Socio-Economic Planning Sciences 62 (2018) 13-30

Contents lists available at ScienceDirect

Socio-Economic Planning Sciences

journal homepage: www.elsevier.com/locate/seps

The impact of research collaboration on academic performance: An empirical analysis for some European countries

Luigi Aldieri ^{a, *}, Maxim Kotsemir ^b, Concetto Paolo Vinci ^c

^a Department of Business and Economic Studies, Parthenope University of Naples, Via Generale Parisi 13, 80132 Naples, Italy

^b Institute for Statistical Studies and Economics of Knowledge, National Research University Higher School of Economics, Myasnitskaya Street 9-11, 101000,

Moscow, Russian Federation

^c Department of Economic and Statistic Sciences, University of Fisciano, Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy

ARTICLE INFO

Article history: Received 25 February 2017 Received in revised form 10 May 2017 Accepted 31 May 2017 Available online 3 June 2017

JEL Codes: 121 D2

Keywords: Academic institutions Productivity Research externalities

1. Introduction

Universities' degree of scientific openness towards other academic institutions is becoming more important in the analysis of knowledge flows between researchers. This topic is central to the accumulation of human capital and talents' allocation for countries' economic growth.

Teams of scientific specialists have replaced independent researchers, and R&D laboratories have replaced independent inventors [5]. The investigation of scientific teams is relevant because it leads to evidence of the changes in the research production function that otherwise would be less clear. Indeed, academic collaborations could improve the effectiveness of research, just as specialization improves general productive efficiency.

For these reasons, in this paper our research question asks which forms of collaboration are more effective at raising the performance level of scientific universities in five European countries: France, Germany, the UK, Italy and Russia. In particular, we

ABSTRACT

The aim of this paper is to investigate the impact of internal and external research collaborations on the scientific performance of academic institutions. The data are derived from the international SCOPUS database. We consider both quantity (the number of publications) and quality indicators (the field-weighted citation impact and the share of publications in the 10% most-cited articles) to evaluate universities' performance in some European countries (Germany, France, Italy, the UK and Russia). To this end, we develop a non-overlapping generations model to evidence the theoretical idea of research externalities between academic institutions. Moreover, we implement an empirical model to determine the extent to which the impact of internal and external collaborations on universities' performance is sensitive to the geographical dimension of the data.

© 2017 Elsevier Ltd. All rights reserved.

select the top 254 European universities for the 20 years from 1996 to 2015 to identify the impact of three types of collaborations: internal, external and institutional. In this way we investigate the extent to which the degree of openness towards the international context is important for the academic quality performance of each university.

To satisfy our goal regarding academic scientific research, we consider the number of publications for the quantitative aspect and two variables for the qualitative one. In particular, we compute a new index of quality by reducing the above three variables through principal component analysis. Thus, we implement a random-effect panel data model with clustered errors to explore the statistical features of the sample. Since we could suspect that endogeneity exists because of the simultaneity of decisions, we run also a generalized method of moments (GMM) model, in which the number of students in mobility is used as an instrument for the collaboration variable. The findings are particularly interesting: more external collaborations positively affect universities' performance.

The paper is developed in the following way. Section 2 reviews the main findings on the influence of scientific collaboration on research performance, research productivity and citations of

^{*} Corresponding author.

E-mail addresses: aldieri@uniparthenope.it (L. Aldieri), mkotsemir@hse.ru (M. Kotsemir), cpvinci@unisa.it (C.P. Vinci).

publications. Section 3 describes the data. Section 4 presents the theoretical framework. Section 5 deals with the empirical strategy and the results, while Section 6 discusses the policy implication of the analysis and provides some remarks concerning further research.

2. Literature review

Collaboration in different forms (international as well as national and intra-organizational) supports the development of universities' research quality and quantity. Research collaboration is necessary for increasing the general research productivity of universities. Collaboration (primarily collaboration with developed countries) can also help universities in less developed countries to build their research capacity and increase their research performance. Collaboration in general leads to an increase in the levels of citations and the visibility of research. Collaborated (especially internationally collaborated) publications receive a higher number of citations than single-authorship papers and are more visible than purely national or one-author papers. National researchers' collaboration with their colleagues from other countries can be set as one of the priorities in national research policies (see e.g. Ref. [46] for a discussion of the priorities of S&T cooperation in Russia). We can find many pieces of evidence in support of these statements about the positive influence of collaboration on the research performance of universities. Dakik et al. [21] in their study evaluating the research performance of the Medical Faculty at the American University of Beirut (AUB) state that "... Collaboration with international investigators resulted in more original publications than work done only at AUB (65% v 35%, p < 0.001), and a higher journal impact factor for the publications (3.20 (3.85) v 1.71 (2.36), p < 0.05)." Abramo et al. [1]; measuring the research performance of Italian university scientists and researchers in the private sector, state that "The analyses demonstrate that university researchers who collaborate with those in the private sector show research performance that is superior to that of colleagues who are not involved in such collaboration." The findings of the paper by Akakandelwa [7] on the analysis of the collaborative publication activity of the University of Zambia include the following: "... The study also established a positive relationship between author productivity and author collaboration. The more collaborative an author is, the more productive that author is." Savic et al. [65] measure the research performance of the Faculty of Sciences at the University of Novi Sad in Serbia and show that "... researchers involved in inter-department collaborations tend to be drastically more productive (by all considered productivity measures), collaborative (measured by the number of co-authorship relations) and institutionally important (in terms of the betweenness centrality in the co-authorship network) compared to those who collaborate only with colleagues from their own research departments." Isiordia-Lachica et al. [40]; in their analysis of the research performance of the Universidad de Sonora (Mexico) in 2000-2009, state that "... International co-authorship produced higher citation rates." Olmeda-Gómez et al. [55] measure the research performance of Catalonian universities in 2000-2004 and show that "... As a whole, they prefer to collaborate with institutions in the United States, the United Kingdom, France, Germany and Italy, and obtain better visibility when publishing with English-speaking authors." We can find even more evidence supporting the positive influence of collaboration on research performance in cases of different countries – developed, developing and least developed – in different fields of science (see Table A.1 in Appendix A).

Since the basis for the empirical part of our paper is nonoverlapping generations, we also provide a brief review of this method. This method is widely applied primarily in the fields of genetics (see e.g. Refs. [58,59]), mathematical biology (see e.g. Refs. [63,73]) and population studies (see e.g. Refs. [13,31]), in which the main focus of analysis is the generation of some biological species. The theoretical foundation for the application of the non-overlapping generations approach in economics can be found in Acemoglu [4]. Further empirical applications of the nonoverlapping generations approach in economics are quite rare. In economic research the complementary approach, overlapping generations, is more widespread (see e.g. Refs. [29,42,71], among many other examples). Meanwhile, we can find some cases of the application of the non-overlapping generations approach in economics. For example, Aldieri and Vinci [8] apply this approach to the analysis of the effects of research and development (R&D) spillovers on the productivity of Italian manufacturing firms. Bovenberg and Mehlkopf [15] use the non-overlapping generations model to build an optimal model of a pension scheme. Grove et al. [36] assess the longitudinal robustness of the functions of sport from the point of view of sport fans. Sarabia and Sarabia [64] model the behavior of a family business using the non-overlapping generations approach. Other examples of the non-overlapping generations approach in economics are related to income distribution and inequality (see e.g. Refs. [37,57]). Applied to the field of higher education and university studies, the overlapping generations approach is used primarily for the analysis of the temporal distribution of education expenditures (see e.g. Refs. [24,26,38,47]).

3. Methodology

3.1. World University Rankings

To select the "best" (that is, the most productive) research universities in the studied countries, we use here the latest data from the three most comprehensive and widely used university rankings (the Academic Ranking of World Universities; Times Higher Education (THE) World University Rankings; and Quacquarelli Symonds (QS) World University Rankings). The Academic Ranking of World Universities (ARWU) has been issued annually since 2003 by Shanghai Jiao Tong University (2003-2008) and Shanghai Ranking Consultancy (since 2009). The Times Higher Education (THE) World University Rankings (THE WRU) have been issued annually by the Times Higher Education (THE) magazine since 2010 in collaboration with the Quacquarelli Symonds World University Rankings (QS WRU), which have been issued annually by Quacquarelli Symonds Limited since 2004 (until 2009 in collaboration with Times Higher Education and since 2010 on its own). We include a university from the studied countries (the UK, Italy, Germany, France and Russia) in our panel data analysis model if this university is ranked in at least one of the following world university rankings: Ranking of World Universities 2016 (more than 1200 universities in the rank Top-500 are published), Times Higher Education World University Rankings 2016-2017 (978 universities in the rank) or QS World University Rankings 2016-2017 (916 universities in the rank).

The structure of the three above-mentioned world university rankings is presented in Tables 1–3, and the number of universities from Germany, France, Italy, Russia and the UK that are ranked in ARWU 2016, THE WUR 2016–2017 and QS WUR 2016–2017 are shown in Table 4. The key bibliometric indicators of these universities in 2015 as well as their positions in the Academic Ranking of World Universities 2016, Times Higher Education World University Rankings 2016–2017 and QS World University Rankings 2016–2017 are given in Tables B.1–B.5 in the Appendix.

We should make a very important note here. All these world university rankings primarily rank the research activity in

Table 1

Methodology of	formation of Systems	Academic Ranking of	World Universities.
----------------	----------------------	---------------------	---------------------

Criterion	Indicator	Weighting	Source
Quality of education	Alumni as Nobel laureates & Fields Medallists	10%	A
Quality of faculty	Staff as Nobel Laureates & Fields Medallists	20%	А
	Highly cited researchers in 21 broad subject categories	20%	В
Research output	Papers published in Nature and Science[*]	20%	С
-	Papers indexed in Science Citation Index-expanded and Social Science Citation Index	20%	
Per capita performance	Per capita academic performance of an institution	10%	

Notes: Source code: Official websites of Nobel Laureates & Fields Medallists; B - Thomson Reuters' survey of highly cited researchers. C - Web of Science Citation Indexexpanded and Social Science Citation Index. [*] Not applicable to institutions specialized in humanities and social sciences whose N&S scores are relocated to other indicators. Source: About "Academic Ranking of World Universities". Shanghai Ranking Consultancy. 2014. Retrieved 26 September 2014. Since 2009 the Academic Ranking of World Universities (ARWU) has been published and copyrighted by Shanghai Ranking Consultancy.

Table 2

Methodology of formation of	Times Higher Education ((THE) World University Rankings.

