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This paper investigates the effects of multiplicative interaction between clustering and reach
on members' knowledge creation and patent value based on complex network analysis in
nanobiopharmaceuticals field. In order to avoid the high skew of patent value among patents,
we use the weighted patent value as a proxy index of the invention's innovation performance
rather than simple patent counts. The university–industry collaboration networks in the
emerging and rapidly evolving interdisciplinary field are examined at firm-level. We further
detect the impact of small world properties as well as the size of largest component on patent
value and find that small-world structure has parabolical effect on patent value at firm-level.
We add new evidence to the literature on this topic with an empirical investigation for the
university–industry patent collaboration in the nanobiopharmaceutical field. The findings
broaden and enrich the existing literature and can contribute to policy makers and relevant
managers when making decisions for university and firm locality as well as the choices of the
collaborators.
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1. Introduction

In today's highly competitive environment, a firm's ability to
catch upwith technological progress and continuously innovate
is crucial for its survival and growth. However, it is increasingly
difficult for firms to explore new technologies completely on
their own as a result of limited expertise and resources. There
has been a universal recognition that collaboration between
industry and research universities should be enhanced in order
to satisfy the growing demand for industrial innovation in the
global market place. The linkages among universities and
industry comprise significant parts of regional aswell as national
innovation systems [1]. Therefore, enhanced collaboration
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between them is crucial for the competitiveness of a country.
University–industry knowledge transfer is nowadays a key
research subject both in economics and management studies,
as well as a top entry in the science and technology policy
agenda of a number of developed and developing countries [2].

It has been certified that collaboration between indus-
try and universities is useful in reducing the cost of R&D,
decentralizing risks, and promoting these organizations to share
resources and attain complementary capability [3]. Such co-
operation has become increasingly crucial to the success of
industrial innovation for most countries. For example, Canadian
industry doubled its collaborationwith universities from1980 to
1995 [4]. Themodes of innovative cooperation between industry
and universities are largely of informal communication of skills
and knowledge, technology trade or technology transfer, formal
R&D collaboration (e.g., R&D alliance, R&Doutsourcing), training
of innovative personnel, and provision of skilled workforce and
graduates with knowledge and skills and so on [5].

Furthermore, social network analysis (SNA) is a hopeful
method for comprehending the complex relations between
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various actors, such as industry and universities, inventors
within organizations, organizations with regions, and so forth
[6]. It can be utilized for discriminating the structures in
social systems according to the relations among the system's
components rather than the attributes of individual cases [7].
Networking can be a complementary factor in situations where
cooperation and networking are required to attain economies
of scale and/or to integrate diverse skills, technologies and
competencies [8]. To our knowledge, there are several empirical
researches that have examined the impact of the collaboration
network characteristic on knowledge creation. Some research-
ers suggested that network cooperation or using awide range of
external actors and sources had a positive influence on in-
novation performance of firms [9]. Becker and Dietz [10]
explicitly acknowledged that cooperation with different part-
ners on research and development (R&D) had a positive effect
on innovation achievement. Similarly, Brioschi et al. [9] noticed
that social interactions based on trust and cooperation took a
major role in coordination of the activities among different
small- and medium-sized enterprises (SMEs). Uzzi and Spiro
[11] pondered the network structure of the creative artists who
made Broadway Musicals from 1945 to 1989, and inferred a
conclusion that the large-scale structure of the artists' collabo-
ration network notably affected on their creativity, and the
financial and artistic performance of their musicals. Schilling
and Phelps [12] worked over the impact of large-scale network
properties on the innovative output ofmembers of the network.
Chen and Guan [13] investigated the impact of small world
properties on innovation at national level with an empirical
investigation for the patent collaboration networks of 16 main
innovative countries during 1975–2006. Despite the recognized
importance of university–industry collaboration across various
S&T fields, relatively few studies [14–16] have examined the
impact of network topologies of the university–industry col-
laboration on member innovation, especially in interdisciplin-
ary field.

As for interdisciplinary field, of which we just spoke, in
this article, nanobiopharmaceutical technology, as an emerg-
ing and rapidly evolving field with the interdisciplinary
nature, is chosen. Nanobiopharmaceutical technology con-
notes the technology which can be used in production or
consumption for applications of nano and biotech in drug
discovery [17]. The challenge of nanotechnology is to exploit
nanoparticles for biomedical and biotechnology applications
to deliver the pharmaceutical in the right place at the right
time. Nanobiotechnology, which is currently being used to
explore the pathomechanism of disease, refine molecular
diagnostics, and aid in the discovery, development and delivery
of drugs [18], involving biological systemsmanufactured at the
molecular level, is a multidisciplinary field that has cultivated
the development of nanoscaled pharmaceutical delivery de-
vices [19]. Nanobiopharmaceutical technology represents
recent globally significant innovation trends at the intersection
of pharmaceutical technology and nanobiotechnology [17],
was firstly introduced by Jain in 2008 [18,20]. This field is
chosen for three reasons. First, carefully checking nanotech-
nology research demonstrates a large increase in research
activity in nanobiopharmaceutical field since 2000. Since 2000,
we have enjoyed a profusion of success producing bionano
research findings while taking the fancy of a great deal of
investment from pharmaceutical corporations setting up
advanced drug discovery operations. This field is a promising
research domain from latest scientific advances with potential
and enormous economic value. Nanobiopharmaceuticals is
emerging from recent scientific advances to which marketers
and investors attribute enormous commercial potential [17].
Second, nanobiopharmaceuticals is a generic and radical tech-
nology that is of high interest owing to its potential for value
creation across an extensive range of industries and applica-
tions. As a generic technology, nanobiopharmaceuticals offers
the potential for value creation across a broad range of in-
dustries and applications, whichwill get access to benefits for a
wide range of sectors of the economy and/or society [21].
Recently, many areas of nanobiopharmaceuticals have wit-
nessed a speedy increase in the number of patents filed [22].
Therefore, we are interested in development and application
of bionanotechnology within the domain of pharmaceutical
research. Third, it is widely acknowledged that nanobiophar-
maceuticals, as an emerging and rapidly evolving fieldwith the
multidisciplinary nature, is perceived not only by scientist and
technology developers but also by policy-makers as one of
crucial technologies of this century. New interdisciplinary
research areas often develop in the interstices of established
fields, through fusion or integration of some topics across the
existing parent fields [23]. It has great prospect to lead the
world into next new industrial revolution. Little is imple-
mented bibliometric analyses, however, about nanobiophar-
maceuticals. Lenoir and Herron [17] combine citation analysis,
text mining, mapping, and data visualization to gauge the
development and application of nanotechnology in China,
particularly in nanobiopharmaceuticals, and to estimate the
impact of Chinese policy on nanotechnology research produc-
tion. Zhao and Guan [24] studied the International collabora-
tion of three “giants” with the G7 countries in emerging
nanobiopharmaceuticals.

Preceding argument brings about the following questions:
how does the structure of a university–industry collaboration
network (the definition and details of the structure of a
university–industry collaboration network are described below
in Section 4.2) in the field of nanobiopharmaceuticals influences
the rate of knowledge creation among firms and universities in
the network? In particular, the network method provides a
systematic analytical tool to uncover the hidden structure and
to monitor the effectiveness of knowledge exchange among
researchers across industry and university. The goals of the
paper are two-fold: first, we study the impact of following two
key network properties, clustering and reach, on the innovative
output of members of the network. Second, we generate net-
work to detect the impact of small world properties as well as
the size of largest component on patent value of innovation
performance at firm level.

This study broadens the existing literature in several ways.
First, one of the challenges with using patents to measure
innovation is that the propensity to patent may vary with
industry, resulting in a potential source of bias. Previous quan-
titative studies have merely emphasized the patent counts yet
have considered little about the difference of patent value. We
use weighted patent value (WPV, the definition and its details
are described below in Section 4.3) as a measure of the in-
vention's innovation performance rather than simple patent
counts. Second, Schilling and Phelps [12] proposed that firms
embedded in alliance networks that exhibited both high
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clustering and high reach (short average path lengths to awide
range of firms) will have greater innovative output than firms
in networks that do not exhibit these characteristics. They find
support for this proposition in a longitudinal study of the
patent performance of 1,106 firms in 11 industry-level alliance
networks.Webroaden this proposition to firm-level university–
industry collaboration networks in an emerging interdisciplin-
ary field other than only alliances between firms. Third, despite
the several empirical studies of small world network and
innovation at national, industrial, discipline or regional level
[12,13,25,26], in this study, we develop and exploit a novel
database on university–industry patent collaboration for
the field of nanobiopharmaceuticals to investigate the
impacts of small world networks on the patent value of
innovation output at firm-level. Fourth, the study is relevant, as
nanobiopharmaceuticals is quite a new technology and there
are not manyworks that analyze this field under a quantitative
approach.

