
erformance. Following this account it is not the CSS pattern that is ultimately remarkable, but rather the skewness of science
hat underpins it. The prominent skewness of science – manifest not in one, but in a plurality of functional forms – is in fact
he only characteristic of scientometric distributions that may  empirically be reasoned to be universal.
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