Overall indicator	Individual indicator	Percentage weighting
Industry Income – innovation	Research income from industry (per academic staff)	2.50%
International diversity	Ratio of international to domestic staff	3%
-	Ratio of international to domestic students	2%
Teaching — the learning environment	Reputational survey (teaching)	15%
	PhDs awards per academic	6%
	Undergrad. admitted per academic	4.50%
	Income per academic	2.25%
	PhDs/undergraduate degrees awarded	2.25%
Research – volume, income and reputation	Reputational survey (research)	19.50%
	Research income (scaled)	5.25%
	Papers per research and academic staff	4.50%
	Public research income/total research income	0.75%
Citations – research influence	Citation impact (normalized average citation per paper)	32.50%

Source: World University Rankings subject tables: Robust, transparent and sophisticated "(16 September 2010). *Times Higher Education World University Rankings*." (16 September 2010). Times Higher Education World University Rankings.

Table 3

Methodology of formation of Quacquarelli Symonds (QS) World University Rankings.

Indicator	Weighting	Elaboration
Academic peer review	40%	Based on an internal global academic survey
Faculty/Student ratio	20%	A measurement of teaching commitment
Citations per faculty	20%	A measurement of research impact
Employer reputation	10%	Based on a survey on graduate employers
International student ratio	5%	A measurement of the diversity of the student community
International st aff ratio	5%	A measurement of the diversity of the academic staff

Source: "QS World University Rankings: Methodology". QS (Quacquarelli Symonds). 2014. Retrieved 29 April 2015.

Table 4

Number of Universities of the studied countries ranked in each of world universities rankings.

Country	Academic Ranking of World Universities 2016	Times Higher Education World University Rankings 2016–2017	QS World University Rankings 2016–2017
France	21	25	39
Germany	37	40	42
Italy	19	38	28
Russian Federation	3	24	22
United Kingdom	36	91	71

Publication activity of universities: methodological issues.

universities but not the quality of education itself and the education programs, level of students' knowledge, professional skills of the teaching staff and quality of the infrastructure and equipment of universities. All these university rankings are strongly biased towards overestimation of the number of publications and citations. This bias can easily be seen from the weights that are set on the indicators forming these rankings (Tables 1–3). The three abovementioned rankings treat universities primarily as "generators" of highly cited publications but not as "places for teaching the

students." This means that the much higher positions in this ranking will be taken by so-called "research universities," where the activities are biased towards research and development. This is a typical model for big Anglo-Saxon universities in the USA and the UK (as well as Canada, Australia and New Zealand) and to a lesser extent for universities in other Western European countries. A more detailed discussion of the limitations of world university rankings and their influence on the research activity and research evaluation policy in different countries can found for example in the studies by Marginson [49], Kehm and Stensaker [44], Aguillo et al. [6], Bowman and Bastedo [16] and Chen and Liao [18].

3.2. Scopus vs. Web of Science database

Here we analyze the publication activity of universities. To run the publication activity analysis, we should first choose the science citation database for deriving the data. Scopus¹ and Web of Science² are the world's two largest scientific citation databases. The Scopus database was formed by the publishing corporation Elsevier in 2004. As of May 2017, Scopus covers 67.6 million documents. Web of Science (WoS) was built on the basis of the first global citation database, the Science Citation Index, which was developed by E. Garfield and the Institute for Scientific Information (USA) in 1964. This database was launched in the early 1990s and is now owned by Thomson Reuters. Web of Science consists of its key database, the Web of Science Core Collection, and four additional databases (the KCI - Korean Journal Database; MEDLINE; SciELO Citation Index (leading open-access journals from Latin America, Portugal, Spain and South Africa); and Russian Science Citation Index (RSCI)). As of May 2017, the Web of Science Core Collection (including the Emerging Sources Citation Index (ESCI)) covers 65.2 million papers. Adding the KCI, MEDLINE, SciELO and RSCI databases to the Web of Science Core Collection increases the coverage of Web of Science to 73.9 million documents.

Scopus and Web of Science have specific advantages and limitations for different aspects of the analysis of publication activity. A discussion on the advantages and limitations of the Scopus and Web of Science databases can be found for example in the studies by Meho and Yang [50], Falagas et al. [28], Archambault et al. [12], Vieira and Gomes [72] and Shashnov and Kotsemir [66]. Since we are trying to detect the research performance of universities, we should have in operation a system of organization profiles. The key advantage of Scopus in this regard is the system of unique author and organization identifiers (profiles). Therefore, the user can analyze the publication activity of individual authors and organizations in Scopus. In Web of Science, these opportunities are seriously restricted. Therefore, taking into account the serious limitations of Web of Science in the analysis of individual authors and organizations, we run an analysis of milkfish research in the Scopus database, since Scopus provides the user with unique organization identifiers.

To derive publication activity indicators for universities in Russia, Italy, Germany, France and the UK, we use the Scopus SciVal analytical tool. Scopus SciVal is "a ready-to-use solution with unparalleled power and flexibility, SciVal enables you to visualize research performance, benchmark relative to peers, develop collaborative partnerships and analyze research trends" (see more about the features of the SciVal tool in Refs. [20,61]).³ In our analysis we use the "Benchmarking" sub-tool of SciVal. As stated on the SciVal official website, "Benchmarking" can be used to "compare and benchmark your Institution to other Institutions, Researchers and Groups of Researchers using a variety of metrics."

3.3. Indicators from the Scopus SciVal tool used in our analysis

In our analysis we use indicators of publication activity, citations and different forms of scientific collaboration (international, national and intraorganizational). This list of indicators is presented as follows.

3.3.1. Number of publications in the Scopus database

The number of publications in all the sources indexed in Scopus (journals; conference proceedings; books; book series; trade publications; multi-volume reference works) for a given university for all fields of science in a given year, taking into account articles, reviews and conference papers as document types.

3.3.2. Field-weighted citation impact (FWCI)

This indicator (field_cit) measures the relative citation level of publications of a specific country, university or individual researcher. FWCI is the ratio of citations received relative to the expected world average for the subject field, publication type and publication year. This is a normalized indicator of citations. Therefore, it can be applied to cross-disciplinary and intertemporal analyses.

3.3.3. Outputs in the top 10 citation percentile (%) (output_top10)

This indicator shows the extent to which an entity's (country's, organization's) publications are present in the most-cited percentiles of a given publication volume. In our case this indicator shows the share of the publications of a university that are in the top 10% of the most-cited publications in the Scopus database.

3.3.4. Share of publications in international collaborations (int_coll)

This indicator measures the share of publications in which the affiliation(-s) of the authors is set (and was (were) automatically detected) with at least two different countries. This indicator measures the integration of a country/organization/individual researcher into international scientific collaboration.

3.3.5. Share of publications in national collaborations (nat_coll)

This indicator measures the intensity of national interorganizational collaborations. In essence, it is the share of publications for which the affiliation(-s) indicates at least two different organizations of one country.

3.3.6. Share of publications in institutional (intraorganizational) collaborations (instit_coll)

This indicator measures the intensity of intraorganizational collaborations, that is, collaborations between different subdivisions of one organization. In essence it is the share of publications for which the affiliation(-s) of the author(-s) - is only one organization.

3.4. Problems of measuring the publication activity of organizations

We should take into account here the limitations of the use of bibliometric indicators. The first limitation is that bibliometric indicators measure only a certain pure technical part of the research productivity of a university regarding basic research – only publication activity. Meanwhile, quite a large number of different aspects of universities' research activity are beyond the scope of bibliometric indicators. The forms of university research activity that remain uncovered by bibliometric analysis are: joint research with industry and government in all forms; inter-university researchers; and further commercialization of research carried out by universities in the form of patents and new products. For all these "missed" forms of research activity, statistical indicators are in general unavailable.

The other limitation of our analysis is that we focus only on the publication activity that is covered by the Scopus database. Since quite a small portion of nations' journals (especially in the case of Russia) is indexed in Scopus, we miss quite a significant number of national publications prepared by the universities under

¹ See more details at https://www.elsevier.com/solutions/scopus.

² See more details at http://clarivate.com/?product=web-of-science.

³ More information is available at https://www.elsevier.com/solutions/scival.

consideration. National publications that are not covered by the Scopus or Web of Science database can be much more influential (both on the national and the international level) than papers that are indexed in international citation databases. One more limitation that comes from using the Scopus (or Web of Science) database is that it covers primarily journal articles and conference proceedings, while books and book chapters are covered to a lesser degree. Nevertheless, quite a large share of the publication activity of university researchers and teachers consists of textbooks, monographs and analytical reports. These types of publications in general remain beyond the scope of bibliometric indicators.

Below we discuss the problems of measuring and interpreting each specific bibliometric indicator that is used in our research model.

The number of publications is a basic indicator of the publication activity of a country, university or individual researcher. There are many factors that determine the number of publications of a university in the Scopus database. Regardless of the bibliometric analysis that we run, we should always bear in mind that databases like Scopus and Web of Science are in essence collections of journals, conference proceedings and book series. Therefore, if country A has 5000 journals indexed in Scopus while country B has only 25 journals, country A (and its universities) will by definition have a much higher number of publications in the Scopus/Web of Science database than country B. For example, as of October 2016, Russia has 271 journals indexed in the Scopus database.⁴ Comparing this with the other countries in our analysis – France (1059 journals); Germany (2672 journals); Italy (850 journals); and the United Kingdom (6837 journals) – shows that the publication activity of the UK is much better covered by and presented in Scopus than that of Russia. This means that many very poor UK journals (with an impact factor less than 0.05) are indexed in Scopus and in general are treated as "high-quality international journals that are indexed in Scopus." On the other hand, many top-class (on the national level) Russian journals are not indexed in Scopus for various reasons (not only their quality but also the lack of willingness of the editorial board to promote the journal in Scopus; the absence of a country-wide government campaign for the mass promotion of all the best national journals in Scopus) and in general are treated as "weak journals that are interesting only for Russian readers." This results in Scopus seriously underestimating the publication activity of Russia (and its universities). The other very important point here is the model of the university. If a given university works like a research university, its primary goal is the generation of a large volume of publications in top-level journals. On the other hand, universities with the primary goal of teaching students pay more attention to education itself and do not publish as many publications as research universities. Therefore, "research universities" will "by default" have a higher number of publications than "classical" (i.e. "teaching") universities. Not only the model but also the type of universities matters. If a given university is a big classical university with many faculties covering many different disciplines, it will have many more publications than narrowly specialized universities due to the contribution of research activity from teams of its members from thematically different faculties and departments. The indexing of journals of a specific university indexed in the Scopus/Web of Science database can also seriously increase its publication activity, since many articles will be indexed in Scopus/Web of Science by

default. Finally, the membership of university staff members in editorial boards of journals indexed in Scopus matters. Universities where many staff members are members of editorial boards of journals indexed in Scopus/Web of Science will have a higher number of publications.

