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In this paper, we estimate the impact of receiving an NIH postdoctoral training grant on subsequent
publications and citations. Our sample consists of all applications for NIH postdoctoral training grants
(unsuccessful as well as successful) from 1980 to 2000. Both ordinary least squares and regression dis-
continuity estimates show that receipt of an NIH postdoctoral fellowship leads to about one additional
publication over the next five years, which reflects a 20% increase in research productivity.
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. Introduction

In recent years, the size of PhD cohorts in the life sciences has
ncreased sharply. According to the Survey of Earned Doctorates,1

etween 1987 and 2007 the number of individuals earning life
cience doctorates nearly doubled even as the overall population
n the United States increased only by one quarter over the same
eriod. Despite the large influx of young researchers into the life-
ciences, the median age of first-time recipients of NIH research
rants has increased from 37 in 1980 to 42.2

The increased investment in the production of life-science
hDs, combined with aging of the population of NIH grant recipi-
nts, underscores the difficulty that individuals increasingly have
n making the transition from doctoral student to independent
esearcher. Pion (2001) provides direct evidence regarding this
ransition. She reports that 20% of biomedical PhDs who graduated

n 1993 or 1994 no longer worked in a research position by 1995.3

imilarly, only about 40% had applied for a NIH or NSF grant within
0 years of completing their PhD.

∗ Corresponding author. Tel.: +1 801 422 5169; fax: +1 801 422 0194.
E-mail addresses: bajacob@umich.edu (B.A. Jacob), l-lefgren@byu.edu,

ars lefgren@byu.edu (L. Lefgren).
1 See Doctorate Recipients from United States Universities Selected Tables 2007.
2 See Kaiser (2008). The median age of all grant recipients has likewise increased.
3 According to Pion “Research career positions are defined as either: (a) holding
faculty position in an institution with one or more biomedical doctoral programs

anked in the 1995 Research Doctorate Study; (b) working in a nonacademic job for
hich research is the primary responsibility; or (c) being in a postdoctoral training

ppointment”.

048-7333/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.respol.2011.04.003
The difficulty of this transition is troubling for several reasons.
First, graduate training represents a tremendous financial invest-
ment by taxpayers, universities, and students. In 2009 the average
cost of tuition, fees, and living expenses associated with grad-
uate study of the biological sciences in a high quality program
was approximately $51,000 per year.4 In 2006, 8537 biomedical
researchers completed their PhDs. If the average length of time to
complete a biomedical PhD is five years, the annual cost of training
new biomedical researchers is close to $2.2 billion. Given this enor-
mous financial investment, it is imperative that we maximize the
social return by ensuring that new PhDs make a seamless transi-
tion to a productive research career. Second, Stephan and Levin
(1989) report that the research productivity of life scientists is
greatest prior to the age of forty. Delays in beginning an indepen-
dent research career may therefore reduce the productivity of new
scientists, and create a mismatch between the period where NIH
funding is available and when the scientist can make the greatest
use of the funding. Finally, the difficulty of this transition may dis-
courage potentially excellent researchers from pursuing graduate
training in the biomedical field.
The NIH has taken steps to ease the transition from graduate
school to an independent research career. For example, in 2007
the NIH instituted a numerical quota for the number of awards

4 This was calculated by averaging the reported tuition, fee, and living
expenses of top 25 graduate programs in the biological sciences. We used
the program rankings reported by US News and World Report in 2007. See
http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools/top-
biological-sciences-programs/rankings accessed on January 21, 2010.

dx.doi.org/10.1016/j.respol.2011.04.003
http://www.sciencedirect.com/science/journal/00487333
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mailto:bajacob@umich.edu
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http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools/top-biological-sciences-programs/rankings
dx.doi.org/10.1016/j.respol.2011.04.003
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ade to new researchers in order to help new researchers pur-
ue an independent research agenda. The NIH also makes career
evelopment awards (K awards) to researchers who have recently
ompleted their graduate training. Finally, the NIH awards post-
octoral research fellowships (F32’s) that are designed to facilitate
he transition to a research career.

Unfortunately, the benefits of such programs are unclear. For
xample, if resources are allocated to those young researchers
lready well on their way to a productive career, the marginal
mpact of the interventions may be small. Alternatively, the size
f a postdoctoral fellowship may be insufficient to meaningfully
oost a young researcher’s productivity. As a consequence, careful
mpirical evidence is required to assess the effectiveness of these
nterventions.

In this paper, we examine the impact of NIH F32 postdoctoral
esearch fellowships on the subsequent career outcomes of recipi-
nts. Our sample includes all successful and unsuccessful applicants
or F32 grants between 1980 and 2000. Unlike the NSF and most
oundations, the NIH allocates research funding in a largely formu-
aic way on the basis of priority scores derived from independent
cientific reviews. This results in a highly nonlinear relationship
etween a proposal’s priority score and the likelihood it is funded.
e use this nonlinearity to estimate the causal effect of funding on

variety of outcomes, including publications, citations, and future
esearch funding. The intuition underlying our approach is that
ndividuals on either side of the cutoff for funding will be extremely
imilar in all relevant respects, except that those applicants who
core just above the cutoff receive a NIH postdoctoral fellowship
hile those just below the cutoff do not.

We find that NIH postdoctoral fellowships increase research
utput on a variety of dimensions. For example, receiving an NIH
ostdoctoral fellowship increases five-year publication rates from
.6 to about 5.2, or roughly 20%. It also increases the likelihood the
ecipient has five or more publications by 24%. The effect is similarly
arge for first-author publications.

While our results suggest that NIH postdoctoral grants provide
ubstantial benefits to the young scholars who receive the awards,
hese estimates will not capture benefits that accrue to other
esearchers, or to society at large. Our estimates reflect the effect of
n NIH postdoctoral fellowship relative to the applicant’s next best
ption. If this outside option is also very good, the observed effect
f an NIH postdoctoral fellowship will appear small. Yet, assum-
ng that the existence of NIH fellowships do not completely “crowd
ut” other fellowship opportunities, the F32 program increases the
otal number of research opportunities for recent graduates, and
hus benefits even those applicants who do not receive a NIH fel-
owship themselves. To borrow terminology from economics, our
stimates capture the partial, not general, equilibrium effects of the
olicy.5

The reminder of our paper proceeds as follows. In Section 2, we
eview the prior literature in this area. Section 3 provides impor-
ant background information on the NIH funding process. Section

describes the data we use and how we construct our analysis
ample. In Section 5, we outline our empirical methodology. In Sec-

ion 6, we present our findings. In Section 7, we discuss the policy
mplications of our results and conclude.

