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Abstract--N-grams are generalized words consisting of N consecutive symbols (letters), as they 
axe used in a text. N-word phrases are general concepts consisting of N consecutive words, also as 
used in a text. Given the rank-frequency function of single letters (i.e., one-grams) or of single words 
(i.e., one-word phrases) being Zipfian, we determine in this paper, the exact rank-frequency function 
(i.e., the occurrence of N-grams or N-word phrases on each rank) and size-frequency distribution (i.e., 
the density of N-grams or N-word phrases on each occurrence density) of these N-grams and N-word 
phrases. This paper distinguishes itself from other ones on this topic by allowing no approximations 
in the calculations. This leads to an intricate rank-frequency function for N-grams and N-word 
phrases (as we knew before from unpublished calculations) but leads surprisingly, to a very simple 
size-frequency function fN for N-grams or N-word phrases of the form 

fN(J) = ~ In 

where the Zipfian distribution of single letters or words is proportional to 1/r3. 
The paper closes with the calculation of type/token averages #N and type/token-taken averages/z~v 

for N-grams and N-word phrases, where we also verify the theoretically proved result #~v -->/~N but 
where we also give estimates for the differences/~v - #N. (~) 2005 Elsevier Ltd. All rights reserved. 

Keywords--N-gram, N-word phrase, Rank-frequency distribution, Size-frequency distribution, 
Zipfian distribution. 

1. I N T R O D U C T I O N  

N-grams and N-word phrases are very important objects in information science. This is obvious 
for N-word phrases, being the basis for linguistical expression and allow for more complex ideas 
than  the single words on their own. Because of this importance,  N-word phrases are indexed 
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as separate entities (precoordinative indexing) and this implies that their use in information 
retrieval (IR) (post-coordinative retrieval) is basic in the refinement of searches. 

N-grams, as indicated in [1] have important applications in indexing and IR (generalizing, 
e.g., truncation, useful in any language but especially in Asian languages where, because of their 
special structure, truncation is not so efficient), error detection and correction, text compression, 
identification of languages or of authorship, subject classification, and even speech recognition 
and the indexing and retrieval of music. For more details on these applications, we refer the 
reader to [2-7]. 

Because of the importance of N-grams and N-word phrases, their informetric properties should 
be revealed. It is clear that these N-tuples can be considered as elements of an N-fold Cartesian 
product of the space of the single objects, being respectively, single letters and single words. 
These single objects have well-established informetric properties: basically their rank-frequency 
distributions can be described by the law of Zipf (see [8-11]), which is a power law of the form 

B 
Pl(r) = rT' (1) 

where r >_ 1. This is well known in linguistics (for single words) and shown to be applicable to 
the distribution of single letters in [1]. 

A first attempt to derive the rank-frequency function for N-word phrases was given in [1] but 
using a lot of simplifying assumptions and approximations. A substantial improvement has been 
given in [1], where the argument was also applicable to general N-grams. The calculation of the 
general rank-frequency function is very tedious and for this reason, in [12] as well as in [1], a 
technical simplification (approximation) has been adopted on the rank ranges of the single letters 
or words (we will indicate exactly what type of simplification that was used). 

In this paper, we drop this simplification, leading to an intricate rank-frequency function for N- 
grams and N-word phrases. Surprisingly, however, when calculating the size-frequency function 
which is equivalent with the obtained rank-frequency function for N-grams and N-word phrases, 
we obtain a very simple expression (even much simpler than the one obtained from the simplified 
rank-frequency argument): supposing (1) to be valid for single letters or words (i.e., N = 1), we 
will show in this paper that the size-frequency function fN of N-grams or N-word phrases has 
the form 

fN(J) = ~ m . (2) 

Note that, for N -- 1, (2) conforms with the known law of Lotka 

F F 
A(J) = ~ = ~,.-= (3) 

where ~ = 1 4- 1/~ is Lotka's exponent (see [10,13,14]) and where f l  is the law of Lotka, known 
to be equivalent with Zipf's law (cf. [15]). 

The simple form (2), then enables us to derive formulae for the average number of occurrences of 
N-grams and N-word phrases and for the average number of uses of these N-tuples (type/token- 
taken informetrics as described in [16]). 

In the next section, we will repeat the basic formulae of informetrics on rank and size-frequency 
functions and their interrelations (type/token informetrics) and we will also repeat the basic facts 
of type/token-taken informetrics. 

Section 3 is then devoted to the intricate correct calculation of the rank-frequency function of 
N-grams and N-word phrases, using Zipf's law (1) for the N = 1 case. 

