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Abstract-It has recently been emphasized that the Leimkuhler curve and the Gini in- 
dex are vatuable in giving respectively graphical and numerical summaries of the con- 
centration of bibliometric distributions. In this paper these tools are further investigated 
from a probabilistic viewpoint. In particular, the importance of the time parameter and 
the special nature of the “nonproducers ” in bibliometric studies are highlighted. 
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1. INTRODUCTION 

Carpenter (1979) was the first to point out that the measure of class concentration proposed 
by Pratt (1979) is essentially the same as the Gini index already we11 known in the field of 
econometrics and introduced by Gini (1909, 1912) over 60 years previously. This and many 
other possible measures of concentration were included in the survey presented by 
Ravichandra Rao (1988) at the First ~nternat~Qna~ Conference on Ej~~jo~etrics in 1987. 
Subsequently Egghe and Rousseau (1990, in press), Bonckaert and Egghe (1991), Egghe 
(1991), and Rousseau (1991) have investigated various “desirable properties” of such mea- 
sures and have found that the Gini index performs notably well. 

In all of these studies, however, the concentration measures have been applied to bib- 
liometric distributions and data sets collected over a fixed period of time. By contrast, in a 
series of papers Burrell (1980,1987,1988,1990a,1991a) has argued in favour of bibliomet- 
ric processes that develop in time, and hence that bibliometric models should explicitly in- 
corporate a time parameter. In this paper we consider the consequent time-dependent form 
of the Gini index and point out the crucial role of the nonproducers. 

2. THE GINI INDEX AND THE LEIMKUHLER CURVE 

2.1 Terminology, notation, and definition 
We shall adopt the “source-item” terminology familiar in bibliometrics and informet- 

rics. Thus we have a population of sources (e.g., journals) producing items (e.g., articles 
on a particular subject) in some random fashion over time. For the moment we assume that 
the period of time is fixed and we are interested in the probability distribution of the ran- 
dom variable X, the number of items produced by a source during the period, and more 
particularly in the concentration of this distribution. Note that although, by its nature, X 
is non-negative and integer-valued, it is convenient to include continuous random variables 
in the discussion. Hence for the rest of this section we shall speak in terms of a nonspecific 
random variable Y. The following definition is adapted from Stuart and Ord (1987). 

Definition. For a random variable Y with finite mean pLy = E [ Y] , the Gini index or 
coefficient of concentration is denoted yy and defined by 

YY = 
E[I YI - Y,ll 

=[Yl 
(1) 
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lY1 -Y2I dF,(Y,) @Y(Y,) 
= 

s 

(2) 

2 YdF,(Y) 

where Y, , Y, are independent copies of Y, and Fy is the cumulative distribution function 
of Y. 

Note that the Gini index is independent of the scale of measurement (i.e., yCy = yy 
for any positive constant c), but has the disadvantage that it is dependent on choice of or- 
igin (i.e., -yy+c # yy for a non-zero constant c). This dependence on origin will cause no 
real concern in what follows, since in the contexts of interest there is a natural origin at 
zero. 

The numerator in (1) is called the (coefficient of) mean difference and its calculation 
(e.g., using the numerator in (2)) may not be straightforward even when the probability dis- 
tribution of Y is known. A useful alternative is provided by the following: 

THEOREM I 
For a non-negative random uariabie Y, 

(i) if Y is integer-badged then 

If FY(.~)+Y(~ + 1) C 6 (A2 
j&J 

YY = 
= 1 _ jzl 

PY IJY * 

(ii) If Y is continuous then 

s m s m 

FY(Y)@Y(Y) dv @r(rj2 dy 
YY= O =I- O 

ClY PLY 

(3) 

(4) 

where cPr(x) = P( Y r x) is the tail distribution function of Y. 

Proof. See Appendix. 