The remaining parts of the paper are organized as follows.
The next section discusses that the impact of clustering and
reach onweighted patent value (WPV) of the innovative output
of members, and develops the hypotheses to be tested. The
third section discusses the impact of smallworlds onWPVof the
innovative output of members, and develops the hypotheses
to be tested. The fourth section presents our data, methods for
network generation, variables, small world measures and
model specification. The fifth section presents the results of
the empirical analysis,whosemain implications are discussed in
the last section.
2. The impact of clustering and reach on WPV of the
innovative output

2.1. Clustering

The clustering coefficient (CC) is a measure of the local
graph structure. Co-authorship networks are liable to be
characterized by local clusters of individuals who are tied to
most of the others [27]. The actual CC is on a scale from zero
to one. Zero stands for no clustering, and one stands for full
clustering. For example, it is the probability of co-operation if
both have worked together a third author for coauthor
networks. If a network has a clustering coefficient of 0.6, it
signifies that there is 60% of a probability that two authors
both collaborating with a third author would also work
together each other. Clustering enhances the information
transmission capacity of a network.
2.2. Reach

The size of a network and its average path length (i.e., the
average number of links that separates each pair of members
in the network) also influences information diffusion and
novel recombination. A member's distance-weighted reach is
the sum of the reciprocal distances to every member that is
reachable from a given member, i.e., ∑

j
1=dmj, where dmj is

defined as the minimum distance (geodesic), d, from a focal
member m to partner j, where m≠ j. A network's average
distance-weighted reach is this gauge averaged across all
members in the network,
�
∑
n
∑
j
1=dmj

�
=n, where n is the

number of member in the network using distance-weighted
reach. It provides a significant gauge of the overall size and
connectivity of a network, even when that network has
manifold components, and/or component structure is chang-
ing over time [12].

Recent research has revealed that even sparse, highly
clustered networks can have high reach if there are a few
links generating bridges between clusters [28,29]. As Uzzi
and Spiro [11] noticed, bridges between clusters increase the
likelihood that different ideas and routines will come into
contact, facilitating recombinations that integrate both previous
conventions and novel approaches while reducing the average
path length and increasing reach. The combination of clustering
and reach enables an extensive range of information to be
interchanged and integrated rapidly, bringing about greater
knowledge creation [12]. In sum, we forecast a multiplicative
interaction between clustering and reach in their impact on
member knowledge creation. Consistent with the symmetrical
nature of such interactions [30], we have argued and anticipate
that the effect of clustering on members' knowledge creation
and patent valuewill be increasingly positive as reach increases,
while the effect of reach on patent value will be more andmore
positive as clustering increases.

Hypothesis 1. Members going in for alliance networks that
combine a high degree of clustering and reach will exhibit
more patent value than members in networks without these
characteristics.

3. The impact of small worlds on WPV of the innovative
output of members

In today's highly competitive society, a firm's performance
relies on how it can acquire resources within a network of
relationships [31]. Strategic research has been made to study
how network topology molds the evolution of competition in
various industries [32]. One type of social organization that has
obtained a great deal of attention for its possible ability to
impact creativity and performance is the small world network.

We focus our study at the firm level, allowing us to explore
the relationship between small world collaboration network
and WPV of the innovation output. It is argued that small
worlds can enhance the level of creativity and innovation. The
effects can be organized into three aspects, clustering, path
length and their interaction.When the clustering increases, the
more connected and cohesive nature should cultivate innova-
tion through the sharing of ideas, soft information and other
resources. Besides the more easy diffusion of creative material,
the greater level of repeated and third party links can also bring
about greater risk sharing and trust in a community [33]. High
clustering facilitates sanctions thatmake it less risky for people
in the network to trust one another. Over the long haul,
repetitive ties can reduce innovation cost by spreading the risk
of experimentation. Both the effects on creative material
diffusion and trust enhancement reveal that increased cluster-
ing can enhance the performance of the global network. While
on the other side, high clustering may bring about too much
common perspectives and unnecessary information, which
may harm innovation performance because inventors need to
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think differently in order to break existing prototypes [13]. As
Uzzi and Spiro [11] point, small world's effectmay be parabolic.
As the level of small world adds, separate clusters change into
more interlinked and linked by persons who understand each
other. These processes contribute creative material among
teams and help to establish a cohesive social organization
within teams that encourage risky collaboration around good
ideas. However, these benefits may rise only up to a marginal
value after which point they shift negative [34]. Past a certain
threshold, these same processes can be a hindrance for col-
laboration. Excessive structural connectivity decreases some of
the creative distinctiveness of clusters, which can make similar
pool of creative material. The ideas most probably flowing
ideas can be traditional rather than fresh opinions due to the
common information effect, and because newcomers discover
it difficult to have their ideas understood and accepted.

How can these opposing points of view work together?
We put forward that when the clustering is at a relative low
level, there are few links between friends of friends and the
global networks do not get necessary information, so increas-
ing clustering should enhance innovation performance because
it brings more effective creative material diffusion and risk
sharing. However, past a certain threshold, the positive aspect
becomes neglectable while negative aspect begins to work
noticeably to whittle down the innovation output.

These drivers all give rise to the expectation of a parabolic
relationship between network clustering coefficient and WPV
of innovation performance. Hence, our second hypothesis is:

Hypothesis 2. The relationship between network clus-
tering coefficient and WPV is parabolical. Specially, below a
medium level, clustering coefficient will correlate positively
with increased future WPV, while the correlation will turn
negatively when overtaking the medium level.

Independent of the medium clustering coefficient, the
shorter path length should also enhance inventor's innova-
tion performance for its ability of easier information transfer,
diverse ideas interaction and heterogeneous creative resource
diffusion [13,26].We anticipate a positive relationship between
decreased path length and WPV of innovation performance.
Thus we come to our third hypothesis:

Hypothesis 3. Decreased average path length of the
university–industry collaboration network will have a positive
effect on the future WPV for its member.

As discussed above, we suggest that higher clustering can
bring more positive effect when it is under the threshold and
more negative effect when the threshold is overtaken, while
shorter path length always has positive effects; thus it is
rational to put forward another parabolic relationship between
small world Quotient and WPV of innovation output. Thus we
come to our fourth hypothesis:

Hypothesis 4. The relationship between small world
Quotient and WPV of innovation performance is parabolical.
Specially, below a medium level, small world Quotient will
correlate positively with increased future WPV, while the
correlation will turn negatively when overtaking the medium
level.

A component is a subset of vertices in the graph each of
which is reachable from the others by some path through the
network. The largest component is the componentwith largest
sum of vertices belonging to that component [35]. In this study,
we discover that at the beginning of the network evolution, the
global networks are made up of numerous small components,
and then collaborations among these components connect
them together to shape one dominant large component. The
so-called largest component of a network measures the col-
lection of actors that are linked to each other by at least one
path of intermediaries [36]. The eroding components result in
the small-world network becoming increasingly isolated from
the greater outer network and this trend manifests in the
decreased formation of bridging ties between the occupants
[37]. As aggregation of members boosts information flow and
knowledge transfer, we imagine that the aggregation of iso-
lates and small clusters should correlate positivelywithWPV of
innovation performance [13]. Thus we come to our fifth
hypothesis:

Hypothesis 5. The size of largest connected component
will correlate positively with increased future WPV of the
members.

4. Data and methods

4.1. Data collection

We chose nanobiopharmaceutical field, which is character-
ized by a strong reliance on scientific developments and,
therefore (at least potentially) involves high levels of interac-
tion among the universities and firms involved in science and
those involved in industrial research. The empirical analyses
presented in this study draw on the Derwent Innovation Index
database (DII) because it is the most comprehensive database
covering the data of the main leading patent-issuing author-
ities including USPTO, JPO, EPO, World Intellectual Property
Organization (WIPO) and Sino Intellectual Patent Office (SIPO).