When using the field-weighted citation impact (FWCI) indicator, organizations with a more or less comparable number of publications should be compared. Obviously, if we compare small organizations (with 50 + researchers) that are working on only one highly cited topic (e.g. the mapping and measuring of brain neurons) with a huge classical multidisciplinary university (with 5000 + teachers and researchers), the small organization will have a much higher FWCI. The other important point here is that, when comparing country A with a high FCWI level and country B with a low FCWI level, it is obvious that organizations in country A.

As in the case of the field-weighted citation impact and the share of publications in international collaborations, small organizations working on a narrow, very highly cited topic will have a much larger share of publications in the 10% most-cited publications in Scopus. This indicator will also be much higher for small organizations that are working on mega-collaboration projects (with up to 3000 + authors in one publication). The abovementioned situations should be taken into account. This indicator is more relevant to the direct comparison of big polythematic (i.e. working in different fields of science) organizations (i.e. so-called big "classical universities"). We should also bear in mind here that the intensity of international cooperation seriously differs across disciplines. In such fields as for example genetics, oncology, nuclear physics and radioastronomy, the intensity of international collaboration is high, while only national authors (without intensive international collaboration) in general write publications on history or literature. Therefore, when comparing small organizations that specialize in one topic (or several closely related ones), we should take into account the fact that organizations working in the field of genetics will have a much higher intensity of international collaboration than organizations working in the field of history. For big organizations with a polythematic departmental structure, direct comparison of the intensity of international collaboration is more relevant. Another question arises when analyzing mega-authorship publications with 50 or more authors. Since the real contribution of each of hundreds (and in some cases thousands) of authors is hard to detect, these publications should be analyzed separately from publications with a more or less "normal" number of co-authors (up to 25). Meanwhile, in Scopus (as well as in Web of Science), there is no automatic tool for excluding publications for which the number of co-authors is above a certain threshold.

4. Theoretical framework

This section will be devoted to presenting a basic nonoverlapping generations model, as in Acemoglu [4], Aldieri and Vinci [8] and Aldieri et al. [9]; in which this model is applied to measure the effects of scientific collaboration on the research performance of the best Russian universities. We assume two economies: the domestic (D) and the foreign one (X). In each country institutions of higher education consist of two different types of universities in which the academic researchers, assumed to be risk-neutral with an inter-temporal preference rate equal to zero, live for two periods. In the first period, researchers, to strengthen their expertise and increase the research quality indicators of their academies, will choose their talent (research skills) and the optimal allocation of the latter between domestic and nondomestic partnerships. In the second period, scientific papers are

⁴ We should note here that the affiliation of journal with a specific country is determined by the address of its publisher. Since some English language versions of Russian journals (especially those that are published by the Russian Academy of Sciences) are published abroad, these journals are determined by Scopus as being journals of Germany/the Netherlands/the USA and so on.

produced in the form of a partnership of researchers from two different types of academies. The benefits from the scientific partnership, captured by the research performance, taking into account both quantitative and qualitative characteristics, will appear at the end of this second period and concern both quantitative and qualitative characteristics.

In both countries scientific papers are produced according to the following functional forms:

$$P_{d,i,j,t}^{d} = A_{d}^{d} \left[(1-\beta)e_{i,t}^{d} \right]^{\gamma} \left[(1-\alpha)e_{j,t}^{d} \right]^{(1-\gamma)} \tag{1}$$

$$P_{d,i,j,t}^{\mathsf{x}} = A_d^f \left[\beta e_{i,t}^d\right]^{\delta} \left[a e_{j,t}^f\right]^{(1-\delta)} \tag{2}$$

$$P_{f,i,j,t}^{f} = A_{f}^{f} \left[(1-b)e_{i,t}^{f} \right]^{\nu} \left[(1-a)e_{j,t}^{f} \right]^{(1-\nu)}$$
(3)

$$P_{f,tij}^{\mathbf{x}} = A_f^d \left[b e_{i,t}^f \right]^g \left[\alpha e_{j,t}^d \right]^{(1-g)} \tag{4}$$

where $0 < \alpha, \beta, a, b, \gamma, \delta, \nu, g < 1$, $P_{d,i,j,t}^d$ $(P_{f,i,j,t}^f)$ stands for domestic scientific research partnerships' output and $e_{i,t}^d$ $(e_{i,t}^f)$ and $e_{j,t}^d$ $(e_{j,t}^f)$ measure respectively the talent of the *i*-th and *j*-th researchers in domestic and foreign economies. Parameters A_d^f , A_f^f , A_d^f dapture both the role of public research funds in the two countries and some technological and geographical proximity effects. We consider A_d^f and A_f^f as linear combinations of A_d^d and A_f^f .

As in Aldieri et al. [9], we assume randomness of the matching functions, which implies for all the *i-type* researchers the same probability of meeting a *j-type* researcher. Moreover, terminating the match and switching the partner are costly. The consequential anonymity of contracts implies that j(i)-type researchers' decisions concerning talent skills depend on the whole distribution of talent across all the i(j)-type ones.

The aforesaid research performance indicators of the different universities, in both the geographic areas, depend on scientific production and may be written as:

$$I_{i,t}^{d} = \left[P_{d,i,j,t}^{d}\right]^{\theta} \left[P_{d,i,j,t}^{x}\right]^{(1-\theta)}$$
(5)

$$I_{j,t}^{d} = \left[P_{d,i,j,t}^{d}\right]^{\theta} \left[P_{f,i,j,t}^{x}\right]^{(1-\theta)}$$
(6)

$$I_{i,t}^{f} = \left[P_{f,i,j,t}^{f}\right]^{\bar{\theta}} \left[P_{d,i,j,t}^{\mathbf{x}}\right]^{\left(1-\bar{\theta}\right)} \tag{7}$$

$$I_{j,t}^{f} = \left[P_{f,i,j,t}^{f}\right]^{\bar{\theta}} \left[P_{f,i,j,t}^{x}\right]^{\left(1-\bar{\theta}\right)}$$

$$\tag{8}$$

with: $0 < \theta$, $\tilde{\theta} < 1$.

In the two economies, all kinds of university researchers maximize respectively the following utility functions:

$$U_{i,t}^{d} = I_{i,t}^{d,e} - \frac{\phi_i e_{i,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(9)

$$U_{j,t}^{d} = I_{j,t}^{d,e} - \frac{\phi_{j} e_{j,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(10)

$$U_{i,t}^{f} = I_{i,t}^{f,e} - \frac{\mu_{i}e_{i,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(11)

$$U_{j,t}^{f} = I_{j,t}^{f,e} - \frac{\mu_{j} e_{j,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(12)

where ϕ_i , ϕ_j , μ_i and μ_j are taste positive parameters capturing the disutility of accumulating scientific skills and $I_{i,t}^{d,e}$, $I_{j,t}^{d,e}$, $I_{i,t}^{f,e}$ and $I_{j,t}^{f,e}$ are expected values. The above equations may easily be rewritten as follows:

$$U_{i,t}^{d} = A_{d}^{d^{\theta}} A_{d}^{x^{(1-\theta)}} (1-\beta)^{\gamma\theta} \beta^{\delta(1-\theta)} (1-\alpha)^{(1-\gamma)\theta} a^{(1-\delta)(1-\theta)} e_{i,t}^{d^{\gamma\theta+\delta(1-\theta)}} \times \int e_{j,t}^{d^{\theta(1-\gamma)}} dj_{d} \int e_{j,t}^{f^{(1-\theta)(1-\delta)}} dj_{f} - \frac{\phi_{i} e_{i,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(13)

$$U_{j,t}^{d} = A_{d}^{d\theta} A_{f}^{\chi^{(1-\theta)}} (1-\beta)^{\gamma\theta} b^{g(1-\theta)} (1-\alpha)^{(1-\gamma)\theta} \alpha^{(1-g)(1-\theta)} e_{j,t}^{d^{\theta(1-\gamma)+(1-g)(1-\theta)-1}} \\ \times \int e_{i,t}^{d^{\gamma\theta}} dj_{d} \int e_{i,t}^{f^{g(1-\theta)}} di_{f} - \frac{\phi_{j} e_{j,t}^{d^{(1+\lambda)}}}{(1+\lambda)}$$
(14)

$$U_{i,t}^{f} = A_{f}^{f^{\hat{\theta}}} A_{f}^{x^{(1-\hat{\theta})}} (1-b)^{\nu \bar{\theta}} b^{g(1-\bar{\theta})} (1-a)^{(1-\nu)\bar{\theta}} \alpha^{(1-g)(1-\bar{\theta})} e_{i,t}^{f^{\hat{\theta}+g(1-\bar{\theta})}} \times \int e_{j,t}^{f^{\hat{\theta}(1-\nu)}} dj_{f} \int e_{j,t}^{d^{(1-\bar{\theta})(1-g)}} dj_{d} - \frac{\mu_{i} e_{i,t}^{f^{(1+\lambda)}}}{(1+\lambda)}$$
(15)

$$U_{j,t}^{f} = A_{f}^{f^{\theta}} A_{d}^{\chi^{(1-\bar{\theta})}} (1-b)^{\nu\bar{\theta}} \beta^{\delta\left(1-\bar{\theta}\right)} (1-a)^{(1-\nu)\bar{\theta}} a^{(1-\delta)\left(1-\bar{\theta}\right)} e_{j,t}^{f^{\tilde{\theta}(1-\nu)+(1-\delta)(1-\bar{\theta})-1}} \\ \times \int e_{i,t}^{f^{\nu\bar{\theta}}} dj_{f} \int e_{i,t}^{d^{\tilde{\theta}}(1-\bar{\theta})} di_{d} - \frac{\mu_{j} e_{j,t}^{f^{(1+\lambda)}}}{(1+\lambda)}$$
(16)

Assuming $\phi_i = \phi_1$, $\phi_j = \phi_2$, $\mu_i = \mu_1$ and finally $\mu_j = \mu_2$, on the basis of the above theoretical model, we can set out the following consequential results, which will be tested empirically in the following sections:

Result 1. There are positive externalities between researchers' talents, regardless of the country, in the sense that small variations in talents' investments of all agents will make everyone better off. Moreover, when a small group of j-type (i-type) researchers invests more in research skills, other researchers will answer and the performances of all academies will improve.

5. Empirical strategy and results

As we may observe in the methodological section, we obtain three variables to identify the level of academic performance: the number of publications (public) for the quantitative level of

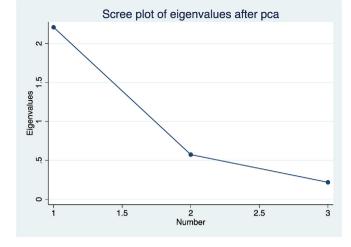
Table 5 Principal components

Timeipar compo	nents.			
Component	Eigenvalue	Difference	Proportion	Cumulative
Comp1	2.209	1.635	0.736	0.736
Comp2	0.573	0.355	0.191	0.927
Comp3	0.218	-	0.073	1.000

scientific research and two variables (field_cit and output_top10) for the qualitative one. To obtain an index for the overall quality of academic performance, we implement a principal component analysis (pca) procedure [11,41]. In particular, pca is a statistical technique used for data reduction. The leading eigenvectors stemming from the decomposition of the covariance matrix of the variables describe a series of uncorrelated linear combinations of the variables that represent most of the variance.