5 It is also interesting to consider the effectiveness of the NIH postdoctoral fellow-
hip program relative to other ways in which NIH could use the same resources. For
xample, it is possible that shifting resources from the F32 program to the standard
IH research grant programs (i.e., those mechanisms that provide R01 grants) would
ave an even larger impact on the research careers of young scholars (for example,
y funding principal investigators who employ recent graduates). Unfortunately,
his analysis is beyond the scope of the current paper.
olicy 40 (2011) 864–874 865

2. Prior literature

A few earlier studies have examined the effect of NIH funding
provided on the career outcomes of participants in training pro-
grams. Pion (2001) compared the career outcomes of participants in
NIH sponsored pre-doctoral training programs to two other groups
of doctoral students—students in the same university as the NIH-
sponsored fellows but who did not receive an NIH fellowship and
students at institutions that did not receive NIH support. She finds
that NIH pre-doctoral support had little impact on an individual’s
research productivity (as measured by publications and citations)
or success at applying for NIH and NSF research support. However,
due to questions regarding the similarity of the comparison groups,
it is hard to interpret these results.

In their evaluation of NIH career development awards, Carter
et al. (1987) compare successful versus unsuccessful applicants,
controlling for a linear measure of the applicant’s priority score.
They find that the award may increase future grant funding slightly,
but that it does not appear to increase publication-based mea-
sures of research productivity. This strategy leverages the intuition
behind a regression discontinuity analysis and thus, in theory,
should eliminate selection concerns. However, this particular anal-
ysis appears to have suffered from several potential shortcomings.
Specifically, the authors do not provide evidence that career grants
were, in practice, awarded strictly on the basis of priority scores,
nor do they include more flexible controls for the priority score to
account for any underlying non-linear relationship between score
and productivity.

Arora and Gambardella (2005) estimate the impact of receiving a
National Science Foundation grant on subsequent research produc-
tivity of a sample of economists. They find generally small impacts
of grant receipt but present some evidence that the impacts might
be larger for young researchers.

3. Background

NIH post-doctoral fellowships (F32 grants) are awarded to
young researchers who have just completed their graduate train-
ing. The grants are awarded for up to three years and include a
stipend for the individual and a payment made to the sponsoring
institution. In 2008, NIH awarded approximately 648 postdoctoral
fellowships (not including ongoing awards) with annual stipends
averaging roughly $50,000. These fellowships are likely to com-
prise the primary or only source of funding for individuals during
this period in their career. A primary goal of the fellowship is to
steer recipients into a research career.

Applications for F32 grants are accepted three times per year. All
applications are subject to peer review within Integrated Review
Groups (IRGs) organized around topics or areas. Postdoctoral fel-
lowship award applications are generally reviewed by a single body
within the particular institute, and are therefore not transformed
into percentile ranks.

Reviewers evaluate proposals on the basis of five criteria (sig-
nificance, approach, innovation, investigator and environment) and
assign each application a priority score on a scale of 1–5 (reviewers
assign a score up to two significant digits, e.g., 2.2, with 1 being
the highest quality). The average of these scores is calculated and
multiplied by 100 to obtain the priority score. A certain fraction of
the lowest quality applications (as determined by the reviewers) do
not receive priority scores. Typically, half of all research program
grant applications do not receive scores, whereas all fellowship

and career applications receive scores, but this varies considerably
across institutes.

Funding determinations for postdoctoral fellowships are made
at the institute level, so that applications from different programs



8 arch P

w
n
fi
g
s
n
r
a
f

4

i
f
p
m
d
a
p
w

f
t
i
W
i
T
i
i
t
c

(
s
o
m
1
n
v
fl
i
t
a
f
w
p
a

u
s
c
g

a

a
e
i
t
e
e
t
a
s
c

66 B.A. Jacob, L. Lefgren / Rese

ithin the institute compete against each other for funding. The
umber of grants funded depends on the institute budget for the
scal year. In practice, each decision-making unit is allocated a bud-
et. Generally, grants are awarded solely on the basis of priority
core. Researchers whose applications receive a poor score and do
ot receive funding have the ability to respond to the criticisms
aised by reviewers and submit an amended application. Amended
pplications are treated in the same manner as new applications
or the purposes of evaluation and funding.

. Data and sample

Information on NIH applicants and applications, including prior-
ty scores, are drawn from administrative files that include records
or all applications for research grants and fellowships. The records
rovide information on the principal investigator (name, depart-
ent, home institution, etc.), the type of application (including the

ate the grant was considered, the grant type or mechanism as well
s the institute and program area to which it was submitted), the
riority score received by the application, whether the application
as funded and how much funding it received.

The outcomes we examine include publications, citations and
uture NIH funding. The NIH files utilize a unique individual iden-
ifier so that we are able to match applicants in any given year,
nstitute and mechanism to past and future funding information.

e match NIH applicants to publications using last name and first
nitial. Of course, this will likely result in a number of false positives.
herefore, we utilize a variety of different strategies to minimize the
ncidence of bad matches.6 To minimize the impact of extreme pos-
tive outliers in the outcome measures, we recode all values above
he 99th percentile to the 99th percentile value for all publication,
itation, and NIH funding variables.

We start with all applications for postdoctoral fellowships
F32s) submitted to NIH between 1980 and 2000. To minimize mea-
urement error in matching researchers to publications, we focus
n the 44% of F32 applications in which the applicants have uncom-
on names, defined as those whose last name was associated with

0 or fewer unique NIH applicants during our time period. Since
ame frequency is unlikely to be correlated with whether an indi-
idual is just above or below the funding cutoff (conditional on
exible controls for their priority score), this restriction will not

nfluence the consistency of our estimates.7 We also exclude insti-
utes with fewer than 100 applicants for the entire sample period
nd a small number of applicants who had large amounts of NIH
unding prior to their postdoctoral fellowship application. Finally,
e focus our analysis on individuals with IRG scores within 100
oints of the cutoff. This increases the comparability of rejected
nd accepted applicants.

Our analysis sample has 13,426 observations reflecting 12,189
nique individuals over 20 years and 16 different institutes. Table 1

hows summary statistics of all F32 applicants along with appli-
ants in our analysis sample. The summary statistics for these two
roups tend to be quite similar. Focusing on our analysis sam-

6 For a more complete description of the statistical methodology utilized in this
nalysis, see the online appendix.
7 However, if this group of researchers is different than the overall pool of

pplicants in important ways, this strategy may change the interpretation of our
stimates. For example, if researchers with uncommon names are more likely to be
mmigrants or come from relatively small ethnic groups, our estimates will reflect
he impact of grant funding on these groups. If such researchers use grant funding
ither more or less productively than other individuals, our estimated treatment
ffects will not generalize to the broader population of researchers. In order to assess
he external validity of our estimates, we compared NIH applicants with common
nd uncommon names on a variety of observable characteristics. The comparison
uggests that those with uncommon names are quite comparable to those with more
ommon names. See the online appendix for a more detailed discussion.
olicy 40 (2011) 864–874

ple, researchers from the biological sciences constitute 82% of the
sample while researchers from physical science, social science and
other miscellaneous departments constitute 9, 6 and 4% of appli-
cants, respectively. The institutes receiving the largest number of
applicants are General Medicine; Heart, Lung and Blood; Cancer;
and Neurological Disorders. Roughly 46% of applicants receive a fel-
lowship on any given application, with an additional 4% obtaining
a fellowship on a later application.