Section 4 then derives from this the simple size-frequency function (2) and Section 5 applies 
the latter result to the calculation of formulae of average occurrence tin and average u s e / ~  of 
these N-tuples. These formulae are also calculated in practice and the results compared. 
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2. B A S I C  F O R M U L A E  I N  C L A S S I C A L  I N F O R M E T R I C S  

We refer the reader to [10,13-15], for more details on the following definitions and results. 
Basic in informetrics theory is an informetric production process (IPP) in which one has sources 
producing (or having) items (e.g., authors or journals produce papers, papers produce references 
or citations, .. .  ). The basic informetric function is the function f : j ~ f ( j ) ,  where j E [1, pro] 
and where f ( j )  denotes the density of sources with item density j and where pm denotes the 
maximal item density. It is the continuous size-frequency function (of which the Lotka power 
law is an example). The rank-frequency function g : r --* g(r), where r E [0, T] expresses the 
item-density in the source on rank-density r and where T denotes the total number of sources. 

Functions f and g relate as follows (g-1 denotes the inverse of g): 

~j p,n 
g - l ( j )  _= r(j)  ---- f ( j ' )  dj' (4) 

and also 

We also have that 

the total number of items, hence, 

is the actual rank-frequency distribution. 

1 
f (J)  : gt (g- l ( j ) )"  (5) 

fo Tg(r)  dr = A, (6) 

P(~) = g(~) (7) 
A 

In this framework, the law of Zipf is given by (since r E [0, T]) 

E 
g(r) - (1 +~)~' (8) 

which boils down to (1), replacing r by r' = 1 + r  E [1, T + 1]. The distribution-form of the above 
Zipf function is given by, using (7) 

D p(r )  = r~,  (0) 

where D = E / A  and where r C [1, T -b 1] (we, henceforth, drop the primes in r'). 
It follows from (4) that 

T = --/P"~ f ( j )  dj (10) 
J1 

and it can easily been proved that 

Hence, 

~11 p m 
A = j r ( j )  dj. (11) 

~1 pm A j / ( j )  dj 
(12) 

" =  T = [P~ 
/(J) dj 

J1 
denotes the average number of items per source (i.e., as they exist or occur). This is also called the 
type/token (TT) average (using terminology from linguistics). In [16], type/token-taken (TTT) 
informetrics is developed where also the use of the items is taken into account. Let us just give 
one example (further examples and applications can be found in [16]): N-grams of books occur 
in a database (e.g., an OPAC) and describing this occurrence (including the average number # 
that an N-gram occurs in this database) is the domain of TT-informetrics. A cataloguer (e.g.), 
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using this database to check whether or not a new book (that has to be catalogued) is already 
in the catalogue will enter the corresponding N-gram of this book. Hence, the more an N-gram 
occurs in the catalogue, the more it will also be typed in the retrieval process (assuming that 
N-grams of already catalogued books have the same distribution as N-grams of books that have 
to be catalogued). The informetrics describing this "use" of items is called TTT-informetrics and 
it is proved in [16] that its size-frequency function, denoted f*, is given by 

f* (j) = j r ( j ) ,  (13) 

for all j E [1, pro] (note that the item densities--in practice number of times an N-gram occurs 
in the catalogue) remain the same in TT- as in TTT-informetrics. Based on (10)-(12), we have 
that the TTT-average, denoted #*, is now given by 

where A is as in (11) and where 

In [16], it is generally proved that 

A 
,* --- - -  ( 1 4 )  

W' 

~1 p'~ W ---- j 2 f ( j )  dj. (15) 

,* > ,  (16) 

in all cases, a fact that will be reconfirmed by our practical calculations in the last section. For- 
mula (16) means that, e.g., in the example of catalographic retrieval given above, the cataloguer 
will, on the average (#*), encounter more books agreeing with a certain N-gram, than what could 
be expected from the average (#) occurrence of this N-gram in the catalogue. 

This ends the general introduction of the informetric concepts and formulae needed in this pa- 
per. Since we will only work with N-grams and N-word phrases, all symbols f, g, P, A, T, #, #* 
will have an index N in order to be able to distinguish between different values of N = 1,2, 3, 4, . . . .  

As said above, in the sequel, all calculations will be exact (no approximations or simplifications). 
We will assume (8),(9) (i.e., the validity of Zipf's law) as explained in the Introduction. We will 
also assume that letters occur independently in N-grams and that words occur independently in 
N-word phrases. Although this is not the case, we assume this since, as shown in [17], we do 
not end up with analytical formulae for the rank-frequency distribution, if independence is not 
supposed. We trust that the formulae obtained in this paper describe the general N-tuple case 
to a large extent. The independence assumption can be mathematically formulated as 

P (ri I r i+ l , . . . ,  rN) = Pl(ri),  (17) 

i.e., the probability to have a letter or a word with rank ri on the i th place (i = 1 , . . . ,  N) is 
independent on ranks of the letters or the words on the places i + 1 , . . . ,  N, where the ranks refer 
to the single letter or single word case (i.e., N = 1, hence, the notation Pl(ri)) and where we put 
P(rN) = PI(rN). 

3. THE R A N K - F R E Q U E N C Y  F U N C T I O N  
OF N - G R A M S  A N D  N - W O R D  P H R A S E S  

We can state and prove the following theorem. 