Table 5 and Graph 1 show the results of the above analysis.

We consider the first component (PC) as our new dependent variable to identify the overall quality of academic research, explaining more than 70% of the variance. The model that is estimated is the following: $PC_{i,k} = C$ (*Coll*, $x_{i,k}$, z_i , w_k) (17).


Our empirical analysis aims to estimate the effect of internal collaborations (nat_coll), external collaborations (int_coll) and institutional collaborations (instit_coll) on the quality indicator of some European universities, measured by the new quality index (pc) obtained above. In particular, we investigate five countries: France, Germany, Italy, the UK and Russia. We have a panel data sample of 5080 (254 \times 20) observations: 45 French universities + 50 German universities + 40 Italian universities + 92 English universities + 27 Russian universities over the 1996–2015 period of time.

The university-specific characteristics (vector $x_{i,k}$) include the number of postgraduate students (post_graduates). The institution-specific characteristics that affect the quality of a unit's publications (z_i) consider the "age" of an academic institution (age), that is, the years elapsed from its establishment to 2017, and the number of faculty staff (pstaff). Moreover, we take into account universities' potential by adding their size (number of students). The data about the numbers of students, faculty staff and postgraduate students are taken from the personal pages of the studied universities in the Times Higher Education (THE) World University Rankings 2016–2017.⁵ The data on the age of universities (taken from the year of their establishment) are taken from the Wikipedia website.⁶ Summary statistics for the selected variables are reported in Table 6.

The publications in scientific fields (w_k in the model) are grouped into six sectors: biomedical and chemical sciences, engineering and computer science, medical sciences, multidisciplinary, physical and engineering sciences, and social sciences and humanities.

We introduce different methods to estimate (17). First, we run an OLS, taking into account time dummies and heterogeneity from country and scientific fields. Second, we develop a random-effect panel model to pick out the individual and time features of the sample. Finally, to handle the potential endogeneity of collaborations, we use GMM techniques for instrumental variables, which allow endogenous variables to be instrumented by excluded instruments.

⁶ www.wikipedia.org.

Graph 1. Plot of eigenvalues after pca.

ladie 6	
Descriptive	statistics.

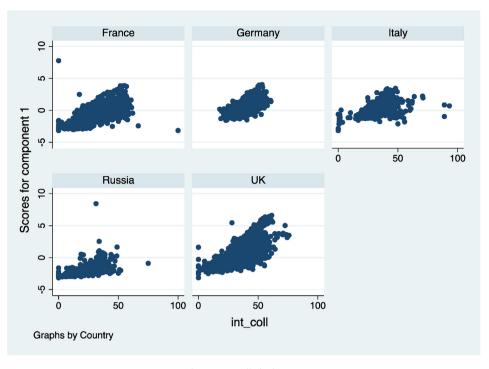
Variable	Mean	Std Dev.
рс	0.01	1.707
public	1137.81	1302.311
Field_cit	1.28	0.483
Output_top10	13.02	7.038
Int_coll	34.15	12.460
Nat_coll	22.83	7.504
Instit_coll	27.69	11.364
age	227.70	221.421
pstaff	1626.46	1241.742
students	22200.24	14915.580
Post_graduates	6484.15	6891.405

Note: 5080 observations.

The consistency of the endogeneity test as well as the coefficient estimates of the GMM depend on the relevance and validity of the instruments. These are relative to the variables that have an effect, both theoretically and conceptually, on the suspected endogenous variable (collaborations) but that do not otherwise affect the quality index of research.

Table 7	
Empirical	results.

Coeff. Est ^d .	OLS ^b		RE Model		GMM	
	Coeff. ^c	s.e. ^a	Coeff.	s.e. ^a	Coeff.	s.e. ^a
Int_coll	0.05***	(0.002)	0.03***	(0.001)	0.05***	(0.004)
Nat_coll	0.02***	(0.003)	0.01***	(0.001)	-0.10^{***}	(0.022)
Instit_coll	0.01**	(0.002)	0.01	(0.001)	0.01	(0.004)
age	0.01***	(0.001)	0.00	(0.002)	0.01	(0.001)
pstaff	0.01***	(0.001)	0.01***	(0.001)	0.01***	(0.001)
students	-0.01^{***}	(0.001)	-0.01^{***}	(0.001)	-0.01^{***}	(0.001)
Post_graduates	0.01***	(0.001)	0.01***	(0.001)	0.01***	(0.001)
R ²	0.73		0.76			


^a *** Coefficient significant at the 1% level.

^b Year, field and country dummies are included in the estimation procedure. The year 1996, the biomedical and chemical sciences field and the country France are reference indicators.

^c Standard errors are corrected for heteroscedasticity.

^d 5080 observations.

⁵ https://www.timeshighereducation.com/world-university-rankings/2017/ world-ranking#!/page/0/length/25/sort_by/rank/sort_order/asc/cols/stats or QS World University Rankings 2016–2017 https://www.topuniversities.com/ university-rankings/world-university-rankings/2016.

Graph 2. pc-Int_coll plot by country.

The identification of the causal effect of collaborations on the academic performance index will be achieved if the instruments are uncorrelated with the structural error but correlated with the endogenous regressor (collaborations). To evaluate whether potential instruments are weak and whether the instruments are orthogonal to the error process, opportune tests are employed.

First, the relevance of the instruments is assessed by evaluating the *F*-test for joint significance in the first-stage regression. The first-stage regression is a reduced-form regression of the endogenous variable on the full set of instruments and other exogenous regressors.

A rule of thumb states that an *F*-statistic below about 10 is indicative of a weak instrument problem [67,69]. In our case we obtain F = 62.43, clearly far above the threshold value of 10.

Second, the validity of the instruments is tested by an overidentification test. Since we use only an instrument for national collaborations, the number of international students, we cannot implement these statistical tests (Table 7).

As we may observe from the empirical findings, international collaborations help universities' quality index. Graph 2, relative to the link between the quality index and the international collaborations by country, evidences a homogeneous pattern for France, Germany and the UK and heterogeneous behavior for Italy and Russia, which exhibit more concentrated data towards low levels of collaborations and the quality index of research.

6. Conclusions and policy implication

The scientific openness degree of universities towards other academic institutions is becoming more important in the analysis of knowledge flows between researchers. This topic is central to the accumulation of human capital and talents' allocation for countries' economic growth.

For this reason our main objective in this paper is to investigate

the effects of scientific collaborations on universities' performance in five countries: France, Germany, the UK, Italy and Russia. The academic quality is measured through a new index computed from quantitative and qualitative variables by principal component analysis.

This topic has become important in any debate on policies to foster productivity in different countries. We approach this issue both theoretically and empirically. In particular, the rationale behind the model is that the scientific publications published by collaborations generate positive externalities for all the universities involved in the economic process, as introduced through the theoretical model.

Moreover, we estimate different econometric models to evidence the impact of scientific collaborations on universities' performance. The data refer to the top 45 French, 50 German, 92 English, 40 Italian and 27 Russian universities observed for 20 years from 1996 to 2015. First, we run an OLS, taking into account time dummies and heterogeneity from country and scientific fields. Second, we develop a random-effect panel model to pick out the individual and time features of the sample. Finally, to handle the potential endogeneity of collaborations, we use GMM techniques for instrumental variables, which allow endogenous variables to be instrumented by excluded instruments. Indeed, we use the mobility of students as instruments for the endogeneity of the collaborations variable.

The findings of all the models evidence the importance of collaborations for academic performance. Furthermore, we show that the knowledge flows that arise among researchers from different universities are relevant to enhancing the quality of research.

The results of our work have a relevant implication for science policy. Knowledge exchange among researchers is crucial to obtain the highest research quality. With this aim Italian and Russian universities should improve their interactions with international institutional partners.

Acknowledgements

The article was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE) and supported within the framework of the subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.

The authors are grateful to the Editor and one anonymous

reviewer whose comments greatly improved the quality of the paper. The results, conclusions, views, and opinions expressed in this paper are only attributable to the authors.

Appendix A. Review of studies of the effects of scientific collaboration

Table A.1

Evidences for support of the statements about the positive influence of collaboration on research performance from academic literature.

Authors, years	Country(-ies)/institution(-s), field(-s) of science, year(-s) of analysis	Note about research collaboration derived from the abstract of the paper					
Cases of International collabora							
Landry et al. [48]	Industry-university collaboration	It was found that collaboration between researchers and industry had significantly more impact on productivity than collaborations between researchers and their peers or researchers and other institutions					
Fu et al. [32]	Acupuncture research, 1980–2009	International collaborative papers are the most frequently cited.					
Kato and Ando [43]	International collaboration in chemistry	The results also indicate that researchers who collaborate internationally accumulate science and technology human capital through collaboration.					
Sweileh et al. [70]	Worldwide, tramadol studies	Collaboration among pharmaceutical industry, clinical researchers and academic institutions can improve research quantity and quality on tramadol					
Cases of developed countries							
Zucker and Darby [76]	Japan, firms, biotechnology	we find that identifiable collaborations between particular university star scientists and firms have a large positive impact on firms' research productivity, increasing the average firm's biotech patents by 34%, products in development by 27%, and products on the market by 8% as of 1989–1990					
Olmeda-Gómez et al. [55]	Catalonian universities, 2000–2004	As a whole, they prefer to collaborate with institutions in the United States, the United Kingdom, France, Germany and Italy, and obtain better visibility when publishing with English-speaking authors.					
Abramo et al. [1]	Italian university scientists and researchers in the private sector	The analyses demonstrate that university researchers who collaborate with those in the private sector show research performance that is superior to that of colleagues who are not involved in such collaboration.					
Olmeda-Gómez et al. [56]	Spanish universities, 2000–2004	Greater visibility is attained with international co-authorship than with any other type of collaboration studied.					
Andersen et al. [10]	Publication activity at Aalborg Hospital	. Results also show a relation between the score level of publications and the number of collaborations for the publication, i.e. large collaborations are more frequently published in top journals.					
Abramo et al. [2]	Italian university population working in the hard sciences over the period 2001–2005	The results show that the researchers with top performance with respect to their national colleagues are also those who collaborate more abroad, but that the reverse is not always true					
Abramo et al. [3]	Italian university researchers, 2001–2005	The results of the investigation, which assumes co-authorship as proxy of research collaboration, show that both research productivity and average quality of output have positive effects on the degree of international collaboration achieved by a scientist.					
Beaudry and Allaoui [14]	Canada, nanobiotechnology	Results suggest that individual funding and a strong position in the past collaborative network has a positive effect on research output. In contrast to a number of studies, contracts are not found to have a negative influence on publication, quite the contrary					
Graue et al. [35]	Diabetes research in four Nordic countries (Denmark, Iceland, Norway and Sweden) from 1979 to 2009	International collaborative research networks facilitate funding opportunities and contribute to further development of professional research competence.					
Kodama et al. [45]	Four Japanese universities, stem cell-related research	we demonstrated a research assessment by proposing and introducing key performance indicators and found that a certain degree of interdisciplinarity and internal collaboration may bring about high research productivity.					
De Filippo et al. [22]	81 public and private universities in Spain, 2002 —2011	Collaboration profiles show that the university system changed from a model in which authorship from a single institution was the norm, to one in which international collaboration is the most prevalent.					
Elhorst and Zigova [27]	Austria, Germany, Switzerland; all academic economists employed at 81 universities and 17 economic research institutes	empirical results support the hypotheses that collaboration and that the existence of economies of scale increase research productivity					
Gausia et al. [33]	11 University Departments of Rural Health (UDRH) in Australia	Better collaboration between UDRH staff and others may help increase the quality and value of Australian rural health research.					
O'Leary et al. [53]	University of Toronto's Faculty of Medicine, 2008–2012	The academic departments with the highest levels of collaboration and interdisciplinary research activity also had the highest research impact.					
Cases of developing countries							
Numprasertchai and Igel [52] Stein et al. [68]	University Laboratories in Thailand brain-behavior research in South Africa	Collaboration provides access to a greater breadth and depth of research knowledge than pure inhouse development Local and international collaboration may be useful in increasing research					
stem et al. [00]		capacity in South Africa, and ultimately in improving mental health services					