5. Methodology

If fellowships were randomly allocated, one could identify the
causal effect of an award by simply comparing the research out-
put of successful and unsuccessful applicants. However, the data
suggest that more qualified applicants are more likely both to
receive NIH postdoctoral fellowships and to have high numbers
of future publications and citations.8 To the extent that this is true,
naïve comparisons of successful and unsuccessful applicants may
be biased upward, reflecting both the causal impact of receiving a
fellowship as well as differences in latent scientific productivity (or
interest). In this section, we describe the empirical strategies that
we use to address these concerns, illustrating the intuition behind
our approaches as well as outlining some of the details regarding
statistical estimation.

5.1. Controlling for selection on observable characteristics

As a first attempt at identifying the causal impact of postdoc-
toral funding, we use the abundant information available to us
regarding the quality of the grant application and prior produc-
tivity of the applicant to control for the expected productivity of
the researcher in the absence of the grant. More specifically, we
estimate a regression of the following form:

productivityit+1 = ˇ fundedit + f (nit) + XitB + εit+1 (1)

where productivityit+1 is the research productivity of individual i
in period t + 1, fundedi,t indicates whether the researcher’s appli-
cation was ultimately successful, nit is the priority score of the
researcher’s application normalized relative to the grant funding
cutoff (described in more detail below), f( ) is a smooth function,
Xit is a vector of researcher-level covariates, and εit+1 is a mean
zero residual. As covariates we include NIH institute, region, year,
discipline, and organization type fixed effects; demographic con-
trols including marital status, number of children, age, gender,
and type of degree; quadratic functions of the normalized priority
score, name frequency, age, institution rank, graduate institution
rank; and productivity measures in the five years prior to grant
application including quadratic measures of publications, citations,
research direction, NIH funding, and NSF funding. Our hope is that
by controlling adequately for the priority score of the grant appli-
cation, researcher characteristics, and prior productivity we can
identify the approximate causal effect of grant receipt on subse-
quent research productivity.

5.2. A regression discontinuity approach

In addition to the controlling for a rich set of observable appli-
cant characteristics, we use a second approach which relies upon

the fact that F32 fellowships are awarded on the basis of observ-
able priority scores, and that there is a highly nonlinear relationship
between this score and the probability of funding. This strategy

8 For example, applicants with more publications prior to the application date
are more likely to receive a fellowship and have higher numbers of subsequent
publications.
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Table 1
Summary statistics.

Analysis sample

All applicants All Applicants scoring just
below the cutoff

Applicants scoring just
above the cutoff

Normalized score 15.07 −1.30 −24.00 23.83
Awarded 0.41 0.46 0.72 0.15
Ever awarded 0.46 0.51 0.74 0.25
Applicant’s background
Female 0.38 0.38 0.38 0.40
Age 32.26 31.94 31.55 32.38
Married 0.50 0.49 0.49 0.50
Divorced 0.28 0.28 0.30 0.24
Number of Dependents 0.29 0.27 0.25 0.28
Name frequency 174.62 2.12 2.08 2.10
Has PhD 0.76 0.77 0.78 0.78
Has MD 0.20 0.19 0.19 0.16
Has PhD and MD 0.05 0.05 0.05 0.03
Rank of graduate institution in terms of NIH funding 130.83 129.37 116.39 148.54
Rank of current institution in terms of NIH funding 69.46 68.73 67.20 71.14
Department

Biological sciences department 0.82 0.82 0.82 0.81
Physical sciences department 0.09 0.09 0.09 0.11
Social sciences department 0.04 0.04 0.04 0.04
Other department 0.05 0.05 0.05 0.05

Productivity measures
Years 1–5 prior to the application

Any NIH funding 0.02 0.02 0.02
Amount of NIH funding (/$100,000) 0.28 0.30 0.18
Any publications 0.77 0.79 0.76
Number of publications 3.54 3.53 3.42

Years 1–5 following the application
Any NIH funding 0.23 0.25 0.18
Amount of NIH funding ($/100,000) 1.42 1.48 1.39
Any publications 0.91 0.93 0.90
Number of publications 6.07 6.10 5.69
Any citations 0.91 0.93 0.89
Number of citations 254.67 276.46 219.72

Years 6–10 following the application
Any NIH funding 0.30 0.33 0.22
Amount of NIH funding ($/100,000) 5.11 5.15 5.12
Any publications 0.77 0.81 0.73
Number of publications 8.15 8.32 7.58
Any citations 0.74 0.77 0.68
Number of citations 246.57 258.54 203.38
Sample size 36,302 13,426 5752 3611
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In this spirit, columns 3 and 4 in Table 1 show summary statis-
tics for applicants between 0 and 50 points below the cutoff and
otes: Sample includes applicants with uncommon names (name frequency ≤ 10)
he unit of observation is a grant application (n = 13,462). Estimates of amount of N

s based on the regression discontinuity (RD) design, which has
ecome increasingly popular in economics research in recent years,
nd has been used to successfully evaluate a variety of programs.
he intuition behind the RD design is that if one compares appli-
ants just above and just below some pre-specified cutoff, there
ill be little, if any, difference in unobservable determinants of
roductivity but a large difference in the likelihood of receiving
unding.9

There is no pre-determined cutoff for funding that applies uni-
ersally across the NIH. Instead, the realized cutoff in each situation
epends on the level of funding for a particular institute, year and
echanism, along with the number and quality of applications

ubmitted. This political reality provides significant advantages for
ur identification since it essentially establishes dozens of different
utoffs that we can exploit, and reduces the concern that a single

utoff might coincide with some other factor that is correlated with
esearch productivity.

9 For a formal treatment of RD designs, see Hahn et al. (2001). For empirical exam-
les, see Jacob and Lefgren (2004a,b), Thistlewaite and Campbell (1960), Berk and
auma (1983), Trochim (1984), Black (1999), and Angrist and Lav (1999).
cored within ±100 points of the funding cutoff for F32s and ±200 points for R01s.
NSF funding includes zeroes for those who received no funding.