THEOREM 3.1. Let N 6 N be fixed and assume (9) to be valid for N = 1 (and where we denote 
P~(r) for P(r)) .  Denote by PN(r), the rank-[requency probability density function of N-word 
phrases or N-grams. Then, r E [0, T iv] and 

V N 
PN(r) (18) 

(r + 
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where ~¢1 denotes the inverse of  ~N and where ~N is the function 

N-I  ( _ l ) N + i _ l y l n  i Y (19) 
CN(y) = E i! 

i=0 

and In i y --- l n (y ) . . ,  ln(y), the i th power of  ln(y). 

i times 

PROOf. Since ranks are determined by (decreasing) productivity, we have that  x = PN(r), where 

= vol {(~,...,~) I P ( ~ I , . . . , ~ N )  > ~ } ,  (20) 

where P ( r l , . . .  ,rN) denotes the probability of occurrence of an N-gram or N-word phrase for 
which the i th  letter (respectively, word) has rank ri (in the single occurrence), i = 1 , . . . ,  N. Here 
volume (S) denotes the volume of the N-dimensional set S. Now, by definition of conditional 
probability density (cf. [18, p. 61]), repeatedly used 

P ( r l , . . . ,  rN) = P(rl  

---- P(r  I 

r2,..-,rN)P(r2,...,rN) 
r2,..., rN)P(r2 I r3,..., rN)P(r3,..., rN) 

= P(rl  r 2 , . . . , r N ) P ( r 2 1 r a , . . . , r N ) . . . P ( r N _ l  ] rN)P(rN) 

= Pl ( r l )P l ( r2) . . .  Pl (rN-1)Pl(rN)  

by (17). So by (20), we have 

r = v o l { ( ~ l , . .  ,rN) l P l ( ~ ) P ~ ( r 2 ) . .  P ~ ( ~ )  > x} ,  (21) 

with x = PN(r), x e [0, 1]. 
Note that, because of (8) and (9), the real ranks rl should be lowered with 1 but, in (9), 

we can work with r~ E [1, T + 1] itself and the set S is only a translation of the rank N-tuples 
(rl - 1 , . . .  , rN - 1) over the vector (1 , . . . ,  1) (N coordinates), so that  the volume is the same. 
Hence, we can use the ris themselves in (21). Note, however, that  r itself denotes the real rank 
of N-grams or N-word phrases. Indeed, let there be T letters (in case of N-grams) or T words 
(in case of N-word phrases (cf. (8)), then r E [0, T g] and r = T N is obtained for x -- 0, the set S 
being S -- [ 1 , T +  1] g which volume is T g and r -- 0 is obtained for x = (E /A)  N since then 
vol(S) = 0 for the following reason: using (21), we have 

PI(r l )PI(r2) . .  .PI(rN) >_ x = ( E )  N 

But by (7) and (8), each Pl(r~) <_ E /A .  So 

PI(r l )PI ( r2) . . .PI ( rN)  -~ ( E )  N 

But 0 < Pl(r i )  _< E / A  for every i = 1 , . . .  ,N ,  hence, 

E 
Pl(r~) = ~ ,  (22) 

for every i = 1 , . . .  ,N.  From (9), this implies 

r, = 1, (23) 

for every i ---- 1 , . . .  ,N .  Hence, S = {(1, 1 , . . . ,  1)}, a singleton in •g ,  and hence, vol(S) = 0. 
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The inequality 

leads to, using (9) 

hence, 

P l ( ~ 1 ) P l ( r 2 ) . . .  P I ( ~ N )  > x 

n N 

(?'17"2' '  "?'N)/~ ~-- X, (24) 

DN / /3 
r l r 2 . . . r N  < ~ =: a, (25) 

by notation of a for reasons of simplicity. Formula (25) implies 

a 
1 < ?'1 _< - - .  (26) 

r2 • • • ?'N 

This gives us the number of possible rls but dependent on the different r2s , . . .  , rNs that  are 
possible. This will be determined now. Formula (26) yields 

a 
1 < r2 <_ - - .  (27) 

r3. •. rN 

Formula (27) implies 

and so on until 

and 

a 
i < r3 <_ - -  (2S) 

r4 . . .  rN 

a 
1 < rN_l ~_ ~ (29) 

rN 

1 <_ r N  < a. (30) 

So vol(S) of (21) is found when we remark that  r l  ranges in an interval of length a/r2 . . .  ?'g -- 1 
(by (26)), where each r2 , . . . ,  rN range as indicated in (27)-(30). Hence, 

~ r ~ = a d r N  frN-~=a/rN d?'N_l., fr2=~/ra .... N dr 2 

?" ~ a rN~--I r N  JrN_l~-I ? 'N-1  " J r 2 = l  ?'2 (31) 
drN drN-1, dr2. 