NOTE. In the case of an empirical data set in which the distinct observed values are 

X0,X1,.**, x, with corresponding frequencies f (0), f (I), . . . , f (m), if we put 

N = c f (j) = total number of “sources” 

and 

M = cxi f ( j) = total number of “items” 

then 

f(j) P(Y=:Xj) = y-, 
M 

iLY=F 

and the mean difference is ( 1/N2)Xi,j ) Xi - Xj 1 f(i) f (j), Hence the empirica form of the 
Gini index is 

C 14 -xjlf(i)f(j) 
.yr =: lSJ 

2MN ’ 

(Note that in the expression for the empirical mean difference l/N2 is sometimes replaced 
by l/N(N - 1) , giving the so-called “mean difference without repetition” (see Stuart & Ord, 
1987, p. 47) and a modified Gini index of [N/(N - l)] yy.) 
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In most practical situations the possible observed values are non-negative integers, so 
we may take Xj = j, j = 0,1, . . . ,m and Theorem I gives 

5 r(j)* 
Yy = 1 - j=’ 

MN 

where 

r(j) =f(A +f(j + 1) +. . . +f(m) 

= number of sources with productivity >j 

(see Burrell, 1991b). 

2.2 The Leimkuhler curve 
For the non-negative random variable Y with finite mean py we define its tail mo- 

ment function qy by 

(i) if Y is integer-valued then 

qy(j) = -!- c kP(Y = k), j = 0,1,2,. . . . 

(Note that q,(O) = qy(l) = 1.) 
(ii) if Y is continuous with probability density function fy then 

*y(x) = L s m 

YfY(Y) dY, x 10. 
PY x 

Then a plot of qy as ordinate against spy as abscissa gives the so-called Leimkuhler curve, 
a variant of the Lorenz curve of concentration (see Burrell, 1991b). The Leimkuhler curve 
passes through the origin and (1,l) and is concave to the ay axis. Its direct connection 
with the Gini index is given graphically by 

7y = 2 (area beneath Leimkuhler curve) - 1 

I 
= 2 

s 
qyday - 1 (5) 

0 

which gives an alternative method of calculation. This form also makes it clear that 0 4 
yyr 1. 

2.3 Some examples 
2.3.1 The Pareto distribution. The Pareto distribution with index CY > 0 is specified 

by the probability density function 

a 
fY(X) = - xl+cr ’ x> 1, 

giving the tail distribution function as 

c 1 ifx5 1, 

@Y(X) = 1 I - ifx> 1. 
XU 

(6) 
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The mean is finite only if CY > 1, in which case py = &(a - 1) and 

‘P,(x) = (a - 1) 
s 

m 1 dy 
x Y* 

Using (4) we find 

Yy= 1 - a-l 
s 

mGy(y)‘dy 

= 1 - ~[~+~w--$dy] from(6) 

=l-+[,+&I 

1 =- 
2cY - 1’ 

Alternatively, note that the Leimkuhler curve is given by 

\ky = (+y)(a-l)'a, 0 5 ay I 1, 

so using (5) we have 

7y=2 ' 
s 

X(a-l)/a dx _ 1 

0 

=2 I 1 1 -1 
(Y-1 
-+1 

Q 

201 E------l 
2cY - 1 

1 =- 
2cY - 1 

as before. 
2.3.2 The Bradford distribution. If the Pareto distribution is arbitrarily truncated at 

some value 1 + P > 1, then the resulting density function has finite mean for all CY > 0. The 
particular case Q! = 1 corresponds to 

l+P 
f-Y(X) = - 

@x2 ’ 
l<x<l+P 

which is a truncated continuous version of Lotka’s inverse-square distribution. It is shown 
(e.g., by Burrell, 1991b) that 

yy = 1 - 2[ (ln(1 + P))-’ - /3-r] 

while the Leimkuhler curve is given by 

+ 
Y 

= IN1 + WY) 

ln(l + P) 
) OI@yIl. (8) 
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(8) above, rather than (7), is termed the Bradford distribution by Leimkuhler (1967). See 
also Burrell (1990b,1991b). For other cases with (Y # 1, see Egghe (1991). 

2.3.3 The exponential distribution. Here we have a one-parameter family of distri- 
butions with probability density function 

xx MY = ik- , x > 0, 

where h > 0. As X is a scale parameter, we can make use of the scale invariance of the Gini 
index and without loss of generality take X = 1. Then py = 1 and 

ay(x) = epx, x > 0; 

so from (4) 

yr= 1 - 
s 

me-2Xdx 
0 

Note that the tail moment function is given by 

s m 

‘k,(x) = ye-y dy 
X 

=e -“(1 + x); 

so that the equation of the Leimkuhler curve is 

\ky=ay[l -In@Y], OlcP,I 1. (9) 

2.3.4 The geometric distribution. For this discrete distribution, Y has probability mass 
function 

P(Y=j) =pq’, j=o,1,2 ,... 

whereOcp<landq=l-p.Notethatpy=q/pand 

@y(j) = q’, j = 0,1,2,. . . . 