To aggregate across institutes and years, we define the cutoff in
institute j in year t,cjt, as the score of the last funded application in
the counterfactual case that no out-of-order funding had occurred.
Denote pijt as the priority score received by researcher is application
in institute j in year t. We then subtract this cutoff from each priority
score to obtain a normalized score, which will be centered around
the relevant funding cutoff: nijt = pijt − cjt.10

In the case of a “sharp” discontinuity, situations in which the
probability of receiving a treatment is determined completely by
performance relative to a predetermined cutoff, one can estimate
a RD model by simply comparing the outcomes of those immedi-
ately above and below the cutoff. This identifies the causal effect
of treatment for individuals in the neighborhood of the cutoff.
between 1 and 50 above the cutoff. Prior research output and

10 Ideally, one would like to create the theoretical cutoff score taking into account
the amount of funding associated with each application. Unfortunately, the NIH
files do not contain any information regarding the requested funding amounts for
the unfunded applications. Note that if all applications requested the same amount
of funding, both approaches would yield identical cutoff scores. This is an excellent
approximation for our sample, however.
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Notes: Data is smoothed using a lowess estimator with a bandwidth of .25.  Publication residuals 
are calculated by regressing five year publication rates on researcher demographics and prior 
productivity measures. 

-.2
-.1

0
.1

.2
5 

Y
ea

r P
ub

. R
es

id
ua

ls

0
.2

.4
.6

.8
P

ro
b.

 o
f E

ve
nt

ua
l A

w
ar

d

-100 -50 0 50 100
Normalized IRG Score

Prob. of Eventual Award 5 Year Pub. Residuals

F s. Not
r ograp

d
b
o
q
t
c
y
t
e
e
y

a
s
t
p
p
m
f
i
t
o
2
t

r

t
0

ig. 1. Relationship between normalized IRG score, eventual award, and publication
esiduals are calculated by regressing five year publication rates on researcher dem

emographic characteristics across these two groups are mostly
alanced. While these groups seem quite similar on the basis of
bservable characteristics, the probability of eventual treatment is
uite different—74% for the group below the cutoff and only 25% for
he group above. The eventual publication rates also differ. Appli-
ants below the cutoff had 6.1 publications on average in the five
ears after grant application compared to only 5.7 publications for
hose applicants above the cutoff. If this difference is attributable
ntirely to the difference in probability of grant receipt, the implied
ffect of an F32 postdoctoral fellowship is 0.8 publications over five
ears.11

In our case, however, the relationship between priority score
nd receipt of an NIH postdoctoral fellowship does not follow a
harp discontinuity. The bold line in Fig. 1 shows the probability
hat a grant application is funded as a function of the normalized
riority scores for applicants in our sample. Note that while the
robability of funding is a highly nonlinear function of the nor-
alized application score, there is clearly evidence of out-of-order

unding. Some successful applicants ultimately decline the award
n favor of alternative employment, further attenuating the rela-
ionship between normalized score and grant receipt. Roughly 7%
f individuals who scored above the cutoff received the grant, while
6% of those below the cutoff did not receive a grant or declined

he award.

Because the unobserved productivity of applicants may be
elated to the application score, we might expect publication rates

11 This equals the difference in five year publication rates between the
wo groups divided by the difference in the probability of grant receipt
.84 = (6.10–5.69)/(0.74–0.25).
es: data is smoothed using a lowess estimator with a bandwidth of 0.25. Publication
hics and prior productivity measures.

to vary with the IRG score even in the absence of a causal effect
of grant receipt. If, however, receipt of a postdoctoral fellowship
is associated with a large improvement in productivity, we would
expect the relationship between the normalized IRG score and pub-
lication rate to be strongly negative in the vicinity of the granting
cutoff.

And, indeed, this is what we observe. The thin line in Fig. 1
shows the relationship between the normalized priority score and
publication rate in the five years following submission of the grant
application. To represent this relationship most clearly, we report
the average publication residuals from a regression of the five-year
publication rates on demographic and productivity measures that
predate the grant application. In the range of normalized IRG scores
in which the probability of grant receipt is declining, there is also a
marked reduction in the research productivity of grant applicants.
Along with simple comparison of individuals above and below the
cutoff, this suggests a positive causal impact of grant receipt on the
subsequent publication rate.

5.3. Instrumental variables estimation

We formalize the intuition underlying Fig. 1 by conducting
an instrumental variables (IV) regression in which the nonlinear
relationship between the priority score and the probability of a fel-
lowship award serves as the excluded instrument. Specifically, we
estimate a simple two-stage least squares (2SLS) regression proce-
dure. Our first stage equation is given by
fundedit = �below cutit + g(nit) + Xit� + �it+1 (2)

where below cutit is a binary variable indicating that the normal-
ized score was below the imputed funding cutoff and the other
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the latent index of false productivity as a linear function of variables
indicating last name commonness, Wi and a normally distributed
residual. Thus the probability that false productivity surpasses the

12 In cases where the threshold is greater than one, it is possible that the thresh-
old was exceeded due to a combination of actual and false matches. This greatly
complicates the modeling of the threshold effects. For simplicity, we abstract from
this possibility and assume that the threshold is met only with true matches, only
B.A. Jacob, L. Lefgren / Res

ariables are as described earlier. The second stage equation is still
iven by Eq. (1). The identifying assumption is that, having con-
rolled for a smooth function of the normalized application score,
ny further change in research productivity associated with being
elow the cutoff is attributable to receiving an F32 grant. Note that
ur first stage equation takes advantage of variation attributable
nly to the observed priority score. Because of this, the estimated
reatment effect will be unbiased even if administrators fund out of
rder based on the unobserved aspects of the applicant or research
dea. This approach works even though there is not a strict dis-
ontinuity as long as being below the cutoff is predictive of the
ventual award status. It is potentially superior to the simple com-
arison of individuals above and below the cutoff because we are
ble to control for the application score along with other covari-
tes.

.4. Assumptions of RD analysis and threats to identification

While an RD analysis can overcome non-random sorting in
any contexts, it does make several important assumptions. One

ssumption is that agents cannot manipulate the measure used
o determine treatment—in this case, the priority score. If agents
ad the ability and incentive to manipulate this measure, indi-
iduals ending up just below the cutoff may differ systematically
rom those just above. In our situation, however, applicants all have
n incentive to write strong grant applications yet have no direct
ontrol over the score their application receives. Additionally, the
utoff is unknown until all applications have been received and
valuated.