Table A.1 (continued)

Authors, years	Country(-ies)/institution(-s), field(-s) of science, year(-s) of analysis	Note about research collaboration derived from the abstract of the paper
Donato and De Oliveira [25]	Portugal, Oncology, 1997–2006	Articles with international collaboration where those which obtained the highest citation rate
Geracitano et al. [34]	Latin America, environmental studies, 1999 —2008	the establishment of collaborative studies could be one of the strategies to improve Latin American visibility in environmental studies
Obamba and Mwema [54]	Symmetry and asymmetry: New contours, paradigms, and politics in African academic partnerships	This paper suggests that strategic international research collaboration between research communities located within Africa and those in developed countries as well as regional partnerships among African universities themselves, represent the most productive framework for reinvigorating and strengthening research capacity within sub-Saharan universities
Franco et al. [30]	Embrapa company, animal reproduction, 2008 —2012	The proposal of collaborative research improved the scientific production of th group and also the development of products, processes, and technical information to the private sector
Huamaní and Mayta-Tristán [39]	Peru, Medicine, 2000–2009	The most productive Peruvian institutions collaborate more intensively with foreign journals rather than local institutions.
Wang et al. [74]	National Taiwan University (NTU) and Peking University (PKU), 2000–2009	Article impact followed a decreasing order of international collaboration, inter institutional collaboration, and independent articles for both universities.
Riahi et al. [62]	Iran, Immunology and Microbiology, 2000 —2012,	scientific collaborations with researchers in other countries could play a major role in enhancing the level of knowledge of our researchers
Chuang and Ho [19]	Highly cited publications in Taiwan	. International collaboration was responsible for the increasing number of highl cited papers over the years.
Isiordia-Lachica et al. [40] Rasolabadi et al. [60]	Mexico, Universidad de Sonora, 2000—2009 Epilepsy research in Iran	International co-authorship produced higher citation rates It is necessary to prepare conditions for epilepsy researchers to collaborate mor- with international scientific societies in order to produce more and high quality papers
Chakravarty and Madaan [17]	Chandigarh city affiliations, 1964–2014	An important finding of the paper undertaken is that foreign collaborations an foreign journals have remained the epicenter of the research activity National and international collaborations also form the basis of growth of research productivity
Savic et al. [65]	Faculty of Sciences, University of Novi Sad, Serbia	The obtained results show that the organizational structure of the institution has a profound impact on both inter- and intra-institutional research collaboration. Moreover, researchers involved in inter-department collaborations tend to be drastically more productive (by all considered productivity measures), collaborative (measured by the number of co- authorship relations) and institutionally important (in terms of the betweenness centrality in the co-authorship network) compared to those wh collaborate only with colleagues from their own research departments.
Zdravkovic et al. [75]	Five southern African Universities, mathematics, physics, chemistry, 1995–2014	The results also show that collaboration with southern scientists is equally valued as that with northern scientists, but for different reasons. We conclud that supporting international and national collaboration which includes increased scientific mobility, strong scientific groups and networks, are key factors for capacity building of research in southern African Universities
Cases of the least developed cour Dakik et al. [21]	Medical faculty at the American University of	Collaboration with international investigators resulted in more original
	Beirut (AUB), 1996–2001	publications than work done only at AUB (65% v 35%, p < 0.001), and a higher journal impact factor for the publications (3.20 (3.85) v 1.71 (2.36), p < 0.05)
Akakandelwa [7]	University of Zambia, 2002—2007	The results confirm that the patterns of collaboration between UNZA researchers and foreign researchers fit the Lotka Law of distribution. The stud also established a positive relationship between author productivity and author collaboration. The more collaborative an author is, the more productive that author is. Finally, the study observed a growing collaboration between University of Zambia researchers and other researchers in the Southern Africa universities.
Menon et al. [51]	University of Zambia	For researchers, collaboration provides opportunities to work with other leading scholars in their field. This international dimension of universities is als essential to promote competition and produce high quality education and research output. Outputs of such collaborations include more innovative research outcomes, enhanced ability to address global challenges and stronge research capacity.
de Filippo et al. [23]	Revista de Biología Tropical/International Journal of Tropical Biology and Conservation (Costa Rica), 2003–2012	Data showed an increasing collaboration between authors, institutions and countries, and a direct relationship between the increase of this collaboration and the received impact.

Appendix b. Universities of France, Germany, Italy, UK and Russia that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016–2017 and their key bibliometric indicators in 2015

Table B.1 Universities of France that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016–2017 and their key bibliometric indicators in 2015.

Scopus ScVal name	ARWU 2016	THE WUR 2016-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
Universite Paris 6	39	121	141	6 379	1.71	56.8
Universite d'Aix-Marseille	101-150	301-350	411-420	4 845	1.66	55.3
Universite Grenoble Alpes			206	4 312	1.37	54.2
Universite Paris 7	101-150	201-250	262	4 090	1.86	53.0
Universite Paris-Sud	46	179	241	3 817	1.95	55.8
Universite Paris 5	151-200	201-250	377	3 594	1.77	46.3
Universite de Strasbourg	101-150	301-350	260	2 894	1.55	55.3
Universite Claude Bernard Lyon 1	201-300	351-400	501-550	2 552	1.50	50.7
Universit? de Lorraine	201-300		701+	2 204	1.46	51.9
Universite de Bordeaux	151-200	301-350	501-550	2 154	1.79	49.3
Universite de Montpellier	301-400	351-400	327	1 911	1.52	56.6
Universite de Nice-Sophia Antipolis	401-500	401-500	601-650	1 348	1.48	55.5
Universite Toulouse III - Paul Sabatier	201-300		461-470	1 279	1.66	52.9
Universite Paris Sorbonne - Paris IV	401-500	351-400	221	1 256	1.57	51.1
Universite de Lille 2			701+	1 254	1.98	36.4
Universite de Nantes		401-500	701+	1 252	1.63	43.5
Universite des Sciences et Technologies de Lille			501-550	1 201	1.07	57.5
Universite de Rennes 1		501-600	601-650	1 062	1.21	49.2
Universite de Franche-Comte		501-600		986	1.43	44.5
Universite de Caen			701+	984	1.40	43.4
Universite de Poitiers			701+	898	1.31	47.0
Universite Joseph Fourier	151-200			818	1.72	41.4
Universite de Versailles	401-500			778	1.97	51.0
Ecole Normale Superieure	87	66	33	597	1.64	61.1
Ecole des Mines de Paris	401-500	251-300		445	1.15	42.7
Ecole Normale Superieure de Lyon	301-400	201-250	177	443	2.27	60.7
Ecole Ponts ParisTech		351-400	268	433	1.56	37.0
CentraleSupelec		201-250	164	414	1.96	57.5
INSA de Lyon		501-600	421-430	396	1.19	46.2
Universite Paris 1 Pantheon-Sorbonne		401-500	228	363	0.89	30.3
Ecole Polytechnique	301-400	116	53	344	1.29	52.8
Universite de Cergy-Pontoise		801+	701+	318	1.22	45.0
Ecole Centrale de Lyon		601-800		204	0.89	51.5
Ecole Normale Superieure de Cachan		401-500	264	195	1.26	59.0
Universite Paris Dauphine	301-400		356	189	1.22	39.2
Universite Lumiere - Lyon 2			701+	171	0.59	27.5
Universite Paris X Nanterre			701+	162	0.93	33.3
Universite Charles de Gaulle Lille 3			701+	125	0.29	27.2
Paul Valery University of Montpellier			701+	112	0.77	30.4
Universite de Toulouse II - Le Mirail			701+	90	1.09	45.6
Sciences Po			220	84	2.30	35.7
ESPCI	301-400			79	1.24	50.6
Universite Toulouse 1 Capitole			701+	69	1.01	43.5
Universite Jean Moulin Lyon 3			701+	33	0.39	21.2
Universit? Panth?on-Assas (Paris 2)			601-650	23	0.76	34.8
Average mean				1 270	1.39	46.5
Stand. Dev				1 500	0.45	9.9
Stand, dev/average				1.18	0.33	0.21
Max				6 379	2.30	61.1
Min				23	0.29	21.2
variation coiefficient		1		7.834	2.159	1.413
Root-mean-square deviation				9950.8	3.0	65.7

Universities of Germany that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016-2017 and their key bibliometric indicators in 2015.