In carrying out a bibliometric analysis of nanotechnology
science, Hullmann and Meyer [38] used “nano*” as the query to
identify nanotechnology where * means wildcard, and men-
tioned that this is a pragmatic approach when the domain is
interdisciplinary and difficult to identify [39]. Similarly, nanobio-
technology documents are retrieved by using nano* and bio* as
the query [40]. The nanobiopharmaceuticals is the application of
nanotechnology and biotechnology to pharmaceuticals [18]. This
means that, dissimilar from the interdisciplinarity of two do-
mains (e.g., nanobiotechnology, biopharmaceutics and nano-
pharmaceutical), the multidisciplinary domain incarnates more
comprehensive intellectual information of nanotechnology, bio-
technology and pharmaceuticals, and is more difficult to identify.

We utilize the search strategy recommended by Lenoir
and Herron [17] in order to search and select the relevant
nanobiopharmaceutical patents for investigating our research
questions. Lenoir and Herron [17] estimated a series of search
efforts and provide a search strategy to select nanobiophar-
maceutical patents. This method uses the set of 32 bio- and
pharma-relevant Keywords Plus® terms including titles,
abstracts, key words identifying nanotech research publication
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production for the purpose of formulating a high-precision
query for bio- and pharma-nanotechnology documents. This
search strategy has empirically tested by Lenoir and Herron
[17] through a series of search efforts and the search results are
almost always deeply relevant to bio- and pharma-nanotech.

Furthermore, we also carefully check the front pages of
the patent documents retrieved by the queries to examine
and filter their relevance to nanobiopharmaceuticals, trying
to eliminate the false and retain the true.

The empirical analyses presented in this study draw on
the Derwent Innovation Index database (DII) because it is the
most comprehensive database covering the data of the main
leading patent-issuing authorities. More importantly, DII
provides the descriptive titles and concise front pages
rewritten by subject experts, which easily highlight informa-
tion about the domain of a patent and are used to help
exactly distinguishing if the samples we selected are relevant
for our research questions.

The query, written in SQL, searching for all records whose
KeyWords Plus® field matched any of the 32 terms is
performed by Lenoir and Herron [17] as follows:

mysql > select � from nano IDs

• where ID like “cytotoxicity” or ID like “immunoassay” or ID like
“glucose” or ID like “antibody” or ID like “singlemolecule” or ID
like “layered double hydroxides” or ID like “Ascorbic acid” or ID
like “alpha-cyclodextrin” or ID like “assay” or ID like “expres-
sion” or ID like “amplification” or ID like “poly(acrylic acid)” or
ID like “titanium-dioxide films” or ID like “cadmium-sulfide” or
ID like “block copolymers” or ID like “glucose-oxidase” or ID
like “anatase TiO2” or ID like “beta-cyclodextrin” or ID like
“recombination” or ID like “micellization” or ID like “Solgel” or
ID like “TiO2 films” or ID like “nanocrystalline tio2” or ID like
“acrylamide” or ID like “fluorescence probes” or ID like “paste
electrodes” or ID like “triton x-100” or ID like “oxidase” or ID
like “horseradish-peroxidase” or ID like “binding” or ID like
“photodegradation” or ID like “DNA hybridization”.

Therefore, we use the 32 bio- and pharma-relevant topic
terms and nano* together as the query to collect the patents.
In addition, we add to three prefixes, nano*, bio* and pharm*,
as the query to more completely collect the patents. Besides,
we use nanobio* (or bionano*) and pharm*, biopharm* and
nano*, nanopharm* and bio*, as well as nanobiopharm* (or
bionanopharm*) as four complementary queries [20]. Next,
we check carefully the abstracts of patents retrieved by the
queries to examine and sieve their relevance to nanobiophar-
maceuticals. This approach has identified more than 11,000
records in the DII database in the time frame of 1982–2009. The
total number of patents obtained by universities in the world is
2,624.

Throughout this study, patents only refer to the ones
pertaining to the field of nanobiopharmaceuticals unless
otherwise stated. Here we only think about last 10 years
(2000–2009), with speedy development of patents in
nanobiopharmaceutical research unless otherwise stated.
Here, university–industry collaboration patent refers to the
patent that is co-invented by at least one university and one
firm. The data comprise a panel data set containing 640 firms and
universities participating in university–industry collaboration
patents in the field from the global nanobiopharmaceutical
sector.

4.2. Alliance network

Network structure is defined as the pattern of direct and
indirect ties between actors. A general proposition is that
actors' differential positioning within a network structure has
an important impact on resource flows, and hence, on en-
trepreneurial outcomes [41]. Network structure is a signifi-
cant source of insight into network performance [42]. We
apply a rule to guide our construction of the university–industry
collaboration networks used in this study. Each alliance includes
at least one firm and a university that collaborate on at least a
patent in the field of nanobiopharmaceuticals. Any member in
each alliance is a firmor a universitywhichhas participated in at
least one university–industry collaboration patent in the field.
Thus, we set up a patent-member database about university–
industry collaboration, which is made up of patent and their
corresponding members of university–industry collaboration.
The patent-member database about university–industry collab-
oration permits us to construct a unipartite network, where
actors in the network are individual firms or universities which
has participated in at least one university–industry collabora-
tion patent in the field of nanobiopharmaceuticals, based upon
patent data from Derwent Innovation Index database in the
field. Each pair of actors is “linked” to each other by such
university–industry patent collaboration.

4.3. Dependent variable: Weighted patent value

One way that knowledge creation is instantiated is in the
form of inventions [43]. Knowledge embedded in artifacts such
as inventions stands for the “empirical knowledge” of organi-
zations [44]. Inventions thus offer a trace of an organization's
knowledge creation. Patents offer ameasure of novel invention
that is externally validated through the patent examination
process [45]. Patents mirror the inventive and innovative
evolution in modern technology, while scientific publications
mirror the state-of-the-art of science [46]. While patents are
the output of inventive activity, it is also widely acknowledged
that patents offer a trustworthy, though not ideal, measure of
innovative activity [47].

Economists for several decades have tried to apply patent
statistics to measure the returns to innovative activity and
the value of patent protection, as patent records are one of
the only quantifiable and publicly available products of
research and development. The use of patent statistics as
measures of economic value, however, has been confronted
with a lot of hurdles. Patent value is defined as the economic
benefit that the patent can bestow upon its owner. The proxy
of patent value should have a close relevance to an economic
reward or cost associated with ownership of the patent
[48]. Simple patent counts are not very revealing indicators
of economic value, as patents are very noisy measures of
innovative output with the distribution of patent value highly
skew and much of the incentive for innovation resting in the
very tail of the value distribution [49]. The use of patent counts
weighted by forward patent citations (that is, references to a
patent by later patents) and by other attributes of the patent
(for example, the number of claims) have been verified to be
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better measures of patent value [50]. This method has had only
limited success in identifying appropriate indicators of patent
value. For example, Harhoff et al. [51] discovered that even
within the relatively select cohort of full-term patents, citation
frequency only augments noisily with reported economic value.

An alternative approach has been to apply patent renewal
data, sincemany countries require the payment of a fee so as to
keep the patent in force [52]. The motivation for filing an
application inmultiple countries is that a patent will bestow its
owner monopoly only in the application country. Patent family
size can be defined as the number of countries in which the
patent is taken out [53]. It may be used as the basis to establish
more refined patent indicators, to research different proxies for
patent value or to explore the motivations and strategies of
patent applicants. Five uses of patent family data can be put
forward: (i) to avoid double counting; (ii) to neutralize home
advantage; (iii) to predict applications; (iv) to analyze the
internationalization of technology; and (v) to evaluate patent
value [54]. Generally speaking, the more valuable the applica-
tion to the applicant is, themore broadly the applicationwill be
filed [55]. If the applicant has filed or obtained patents inmany
different patenting authorities on the same invention, it is a
good bet that this patent endowswith value to the applicant or
his/her company. Based on this point, Mogee et al. [56]
recommended taking patent family size as a gauge of the
invention's private value. There is some evidence that, patent
family size is a better gauge of patent value than patent
citations [57]. Therefore, the patent value is estimated by
weighting patent family size in this study, which is referred to
as weighted patent value (WPV), where patent family size is
the weight associated with the patent. WPV can go a long way
toward removing the noise in simple patent counts and might
be just the sort of complimentary information needed so as to
enhance the precision of measures of innovation derived from
renewal and application data [58]. The more numbers a patent
has in its patent family, the higher is its weighted patent value.