A more substantial concern is that the funding agency may
ndogenously decide to choose a funding cutoff based on where
he quality of applications begins to drop off rapidly. If this were
he case, we would expect the observable characteristics, including
rior productivity, of the application to be systematically different
cross the funding cutoff, even after controlling for the normalized
riority score. We can test this by conducting a falsification exer-
ise in which we employ our IV strategy to identify the “impact”
f grant receipt on pretreatment characteristics and productivity.
f our instrument is uncorrelated to the pre-application character-
stics of the applicant, we would expect the coefficient on grant
eceipt to be zero. We later show that our instruments have lit-
le correlation to pre-application characteristics of the applicant,
roviding support for our analysis strategy.

In cases such as ours in which the relationship between an index
core and treatment is not discontinuous, one must make additional
ssumptions to identify an unbiased causal estimate. Specifically,
his approach assumes that one can accurately model the relation-
hip between the index variable and the outcome in the absence
f the intervention. In our analysis, for example, we assume that a
ow-order polynomial in the normalized application score captures
he baseline relationship of this variable with future research out-
ut. To the extent that we fail to control adequately for the baseline
elationship between application score and future productivity, our
nstrument may capture the residual relationship between these
wo variables. This would lead to inconsistent estimates of the
arameter of interest.

Fortunately, there are several ways to test this modeling
ssumption. The falsification exercise in which we look at the
impact” of grant receipt on pretreatment characteristics sheds
ight on the appropriateness of the model assumptions. In addi-
ion, we can test the sensitivity of our results to our functional form

ssumptions by estimating models with more flexible controls for
he priority score and to use samples restricted to be within vary-
ng distances from the cutoff. In the sections below, we show our
esults are robust to wide range of modeling choices.
olicy 40 (2011) 864–874 869

5.5. Estimating models with binary outcomes with non-classical
measurement error

While examining continuous output measures (e.g., number of
publications or citations) is useful, it is also interesting to explore
how receipt of a postdoctoral fellowship increases the probability
that a researcher surpasses various output thresholds. Nearly all
applicants in our sample have at least some publications. By focus-
ing on a certain threshold (e.g., at least five publications), we can
gain insight into whether the fellowship represented a gateway to
a research career or simply affect the output of individuals who
would have enjoyed a research career regardless.

For outcomes that we can measure with certainty, such as sub-
sequent NIH funding, it is straightforward to estimate these type
of threshold effects through the use of standard regression mod-
els appropriate for binary outcome data such as a Probit model.
However, as we discussed briefly in Section 4 (and in more detail
in online appendix), the publication and citation measures we use
have non-classical measurement error because of false positives in
the matching of bibliometric data with NIH records.

In the presence of such non-classical measurement error in our
outcome variable, the standard Probit model will yield biased esti-
mates. For example, suppose we want to examine how receiving an
F32 grant affects the probability that a researcher has at least one
publication. This threshold could be met because the researcher
actually has at least one publication, the researcher has at least
one false match, or both. To see why this is problematic, consider
the case in which an individual has a false match. We will observe
that this individual has surpassed the cutoff regardless of her true
productivity, so that any factors that increase her actual produc-
tivity will appear to have no impact. In other words, for the subset
of individuals with false matches, the coefficient on grant receipt
will be zero by construction. For this reason, conventional estima-
tion techniques for binary outcomes (e.g., Logit or Probit) will yield
attenuated coefficients.

To adequately address concerns regarding non-additive mea-
surement error, we develop and estimate a simple model that
accounts for the fact that the false matches can push individuals
across a particular productivity threshold. For reasons of statisti-
cal precision, in these models we treat grant receipt as exogenous,
conditional upon grant and applicant characteristics. We model
the probability of observing a particular realization given that if a
researcher crosses a threshold it could have occurred either because
of actual output or measurement error.12 Assuming that a latent
index of output is a linear function of funding status, a set of con-
trol variables, and a normally distributed residual, the probability
that actual productivity exceeds a particular threshold can be writ-
ten: ˚(ˇ fundingit + XitB). In the productivity equation, we use a
slightly more parsimonious specification than in our linear mod-
els. We include fixed effects for institute,13 year, type of institution,
discipline, and type of degree. We also control for marital status,
number of children, quality of current and graduate institution, and
second order polynomials in prior publications funding. We model
with false matches, or that both the false and true matches were sufficiently high to
surpass the threshold.

13 We include fixed effects only for institutes representing at least 5% of grant
applications. The smaller institutes are implicitly grouped together as the reference
category.



8 arch P

t
i
h
n

P

b

P

i

6

6

b
s
a
a
c
m

t
a
t
p
w
i
t
r
t
n
t
u
e
i
e
c
c
o
i

o
l
s
c
t
p
C
p
l

t
p
p
c
t
o
l

70 B.A. Jacob, L. Lefgren / Rese

hreshold can be written: ˚(Wi˘). Given these two probabilities,
t is simple to write each observation’s contribution to the likeli-
ood function. The probability that a particular observation does
ot surpass the threshold is given by the following equation.

r(below threshold) = [1 − ˚(ˇfundingit + XitB)][1 − ˚(Wi˘)] (3)

The probability an observation surpasses the threshold is given
y:

r(above threshold) = 1 − [1 − ˚(ˇ fundingit + XitB)]

[1 − ˚(Wi˘)] (4)

We identify the parameters of this statistical model using max-
mum likelihood.

. Findings

.1. Ordinary least squares (OLS) estimates

To provide a baseline for understanding the relationship
etween NIH funding and future productivity, Table 2 presents a
eries of OLS estimates for a variety of professional outcomes. For
ll outcomes, row 1 shows unconditional estimates and rows 2–4
dd in progressively more controls. Robust standard errors that
luster by researcher are shown in parenthesis beneath the esti-
ates.
Consider the first column, which shows the effect of a postdoc-

oral fellowship on publications in the five years following grant
pplication. The unconditional estimates reveal a positive associa-
ion between receipt of the fellowship and subsequent research
roductivity. For example, in column 1 we see that individuals
ho receive a fellowship have roughly 0.83 publications more

n the five years following the grant application compared with
heir peers who did not receive a fellowship. Once we control for
esearcher background characteristics and the application score,
he point estimate drops considerably but is still statistically sig-
ificant. To judge the relative magnitude of the effect, consider
hat the mean and standard deviation of true publications among
nsuccessful applicants are 4.57 and 4.53, respectively. Hence, the
ffect of 0.65 shown in row 4 reflects a 0.14 standard deviation
ncrease in the number of publications. Finally, note that the point
stimate drops considerably from row 1 to row 2, but does not
hange significantly as additional covariates are added. This indi-
ates that postdoctoral fellowships are awarded almost entirely
n the basis of IRG scores, as the formal NIH funding process
ntends.