Scopus ScVal name	ARWU 2016	THE WUR 2017-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
Technische Universitat Munchen	47	46	60	6 025	1.72	50.2
University of Heidelberg	47	43	72	5 423	2.08	53.3
Ludwig-Maximilians-University Munchen	51	30	68	5 286	1.92	53.8
RWTH Aachen University	201-300	78	146	4 309	1.48	41.7
Technische Universitat Dresden	151-200	164	210	4 068	1.69	48.7
Karlsruhe Institute of Technology KIT	201-300	144	98	3 945	1.58	51.6
University of Erlangen-Nuremberg	151-200	160	272	3 874	1.66	48.6
University of Freiburg	101-150	95	163	3 444	1.68	51.8
University of Bonn	101-150	113	231	3 433	1.88	56.8
University of Tubingen	151-200	89	167	3 306	1.70	54.5
University of Gottingen	101-150	112	177	3 234	1.97	54.9
Goethe University Frankfurt	101-150	201-250	264	3 109	1.72	50.1
University of Munster	101-150	161	294	2 853	1.59	47.7
University of Cologne	201-300	170	347	2 754	1.86	52.7
University of Mainz	201-300	251-300	401-410	2 706	1.84	55.5
Ruhr-Universitat Bochum	201-300	251-300	451-460	2 691	1.42	45.4
University of Duisburg-Essen		197	601-650	2 652	2.17	46.3
University of Wurzburg	151-200	186	421-430	2 590	1.96	55.2
Friedrich-Schiller-Universitat Jena	301-400		363	2 528	1.50	46.6
University of Leipzig	151-200	1	501-550	2 320	1.52	45.0
Technische Universitat Berlin	301-400	82	164	2 357	1.61	46.0
University of Hamburg	201-300	180	232	2 230	1.66	57.5
University of Ulm	201-300	135	347	2 111	2.10	50.0
Technische Universitat Darmstadt	401-500	201-250	247	2 109	1.33	46.0
University of Kiel	151-200	201-250	421-430	2 109	1.93	49.4
Freie Universitat Berlin	151 200	75	121 150	2 092	1.47	49.1
Humboldt-Universitat zu Berlin		57	123	2 072	1.77	53.5
Heinrich-Heine-University Dusseldorf	401-500	57	601-650	2 051	1.76	48.2
Universitat Stuttgart	401-500	201-250	263	1 998	1.30	39.1
Hannover Medical School	301-400	201 230	200	1 896	1.82	47.5
Saarland University	501 100		501-550	1 728	1.46	42.2
University of Regensburg	401-500		501-550	1 661	1.53	43.7
University of Bremen	401-500	301-350	441-450	1 635	1.55	48.1
Universitat Hannover	401-500	351-400	400	1 519	1.35	41.8
University of Rostock	401-500	551 100	651-700	1 441	1.37	45.6
Philipps-Universitat Marburg	301-400	251-300	551-600	1 435	1.92	47.9
Otto-von-Guericke University	501 100		331 000			
Magdeburg		501-600		1 370	1.41	40.6
University of Potsdam	401-500			1 330	1.58	60.5
Universitat Dortmund		301-350	551-600	1 297	1.50	44.6
Martin-Luther-Universitat Halle-						
Wittenberg	301-400		501-550	1 257	1.47	47.1
Technische Universitat Braunschweig			471-480	1 213	1.76	46.7
Universitat Bielefeld	401-500	251-300	601-650	1 056	1.53	45.6
Universitat Bayreuth	401-500	251-300	501-550	965	1.65	52.7
University of Konstanz	401-500	194	352	940	1.49	56.0
University of Kaiserslautern		351-400		838	1.15	40.5
University of Greifswald		401-500		733	1.34	49.4
University of Paderborn		501-600		713	1.46	40.3
University of Hohenheim		251-300		692	1.61	47.7
University of Honeimenn	I	401-500		662	1.58	57.7
Universitat Siegen University of Mannheim		401-500	411-420	441	1.58	38.3
Average mean		102	4 11-420	2 292	1.63	48.6
Stand. Dev		<u> </u>		1 286	0.22	48.0
Stand, dev/average		<u> </u>		0.56	0.22	0.11
Max		<u> </u>		3 945	2.17	60.5
Max Min		<u> </u>		<u> </u>	1.25	38.3
	L	I		441	1.20	30.3

Universities of Italy that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016–2017 and their key bibliometric indicators in 2015.

Scopus ScVal name	ARWU 2016	THE WUR 2017-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
University of Rome La Sapienza	151-200	251-300	223	6 839	1.72	43.9
University of Padova	151-200	301-350	338	5 084	1.79	48.8
University of Bologna	201-300	201-250	208	5 019	1.95	46.7
University of Milan	201-300	301-350	370	4 960	1.64	45.9
University of Naples Federico II	301-400	401-500	481-490	4 623	1.82	42.7
Politecnico di Milano	201-300	201-250	183	3 578	1.60	46.7
University of Turin	201-300	351-400	551-600	3 500	1.62	47.1
University of Florence	201-300	401-500	451-460	3 385	1.63	45.0
University of Pisa	201-300	401-500	431-440	3 234	2.01	44.2
Universita Degli Studi Di Genova		401-500	701+	2 710	1.89	45.5
University of Rome Tor Vergata	401-500	401-500	481-490	2 567	1.62	48.5
Politecnico di Torino		351-400	305	2 181	1.56	40.6
University of Pavia	301-400	301-350	551-600	2 128	1.84	49.2
University of Catania		501-600	701+	2 072	1.84	37.0
Universita di Palermo	401-500	501-600	701+	1 940	1.66	34.7
University of Bari		401-500	701+	1 922	1.76	42.1
University of Perugia	401-500	101 000	701+	1 833	2.29	45.3
University of Milan - Bicocca	301-400	351-400	651-700	1 815	1.77	50.7
Universita Cattolica del Sacro Cuore,	501 100			1 015		
Rome		501-600	491-500	1 723	1.50	37.4
Universita di Salerno		401-500	701+	1 598	2.29	38.4
University of Trento		201-250	441-450	1 589	1.91	54.8
University of Modena and Reggio Emilia		401-500	651-700	1 485	1.60	42.0
University of Parma	401-500	501-600		1 481	1.45	42.3
University of Cagliari		501-600		1 425	1.43	43.0
University of Trieste		351-400	701+	1 385	1.74	51.6
University of Siena		501-600		1 338	1.63	45.7
University of Ferrara	401-500	401-500	701+	1 319	1.81	50.6
University of Calabria		351-400		1 312	2.02	47.2
Universita Politecnica delle Marche		401-500		1 288	1.85	35.0
University of Verona		401-500		1 223	1.56	45.3
Universita Vita-Salute San Raffaele	401-500	101 000	701+	1 218	2.02	53.0
Universita Roma Tre	.02 000	401-500	701+	1 132	1.61	49.3
University of Brescia		401-500	701+	1 064	1.69	42.2
University of Salento	401-500	351-400	1011	906	2.00	39.2
Scuola Superiore Sant'Anna di Studi	101 500			700	2.00	57.2
Universitari e di Perfezionamento		190		606	1.80	38.6
Scuola Normale Superiore di Pisa	401-500	137		522	2.00	64.9
University of Venice		501-600	701+	453	1.14	41.3
University of Urbino		501-600		342	1.77	49.4
Universita di Bergamo		401-500		335	1.78	32.5
Libera Universita di Bolzano		251-300		331	2.15	51.7
Average mean	1	201 000		2 087	1.77	45.0
Stand. Dev	+			1 510	0.23	6.2
				() 72	015	() 14
Stand, dev/average Max				0.72	0.13	0.14 64.9

Universities of the United Kingdom that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016–2017 and their key bibliometric indicators in 2015.

Scopus ScVal name	ARWU 2016	THE WUR 2017-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
University College London	17	15	7	11379	2.03	56.5
University of Oxford	7	1	6	10592	2.36	61.4
Imperial College London	22	8	9	9242	2.12	62.2
University of Cambridge	4	4	4	9135	2.22	60.9
University of Manchester	35	55	29	6488	1.83	52.5
University of Edinburgh	41	27	19	5471	2.08	56.1
King's College London	50	36	21	5029	1.98	56.3
University of Southampton	101-150	121	87	4426	1.78	57.6
University of Bristol	57	71	41	4228	2.05	52.9
University of Birmingham	101-150	130	82	3972	1.98	54.3
University of Nottingham	101-150	147	75	3885	1.62	49.5
University of Sheffield	101-150	109	84	3837	1.64	49.9
University of Glasgow	151-200	88	63	3515	1.85	58.5
University of Leeds	101-150	133	93	3489	1.67	52.6
University of Liverpool	101-150	158	157	3268	1.81	57.9
University of Warwick	151-200	82	51	3192	1.78	55.7
Newcastle University	301-400	190	168	2881	1.72	50.8
Cardiff University	101-150	182	140	2826	1.62	50
Queen Mary University of London	151-200	113	123	2812	2.30	58.2
University of Exeter	151-200	126	164	2304	1.99	56.6
Queen's University Belfast	301-400	201-250	195	2227	1.92	58.2
University of York	201-300	129	127	2156	1.91	49.9
University of Durham	201-300	96	74	2124	1.79	54.7
London School of Hygiene and	151-200					
Tropical Medicine	151-200			1935	2.68	75.8
University of Aberdeen	201-300	188	141	1897	1.62	59.1
University of Leicester	201-300	172	239	1816	2.15	55.1
Lancaster University		137	129	1694	1.73	55.5
University of Strathclyde		401-500	272	1689	1.51	50.5
University of St. Andrews	301-400	110	77	1635	1.68	61.3
University of Surrey	401-500	251-300	261	1623	1.60	52.6
Loughborough University		301-350	237	1577	1.55	45.5
University of Bath	301-400	251-300	159	1501	1.65	47.1
University of Sussex	201-300	149	187	1449	1.86	55.5
University of Reading	301-400	192	175	1422	1.68	53.7
University of Dundee	201-300	180	244	1244	2.20	54.5
University of East Anglia	201-300	165	252	1224	1.72	51.7
Brunel University		301-350	345	1185	1.82	53.8
Swansea University		301-350	390	1160	2.03	50.7
Heriot-Watt University		401-500	327	1142	1.69	50.5
London School of Economics	151-200	25	37	1049	1.86	42.3
University of Kent		301-350	366	1012	1.77	50.2
University of Plymouth						