-- JrN-~'l JrN_l----1 J r2-~- 1 

The evaluation of (31) is tedious but easy. 
The first term in (31) (called (I)) is calculated as follows: since 

= . ( 3 2 )  

(> 0 by (27)), we have that  

9fr rN=a drN jfrN-~=alrN d r N - 1  ~ a / r a . , . r N  In  ( ? ' 3 . - . ? ' N / a ) d r 3 .  (33) (I) = - ~  . .  

N=I 7"N r N _ l = l  ?'N--1 ?'3 

But 

3=1 r3 - 2  ln2 ""a 

as is readily seen. This value goes in (33) yielding 

f r N = a  drN frN-l=a/rN drN-1 fr4=a/r5 .... N _ (1 /2 ) ln2( r4 . . . rN /a )  dr4. 
(I) ,.. 

- -a  J rN=l  r N  j r N _ l = l  r N - 1  Jr4=l ?'4 
(34) 
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But  

/~' = ° / ~ o ' "  - (1 /2)  ln ~ ( r 4 . . r ~ / a )  d~4 1 
4=1 r4 = ~.lI13 ( r S ' a " r N )  • 

Note  t ha t  each t ime the  sign switches. This  leads to  

f rN=a drN frN- ,=a/rN (_I)N--1  lnN-3  (rN_lT, N/a) 
(i) = ~ - ~  d~_ , ,  

a d r N =  1 r N  j r N _ l = l  

/ rN=~ drg (--1) N in N-2 (rg/a)  
(I) = a 

(--1)N+lalnN-, (1) (I)---- (-ff:  ~)t. 
a In N-1 a 

(I) = ( N -  1)! > 0, 

since a -- DN/~ /x  1/~ > r l . . . r N  :>  1 ,  using (25). 

Now we calculate the  second te rm in (31), called (II). 

(II) = - 

(II) = - 

(II) = - 

(II) = - 

• • f r2=a/r3** 'rN f rN=a d r N  f rN-l=a/rN drN-l" dr2, 
JrN--~I J r N _ l = l  J r 2 = l  

N-~I J r N - - l = l  J r 3 = l  r 3 . . ,  r N  

[o  ( o )  o ] 
r4 ~-. rN In - -  + 1 dr4, • r 4 . [ :  r N  r 4 . . . r N  

r 5  • • • ? ' N  r 5  • r 5  • • • r N  r 5  • 

11 dr3, 

° ,] 
r 5  • • • T N  

dr5, 

(35) 

(II) = -- dr N dr N-  l " . . 
N = I  d r N _ l = l  = 

1 ln3(r6""a'rN) 2 r 6 . . r N  
X 3! r6 . . .  r y  

a~ln(r6"arN ) ~ a  +1] dr6. 
r6  • • • r N  r6  • • . r N  

In general,  we have ( j  + 3 = 2 , . . . ,  N )  

/ ~ = ~  /~j+,=~/~+~...r~ 
(II) = - drN. . .  

N = I  r d + 3 = l  

r j+3- : . rg  ~=-1 ~ln~ a + r j + 3  • • • r N  
( - 1 )  j + ( - 1 )  j - l ]  drj+3. 
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Hence, 

(I1) = - ( _ l ) g _  3 a _  ~ a ~=1 rN ~. lni + (--1) N-4 drN+ JrN 1 rN 

(II) = ( - i )  ~ -~  a ~ (i + i)! 
i = l  

g - a  a (--1) i+1 In i+I a 
(II) = (--1)N-1 ~ (i + 1)! +(--1)Nalna+(--1)N-la+(--1)N (36) 

i = l  

N - 2  
( I I ) -  (--1) N-1 E (--1)ialnia 

i! + ( - 1 ) N '  
i = 0  

N--2 (__l/V+i--1 aln i a 
(II) = ~ i! + ( - l l N  

i = 0  

Now (35) and (36) yield, by (31) 

N-2 ( 1)N+~-I a in N- 1 a - -  a In ~ a 
r - -  ( g -  1)! + E i] + ( - 1 / v  

~=o (37) 
N-1 (__I)N+i-1 aln i a 

r : ~ i, + ( -1 )~"  
i = 0  

Using (25) and the fact that  x = PN (r), we have by (37) 

~ + ( - 1 ) N - ~  = ~ (p~V~]' (38) 

where 

i.e., formula (19). 
or equal to 1, hence, positive. 

g-1 (_l)N+i-1 in i Y 

i = 0  

N-1 (_l )g+~-I  in i Y 

i = 0  

In g -1  y 
~v(Y) = ( N -  1)------~ > 0, 

( -1)  N-3 drN, 

N-I (_I)N+i-1 ylniy 

~N (y) = ~ i! ' 
i = 0  

By (25), the arguments of the logarithms, appearing in iN, are greater than 
Note that  IN is an injection on [1, +oo[. Indeed, 

g-i (_l)g+i-I ini-I Y 
+ E  ' 

i----1 

N - 2  
+ E ( - l /V+ '  in' y 

i! 
i = 0  

(39) 

on y 6 ]1, +oo[. So iN is a strictly increasing function on [1, +oo[, and hence, an injection. But 

DN/~ 
a=x---iT-~->__l 

by (25), hence, we can take the inverse of iN in (38) yielding 

D ~ 
PN(r) = 

where ~N 1 denotes the inverse of the function iN. 