Column 2 shows the impact of grant receipt on the number
f publications 6–10 years after grant application.14 Control-
ing for applicant characteristics and normalized IRG score, we
ee that grant receipt is associated with 0.47 additional publi-
ations in the 6–10 years after grant application. This suggests
hat the effects of an NIH postdoctoral fellowship on research
roductivity last far beyond the period of fellowship itself.

olumns 3 and 4 show the effect of grant receipt on first author
ublications. These results imply that an NIH postdoctoral fel-

owship increases not only research participation but also the

14 For researchers who applied after 1995, we do not observe their productivity for
he full period of 6–10 years after publication. For these researchers we inflate their
ublications by a factor of 5 divided by the number of years we observe them. Mean
roductivity measures are very similar for the cohorts which we performed this
orrection. When examining the probability of achieving a particular productivity
hreshold, this procedure works less well. As a consequence, when examining binary
utcomes further than five years out, we exclude grant applications from 1998 or
ater.
olicy 40 (2011) 864–874

amount of independent research conducted in both the short
and long run. While the effect of grant receipt on the number
of publications is positive, the estimated impact is small and
statistically insignificant for total citations and subsequent NIH
funding.15

6.2. Instrumental variables (IV) estimates

The OLS estimates suggest that the receipt of an NIH postdoc-
toral fellowship increases publications. However, the selection on
observables that is evident in Table 2 raises concern that selec-
tion on unobservable characteristics may also be present, and
may bias the estimates. To address this concern, we calculate
instrumental variables (IV) estimates that exploit the plausibly
exogenous variation in grant receipt generated by the nonlinear
relationship between priority score and the likelihood of fund-
ing. As discussed in Sections 5.2 and 5.3, the intuition behind
this approach is to compare applicants who scored just above the
funding cutoff with those who scored just below the funding cut-
off.

For each outcome, row 1 of Table 3 shows the OLS esti-
mate of receiving a postdoctoral grant, which were reported
earlier in Table 2. Row 2 shows the corresponding IV estimate
and row 3 shows the difference between the OLS and IV esti-
mates. Looking across outcomes, we see that the IV estimates are
very similar to the OLS estimates in all cases. This suggests that
our OLS estimates are consistent and controlling for application
score and applicant characteristics may be sufficient to identify
the causal effect of grant receipt.16 It is interesting to note that
these IV estimates are virtually identical to the impact implied
by our simple unadjusted comparison of applicants just above
and below the cutoff, shown in columns 3 and 4 of Table 1. This
implies that the controlling for the normalized IRG score and
other covariates has little impact on the estimated impact of grant
receipt.

6.3. Estimates for binary outcome measures

It is also informative to examine binary measures of research
productivity in order to explore whether fellowships have a sub-
stantial effect on the extensive as well as intensive margin. This
analysis provides insight into whether an F32 award represents a
gateway to a research career, or simply affects the productivity of
individuals who would have enjoyed a research career regardless.
To do so, we estimate the binary choice model discussed earlier.
The results are presented in Table 4.

Our results suggest that receiving an F32 fellowship has a
statistically significant impact on a variety of important career pro-
ductivity “thresholds,” including 5 or more publications in years
1–5 and 6–10 after grant application, 5 or more first author pub-
lications over the same periods, more than 200 citations in the 10
years after grant applicant, and more than $200,000 in NIH fund-
ing within 10 years of application. At first glance it may seem odd
that grant receipt is associated with significant increases in the

probability of crossing citation and funding thresholds, but has an
insignificant effect on the total number of citations and NIH fund-
ing. This is consistent with grant receipt improving outcomes at
lower levels but having little impact on high achievers.

15 The fact that publications rise and citations do not suggests that the marginal
publications may be less influential than the average. Its not clear why this would
be the case.

16 We also explored whether the impact of NIH postdoctoral fellowships differ by
researcher characteristics. We found no statistically significant differences in the
impact of fellowships by time period, gender, age, degree type, or discipline.
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Table 2
OLS estimates of NIH postdoctoral fellowships on research productivity.

Independent variable: binary
indicator for NIH grant receipt

Publications in
years 1–5

Publications in
years 6–10

First author
publications in
years 1–5

First author
publications in
years 6–10

Total citations
in years 1–10

NIH funding in
years 1–10
(/$100,000)

Specification (1) (2) (3) (4) (5) (6)

(1) No controls 0.83** (0.10) 1.09** (0.15) 0.50** (0.04) 0.45** (0.05) 73.68** (11.37) 0.617** (0.074)
(2) Quadratic priority
score + institute and year fixed
effects

0.67** (0.12) 0.57** (0.18) 0.39** (0.05) 0.31** (0.05) 6.90 (13.56) 0.026 (0.097)

(3) = (2) + applicant
characteristics

0.59** (0.12) 0.41** (0.18) 0.36** (0.05) 0.27** (0.05) 0.46 (13.14) −0.038 (0.093)

(4) = (3) + Measures of prior
publications, funding

0.65** (0.10) 0.47** (0.16) 0.38** (0.05) 0.27** (0.05) 4.41 (12.82) −0.019 (0.092)

Control group mean (S.D.) 4.57 (4.53) 5.20 (7.22) 2.02 (2.00) 1.32 (2.06) 361.84 (567.65) 1.37 (2.42)
R-squared from model in row 4 0.35 0.25 0.18 0.14 0.22 0.15
Number of obs. 13,426 12,749 13,426 12,749 12,749 11,311

Notes: Each cell in rows 1–4 of this table represents the coefficient (S.E.) from a separate OLS regression where the dependent variable is shown at the top of the column
and the set of control variables are described in under “Specification” in the first column. The unit of observation is an application. In each case, the estimate shown is
the coefficient (S.E.) on a binary indicator for eventual NIH grant receipt. The sample sizes in columns 3 and 7 are smaller than the others because researchers with zero
publications do not have a value for the research direction variable. The sample sizes in column 6 are smaller because we only have NIH funding information through 2003,
and so we cannot calculate measures for later years. For observations late in our sample period, we extrapolate some values as described in the online appendix. The control
variables include fixed effects for institute, year of award, name frequency, name frequency squared, age and age squared at time of award, a binary indicators for female,
married and divorced, a linear measure for the number of dependents, binary indicators for region (West, Central and South, with East omitted), binary indicators for degree
type (MD, and MD/PhD with PhD as the omitted category), binary indicators for field (social sciences, physical sciences and other, with biological sciences as the omitted
category), binary indicators for organization type (research institute, hospital with university as the omitted category), binary indicators for unit within organization which
only applies to universities (hospital, arts and sciences, school of public health, institute, or other with medical/dental school omitted), linear and quadratic terms for the rank
of the applicant’s current and graduate institutions where rank is measured in terms of amount of NIH funding received in prior years, and linear and quadratic terms for a
host of prior productivity measures including number of publications in years 1–5 prior to application, number of publications in years 6–10 prior to application, research
direction in years 1–5 prior to application, research direction in years 6–10 prior to application, amount of NSF funding in years 1–5 prior to application, amount of NSF
funding in years 6–10 prior to application, amount of NIH funding in years 1–5 prior to application, and amount of NIH funding in years 6–10 prior to application. The control
group means and standard deviations for the publication and citation columns are adjusted to account for the presence of false positive matches, as described in the online
appendix. Standard errors are clustered by researcher.
*Significance at the 10% level.