One of the challenges for using patents to gauge innovation
is that the propensity to patent may vary with industry,
resulting in a potential source of bias [59]. We address this
potential bias in three ways. First, we sample only one
high-tech field: the field of nanobiopharmaceuticals. Innova-
tion was emphasized in this field. Second, the propensity to
patent may also differ due to firm characteristics [45]. We
endeavor to control for such sources of heterogeneity by using
covariate, Presample Patents (described below), and fixed and
random effects in our estimations. Third, we use patent family
size instead of simple patent counts as a measure of the
invention's patent value. Granted the use of patent value, the
next issue is how to go about conceiving a sensible weighting
scheme. A straightforward possibility is to weight each patent i
by the actual number of patent value in year t, denoted by Vit.
Thus, if wewant to compute an index of weighted patent value
(WPV) for, say, the field of nanobiopharmaceuticals in a given
year, t, we will have,

WPVit ¼ ∑
I
Vit

Here I is the set of patents issued by member m during
year t in the field. This linear weighting scheme then assigns
a value regarded as dependent variable. Therefore, we use
the weighted patent value as a proxy index of the invention's
innovation performance and effective measurement, rather
than a direct reflection of economic value (market value). The
reasons are as follows. The size of the patent family indicates
how widely an innovation is used [60]. The more numbers a
patent has in its patent family, the higher is its weighted patent
value. Therefore, the weighted patent value, where patent
family size is the weight associated with the patent, is a better
indicator of innovation performance than those traditional
indicators, such as simple patent counts, which have been
considered to be a proxy index of the innovation performance
in the mainstream in innovation management. Putnam [53]
and subsequently a number of authors have argued out that
information on patent family size may be particularly well
suited as an indicator of patent value [61]. Therefore, the
proposedWPV concept in the present study seems fit to be able
to contribute to the literature of innovation management.

4.4. Small world measures

Themost recent efforts in this tradition draw extensively on
graph theory and social network analysis techniques, to show
that the scientific co-authorship network is characterized by
the structural properties of small world networks [62]. Broadly
speaking, a small world is a network configuration that is both
highly locally clustered and has a short path length, two
network characteristics that are normally dissimilative [28].
This type of structure is thought to beparticularly important for
both the generation and the diffusion of knowledge.

To infer whether a network is a small world, Watts's model
[28] compares the actual network's characteristic path length
Lactual and clustering coefficient Cactual to a random graph of the
same size, where random graphs have both very low
characteristic path lengths and low clustering. In particular,
the closer the PL ratio (PL of the actual network/PL of a random
graph comparison) is to 1.0 and the more the CC ratio exceeds
1.0 (CC of the actual network/CCof the random graph
comparison), or simply the bigger the small world quotient
(Q), which is CC ratio/PL ratio, the larger the network's small
world nature. In random connected networks with large n (the
number of nodes) and k (the nearest neighbors of node), the
characteristic path length Lrandom can be defined as [28]:

Lrandom∼
ln nð Þ
ln kð Þ

The clustering coefficient of a node reflects the degree to
which a node's partners are also buddies with each other. In a
random network with n nodes and an average connection
number of k, the clustering coefficient can be reckoned according
to Watts [28]:

Crandom∼
k
n

4.5. Model specification 1

4.5.1. Independent variables

4.5.1.1. Clustering coefficient. To calculate the actual CC, we
decide how many pairs of artists have a shared associate, or
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how many triads are “closed” [27,63]. Three different con-
figurations can yield a triad: person A is connected to person
B who is connected to person C, both persons A and B are
connected to person C or both persons B and C are connected
to person A. Three links among persons A, B, and C consist of
a closed triad (i.e., a triangle). Thus, Clustering coefficient is a
standard way to make out how clustered these networks are
[64]:

C ¼ 3� number of triangles on the graphð Þ
number of connected triples of verticesð Þ

4.5.1.2. Reach. To capture the reach of each network for each
time period, we employ a gauge of average distance-weighted
reach [65]. This measure is calculated as

Average distance weighted reach ¼ ∑
n
∑
j
1=dmj

 !
=n

where n is the number of nodes in the network, and dmj is
defined as the minimum distance (geodesic), d, from a focal
node m to partner j, where m≠ j. Average distance-weighted
reach can range from0−n, with larger values indicating higher
reach. This is a compoundmeasure that takes into account both
the number ofmembers that can be reached by any path from a
given member, and the path length it takes to get to them. It
shuns the infinite path length problem typically associated
with disconnectednetworks bymeasuring only the path length
between connected pairs of nodes, and it offers a more
significant measure than the simple average path length
between connected pairs by factoring in the size of connected
components [12].

4.5.1.3. Clustering×Reach. Mentioned above, we forecast that
the combination of clustering and reach will have a positive
impact on members' WPV of innovation, and thus include the
interaction term, Clustering×Reach.

4.5.2. Firm-level control variables

4.5.2.1. Presample Patents. To control for unobserved hetero-
geneity in member's patenting, we follow the presample
information approach of Blundell et al. [66] and reckon the
variable Presample Patents as the totality of patents acquired
by a member in the 5 years prior to its entry into the sample.

4.5.3. Betweenness centrality
Betweenness centrality is on the basis of the number of

shortest paths passing through a vertex. Vertices with a high
betweenness play the role of linking different groups. In the
following formula [67], gjmk is all geodesics linking node j and
node k which pass through node m; gjk is the geodesic
distance between the vertices of j and k. The term gjmk/gjk
captures the probability that member m is involved in the
shortest path between j and k.

CB mð Þ ¼ ∑
j;k≠m

gjmk

gjk
In social networks, vertices with high betweenness are “pivot
points of knowledge flow in the network” [68]. Betweenness
centrality can reflect the transmission of technological knowl-
edge, which may promote the emergence of new technology
[69]. Betweenness centrality is the total of these evaluated
probabilities over all pairs of members (excluding the mth
member) in the network. It has a minimum of zero, obtained
whenm falls on no links. Itsmaximum is (g−1)(g−2)/2, which
is the number of pairs of nodes not including m, we can
normalize it as:

C′
B mð Þ ¼ 2CB mð Þ

g−1ð Þ g−2ð Þ

to make the gauge comparable across time and networks.

4.5.3.1. Degree. Network nodes (actors) which directly
connected to a specific node are in the neighborhood of that
specific node. The number of neighbors is defined as nodal
degree, or degree of connection. Granovetter [70] proposed that
nodal degree is proportional to probability of obtaining resource.

4.5.4. Network control variables

4.5.4.1. Network density. We control for the overall density of
the network with the variable network density, calculated for
each network and time period. We do so because the rate and
extent to which information diffuses increases with density [71].

4.5.4.2. Centralization. The centralization of a network is higher
if it contains very central vertices as well as very peripheral
vertices. To control for network centralization, we make use of
Freeman's index of group betweenness centralization [67],
computed for each network and time period. Group between-
ness centralization for network j in year t is calculated as follows:

Betweenness centralizationjt ¼
Xg
m¼1

CB
′ n�ð Þ−CB

′ nmð Þ
h i !

=g−1

Here CB
′ n�ð Þ is the largest realized normalized between-

ness centrality for the set of members in network j in year t,
CB

′ nmð Þ is the normalized betweenness centrality for member
m (in network j for year t), and g is the number of members.
This variable is expressed as a percentage and can range from
zero, where all members have the same individual between-
ness centrality, to 1, where one member links to all other
members [12].

4.5.4.3. Firm R&D intensity. Because R&D expenditures are not
available for members, in investigating the robustness of our
results, we utilize a control variable (stock of patents obtained
in the past 4 years) that has been demonstrated to be highly
correlated with annual firm-level R&D expenditures [12].