According to (3), then, the Gini index is given by 

Yy = 1 - EY c q2j 
qjzl 

,l_L?L 
4 l-q2 

=1.-L 
1+q 

1 

=l+* 

(10) 

(11) 
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For the Leimkuhler curve, note first that 

PY*Y(.I-) = c kpqk 

=pq c kqk--l 
krj 

=PqkGj $ qk 

=Pq$ kpk ( 1 'J 

d 4’ 
=pqdq 1-q ( 1 
= pq.qj-l :$j_+qyi 

= $ (pj + q). 

Thus 

q,(j) = qj 1 + 5 j , 
( ) 

j = 0,1,2,. . . 

and hence from (10) the points (aY( j),‘k,( j)) lie on the curve 

*ky=*‘y l+ Pln*y 
[ qlnq 1 0 I @‘r I @y(l) = q. (12) 

REMARK. The reader might note that the delightfully simple formula for the Gini index for 
the geometric distribution given by (11) bears no relation to that given by Egghe (1987). The 
basic reason for this is that we have given the index for the distribution of “items uver 
sources,” whereas Egghe calculates it for the distribution of “sources over productivities. ” 
While Egghe’s viewpoint may be valid in certain situations, it is not really consistent with 
the one of interest here. (We would similarly dispute the relevance of Egghe’s calculations 
for the truncated Lotka inverse-square distribution.) 

3. BIBLIOMETRIC PROCESSES 

3.1 Standard models 
When we start to consider the production of items by sources as a system evolving over 

time, we denote by X, the number of items produced by a source during [0, t] and then 
(X[; t 2 0) is a stochastic counting process (i.e., X, is non-negative integer-valued and is 
non-decreasing with t ) . Let us write 

pt(j) = P(X, =j), j = 0,1,2,. . . 

= c P,(j). 
kzj 
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If the mean exists (and this will not necessarily be the case in the models to be considered), 
write 

= kq kptUd > 
and 

c b(k) 
q,(j) = kz’ 

Pt 

as well as -rr for the Gini index. 
A number of models have been proposed for such processes, based in the main on ei- 

ther stochastic birth and death processes (e.g., Schubert & GlPnzel, 1984, Glanzel & 
Schubert, 1991) or mixtures of simple counting processes (e.g., Burrell, 1980,1987,1988, 
199Oa, 1991a, Sichel, 1985). We mention in particular: 

3.1.1 The gamma-Poisson process (GPP). This counting process arises as a gamma 
mixture of Poisson processes (see, e.g., Burrell, 1987,1988,1990a, for further details) and 

pt(j) = (j+~-l)(&-~(l!s;T, j=O,lA.... 

Hence X, has a negative binomial distribution of index v > 0 and parameter (I + /3t)-‘ . 
Here p is a time-scale parameter. For this process 

pt = vpt. 

In general, Gt (j) and qt (j) can both be written in terms of incomplete beta functions, but 
there is no simple closed expression for \k, as a function of 9, except in the special case 
wherev= 1. 

SPECIAL CASE: v = 1, p = 1. Here 

PAj) = (~)(~~, j=O,1,2,... 

so that X, has a geometric distribution with parameter p = (1 + t )-’ . Hence we can make 
direct use of (11) to write the Gini index as 

1+t 
Yt= l+2t’ (13) 

Notice in particmar that yt is strictly decreasing with t and that lim,,oyt = 1, lim,,, = 4. 
Turning to the equation of the Leimkuhler curve we find from (12) that 

*t = tp, i 1 
1 

+ = c 
fln i 

t 

- 1+t 1 
In@,, I , 0 I *, 5 (P,(l) 

1 + f’ 
04) 