** Statistical significance at the 5% level.

Table 3
The effect of NIH postdoctoral fellowships on research productivity.

Second-stage estimates

Publications in
years 1–5

Publications in
years 6–10

First author
publications in
years 1–5

First author
publications in
years 6–10

Total citations
in years 1–10

NIH funding in
years 1–10
(/$100,000)

(1) (2) (3) (4) (5) (6)

OLS estimates 0.65** (0.10) 0.47** (0.16) 0.38** (0.05) 0.27** (0.05) 4.41 (12.82) −0.02 (0.092)
IV estimates 0.86** (0.41) 1.18* (0.64) 0.34* (0.20) 0.43** (0.21) 3.58 (50.04) −0.16 (0.31)
Diff: IV-OLS 0.22 (0.32) 0.72 (0.67) −0.03 (0.17) 0.16 (0.21) 0.83 (54.78) −0.14 (0.35)
Control group mean (S.D.) 4.57 (4.53) 5.20 (7.22) 2.02 (2.00) 1.32 (2.06) 361.84 (567.65) 1.37 (2.42)

Notes: The estimates are derived from specifications (1) and (2) in the text. Normalized publications are calculated by dividing each publication by the total number of authors
on the publication prior to summing across years. Each regression includes the full set of control variables described in the notes to Table 2. The control group means and
standard deviations for the publication and citation columns are adjusted to account for the presence of false positive matches, as described in the text. Standard errors are
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lustered by researcher.
* Significance at the 10% level.

** Statistical significance at the 5% level.
Moreover, the magnitudes of the effects are substantial in most
ases. For example, postdoctoral trainees are 7.3 percentage points
24%) more likely to have five or more publications in the five years
fter grant application. The effect of receiving a postdoctoral grant

able 4
he effect of NIH postdoctoral fellowships on binary measures of career success.

5 or more
publications in
years 1–5

5 or more
publications in
years 6–10

5
a
p
y

(1) (2) (3

ML point estimate 0.215** (0.035) 0.137** (0.041) 0
Marginal effect—percent points 0.073** (0.011) 0.045** (0.013) 0
Marginal effect—percent of mean 0.244** (0.055) 0.160** (0.058) 0

otes: The estimates shown above are derived from the specifications outlined in Append
s a binary productivity measure. Standard errors are clustered by researcher.
Significance at the 10% level.
** Statistical significance at the 5% level.
on having more than five publications in years 6–10 after grant
application is a bit smaller at 4.5 percentage points (16%). Post-
doctoral fellowship receipt is also associated with increases in the
probability of achieving at least five first author publications both

or more first
uthor
ublications in
ears 1–5

5 or more first
author
publications in
years 6–10

200 or more
citations in
years 1–10

More than
$200,000 NIH
funding in
years 1–10

) (4) (5) (6)

.165** (0.041) 0.160** (0.049) 0.124** (0.032) 0.082** (0.034)

.032** (0.007) 0.026** (0.007) 0.041** (0.010) 0.020** (0.008)

.327** (0.104) 0.351** (0.142) 0.113** (0.033) 0.141** (0.065)

ix A. Each column represents a separate model. In each case, the dependent variable
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Table 5
Effects on pre-treatment outcomes.

Specification Control group mean (S.D.) Coefficient (S.E.)
(1) (2)

Pre-treatment number of publications 2.68 (3.31) 0.50* (0.29)
Pre-treatment index of research relevance 1.18 (1.60) 0.08 (0.16)
Pre-treatment NSF funding ($/100,000) 0.00 (0.12) −0.01 (0.01)
Pre-treatment NIH funding ($/100,000) 0.00 (0.09) 0.00 (0.01)
Name frequency 2.12 (2.58) −0.25 (0.24)
Female 0.39 (0.49) 0.01 (0.05)
Age 32.02 (4.03) −0.38 (0.44)
Married 0.50 (0.50) −0.01 (0.05)
Divorced 0.28 (0.45) 0.02 (0.04)
Number of dependents 0.28 (0.45) 0.01 (0.05)
Has PhD 0.76 (0.43) −0.02 (0.04)
Has MD 0.17 (0.37) 0.04 (0.03)
Rank of graduate institution 134.48 (294.17) −75.98** (32.71)
Rank of current institution 68.17 (88.82) −10.05 (8.84)
Biological sciences department 0.82 (0.39) 0.04 (0.04)
Physical sciences department 0.10 (0.30) −0.04 (0.03)
Social sciences department 0.03 (0.18) 0.00 (0.02)
Research institute 0.11 (0.31) 0.00 (0.03)
Hospital 0.06 (0.24) −0.01 (0.02)
Arts and sciences 0.31 (0.46) 0.00 (0.04)
School of public health 0.01 (0.09) 0.00 (0.01)
Hospital 0.00 (0.06) 0.01 (0.01)
Institute 0.02 (0.13) −0.02 (0.01)
Other 0.10 (0.30) 0.01 (0.03)

Notes: These specifications were estimated using IV in which we control only for institute and year fixed effects and linear and quadratic measures the normalized IRG. The
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better gateway to a research career relative to the applicants’ next
best professional option. These results are significant from both a
statistical and policy perspective and highlight the importance of

17 This negative binomial specification shows the percentage increase in observed,
including false, publications. Consequently, the percentage impact is potentially
biased downwards because we are measuring a percentage effect on a baseline
level that is too high. However, assuming that the treatment had no increase in
nstrument is whether the IRG score was below the cutoff. Standard errors are clust
* Significance at the 10% level.

** Statistical significance at the 5% level.

n the short and long run. While the increase is only about 3 per-
entage points, these represent an over 30% increase relative to
he baseline probability. Grant receipt increases the probability of
eceiving more than $200,000 in NIH grant money by 2 percent-
ge points (14%) as well. Collectively, these results suggest that
eceiving an NIH postdoctoral fellowship has an important impact
n the probability that a biomedical PhD becomes a successful
esearcher.