The dependent variable in this study,WPV, is a count variable
and takes on only nonnegative integer values. The linear
regression model is inadequate for modeling such variables
because the distribution of residuals will be heteroscedastic
nonnormal. A Poisson regression approach is appropriate to
model count data.However, the Poissondistribution includes the
strong assumption that the mean and variance are equal. Patent
data often exhibit overdispersion, where the variance exceeds
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the mean. In the presence of overdispersion, coefficients will be
evaluated consistently, but their standard errors will generally
be underestimated, giving rise to spuriously high levels of
significance. A generally utilized alternative to the Poisson
regression model is the negative binomial model. The negative
binomial model is a generalization of the Poisson model and
allows for overdispersion by incorporating an individual, un-
observed effect into the conditional mean [72]. The panel data
performance of the negative binomial model accommodates
explicit control of persistent individual unnoticed effects
through both fixed and random effects.

A final estimation issue concerns the suitable lag structure of
the independent variables. Based on previous research that
investigates the relationship between interfirm alliances and
innovation [12,73], we make use of alternative lags of our
independent variables relative to our dependent variable. We
evaluate models using one-year, two-year, and three-year lags.
We do so to seek after the robustness of our findings across
alternative specifications. All models are estimated with Stata
10.0. The model we evaluate takes the general form provided
below. Variables are indexed acrossmembers (m), and time (t):

WPVmtþ1 2;3ð Þ

¼ f ðClusteringt ; Reacht ; Cluster � Reacht ; Centralitymt ; Degreemt ;

Centralizationt ; Densityt ; PresamplePatentsmt ; 2003; 2004;
2005; 2006; 2007Þ

4.6. Model specification 2

In order to explore the relationship between small world
nature in university–industry collaboration network and
WPV of innovation output, the conditional mean of the
negative binomial patent function for memberm in year t+1
is described in Eq. (1):

γm;tþ1 ¼ E
�
WPVm;tþ1

���Intensity; Inventors; Corp; LC;
CCration; CCration2; PLration; Q ; Q2

�
¼ expðα0 þ α1Intensitym;t−4−t−1

þα2Inventorsm;t−4−t þ α3Corpm;t−4−t

þα4LCm;t−4−tCCrationm;t−4−t þ α6CCration2m;t−4−t

þα7 PL rationm;t−4−t þ α8Qm;t−4−t þ α9Q
2
m;t−4−tÞ

where γm,t+1 represents the conditional expected number of
WPV of the patents granted to memberm in year t+1, and it is
decided primarily by R&D expenditures, personnel, cross-
border corporation and small-world structure in previous
years. However, because R&D expenditures are not available
for most of members, we make use of a control variable-
intensity (stock of patents obtained in the past 4 years) that has
been shown to be highly correlated with annual firm-level R&D
expenditures [12]. In order to evaluate the impact of small
world and the size of largest component during five-year
moving windows on the next year patent output, dependent
variable is calculated in year t+1 while all independent
variables with an exception of intensity are calculated from
years t−4 to t.1 Dependent variable WPVm,t+1 is WPV of
1 Different lags and window sizes did not demonstrate substantively
different results.
patents granted to member m in year t+1. There are six
explanatory variables. The size of the largest component (LC) is
counted as the proportion of members included in the largest
connected component of the network. Clustering coefficient is
gauged by CCration and its squared term CC ration2, while path
length is gauged by PL ration. Small world nature is gauged both
as linear (Q) and squared terms (Q2), too. All these network
indexesmentioned above are calculated for thenetwork formed
for memberm during year t−4 to t.

The model specification 2 also contains control variables
for R&D expenses, personnel and cross-border co-patents, as
these factors are imperative for patent output. We use R&D
intensity mentioned above to control the expenditure input
for member. The personnel are controlled by the number of
inventors for member m to account for the number of people
engaged in invention. The cross-border collaborations (Corp)
are controlled by the number of institutions in the five-year
networks with at least one other member [13].

5. Results

5.1. Development trend of university–industry collaboration

In order to more completely seek for the development
trend of university–industry collaboration and predict this
development trend in the field, the collected data are then
preprocessed as follows. The online Loglet Lab curve fitting
system2 is adopted to fit the collected data during 1982–
2009. The following three parameters are provided by
automatic computation of the curve fitting system and can
be made a choice by operator's own judgment: (1) ceiling
value; (2) growth time; (3) midpoint [74].

In Fig. 1we present the development trend forecast using the
Loglet Lab S-curve model for the amount of university–industry
collaboration patent. As shown by Fig. 1, the development tend
has the growth time of 9.4 years, and the inflection point of
the development trend occurs at year 2005 if the development
trend analyzed is set to begin at year 1991when first university–
industry patent was invented in the field of nanobiophar-
maceuticals. According to Fig. 1 and the idea of bibliometrics
[75], university–industry collaboration patent would continue to
grow about 9.4 years after the inflection point, 2005 and will
then reach the predicted saturation time in the field. University–
industry collaboration patent will be invented about 91.4 cases,
the ceiling value, pertinent to nanobiopharmaceuticals per year
after it reaches the predicted saturation time.

Similarly, in Fig. 2 we present the development trend
forecast using the Loglet Lab S-curve model for the amount of
corresponding member of university–industry collaboration
patent. Firms and universities are gradually linking together
over time.

According to Figs. 1–2, we find that although nanobiophar-
maceuticals has witnessed a sharp increase in the number of
patents, university–industry collaboration research develops at a
relative slow pace, indicating that they lack the ability to work
hard together to exploit the potential economic value of their
patents in the field. Theremay be following three reasons for this
2 http://phe.rockefeller.edu/LogletLab/.

http://phe.rockefeller.edu/LogletLab/


Fig. 1. Development trend forecast for the amount of university–industry collaboration patent.
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relatively slow pace. First, in terms of the supply and demand,
according to level of technology development and stage in the
product cycle, the scope of industry networks maybe are
sufficient at this stage and they do not need to interact with
universities. Second, some firms prefer not to collaborate with
universities because: (i) lack of efficient communication chan-
nels for the research results; (ii) the research results are difficult
to commercialize; (iii) the research results are immature; (iv)
the research results have high uncertainty from the market
place perspective; and (v) unsupportive corporate culture and
confidentiality issue considering the high competition in this
industry. Third, in terms of mission orientation of universities,
most of the research activities of universities are not market
oriented and mainly focus on knowledge generation and
accumulation. The researchers of these institutions often pursue
the technology novelty and seldom consider the market
prospects of their research work [1].
Fig. 2. Development trend forecast for the amount of me
5.2. Has the interaction of Clustering and Reach a positive effect
on member's patent value?

The preliminary bibliometric investigations and analyses
above lead readers to grasp the general development profiles
for the university–industry collaboration in the field. In next
analysis, we test our hypothesis that predicts a positive effect
of the interaction of Clustering and Reach onWPV of member's
innovation. The interaction term, Clustering×Reach, does not
gain statistical significance at conventional levels in the model
specified with a three-year lag, using either fixed or random
firm effects (model 9). The coefficient for Clustering×Reach is
positive and statistically significant in models using both one-
and two-year lags (models 3 and 6). This result is suitable for
models using both fixed and random firm effects. Thus, our
hypothesis obtains strong support in models using one- and
two-year lags. Our results are similar with the results obtained
mbers of university–industry collaboration patent.

image of Fig.�2


Table 1
Panel negative binomial regression models with fixed effects (N=640; obs=6219).