The function PN(r) is not simple. 
approximate result. 

| 

We have the following corollary, proved in [1,12] as an 
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COROLLARY 3.2. I f  r is large, we have that 

D N 

(XN 1 ( ( N -  1)!r)) ~' 
(40) 

where X~v 1 is the inverse of the function 

XY (Y) = yln g -1  (Y) (41) 

(again lnN-l(y) denotes the (N - 1) th power of in(y)). 

PROOF. The number r large enough forces all the ranks r l , . . . ,  r N  to  be large by (21). Since rl 
is large we have by (26) that 

1 , ~ - -  
r2 . . . r N  r2 . .  . r y "  

In other words, in the proof of the above theorem, we only calculate (I) for r and put (II)~ 0. 
By (35), this yields the result. | 

This approximation was used in [1,12] because evaluating (II) did not seem to lead to any useful 
result. Indeed, formulae (18) and (19) are much more complicated than (40) and (41) and if it 
were not for the results in the sequel, we would not consider these intricate results as important. 
We are, however, lucky: in the next section, we will derive the size-frequency function f g  linked 
to the above rank-frequency distribution PN and we will show that the exact result (18) leads to 
a very simple formula for fN, simpler than the one derived from the inexact (40)! 

The derivation of the size-frequency function fN is based on the general formulae of Section 2 on 
the link between the rank- and the size-frequency function. Therefore, we first have to determine 
the rank-frequency function (called g in Section 2 and called gN here to show the N-dependence) 
derived from the rank-frequency density function Pie in (18). gg follows from PN by (7), i.e., 
simply by multiplying with the total number of items in the case of N-grams or N-word phrases, 
which we will denote by AN (in Section 2 this is denoted by A). Consequently, we have 

AND N 

for r e [0,TN], using Theorem 3.1. 
In the proof of Theorem 3.1, we showed that ~N strictly increases, hence, the same is true for 

~g 1, so gN strictly decreases, using (42). From (39), it follows that ~v(Y) > 0 and ~ ( y )  > 0 on 
]1, +c~[. This can be used in (42) to show that gN is convexly decreasing, as it should (by the 
very definition of PN). We leave this as an exercise. 

There are not many practical data on N-grams or N-word phrases. A convexly decreasing 
rank-frequency function for N-grams can be found in [19]. These authors use the name "Zipfian" 
distribution which, visually, and probably also statistically, is a normal observation. In Section 3, 
we only tried to show the mathematical link between one-gram (one-word phrase)-theory (i.e., 
Lotkaian, Zipfian informetrics) and N-gram (N-word phrase)-theory. In general, the above theory 
(and the one to follow on the size-frequency function) can be considered as the mathematical 
theory on how to describe informetrically the Cartesian product of N IPPs with the same Zipfian 
rank-frequency distribution. 

Result (42) on gN is intricate and not easy to work with. In the next section, we will determine 
the size-frequency function f g  that is equivalent with the rank-frequency function gN, using the 
model in Section 2. The result on f g  will be surprisingly simple (although its derivation is, once 
more, tedious). 
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4.  T H E  S I Z E - F R E Q U E N C Y  F U N C T I O N  O F  N - G R A M S  
A N D  N - W O R D  P H R A S E S  D E R I V E D  F R O M  S E C T I O N  3 

We have the following theorem. 

THEOREM 4.1. The size-frequency function fN that is equivalent with the rank-frequency func- 
tion aN Of (42) is given by 

f N ( j ) =  C'--~lnN-I (Pm~ N) : (43) 

for j ~ [1,pm(N)], where pro(N) is the maxima/item density in the case N-grams or N-word 
phrases, given by 

Pm (N) = ANO N, (44) 

and where C is the constant 
c =  P'~(N)~/~ 

~N ( g  - 1)]" (45) 

PROOF. By the very definition of size-frequency function, we have (see, formula (5)) 

1 
fN (j) = g~ (g~l (j)) (46) 

for j e [1,p,~(N)] with pro(N) the maximal item density in the case of N-grams or N-word 
phrases. Formula (42) yields 

Hence, taking derivatives 

g~v(r) (~N 1 (r + (--1)N-1))1~ + gN(r)~ (~N 1 (r -Jr (--1)N-1))/~-1 

d 
+ = 0, 

dx 

where 

dx 
means: the derivative of the function ~ 1  in the point r + (-1) N-1. So 

= -~gN (~) 