3.1.2 The generaked Waring process {GWP). This arises (see e.g., Burrell, 1988, 
1991a) as a mixture of negative binomial processes and leads to 

pt(j) = 
r(a + vt) r(vt +.W(@ +A 

B(a,fi)IT(vt) . rtvt + Q! + p + j)j! ' 
j = 0,1,2,. . . . 
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Here v is the index of the underlying negative binomial process, Q! and p are the parameters 
of the mixing beta distribution, and P ( .) , B( -, . ) are the gamma and beta functions, re- 
spectively. The parameter CY governs the behaviour of the tail of the distribution. Indeed 

c(t) 
PlW - z 

J 

so that the GWP can be thought of as a process whose tails are asymptotically of Lotka 
form. In particular, only moments of order < (II exist and 

m pt=-, 
(Y-1 

provided CY > 1. (15) 

Again there seem to be no manageable expressions for ar and 9’t although the following 
provides an interesting example. 

SPECIAL CASE: v = 1, CY = 2, /3 = 1. With these choices the probability mass function sim- 
plifies considerably to give 

Pf(j) = 
r(t + 2) r(t +j)r(j+ 1) 

B(2,l)P(t) ’ r(t +j + 3)j! 

2t(t + 1) 

= (t+j)(t+j+ l)(t+j+2)’ 
j = 0,1,2.. . 

[ 

1 
=t(t+l) ~ - 

2 1 

t+j t+j+ 1 
+ 

I t+j+2 ’ 

Note that although from (15) CL, = t < 03, the variance is infinite so measures of concen- 
tration derived from variance are not appropriate in this case. Turning to the tail distribu- 
tion function we have 

2 1 

t+k+l 
+ 

t+k+2 1 
1 

t+j+l 1 
and hence 

fJ %(A2 = [t(t 2 1 + 
j=l 

1)12J$ [ & - 
(t+j)(t+j+ 1) + (t+j+1)2 1 

= [t(t + IN2 & 
[ 

2 +y&!__- 
j=2 (t + A2 t+1 1 

2t+ 3 = [t(t + 1)]2 [ 2 -5 1 - - j=l (t+jj2 (t + 1)2 I . 

Now substituting into (3) we find for the Gini index 

Yt = 1 - ttt + lj2 [ 2,z & 
2t+ 3 

- ~ (t + 1)2 1 
= (t + 1)(2t + 1) - 2t(t + 1)2 5 -!- 

+I (t + j)2’ (16) 
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One of the major problems, as well as a distinctive feature, of bibliometric processes 
is that the nonproducers are in general not observed. For instance, how many (potentially 
contributing) journals did not publish a paper on bibliometrics in 1990? How many scien- 
tists did not have any paper published in 1990? In such examples the underlying popula- 
tion of “potentially productive sources” is ill defined and so the number of nonproducers 
in any period cannot be known with any degree of precision. Even in situations where the 
population is supposedly well defined there can be genuine uncertainty over this “zero 
class.” For instance, in library circulation models it is often unclear whether a particular 
book that has not circulated just happens not to have been borrowed or is not borrowa- 
ble through having been lost or stolen. We may thus be obliged, or prefer, to work only 
with the actually productive sources. We write: 

XT = number of items produced by a productive source during [0, t] 

P:(j) = RX =A 

=P(&=jIX,#O) 

f-h(j) 
= 1 -p,(O)’ 

j = 1,2,. . . . (17) 

Thus the observed process 1X:; t 10) is the zero-truncated version of the X, process. (If 
X, = 0 then XT is not defined.) From (17) it is immediate that for the observed process we 
have 

p: =E[X:] = pt 
1 -PtW 

(if the mean exists) 

@F(j) = P(X: 22 j) = at (A 
1 -Pt(O)' 

j= 1,2,... (18) 

while 

C kp:(k) 
*T(j) = k2’ 

cl: 

c b(k) 
= kri = qt(j), j= 1,2,. . . . (19) 

Pt 

It is clear from (18) and (19) that the Leimkuhler curve for the X: process sits under that 
for the X, process and hence, from the graphical derivation of the Gini index in (S), that 
r,? < yt. More exactly we have: 

THEOREM II 

(i) 

(ii) 

(iii ) 

* _ Yt - P,(O) 

yf - 1 -&(O) 