.4. Robustness checks

As mentioned in Section 5.4, we may be concerned about bias
rising due to endogenous choice of the cutoff by program offi-
ers within the various NIH institutes. If institutes chose the cutoff
trategically to accept better applicants, then being just below the
utoff (relative to just above the cutoff) would be systematically
orrelated to prior productivity and other observable character-
stics. To examine this possibility, we estimate the “impact” of

postdoctoral fellowship on pretreatment outcomes using our IV
trategy. We control only for a second order polynomial in normal-
zed IRG score, institute, and year fixed effects. Examining Table 5,

e see only one coefficient that is statistically significant at the 5%
evel, which is about what one would expect due to chance.

To further minimize concerns regarding function form assump-
ions, we check the robustness of our results to the use of more
exible controls of the normalized score and to the use of samples
estricted to be within varying distances from the cutoff. Table 6
hows these alternative specifications for publications 1–5 years
fter grant receipt. The results are all qualitatively similar to our
aseline. We obtain similar results for our other outcome measures
results available upon request).

An additional concern with our specification is that the outcome
easures are by their nature non-negative integers. Hence, it might
e more appropriate to use a negative binomial specification which
llows for count data and overdispersion. In row 10 of Table 6, we
xamine a negative binomial specification analogous to our base-
ine OLS regression with the full set of controls. The coefficient
y researcher.

suggests that receiving a grant increases the number of publica-
tions over the following five years by approximately 14%, which is
very similar to baseline estimates shown in Table 3.17 The implied
confidence interval is also similar to our OLS estimates.

7. Discussion

The fundamental premise underlying the NIH postdoctoral
fellowship program is that market forces alone fail to provide ade-
quate resources for the production of basic science, and that, on the
margin, a scientist engaged in basic research generates a greater
benefit to society than the same individual engaged in an alter-
native activity. Our results suggest that the program does indeed
appear to increase the amount of health science research and the
number of individuals engaged in a biomedical research career. In
particular, we find that for applicants in the neighborhood of the
funding cutoff receipt of an NIH postdoctoral fellowship signifi-
cantly increases the probability that a new PhD will successfully
make the transition to a research career and the number of arti-
cles published in the 10 years following grant receipt. These results
shed light on the likely increase in output for similar applicants
who would be funded if the program were expanded. The findings
imply that among marginal applicants, an F32 grant represents a
the number of false publications, we can still measure the absolute number of
additional publications implied by the negative binomial coefficient. Among unsuc-
cessful applications in our analysis sample, the average number of actual and false
publications is 5.78. Hence our estimate implies that receiving a grant increases the
number of publications by [exp(.14) − 1]*5.78 = 0.87.
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Table 6
Alternative specifications and samples.

Specification Pubs in years 1–5
(1)

(1) Baseline 0.86** (0.41)
(2) No covariates 1.26** (0.50)
(3) Narrower range 1.01** (0.51)
(4) Wider range 0.66** (0.33)
(5) Include only linear term in the rating 0.86** (0.41)
(6) Including 3rd order polynomials in the rating 1.45* (0.77)
(7) Including 4th order polynomials in the rating 1.46* (0.79)
(8) Including a linear term in the rating but allowing it to differ above vs. below the cutoff 0.88** (0.41)
(9) Including 2nd order polynomials, and allowing both terms to differ above vs. below the cutoff 1.91 (1.25)
(10) Negative binomial regression of baseline specification—grant receipt exogenous 0.14** (0.02)

Notes: The specifications are identical to those in Table 3 except as indicated. In specification 10, we employ a negative binomial regression but assume grant receipt is
exogenous. The coefficient is approximately equal to the percentage increase in productivity associated with grant receipt. The absolute implied productivity increase is
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pproximately 0.87 additional publications over 5 years.
* Significance at the 10% level.

** Statistical significance at the 5% level.

IH grant policy in facilitating the transition from graduate school
o research career.

When examining the benefits of the program, it is also impor-
ant to consider the costs associated with the program. Over the
ife of a typical two-year F32 grant, the NIH spends approximately
100,000. Our results suggest that receipt of an NIH postdoctoral
ellowship leads to a 7 percentage-point (24%) increase in the likeli-
ood that an individual will pursue a career as an active (publishing)
esearcher. This implies that the program spends roughly $1.4 mil-
ion to produce one additional research scientist.18

However, this back-of-the-envelope calculation represents a
ery conservative estimate of the social payoff associated with the
IH F32 program. First, as discussed earlier, our estimates capture
nly the impact of receiving an NIH postdoctoral fellowship relative
o the next best option, which will, in turn, depend on the nature
f the labor market for young researchers. To the extent that many
rganizations offer fellowships to high caliber graduates, we might
xpect the treatment effect to be small due to the quality of the out-
ide option. To the extent that NIH postdoctoral fellowships expand
he total supply of postgraduate research options (which will be the
ase unless there is complete crowd-out of non-NIH fellowships),
he F32 program benefits even those applicants who do not receive
NIH fellowship themselves.

Second, our estimates will not capture any spillover benefits
f postdoctoral fellowships, including the benefits accrued to the
rincipal investigators or institutions in which the postdocs are
mployed. Third, our estimates do not include the potential benefit
ssociated with encouraging other students to enter the biomedi-
al field due to the larger number of research opportunities. Fourth,
ur publication and citation measures do not capture other impor-
ant outputs associated with a research career such as patents and
eaching.

Finally, data limitations also make it impossible for us to identify
he precise mechanism through which the effect of a postdoctoral
ellowship operates. We know that receiving an F32 grant increases
he probability a researcher receives future NIH funding. Addition-
lly, a fellowship might put the young researcher in contact with
igh ability colleagues, limit teaching obligations and/or increase
is or her visibility in the profession. Future researchers may want

o focus on more fully characterizing the total benefits associated
ith the F32 and exploring the mechanisms through which the

ellowship influences recipients.

18 The calculation is $100,000/0.07 = $1.4 million. This cost naturally varies
epending on whether we adopt a more or less stringent definition of research
cientist as well as the cost of the particular F32 grant.
Given that the federal government is likely to continue to fund
basic science research opportunities for young graduates in one
form or the other, perhaps the most immediately relevant policy
question involves the effectiveness of the F32 program relative to
alternative grant mechanisms that also fund postgraduate research
and training. This is particularly true given that fewer than 10%
of new biomedical PhDs will receive F32 grants.19 For example,
NIH T32 grants are explicitly designed for both the pre and post-
doctoral training of scientists. Funds from other grants, including
R01 grants, can also be used to provide research support for new
PhD’s. The fact that F32 grants produce better outcomes, on aver-
age, than a researcher’s next available options suggests that the
program does have important benefits. A comprehensive examina-
tion of the effectiveness of F32 grants relative to alternative funding
mechanisms would require a rigorous evaluation of the alterna-
tives, which is beyond the scope of this analysis but should be a
high priority for future research.
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