But, by (39) 

g~(r)¢~* (~ + (-1)  N-~) = 

Now we use (42), yielding 

(1 / (N-  l)')]n N-I (~N 1 (r "]- (--1)N--1)) " 

-3AND N 

So 

(48) 

(49) 

-3AND N (50) 
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Since j = gN(r) denotes the item density (by definition (4)), we have by (42) that  

in the point r = gNi(j).  So (51) in (50) yields 

g~ (g~l( j ) )  _- - Z A N D  N (52) 

0o 
which yields, by (46), the result 

BYjl+i /~(N -- 1)[ -: , (53) 

j E [1, pro(N)], a remarkably simple result. By definition of pro(N) and gg, we have 

Pm ( N )  -~ gN (0) -~- ANDN 

by (42). But  ~N(1) = (--1) g -1  as follows readily from (19). Hence, since we showed in Theo- 
rem 3.1 that  ~N is an injection on [1, +oo[, we have that ~Ni((--1) N - i )  = 1 and so, from (54) 

Pro(N) = AND N 

proving (44). Now (54) and (54) give 

c 1 N-I(PmlN) ) y~(j )  = ~ n 

with C as in (45), hence, we have proved (43), for j E [1, pm(g)]. | 

Note that,  in terms of Lotka's a, see (3), we have that  (43) also reads as 

hence, a product of a power law and a power of a logarithm. It is easy to see that  f~v < 0 and 
f~, > 0, hence, fN is convexly decreasing on [1, pm (N)] = [1, ANDN]. 

Note also that  gN and fg ,  for N = 1, reduce to the given laws of Zipf and Lotka (as it should). 

Indeed, for f l  this is clear (with C = p~Z/fl  as follows from (45), agreeing with the results in [15], 
since we supposed Zipf's law for gi). For gi, we have by (42) 

AD 
gl (r) = 

(~11 (r + 1)) z 

AD 

(r ~- 1) ~ 

since ~l(y) = y by (19), and hence, 

E 

gl (r) - (r + i) ~ '  
the same function as (8), using that we denoted D = E/A.  

In the next section, we will use the size-frequency function fN to calculate the averages # 
(here denoted as # g )  of items per source and #* (here denoted as #~v) being the type/token- 
taken average as discussed in Section 2. In terms of the present notations, we could say that  the 
type/ token-taken theory of Section 2 was based on f i ;  in the next section, we will use fN (N > 2). 
Of course, the general defining formulae for # and #* (i.e., for general size-frequency functions) 
of Section 2 also apply here. 
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. T Y P E / T O K E N  
A V E R A G E S  #~V 

A V E R A G E S  # N  A N D  T Y P E / T O K E N - T A K E N  
F O R  N - G R A M S  A N D  N - W O R D  P H R A S E S  

As follows from formulae (l l) ,  (12), 
the TTT averages #* N are given by 

(14), and (15), we have that the TT average #/v and 

AN 
~N = TN, (56) 

. W~ (57) 
#N = AN ' 

where 

T N _/p.~(N) 
fN (J) dj, 

--J1 

f 
o~(N) 

AN = JfN (J) dj, 
J1 

f 
o~(N) 

WN = j2IN (j) dj, 
J1 

(58) 

(59) 

(60) 

and where fN is given by (43). All these integrals are tedious to calculate, but we can use the 
following formula found in [20, p. 203,(2.722)]: 

xn+l  m In m-k x 
x nln m x d x - -  - -  E (--1)k ( m +  1) m ( m - -  1 ) . . . ( m - -  k + 1) 1)k+ 1 (61) 

m + l  k=O (n+ 

valid for all n 6 R \{ -1}  and m 6 N. 
For the calculation of T g (i.e., in function of pro(N), which will be our free parameter, just 

as it was the case with Pm in [16]), we have two equivalent alternatives: or we can calculate (58) 
directly or (which we will do here) use the following short argument. We note that j -- gN (r), 
and hence, 1 = gN(T N) (r = T n was the highest rank as proved in Theorem 3.1). Formula (42) 
yields 

AND N 
1 =  

SO 

Using (19), we have 

TN + ( - 1 ) ~ - '  = ~ " i! 
i = 0  

hence, by (44) 

N-1 (_1)N+'-1 (pm(N))l/~ln ~ ((p.~(N)) 1/f~) 
T ~ =  (-1)N + ~ i! 

i = 0  

(62) 

valid for all N 6 N and all f~ > 0. 
We are left with the calculation of (59) and (60), using (43). We have 

f p'~(N) C l n N - l ( P m ~  N ) )  dj. AN = jl /~ - 
J 1  

(63) 
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Since 

we have tha t  

/ lnN-1 jx/z(Pm(N)/J)dj=_pm(N)l_l/af(pmlN ) .  -: ) l /~ '21nN_l  (pm~N)) d (pm~N)) . (64) 