WPVmt+1 WPVmt+2 WPVmt+3

1 2 3 4 5 6 7 8 9

Fixed effects
Constant −6.865⁎⁎⁎

(0.571)
−9.847⁎⁎⁎

(0.673)
−2.686
(1.932)

−6.239⁎⁎⁎

(0.583)
−6.307⁎⁎⁎

(0.617)
11.967⁎⁎⁎

(2.087)
−1.511⁎⁎

(0.591)
−1.105⁎

(0.584)
1.788
(1.955)

Density 4.927⁎⁎⁎

(0.995)
−3.926⁎⁎⁎

(1.260)
−12.486⁎⁎⁎

(2.476)
9.073⁎⁎⁎

(0.898)
10.804⁎⁎⁎

(1.048)
−12.543⁎⁎⁎

(2.683)
4.131⁎⁎⁎

(0.853)
5.896⁎⁎⁎

(0.961)
2.106
(2.615)

Average distance −4.172⁎⁎⁎

(0.507)
−7.190⁎⁎⁎

(0.606)
−3.350⁎⁎⁎

(1.139)
−3.518⁎⁎⁎

(0.523)
−3.250⁎⁎⁎

(0.540)
−6.371⁎⁎⁎

(1.176)
−0.566
(0.541)

−0.549
(0.536)

−2.065⁎

(1.114)
Centralization −267.208⁎⁎⁎

(33.907)
−429.266⁎⁎⁎

(38.851)
−197.016⁎⁎⁎

(70.487)
−292.035⁎⁎⁎

(33.665)
−290.393⁎⁎⁎

(38.040)
−300.117⁎⁎⁎

(75.242)
−147.672⁎⁎⁎

(42.430)
−120.046⁎⁎⁎

(41.563)
−29.800
(71.670)

Centrality 1.237⁎⁎⁎

(0.432)
1.248⁎⁎⁎

(0.422)
1.218⁎⁎⁎

(0.422)
1.020⁎⁎

(0.473)
1.061⁎⁎

(0.480)
0.999⁎⁎

(0.475)
1.589⁎⁎⁎

(0.477)
1.540⁎⁎⁎

(0.477)
1.523⁎⁎⁎

(0.476)
Degree 0.022⁎⁎⁎

(0.029)
0.040⁎⁎⁎

(0.030)
0.041⁎⁎⁎

(0.029)
0.004⁎⁎⁎

(0.030)
0.005⁎⁎⁎

(0.031)
0.011⁎⁎⁎

(0.031)
0.079⁎⁎

(0.034)
0.059⁎

(0.035)
0.059⁎

(0.035)
Intensity 0.261⁎⁎⁎

(0.035)
0.254⁎⁎⁎

(0.035)
0.244⁎⁎⁎

(0.035)
0.224⁎⁎⁎

(0.038)
0.224⁎⁎⁎

(0.038)
0.205⁎⁎⁎

(0.038)
0.159⁎⁎⁎

(0.042)
0.167⁎⁎⁎

(0.042)
0.162⁎⁎⁎

(0.042)
Presample 0.190⁎⁎⁎

(0.032)
0.183⁎⁎⁎

(0.031)
0.174⁎⁎⁎

(0.031)
0.156⁎⁎⁎

(0.034)
0.155⁎⁎⁎

(0.034)
0.140⁎⁎⁎

(0.034)
0.091⁎⁎⁎

(0.038)
0.100⁎⁎⁎

(0.038)
0.096⁎⁎⁎

(0.038)
Clustering 3.351⁎⁎⁎

(0.335)
−3.410⁎⁎

(1.737)
−0.770⁎⁎⁎

(0.190)
−17.669⁎⁎⁎

(1.850)
−0.239
(0.179)

−2.973⁎

(1.772)
Reach −0.822⁎⁎⁎

(0.127)
−2.220⁎⁎⁎

(0.377)
0.334⁎⁎⁎

(0.113)
−3.415⁎⁎⁎

(0.425)
−0.203⁎

(0.118)
−0.793⁎⁎

(0.399)
Clustering×Reach 3.252⁎⁎⁎

(0.823)
8.340⁎⁎⁎

(0.909)
1.344
(0.867)

Log likelihood −6443.515 −6360.593 −6352.573 −6427.564 −6419.503 −6373.840 −6367.519 −6357.421 −6356.211

Notes: ⁎pb0.1, ⁎⁎pb0.05, ⁎⁎⁎pb0.01.
Standard errors are in parentheses.
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by Schilling and Phelps [12], and the coefficient for Clustering×
Reach is positive and statistically significant in models using
both two- and three-year lags in their results.

In order to deeply understand the implication of the
interaction effect, we should understand the nature of the
coefficients for Clustering and Reach in Models 3 and 6 in
Tables 1 and 2, using model specification 1. The estimated
coefficients for Clustering and Reach in these models are
simple effects rather than true main effects owing to the
significance of the interaction term [30]. Consequently, the
effect of each on WPV is conditioned on the other variable
taking on the value of zero. For example, the coefficient
estimate of −17.563 for Clustering in Model 6 (random
effects) supposes that the value of Reach is equal to zero
(thus removing the interaction effect with Reach). Thus, the
negative sign of the coefficient for Clustering cannot be
interpreted as a negative (main) effect of Reach onWPV [12].
While the impact of Clustering is indeed negative when
Reach is equal to zero, the effect becomes positive when
values of Reach exceed some value (the range of Reach is
1.470–2.638).

Similarly, the effect of Reach is negative (although not
statistically significant) when Clustering is zero, but becomes
positive for values of Clustering greater than some value (the
range of Clustering is 0–1). Our hypothesis is underpinned by
the fact that the impact of Clustering or Reach will be positive
when the other takes a relatively small value, and augments
its positive effects as the other increases. These mutually
reinforcing impacts are in conformity with the symmetrical
nature of multiplicative interaction effects [30].
The results connected with the control variables are also
worthy of discussion. The effect of betweenness centrality
on subsequent members' WPV achieves statistical signifi-
cance in any of the estimated models. However, the effect
of betweenness centralization on subsequent members' WPV
achieves significant negative effect in almost all of the
estimated models. One elucidation of this maybe is following
reasons. On the one hand, betweenness centrality represents
an actor's position within the shortest path between two
other actors, which implies that the actor can control
the interactions between the two nonadjacent actors and
function as a point of control in the communication [67]. One
the other hand, if a network has a high level of betweenness
centralization, the emerging core–periphery structure may
result in preferential attachment. This results in excessively
dependence on center nodes, and leaves peripheral nodes
relatively detached.

The intensity variable has positive and significant effect
on members' WPV in all models. R&D expenditures invest-
ment is the main input in the innovation system, which is a
direct result of the push for advancement in science and
technology. However, Presample patents haven a statistically
significant positive effect on members' (WPV) in all models.
It indicates its importance as a control for firm-level
unobserved heterogeneity [12]. Degree has positive and
significant effect on members' WPV in all models as we
expected. The diffusion of knowledge is vital for collaboration
researchers in a large, intricate, and fast changing society. The
firms can offer the universities with market information and
user feedback; while universities play vital roles not only as



Table 2
Panel negative binomial regression models with random effects (N=640; obs=6219).

WPVmt+1 WPVmt+2 WPVmt+3

1 2 3 4 5 6 7 8 9

Random effects
Constant −6.581⁎⁎⁎

(0.569)
−9.658⁎⁎⁎

(0.672)
−2.62
(1.922)

−5.959⁎⁎⁎

(0.582)
−6.073⁎⁎⁎

(0.617)
12.071⁎⁎⁎

(2.078)
−1.357⁎⁎

(0.588)
−0.982⁎

(0.583)
2.029
(1.944)

Density 4.507⁎⁎⁎

(0.994)
−4.361⁎⁎⁎

(1.258)
−12.748⁎⁎⁎

(2.459)
8.649⁎⁎⁎

(0.898)
10.271⁎⁎⁎

(1.047)
−12.871⁎⁎⁎

(2.6680)
3.781⁎⁎⁎

(0.854)
5.432⁎⁎⁎

(0.961)
1.490
(2.599)

Average distance −3.918⁎⁎⁎

(0.505)
−6.981⁎⁎⁎

(0.606)
−3.211⁎⁎⁎

(1.134)
−3.256⁎⁎⁎

(0.522)
−2.985⁎⁎⁎

(0.542)
−6.557⁎⁎⁎

(1.171)
−0.723
(0.538)

−0.726
(0.536)

−2.301⁎⁎

(1.108)
Centralization −250.790⁎⁎⁎

(33.778)
−417.167⁎⁎⁎

(38.792)
−188.936⁎⁎⁎

(70.167)
−275.123⁎⁎⁎

(36.572)
−276.016⁎⁎⁎

(38.045)
−310.431⁎⁎⁎

(74.965)
−137.699⁎⁎⁎

(42.216)
−111.978⁎⁎⁎

(41.477)
−18.100
(71.310)