Scopus ScVal name	ARWU 2016	THE WUR 2017-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
City University London	_010	351-400	314	972	1.13	50.4
Open University Milton Keynes		401-500		943	1.36	51.4
Royal Holloway University of London		173	235	902	1.80	59.5
Liverpool John Moores University		501-600		837	1.68	64.2
University of Hull		501-600	551-600	809	1.50	49.1
Ulster University		501-600	601-650	796	1.29	52
Northumbria University		601-800	701+	784	1.44	52.6
Aston University		351-400	358	741	1.26	59.2
University of Portsmouth		401-500	601-650	736	1.63	55.3
University of Essex		301-350	330	724	1.49	55.4
Bangor University	401-500	301-350	411-420	674	1.41	54.7
University of Stirling		301-350	385	642	1.67	46.4
St. George's University of London		201-250		636	2.93	60.4
Keele University		401-500	551-600	614	1.39	52.1
University of Hertfordshire		501-600	701+	584	1.52	54.8
University of the West of England		601-800		571	1.42	37.8
Manchester Metropolitan University		601-800	701+	568	1.13	46.3
University of Huddersfield		601-800	701+	516	1.22	43.8
University of Central Lancashire		601-800	701+	504	1.25	44
University of Salford		601-800	701+	504	1.23	46.8
Coventry University		601-800		503	1.23	50.5
Birkbeck University of London	401-500	201-250	280	498	1.50	44.4
University of Greenwich		601-800	701+	488	1.37	50
Aberystwyth University		301-350	491-500	483	1.59	55.9
Bournemouth University		601-800		482	1.13	48.5
University of Bradford		601-800	551-600	455	0.95	54.9
Middlesex University		501-600	601-650	453	1.15	44.6
Nottingham Trent University		601-800	701+	436	1.17	39
Sheffield Hallam University		801+		422	1.09	35.5
Royal Veterinary College University of		301-350				
London				421	1.30	58.2
University of Brighton		601-800		406	1.56	45.3
Kingston University		601-800	501-550	390	0.94	42.1
Glasgow Caledonian University		601-800		370	1.31	43.8
Oxford Brookes University		401-500	359	361	1.50	46.3
De Montfort University		601-800	651-700	354	1.10	37.3
University of Lincoln		601-800		327	1.14	42.5
University of Westminster		601-800		312	1.27	42.3
University of the West of Scotland		601-800		303	1.49	55.8
Anglia Ruskin University		301-350		299	2.82	40.8
Goldsmiths, University of London		301-350	421-430	294	1.31	36.7
Leeds Beckett University		601-800		272	1.33	32.4
University of Bedfordshire		601-800		240	0.98	36.3
London South Bank University		801+		236	0.93	34.7
Napier University		601-800		231	0.73	45.5
Robert Gordon University		801+	701+	223	1.02	42.6
University of East London		601-800	701+	218	0.74	41.7
University of Teesside		601-800	050	204	1.88	35.3
SOAS University of London		401-500	252	183	1.09	29.5
Roehampton University		601-800	(F4 500	156	1.18	42.9
London Metropolitan University		601-800	651-700	139	1.09	55.4
Average mean				1 739	1.59	50.4
Stand. Dev				2 240	0.42	8.0
Stand, dev/average				1.29	0.27	0.16
Max				11 379	2.93	75.8
Min Note: ARWU (Academic Rank		L		139	0.73	29.5

Universities of Russian Federation that are indexed in ARWU and/or THE WUR and/or QS WUR in 2016-2017 and their key bibliometric indicators in 2015.

Scopus ScVal name	ARWU 2016	THE WUR 2017-2017	QS WUR 2016-2017	N of Pubbs	FWCI	Int collab
Moscow State University	87	188	108	5651	0.86	34
St. Petersburg State University	301-400	401-500	258	2894	1.13	33.8
Kazan Volga Region Federal				2205	1.49	20.7
University		401-500	501-550	2205	1.49	20.7
Novosibirsk State University		401-500	291	2069	0.98	34.8
Moscow Engineering Physics Institute		401-500	401-410	1963	1.03	32.3
Tomsk State University		501-600	377	1819	1.00	35.5
St. Petersburg National Research						
University of Information				1501	1 41	12 (
Technologies, Mechanics and Optics				1591	1.41	43.6
(ITMO)		351-400				
Tomsk Polytechnic University		501-600	400	1578	1.26	21.7
St. Petersburg State Polytechnical				1.420	1.(0	20.6
University		601-800	411-420	1432	1.68	38.6
Ural Federal University		801+	601-650	1415	0.62	25.4
Moscow Institute of Physics and				4205	1.00	
Technology		301-350	350	1385	1.32	43.9
Higher School of Economics		401-500	411-420	1019	1.39	34.3
Nizhni Novgorod State University		801+	701+	887	0.71	29.4
Southern Federal University		801+	551-600	740	0.85	20.8
National University of Science and						
Technology MISIS		801+	601-650	739	0.67	35.6
Far Eastern Federal University			551-600	665	0.70	25.1
Samara State Aerospace University		801+		571	0.65	9.3
Moscow State Technical University		601-800	306	570	0.71	11.4
Siberian Federal University		801+		475	0.80	18.5
Novosibirsk State Technical University	401-500	801+	701+	442	0.50	18.6
National Research University of	101 500	001	,01,			
Electronic Technology (MIET)		801+		388	0.70	31.7
Saratov State University		801+	551-600	367	1.22	34.9
Voronezh State University		801+	701+	331	0.40	15.7
Sechenov First Moscow State Medical		001	7011			
University		801+		309	0.33	14.9
Russian University of Peoples'		001				
Friendship		801+	601-650	270	0.40	25.6
Plekhanov Russian University of		001	001 050			
Economics			701+	149	0.99	6.7
Moscow State Institute of International			,011			
Relations (MGIMO-University)			350	17	0.93	23.5
Average mean			220	1 183	0.92	26.7
Stand. Dev				1 105	0.36	10.2
Stand. dev/average				0.98	0.39	0.38
Max				5 651	1.68	43.9
Min				17	0.33	6.7
NIACA ADWILL (A as lowed a Develo					0.33	0.7

References

- [1] Abramo G, D'Angelo CA, Di Costa F, Solazzi M. University-industrv collaboration in Italy: a bibliometric examination. Technovation 2009;29(6): 498-507.
- [2] Abramo G, D'Angelo CA, Solazzi M. The relationship between scientists' research performance and the degree of internationalization of their research. Scientometrics 2010:86(3):629-43.
- Abramo G, D'Angelo CA, Solazzi M, Are researchers that collaborate more at [3] the international level top performers? An investigation on the Italian university system. J Inf 2011;5(1):204–13.
- Acemoglu D. Microfoundation for social increasing returns in human capital [4] accumulation. Q J Econ 1996;113(3):779-804.
- Adams JD, Black GC, Clemmons JR, Stephan PE. Scientific teams and institu-[5] tional collaborations: evidence from U.S. Universities, 1981-1999. Res Policy 2005;34(3):259-85.
- [6] Aguillo IF, Bar-Ilan J, Levene M, Ortega JL. Comparing university rankings. Scientometrics 2010;85(1):243-56.
- [7] Akakandelwa A. Author collaboration and productivity at the University of Zambia, 2002–2007. Afr J Libr Arch Inf Sci 2009;19(1):13–24.
- [8] Aldieri L, Vinci CP. R&D spillovers and productivity in Italian manufacturing firms. Int J Innov Manag 2016;21(4):1750035 (16 pages).
- [9] Aldieri L, Kotsemir Maxim N, Vinci CP. The Impact of research collaboration on academic performance: an empirical analysis for Russian Universities. 2017. MPRA Working Paper 76408.
- [10] Andersen JP, Skrubbeltrang C, Gregersen H. Publication activity at Aalborg hospital. Ugeskr Laeger 2010;172(17):1279-84.
- [11] Anderson TW. Asymptotic theory for principal component analysis. Ann Math Stat 1963;34:122-48.
- [12] Archambault É, Campbell D, Gingras Y, Larivière V. Comparing bibliometric statistics obtained from the web of science and scopus. J Assoc Inf Sci Technol 2009;60(7):1320-6.
- Awad DA, Billiard S, Tran VC. Perenniality induces high inbreeding depression [13] in self-fertilising species. Theor Popul Biol 2016;112:43-51.
- [14] Beaudry C, Allaoui S. Impact of research funding on nanobiotechnology scientific production: does concentration in a few universities make sense?. In: 2011 atlanta conference on science and innovation policy. IEEE; 2011, September. p. 1-28.
- [15] Bovenberg L, Mehlkopf R. Optimal design of funded pension schemes. Annu Rev Econ 2014;6(1):445-74.
- [16] Bowman NA, Bastedo MN. Anchoring effects in world university rankings: exploring biases in reputation scores. High Educ 2011;61(4):431-44.
- [17] Chakravarty R, Chakravarty R, Madaan D, Madaan D. SCOPUS reflected study of selected research and higher education institutions (HEIs) of Chandigarh: a city of education and research. Libr Hi Tech News 2016;33(2):12-4.
- [18] Chen KH, Liao PY. A comparative study on world university rankings: a bibliometric survey. Scientometrics 2012;92(1):89-103.
- [19] Chuang KY, Ho YS. An evaluation based on highly cited publications in Taiwan. Curr Sci 2015;108(5):933-41.
- Colledge L, Verlinde R. Scival metrics guidebook. Netherlands: Elsevier; 2014. Dakik HA, Kaidbey H, Sabra R. Research productivity of the medical faculty at Ì21Ì
- the American University of Beirut. Postgrad Med J 2006;82(969):462-4. De Filippo D, Marugan S, Sanz-Casado E. Profile of scientific collaboration [22] within the Spanish higher education system. Analysis of publications in the
- Web of Science (2002–2011). Rev Esp De Doc Cient 2014;37(4). art. no. e067. [23] De Filippo D, González SC, Sanz-Casado E. Bibliometría de la colaboración e
- impacto de la Revista de Biología Tropical (Web of Science 2003-2012). Rev Biol Trop 2016;64(1):163-72. [24] Demange G, Fenge R, Uebelmesser S. Financing higher education in a mobile
- world. J Public Econ Theory 2014;16(3):343-71.
- Donato H, Oliveira CF. Bibliometria do cancro em Portugal: 1997 a 2006. 2009. [25] Eckwert B, Zilcha I. Private investment in higher education: comparing [26]
- alternative funding schemes. Economica 2012;79(313):76-96. [27] Elhorst JP, Zigova K. Competition in research activity among economic de-
- partments: evidence by negative spatial autocorrelation. Geogr Anal 2014;46(2):104-25.
- [28] Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB 2008:22(2):338-42.
- [29] Farmer K, Zotti J. Sustainable government debt in a two-country overlapping generations' model. Int Adv Econ Res 2010;16(1):124-5.
- [30] Franco MM, Pellegrin A, Figueiredo RA, Rossetto A, Garcia LSAC, Azevedo HC, et al. The innovation network in animal reproduction: EMBRAPA's experience in organizing a research project on reproductive biotechnology. Acta Sci Veterinariae 2011;39(1):s135-8.
- [31] Frenkel VM, Ronin YI, Korol AB. The dynamics of the rec-system in variable environments: haploid selection in a cyclical two-state environment. Theor Popul Biol 2006;70(2):111-24.
- Fu JY, Zhang X, Zhao YH, Tong HF, Chen DZ, Huang MH. Scientific production [32] and citation impact: a bibliometric analysis in acupuncture over three decades. Scientometrics 2012;93(3):1061-79.
- [33] Gausia K, Thompson SC, Lindeman MA, Brown LJ, Perkins D. Contribution of university departments of rural health to rural health research: an analysis of outputs. Aust J Rural Health 2015;23(2):101-6.