So, for/9 > 0,/9 # 1 we can apply (61) yielding 

N--1 

f (p,~(N)/j) 
INN-1 jl/~(Pm(N)/J) dj = gj-i-]-h_ 1 - 1  E (-1)kg(N - 1) . . .  (g  - k) InN-k-l_(1/~3 1) k+l 

k=0  

- @ ( -1)k  t]V- I~InN-k(--P2(N)/J) -~jl/~-1,'" 1 ) ( N - 2 ) . . . ( N - k +  , ( 1 / f ~ - 1 )  k ' 

where we note that ,  for k = 1, we have to take (N - 1)(N - 2 ) . . .  (N - k + 1) = 1. Equation (63) 
now yields, using (45) 

(p,~(N)) 1/~ ( - 1 ) ~ ( N  - 1)[ 
AN = /gN( N _  1)! (pm(N))Ua-l(1/3- 1) N 

(65) 
N (_ l )k (  N _ 1 ) . . .  ( N -  k + 1 ) lnN-k(pm(N)) ]  

1 k = l  

valid for all N and fl > 0, fl ~ 1 and noting that,  for k = 1, (N - 1 ) . . .  (N - k + 1) = 1. 
For fl = 1, we have 

AN ---- -7 
J1 ? (66) 
pm (N)In  y (pro (N)) AN = N} 

as is easily calculated using (63) and (45) for/9 = 1. 
For WN, we have 

/p,~(N) C lnN_l ( ~ . N ) )  Wg = dj. (67) 
1 j l / j 3 - 1  

But, using (63), we have 

f l n N - I ( p ~ ( N ) / J ) d J = - ( P m ( N ) ) 2 - 1 / ~ f ~ - ~ ) I / ~ - 3 1 n N - i ~ - ~ ) d ( ~ ) j l / ~ - I  , (68) 

which can be calculated, using (61), for all/3 ¢ 1/2. This gives 

N - 1  
f lnN-I(P~(N)/J) dj - 1  S-~ (_I )aN(N _ 1). . . . .  lng-k- l (P'~(Y)/J)  = _ _  .. ~,~ - ,~) ~ - -  

k=0  

N ( -1 )  k ( N -  1) (N k ' 1 ~lnN-k(pm(N)/j) V" 
k = l  J 

where, for k = 1, we have to take ( N - 1 ) . . . ( N - k + I )  = 1. Hence, we have, from (67), 
using (45) 

(Pm(g)) 1/f~ [. (--1)N(N_c 1)! 
w ~  = ~ - ~ - ~  [(pm(N))~/~-~(1/Z - 2) ~v 
N 

_ ~ (-1)k(N - 1).. .  (N - k+l ) lnN-k (pm(N) ) ]  (69) 

valid for all N and/9  ~ 1/2 and where we have to take (N - 1 ) . . .  (N - k + 1) = 1 for k = 1. 
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For ;3 = 1/2 we have, using (63) 

ln N- I  (p,~(N)/j) 
-: dj = 
? 

In N (p,~(N)/j) 

N 

So (67) and (45) yield 

2 N (pro ( g ) )  2 in N (p,~ ( g ) ) ,  (70) 
WN = N! 

for all N and fl = 1/2. 
With these formulae for T N, AN, and WN we are able to calculate /iN and /z~ via (56) 

and (57). We will also compare these values with the corresponding values of #1 and tt~, i.e., T T  
and T T T  averages in the case of one-grams (single letters) or of one-word phrases (single words) 

as developed in [16]. 
As examples, we win take/3 = 1 (i.e., Lotka's ~ = 2) and f~ = i/2 (i.e., Lotka's a = 3) and 

we will take N - 1, 2, 3: the case of 2(3)-grams or 2(3)-word phrases in comparison with single 

letters or words will be informative enough for higher values of N.  In addition, the cases N = 2 
and N = 3 are the most important  cases for all applications. 

Let us take/~ = 1 first. For g = 2, we have from (62), (66), and (69) 

T 2 = i - pm (2) + pm (2) in (p~ (2)) ,  

i 
As = ~p.~ (2) In ~ (pro (2)) ,  

W2 = (p~ (2)) 2 - p~  (2)In (p~ (2)) - p~  (2) .  

(7i) 

(72) 

(73) 

Hence, 

which yields Table 1. 

p~  (2) in ~ (pro (2)) 
~2 = 2 ( i  - pm (2) + p~  (2) in (p~  (2)))'  

2 (p.~ (2) - I~ (p~  (2)) - i) ~= 
In 2 (pm (2)) 

Table 1. Values of #2 and/z~ for diverse values of pro(2), for f~ = 1. 