Centrality 1.486⁎⁎⁎

(0.387)
1.487⁎⁎⁎

(0.375)
1.460⁎⁎⁎

(0.375)
1.292⁎⁎⁎

(0.426)
1.338⁎⁎⁎

(0.433)
1.248⁎⁎⁎

(0.4290)
1.841⁎⁎⁎

(0.426)
1.805⁎⁎⁎

(0.427)
1.786⁎⁎⁎

(0.426)
Degree 0.005⁎⁎⁎

(0.029)
0.011⁎⁎⁎

(0.029)
0.012⁎⁎⁎

(0.029)
0.025⁎⁎⁎

(0.030)
0.022⁎⁎⁎

(0.030)
0.018⁎⁎⁎

(0.030)
0.046⁎⁎⁎

(0.034)
0.029⁎⁎⁎

(0.034)
0.030⁎⁎⁎

(0.034)
Intensity 0.298⁎⁎⁎

(0.034)
0.293⁎⁎⁎

(0.034)
0.283⁎⁎⁎

(0.034)
0.257⁎⁎⁎

(0.038)
0.257⁎⁎⁎

(0.038)
0.238⁎⁎⁎

(0.038)
0.194⁎⁎⁎

(0.046)
0.199⁎⁎⁎

(0.046)
0.194⁎⁎⁎

(0.046)
Presample 0.220⁎⁎⁎

(0.031)
0.214⁎⁎⁎

(0.031)
0.206⁎⁎⁎

(0.031)
0.182⁎⁎⁎

(0.034)
0.182⁎⁎⁎

(0.034)
0.167⁎⁎⁎

(0.034)
0.120⁎⁎⁎

(0.041)
0.126⁎⁎⁎

(0.041)
0.122⁎⁎⁎

(0.041)
Clustering 3.358⁎⁎⁎

(0.335)
−3.292⁎

(1.730)
−0.773⁎⁎⁎

(0.190)
−17.563⁎⁎⁎

(1.843)
−0.247
(0.179)

−3.096⁎

(1.763)
Reach −0.803⁎⁎⁎

(0.127)
−2.179⁎⁎⁎

(0.375)
0.364⁎⁎⁎

(0.112)
−3.369⁎⁎⁎

(0.424)
−0.171
(0.118)

−0.787⁎⁎

(0.398)
Clustering×Reach 3.197⁎⁎⁎

(0.819)
8.288⁎⁎⁎

(0.905)
1.400
(0.862)

Log likelihood −9031.821 −8947.154 −8939.319 −9054.095 −9045.965 −9000.464 −9012.409 −9003.792 −9002.465

Notes: ⁎pb0.1, ⁎⁎pb0.05, ⁎⁎⁎pb0.01.
Standard errors are in parentheses.
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the creators of new technology but also as the suppliers of
the much desired capable personnel. Therefore, the R&D
capability of them can be improved through such kind of
cooperation.

Among the other variables in the models, most were not
consistent in terms of sign and significance. Thismight be partly
owing to the moderate-to-large correlations among the net-
work measures (i.e., Centralization, Density, Reach, Clustering,
and Clustering×Reach) [12]. This multicollinearity may impact
on the robustness of our main finding because parameter
estimates are unstable to very small changes in the data when a
good deal of collinearity is present, sometimes leading to the
signs on estimated coefficients to flip (known as the “wrong
sign” problem) [76]. To study the impact of multicollinearity on
our main result, we rerun each of the models in Tables 1 and 2
with centralization, density and degree removed, respectively
(not reported here). The results for Reach, Clustering, and
Clustering×Reach keep substantively unchanged across all
models.
5.3. Has small world collaboration network properties a positive
effect on member's patent value?

The panel data implementation of the negative binomial
model during the reference period (2000–2009) accommo-
dates explicit control of persistent individual unobserved
effects through both fixed and random effects. The fixed-
effects negative binomial model is favored. A Hausman test
refuses randomeffects specification at the 0.1% level. Table 3 lists
summary statistics average per year usingmodel specification 2.
The mean of small world Q is 516.649, which verifies the
existence of small world characters.

Table 4 presents our regression analysis of WPV using
model specification 2. At the beginning model 1 takes into
account the control variables. Then we consider the size of
the largest component measure in model 2 and small world
measures in models 3 and 4. Here we utilize two specifica-
tions of the small world model as previous study [11,13]. We
first separately embrace the PLration and CCration along
with its square in model 3. Then we look into their
interaction term Q and its square in model 4. The intensity
variable is positive and significant effect on members' WPV
in all models. It indicates that R&D expenditures have
significant positive relationships with WPV. It is generally
convinced that more R&D capital can bring more innovation
output. Both personnel and the cross-border corporations
have positive relationships with WPV of patent output but
they fail to reach a 10% level significance in some of the
models. As mentioned above, one explanation for the results
could be that lack of efficient communication channel be-
tween firms and universities is an important barrier. Lack
of skilled persons and lack of innovation-relevant informa-
tion (including technology and market information) could
be other important barriers on innovation as nanobiophar-
maceuticals is quite a new technology.

The size of largest component shows strong influence on
members' subsequent WPV, which is consistent with the
results obtained by Fleming [26] and contradictory to the
results obtained by Chen and Guan [13]. Isolates and small
components that did not have been involved in the largest
component would be left without access to new ideas and



Table 3
Summary statistics (n=640).

Variable Mean Std. dev. Min Max

WPV 2.731 5.701 0.100 63.600
Intensity 1.520 3.266 0.001 40.100
No. of inventors 2.616 3.917 0.200 41.100
No. of cross-border corporations 3.993 6.232 0.100 64.200
Largest component size 0.098 0.059 0.052 0.235
Clustering coefficient ratio 128.854 79.703 21.636 239.326
Path length ratio 0.260 0.052 0.207 0.376
Small world Q 516.649 305.206 57.557 831.254
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results and thus their creativity would be hampered. In this
condition, as the creativity materials are limited, if they do
not enter into the largest component, there would be less
opportunities to access new ideas and information [26].

We forecast a parabolical relationship between our
network's level of small world nature and the subsequent
WPV of patent output. Results of models 3 and 4 are both
consistent with our prediction. The linear term of clustering
coefficient ratio is positive and significant, and the quadratic
term is negative and significant, which together display
an overturned U-shaped relationship between clustering
and WPV of patent output. As expected, path length has a
negative and significant contribution to WPV, implying
thatshorter path length can bring moreWPV. Their interaction
term, i.e., the small world Q is positive and significant, and the
squared term Q2 is negative and significant, which together
display an overturned U-shaped relationship between small
world nature and WPV of patent output, implying that an
intermediate level of small world nature would better enhance
WPV of innovation performance, while low and high levels of
it may get in the way of WPV of innovation [13].

In sum, the results of the empirical study verify our
hypothesis of positive and statistically significant impact be-
tween Clustering×Reach and innovation output using one- and
two-year lags. While it failed to confirm statistical significance at
conventional level with a three-year lag. The results of the
empirical study also verify our hypotheses of the parabolic
relationship between clustering coefficient and WPV of innova-
tion performance, the negative relationship between path length
and WPV of innovation performance, the parabolic relation-
ship between small world quotient and WPV of innovation
Table 4
Conditional fixed-effect negative binomial models of patent value in year t+1.

Variable Model 1 Mode

Intensity 0.026⁎⁎⁎ (0.003) 0.024
No. of inventors 0.002 (0.003) 0.001
No. of cross-border collaborations 0.003⁎⁎ (0.005) 0.011
Largest component size 6.757
Clustering coefficient ratio
Clustering coefficient ratio squared
Path length ratio
Small world Q
Small world Q2

Constant −2.189⁎⁎⁎ (0.040) −1.5
Log likelihood −6683.453 −65

Notes: ⁎pb0.1, ⁎⁎pb0.05, ⁎⁎⁎pb0.01.
Standard errors are in parentheses.
performance, and the positive relationship between the size
of largest component and WPV of innovation performance, as
described in Hypotheses 2–5.