7: < yt provided pt (0) > 0 

lim r; = lim Y, if limp,(O) = 0. 
1-m t-a, ,-+a 

(20) 
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Proof. (i) 

Q.L. BURRELL 

C 9, (A* 

= l - (Epr(0))pf from (18) 

I- 
1 --rt Yf - P,(O) = 

1 -Pt(O) = 1 -P,(O) * 

(ii) and (iii) are immediate corollaries. tl 
Note that the insistence that ~~(0) > 0 merely says that by (finite) time t there are still 

some (potenti~ly) productive sources that have not by then actually produced an item. In 
general, p,(O) will be decreasing with t; the requirement that the limit is zero says that 
there are no “never-producers,” so that the population does indeed comprise “potentid 
producers.” 

For purposes of illustration, let us return to the examples of 3.1. 

EXAMPLE 1: The GPP with v = 1, /3 = 1. In this case 

p:(j) = (-$)(&r-l, j= 1X&.... 

Using Theorem II(i) and (13), the Gini index is 

1 

r: = 
yt- l+t 

(l+t)2 1 ~- 
1 + 2t 

= 
1 t 

I-- 
l+t 

t 

=i-Tz 

Hence r: is strictly increasing with f; indeed note that yI + 7: = 1 in this example. 
For the Leimkuhler curve we can make use of (18) and (19) together with the eqn (14) 

already derived for the non-truncated version to write 

9; =‘p; 

[ 

1+ 
1 

(1 + t)ln & 
( 1 

In @T 1 
Compare this with (14). See Fig. 1 for a graphical presentation. 

A simple application of l’H6pital’s rule shows that 

lim 
1 1 

t 
f--r= t In __ 

( > 

= lim = -1 

1+r 
f--rol (1 + t)ln ht 

( 1 

so that the limiting form of the Leimkuhler curve in both cases is 

*=@[l -In+], 1 C+C 1, 

which is the Leimkuhler curve of the exponential distribution (9). (See Fig. 1.) 



Gini index 29 

la) Full distribution, t = 1. 
(b) Full distribution, t = 2. 
(cl Full distributinrt, t = 5. 
Cd) Limiting case, t + -_ 
fe) Zero-truncated distribution, t = I. 
(f) Zero-%runcated distribution, i: L 2. 
fg1 Zero-truncated distribution, t * 5. 

0.4 0.b 0.8 1.0 

Q, = Tail distribution function 

Fig. I. Leimkuhkr curves for the MI and zero-truncated forms of thegamma-Poisson process with 
Y= 1. a = 1. 

*_ r,-Pm 
yf - 1 -P,(O) 

= ; [(t -I” 2)y, - 21” 

Computation of yp, and hence of y :. is fairly straightforward if we just consider integer 
time points n,n = 1,2,. . . t since then 

Calculated values LW given in Table 1. Note that, as in Example 1, the Gini index decreases 
with time for the full distribution, but increases with time for the zero-truncated version. 

IPM 28: I-C 
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Table 1. Gini index for the full and the zero-truncated 
generalized Waring process with Y = 1, 01 = 2, fi = 1 

Time Gini index 

t Yf r: 

2 
3 
4 
5 
6 

8 
9 

10 
11 
12 
13 
14 
15 

0.8405 0.5216 
0.7824 0.5647 
0.7530 0.5883 
0.7354 0.6031 
0.7237 0.6132 
0.7155 0.6206 
0.7092 0.6262 
0.7044 0.6305 
0.7006 0.6341 
0.6975 0.6370 
0.6949 0.6394 
0.6927 0.6414 
0.6908 0.6432 
0.6892 0.6448 
0.6877 0.6461 

4. CGNCLUDING REMARKS 

The main aim of this paper has been to extend the use of some established bibhometric 
techniques and to view them from a probabilistic standpoint. A consequence is that cer- 
tain deficiencies in current practice have been brought out. Thus the paper raises several 
questions which may be the basis of useful projects for future research. To the author, some 
of the important questions are: 