- [34] Geracitano LA, Chaves IS, Monserrat JM. Scientometric analysis of Latin American environmental studies. Int | Environ Health 2009;3(4):427-37.
- [35] Graue M, Iversen MM, Sigurdardottir ÁK, Zoffmann V, Smide B, Leksell J. Diabetes research reported by nurses in Nordic countries. Eur Diabetes Nurs 2013;10(2):46-51.
- [36] Grove SJ, Dorsch MJ, Hopkins CD. Assessing the longitudinal robustness of spectators' perceptions of the functions of sport: implications for sport marketers. | Mark Theory Pract 2012;20(1):23-38.
- [37] Haagsma R. Koning N. Endogenous norms and preferences and the farm income problem. Eur Rev Agric Econ 2005;32(1):25-49.
- [38] Haupt A. The evolution of public spending on higher education in a democracy. Eur J Pol Econ 2012;28(4):557–73.
- [39] Huamaní C, Mayta-Tristán P. Peruvian scientific production in medicine and collaboration networks, analysis of the science citation index 2000–2009. Rev Peru Med Exp Salud Públ 2010;27(3):315-25.
- [40] Isiordia-Lachica P, Rodríguez-Carvajal R, Angulo G, Chávez K, Barboza-Flores M. Measurement of scientific research performance at the Universidad de Sonora, México. In: 2015 portland international conference on management of engineering and Technology (PICMET). IEEE; 2015, August. p. 204–10.
- [41]
- Jackson JE. A User's guide to principal components. New York: Wiley; 2003. Karatzas I, Shubik M, Sudderth W. A stochastic overlapping generations [42] economy with inheritance. [Econ 2002;77(3):207-40.
- Kato M, Ando A. The relationship between research performance and inter-[43] national collaboration in chemistry. Scientometrics 2013;97(3):535-53.
- [44] Kehm BM, Stensaker B. University rankings, diversity, and the new landscape of higher education, vol. 18. Sense Publishers: 2009.
- [45] Kodama H, Watatani K, Sengoku S. Competency-based assessment of academic interdisciplinary research and implication to university management. Res Eval 2013:22(2):93-104.
- Kotsemir M, Kuznetsova T, Nasybulina E, Pikalova A. Identifying directions for [46] the Russia's science and Technology cooperation. Foresight STI Gov 2015;9(4): 54 - 72
- [47] Kuhl Teles V, Andrade J. Public investment in basic education and economic growth. J Econ Stud 2008;35(4):352-64.
- [48] Landry R, Traore N, Godin B. An econometric analysis of the effect of collaboration on academic research productivity. High Educ 1996;32(3):283-301.
- [49] Marginson S. Global university rankings: implications in general and for Australia. J High Educ Policy Manag 2007;29(2):131–42.
- [50] Meho LI, Yang K. A new era in citation and bibliometric analyses: web of Science, Scopus, and Google Scholar. 2006. arXiv preprint cs/0612132.
- [51] Menon AJ, Jere-Folotiya J, Chansa-Kabali T. Dimensions of international research collaboration in developing Africa's higher education- lessons from the University of Zambia. 2013. p. 259-78. Leveraging Educational Quality in Southern African Educational Systems: A Practitioners' Perspective.
- [52] Numprasertchai S, Igel B. Managing knowledge through collaboration: two cases of managing research in university laboratories in Thailand. In: Engineering management conference, 2003. IEMC'03. Managing technologically driven organizations: the human side of innovation and change. IEEE; 2003, November. p. 575-9.
- [53] O'Leary JD, Crawford MW, Jurczyk E, Buchan A. Benchmarking bibliometrics in biomedical research: research performance of the University of Toronto's Faculty of Medicine, 2008–2012. Scientometrics 2015;105(1):311–21.
- [54] Obamba MO, Mwema JK. Symmetry and asymmetry: new contours, paradigms, and politics in African academic partnerships. High Educ Policy 2009;22(3):349-71.
- [55] Olmeda-Gómez C, Ovalle-Perandones MA, Perianes-Rodríguez A, De-Moya-Anegón F. International research impact and scientific collaboration by universities from Catalonia: 2000–2004. Rev Esp Doc Cient 2008;31(4):591–611.
- [56] Olmeda-Gómez C, Perianes-Rodríguez A, Antonia Ovalle-Perandones M, Guerrero-Bote VP, de Moya Anegón F. Visualization of scientific co-authorship in Spanish universities: from regionalization to internationalization. In: Aslib proceedings (vol. 61, No. 1, pp. 83-100). Emerald Group Publishing Limited; 2009, January.
- [57] Perotti R. Political equilibrium, income distribution, and growth. Rev Econ Stud 1993;60(4):755-76.
- [58] Pocrnic I, Lourenco DA, Masuda Y, Legarra A, Misztal I. The dimensionality of genomic information and its effect on genomic prediction. Genetics 2016;203(1):573-81.
- [59] Porokhovnik LN, Viktorov VV, Egolina NA, Tsvetkova TG, Lyapunova NA. Cluster size polymorphism of active human ribosomal genes and simulation of the conditions of its stability through generations. Russ J Genet 2011;47(12):1479-86.
- [60] Rasolabadi M, Rasouli-Ghahfarkhi SM, Ardalan M, Kalhor MM, Seidi J, Gharib A. Epilepsy research in Iran: a scientometric analysis of publications output during 2000-2014. Acta Inform Med 2015;23(6):374.
- [61] Reznik-Zellen R. Benchmarking with SciVal in scholarly communication and research services. 2016.
- [62] Riahi A, Siamian H, Zareh A, Navaei RA, Haghshenas MR. Quantitative evaluation of scientific productions in Iran in immunology and microbiology indexed in scopus database (2000–2012). J Mazandaran Univ Med Sci (JMUMS) 2014;24(118).
- [63] Samia Y, Lutscher F. Coexistence and spread of competitors in heterogeneous landscapes. Bull Math Biol 2010;72(8):2089-112.
- Sarabia M, Sarabia JM. A Hamiltonian model in non-overlapping generations: [64]

family business behavior. Int Adv Econ Res 2007;13(1). 120-120.

- [65] Savic M, Ivanovic M, Surla BD. Analysis of intra-institutional research collaboration: a case of a Serbian faculty of sciences. Scientometrics 2016: 1–22. article in press.
- [66] Shashnov Sergey, Kotsemir Maxim. Measuring the research capacity of a university: use of Web of Science and Scopus. In: 2nd international multidisciplinary scientific conference on social sciences and arts SGEM2015. Conference proceedings vol. II. Book 1: psychology and psychyatry, sociology and helathcare, education. Sofia: STEF92 Technology Ltd; 2015. p. 621–8.
- [67] Staiger D, Stock JH. Instrumental variable regression with weak instruments. Econometrica 1997;65(3):557–86.
- [68] Stein DJ, Daniels W, Emsley R, Harvey B, Blackburn J, Carey P, et al. A brainbehaviour initiative for South Africa: the time is right. Metab Brain Dis 2006;21(2–3):266–71.
- [69] Stock JH, Wright JH, Yoko M. A Survey of weak instruments and weak identification in generalized method of moments. J Bus Econ Stat 2002;20(4): 518-29.
- [70] Sweileh WM, Shraim NY, Sa'ed HZ, Al-Jabi SW. Worldwide research productivity on tramadol: a bibliometric analysis. Springerplus 2016;5(1):1–8.
- [71] Velculescu D. Consumption habits in an overlapping-generations model. Econ Lett 2011;111(2):127–30.
- [72] Vieira E, Gomes J. A comparison of Scopus and Web of Science for a typical university. Scientometrics 2009;81(2):587–600.
- [73] Walton DB, Leard BP, Tongen A. An optimal strategy for energy allocation in a multiple resource environment. Bull Math Biol 2010;72(5):1092–123.
 [74] Wang MH, Fu HZ, Ho YS. Comparison of universities' scientific performance
- [74] Wang MH, Fu HZ, Ho YS. Comparison of universities' scientific performance using bibliometric indicators. Malays J Libr Inf Sci 2011;16(2):1–19.
- [75] Zdravkovic M, Chiwona-Karltun L, Zink E. Experiences and perceptions of South–South and North–South scientific collaboration of mathematicians, physicists and chemists from five southern African universities. Scientometrics 2016:1–27.
- [76] Zucker LG, Darby MR. Capturing technological opportunity via Japan's star scientists: evidence from Japanese firms' biotech patents and products. J Technol Transf 2001;26(1–2):37–58.

Luigi Aldieri Researcher in Economic Policy at the University of Naples Parthenope. He is affiliated to 'The International Centre for Innovation, Technology and Education Studies (iCite), www.solvay.edu/icite/members. He is member of Association for Comparative Economic Studies (ACES), www.acesecon.org. He holds a PhD in Sciences Economiques et de gestion at the Solvay Business School of Economics and Management (SBS-EM) of Université Libre de Bruxelles (ULB). His research interests embrace Applied Econometrics, the measurement of knowledge, economic performance of large international firms.

Maxim Kotsemir Quantitative Modelling Unit. Young Faculty Support Program (Group of Young Academic Professionals) Category "New Researchers" (2012–2013). He is working in Institute for Statistical Studies and Economics of Knowledge, National Research University Higher School of Economics (ISSEK HSE), Moscow, Russia since August 2011. The key fields of interest of his research are: scientometrics; innovation studies, forecasting. During the work in ISSEK HSE Maxim Kotsemir prepared more than 20 publications – articles in Russian and foreign journals indexed in Scopus and Web of Science, working papers, statistical digests, analytical reports. Maxim Kotsemir papers are in great demand in the scientific community - they received many citations from Russian and foreign authors. Papers of Maxim Kotsemir are highly visible in SSRN network (https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=1989392) - some of them received more than 1500 downloads.

Concetto Paolo Vinci Full Professor in Economic Policy, University of Salerno, Faculty of "Scienze Politiche". He is member of Association for Comparative Economic Studies (ACES), www.acesecon.org. First degree: University of Naples Federico II; PhD in Development Economics, University of Naples Federico II; Research Activity, Departement d'economie Appliquee – Economie du Travail et de l'Emploi (DULBEA-ETE) de l'Universitè Libre de Bruxelles (Bruxelles, BE, 19/09/99-30/06/2000). Main research interests: Efficiency wages and Dual Economies, Economics of Migration, Working Hours and Capital Operating Time.