6. Concluding remarks

This research makes up the existing literature by provid-
ing an empirical investigation of the impact of network
property for university–industry collaboration network on
WPV of the innovative output at firm level. This paper
illustrates members taking a part in alliance networks that
combine a high degree of clustering and reach will display
more WPV of knowledge creation than members in networks
without these characteristics. This study also shows that
small world structure does profit WPV of innovation but it is
limited to a special scope after which the impacts reverse.
Our results offer suggestions to policy makers and managers.
They can take account of social networks when making
decisions for technology, industry or firm location. Their
decisions impact on the formation of social networks and
then social networks influence their performance. When the
networks they participated in are small world networks, they
would have more chances to acquire fresh and unfamiliar
information easily. Therefore, when managers select positions
to locate their firms and universities, the social networks
should be thought over.

The firm agglomeration should be maintained at moderate
level rather than too dispersed or too gathered together. If too
scattered, the communications within industry and university
would be hard; if too converged, it would induce much
repetitive and redundant information and then newcomers
would discover it difficult to have their ideas understood and
accepted. Both too high and too low agglomerationwould hold
back innovation activities. Therefore, policy makers should
consider both conditions to develop the social networks to
appropriate small world characteristic [13,77].

While at the firm level, knowledge diffusion is a two-edged
sword. On the one hand, the participation in the network can
make their technology spillover and contribute to others. On
the other hand, they can also obtain spillover and retribution
from others [78]. Firms can go into the networks by employ-
ing employees from competitors, universities, suppliers or
partnering with them. The policy makers can motivate the
network formation and the knowledge diffusion by encouraging
l 2 Model 3 Model 4

⁎⁎⁎ (0.004) 0.028⁎⁎⁎ (0.003) 0.025⁎⁎⁎ (0.004)
⁎⁎ (0.005) 0.001⁎⁎ (0.003) 0.002⁎ (0.003)
⁎⁎ (0.003) 0.010⁎ (0.005) 0.009 (0.006)
⁎ (0.577)

0.021⁎⁎⁎ (0.002)
−0.001⁎⁎⁎ (0.001)
−2.814⁎⁎⁎ (0.806)

0.005⁎⁎⁎ (0.012)
−0.001⁎⁎⁎ (0.001)

04⁎⁎⁎ (0.067) −2.374⁎⁎⁎ (0.285) −3.331⁎⁎⁎ (0.107)
99.182 −6564.724 −6585.773



Fig. 3. The relationship between the small world Q and WPV artistic success.
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personnel mobility and industry–university cooperation. In
order to promote university–industry interaction and explore
how to balance the too dispersed or too aggregated, we explore
what are the optimal levels of small world. Fig. 3 shows the
magnitude of the effect of Q on WPV. The results signify that at
the predicted bliss point of Q (about 400). Consistent with the
results [13,37], the benefit of small world may rise only up to a
marginal value after which point they shift negative. Excessive
structural connectivity and small world decrease some of the
creative distinctiveness of clusters, which can homogenize the
pool of creative material. A small world is a network configura-
tion that is both highly locally clustered and has a short path
length, while reach is closely related to path length. Therefore,
we can appropriately adjust reach and clustering to get to this
optimal level. According to this optimal level, policy makers
should place greater emphasis on creating effective network
structure arrangements to promote creativity and performance.

Collaborationbetweenuniversity and industriesmainly relies
on performance itself, but governance or policy makers should
create better environment and platform to promote university–
industry collaboration at the same time. Collaboration ties are
key tools throughwhich companies acquire external knowledge,
including technical breakthroughs and new insights to problems
and failures (e.g. Powell et al. [79]). However, the collaboration
is still far from efficient in terms of performance indicators such
as WPV, to measure innovation in the field. Lack of efficient
communication channel to the research results of universities
and uncertainty of market perspective of the research results
may be important factors to hinder commercializing research
results produced by universities. Lack of skilled persons and
lack of innovation-relevant information (including technology
and market information) may be also crucial barriers on in-
novation as nanobiopharmaceuticals is quite a new technology.
It is necessary to exploit an effective informationplatformamong
the collaboration partners through combining the network with
their intranets. Policymakers and university leaders should
have a clear mind in raising a positive cycle of commercializing
activities and research publication of universities. Academic
research commercialization inspires the faculty members to
make their research agendamore basic- and applied-orientation
integrated [80].

From a policy perspective, policy makers should place
greater emphasis on creating effective institutional arrange-
ments or policies to promote university–industry cooperation
network, and constitute a stable platform for cooperation to
attain mutual learning between U-I linkages. For example,
science parks (SPs) and business incubators (BIs) are believed
to offer an effective tool for university and industry to interact
[81] andwe should give full play to their abilities and role. From
a viewpoint of policy, more polices contributing to the linkages
with universities for firms should be made. Under this model,
the firms can offer the universities with market information
and user feedback; the R&D capability of the enterprises can
be improved through such kind of cooperation. Universities
play vital roles not only as the creators of new technology but
also as the suppliers of the much desired capable personnel,

image of Fig.�3
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and as the media players who match the economic changes
with the changes in society. So, we focus our analysis on UI
collaborations, which take an irreplaceable role in contrast
to alliances between firms. From a managerial viewpoint, it
shows that cooperation between U-I linkages is an effective
approach to enhancing their innovation performance. Thus, it
is necessary for firms to apply various cooperation networks
(formal or informal relationships, such as cooperative alliances
and personal networks) to acquire external knowledge and
resources. Furthermore, we should shall establish a sound
management mechanism of U-I cooperation. Suitability of
management offers three underlying determinants: manage-
ment profile, services provided and innovative ideas [82].
Aernoudt [83] validated the role of management as critical for
the success of SPs and BIs.

Furthermore, the Triple Helix thesis of university–industry–
government relations states that the university can play an
enhanced role in innovation in increasingly knowledge-based
societies [84]. The Triple Helix offers a flexible frame-work to
conduct knowledge-based economic and social development.
Innovation thus becomes an endless transition, an endogenous
series of initiatives among university, industry and government
[85]. Frequently it is a matter of combining complementary
innovations in an attempt to create a solution to a customer
problem. The open innovation model of Chesbrough [86]
also acknowledges the benefits of depending on a distributed
model of innovation where the enterprise reaches out beyond
its own boundaries to obtain and integrate technology de-
veloped by others [87]. The open innovation is the use of
purposive inflows and outflows of knowledge to speed up
internal innovation, and broaden the markets for external
use of innovation, respectively [86]. Open innovation indicates
that the company requires to open up its solid boundaries to
let valuable knowledge flow in from the outside so as to
create opportunities for co-operative innovation processeswith
universities, government, customers and/or suppliers [88]. On
the other hand, close innovation is a view that says successful
innovation requires control. This paradigm counsels firms to
be strongly self-reliant, because one cannot be sure of quality,
availability and capability of others' ideas [89]. Therefore, we
should further constitute effective platform for university–
industry–government cooperation to really shift innovation
paradigm from “close innovation” to “open innovation.”

The results we achieved are linked to our research sample,
but also not limited to our research sample. The most of results
we achieved are suited for the topics related. We explore the
relationship between network properties and innovation at firm
level. Many results we achieved are similar to the previous
research results in this aspect at industrial, discipline, regional or
even national level, but not identical (Chen & Guan, 2010;
Schilling & Phelps, 2007; Guimera et al., 2005; Fleming et al.,
2007). This also reflects that the results we achieved are not
limited to our research sample and can be extended to other
sectors and fields at various levels. First, the results can
contribute to policy makers and relevant managers in other
sectors when making decisions for firm locality as well as the
choices of the collaborators. Second, the quantitative analysis
and empirical investigation of the impact of network property
on the innovative output about the emerging interdisciplinary
subject-nanobiopharmaceuticals has important referencemean-
ing for other sectors in terms of constructing reasonable and
effective cooperation network and exploring the development
of other sectors, especially those that involves emerging
interdisciplinary subjects. Third, our research method, hypoth-
eses and some of the results we achieved can be easily gen-
eralized and extended to some alliance networks among
firms in other sectors or other fields. For example, the firm
agglomeration should be maintained at moderate level
rather than too dispersed or too gathered together. Both
too high and too low agglomeration would deter innovation
activities. This is true for our alliance networks based on our
research sample and other alliance networks among firms in
other sectors at the same time. Fourth, some of our policy
suggestions can be extended to other sectors as an effective
way to increase the innovation performance. At the very least,
our research method based on our research sample is suited for
examining the impact of the collaborationnetwork characteristic
on knowledge creation and other research for the topics related.
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