Much interesting mathematical research concentrates on convenient continuous 
models of productivity (e.g., the Pareto and Bradford distributions of section 2). 
Where does time figure in such models? Again, the nonproducers are an important 
feature in both theoretical and applied work. How are these accommodated in con- 
tinuous models? 
The work we have mentioned on general aspects of concentration measures is un- 
doubtedly important. However, some of the “desirable properties” proposed require 
the nonproducers to be identifiable. How can this sort of axiomatic approach be 
modified if only the (non-zero) producers can be observed? Is there any way for time 
to be incorporated? 
The particular theoretical examples considered in section 3.2 suggest that the Gini 
index for the “full” population process decreases with time, while that for the ob- 
served process increases (both approaching the same limit). How general is this 
result? 
Bibliometrics is an applied subject and the author has consistently sought to stress 
the importance of the time parameter. Empirical studies recognizing this aspect are 
unfortunately few in number. Burrelf (1991a) reports one such study for which in- 
spection of the Leimkuhler curves supports the preceding suggestion that the Gini 
index for the producers increases with time. Are there any counterexamples? The 
increasing availability of bibliographic databases should allow many (comparative?) 
studies. Can we look forward to increasing reportage of these? (We would suggest 
that meaningful development of bibliometrics will not occur in their absence!) 
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APPENDIX 

Proof of Theorem I. (i) For the discrete case, this is essentially the same as the The- 
orem in Burrell (1991b). Write pj = P( Y = j), j = 0,1,2, . . . , let Y, , Y2 be independent 
copies of Y, and consider calculation of Ef ) Y, - Yz I]. Note first that 

P(JY, - Y,l =j) = 
t 

pt5 = y2), ifj = 0, 

2P(Y, - Y, =j), ifj = 1,2,. . . . 

Thus 

z-y Y, - Y*l = 0) = 2 P( Y, = Y, = k) = -jg pk’ 
k=O k=O 

while if j + 0, 

fyi - ~*=jf=~(~,=k)n~r,=k-jl 
k=j 

so that 

ptlyl - Y2l =.i) = 2 2 PkPk-j, forj= 1,2,.... 
k=j 
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Hence 
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Then 

gives 

=2CjCPkPk-j 
j=l k=j 

= 2 k$, Pk i: jPk-j 
j=l 

=2 gpkkk'p(ysj) 
k=l j=O 

=25 g p#(Ysj) 
j=O k=j+l 

m 

=2CP(Yrj+ l)P(Yrj) 
j=O 

m 

= 2 C h(j)@Y(j + 1) 
j=O 

m 

= 2 C @y(j + 1) [l - Oy(j + l)] 
j=O 

= 2 fi @Y(j) - 5 %(A2 
[ j=l j=l 1 

=2 
[ 
py- g@,(j)' . 

j=l I 

Yy = HIY, - Y2ll 

2PY 

(Al) 

642) 

2 64.dWj + 1) 
j=O 

YY = from (Al) 
PY 

= 1 _ ,py(j)2 

from (A2). 
LLY 

(ii) For the continuous case, suppose that Y has probability density functionf,(x) on 
x 2 0 and let Y,, Y2 be independent copies of Y. Then 

JTIYI - &II = yy lx -YlfY(x)fY(Y) dxdv 
0 0 

= 2 
ss 

(x - Y)“f-Y(X)_fY (u) dx a 
x>y>o 

m x 

=2 s [S (x - Y)~Y(Y) dr fr(x) dx 
0 0 I 
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= 21rn [xF,o - [Yf,(Y) dY]fy(X) dx 

m 

= 2 S[ x&J(x) - YWY)lC + 
0 

j),(Y) d]fM dx 

= 21- [ ~W) dy]fv(x) dx 

OD x 

= 2 s [S frbW'du)d~ dx 
0 0 I 

= 2 ~Y(x)FY(Y)~x 1 dr 

s 00 

= 2 @Y(Y)FY(Y) dy 
0 

m 

= 2 
s 

@Y(Y) [1 - QY(Y)~ dy 
0 

= 2 
s 

m [@Y(Y) - @y(y)*1 dy 
0 

ca 

+Y(Y)*~Y . 
1 

Then 

YY= 
E[IY, - Y2ll 

2PY 

s m 

*Y(Y)FY(Y) du 
0 = from (A3) 

PY 

s 

m 

@Y(Y)* dy 

=I- O from (A4). 
CLY 

(A3) 

(A4) 