(74) 

(75) 

p,~ (2) 1.5 2 3 5 10 100 

it2 1.140 1 .244 1 .397  1 .600  1 .890  2.933 
;z~ 1.150 1 .277  1 .494  1 .846  2 .526  8.902 

This can be compared with the values of ;ti and #~, i.e., the noncomposed case. For ;3 = 1 
(hence, a = 2), we use the formulae (cf. [16]) 

l n p ~  (76) 

and 
, p r o -  1 (77) ,* = .1  - KT-~ 

yielding Table 2. 
We see that ,  for the same value of the input "seed" p,~(2) or p,~, we have tha t  the values ttl 

and #~ are larger than the values/z2 and #~, respectively. We also see tha t  tt~ - it2 < tt~ - ;tl 
showing that  the average screen lengths (e.g., in the case of the use of two-grams by a cataloger) 
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Table 2. Values of #1 and #~ for diverse values of Pro, for fl = 1. 

pm 1.5 2 3 5 10 100 

~1 1.216 1 . 3 8 6  1.648 2.012 2.558 4.652 

.. #~ 1.233 1 . 4 4 3  1.820 2.485 3.909 21.498 

are shor ter  t han  the  ones given in the one-gram case. Note  fur ther  t h a t  #~ > #1 and #~ >/~2 as 

it should, following (16). 

Now we calculate the case N = 3, still wi th fl = 1. We have f rom (62), (66), and (69) 

Hence, 

1 
T 3 = - 1  + p.-, (3) - Pm (3) In (Pm (3)) + ~Pm (3) in 2 (Pro (3)), 

1 3 A3 = -~Pm ( ) l n  3 (P,~ (3)),  

1 3 W3 = (p.-, (3)) 2 - ~-pm ( ) ln  2 (p.-, (3)) - p.., (3)In (pro (3)) - p m  (3) 

(78) 

(80) 

~3 = 
pm(3) ln3(pm(3))  

- 6  + 6pro (3) - 6pro (3) in (p,~ (3)) + 3pm (3) In 2 (pro (3)) '  

. 6pro (3) - 3 In 2 (Pro (3)) - 6 In (pro (3)) - 6 
it3 ---- In 3 (Pro (3)) ' 

(81) 

(82) 

which yields Table 3. 

Table 3. Values of It3 and tt~ for diverse values of pro(3), for/3 ---- 1. 

pm(3) 1.5 2 3 5 10 100 

~a 1.103 1.179 1 . 2 8 8  1 . 4 3 1  1.630 2.329 

~ 1.110 1.200 1 . 3 4 8  1.577 1.989 5.148 

The  same comments  as for #2, #~, given above, can be given here for #3, #~. Note  again tha t  

the  values of  its, #~ are smaller t h a n  the  values of  #2, tL~, respectively. 

Finally, we give formulae for fl -- 1 /2  and N = 2, 3 and compare  with the  case N = 1. For 

N = 2 and ~ = 1/2, we have the  following formulae, following f rom (62), (65), and (67) 

T 2 = 1 - (pm(2))2+2(p,~(2))21n(p,~(2)) ,  

A 2 = 4 p m ( 2 ) + 4 ( p m ( 2 ) ) 2 1 n ( p , n ( 2 ) ) - 4 ( p , n ( 2 ) )  2, 

W2 --2(p,~(2))21n2(p,n(2)).  

(83) 
(84) 

(85) 

Hence, we have 

yielding Table 4. 

4pm(2)+4(pm(2))21n(p (2))--4(pm(2)) 2 
~2 ----- 

1 - (p,~(2))2-{-2(p,~(2))21n(pm(2)) 

pm(2) ln2(p,-n(2)) 

2 + 2pro (2) ]n (pro (2)) - (2) 

Table 4. Values of ~2 and t*~ for diverse values of pro(2), for/3 = 1/2. 

pm(2) 1.5 2 3 5 10 100 

it2 1.130 1 . 2 1 4  1 . 3 2 1  1.433 1.552 1.761 

#~ 1.140 1.244 1.397 1.600 1.890 2.933 

(86) 

(87) 



822 L. EG~HE 

Table 5. Values of t~l and tt~ for diverse values of pro, for fl = 1/2. 

pm 1.5 2 3 5 10 100 

~1 1.200 1.333 1.500 1.667 1.818 1.980 

~ 1.216 1.386 1.648 2.012 2.558 4.652 

Compare now with the case N = 1, ~ = 1/2 (hence, a = 3), using the formulae (cf. [16]) 

2pro 
~=~I= p m + l '  

In p,~ 
tL* = t~l = 1 - 1/p  

(88) 

(89) 

yielding Table 5. 
For g = 3, ~ = 1/2, we have now, using (62), (65), and (67) 

T 3 -- - 1  + (p,~ (3)) 2 - 2 (pro (3)) 2 In (p,~ (3)) + 2 (pro (3)) 2 In 2 (p,~ (3)), 

A3 = -8p,~ (3) + 4 (Prn (3)) 2 In 2 (Pro (3)) -- 8 (p,~ (3)) 2 In (Pro (3)) + 8 (Pro (3)) 2 , 

4 
W3 = ~ (Pm (3)) 2 In 3 (Pm (3)). 

(90) 

(91) 

(92) 

Hence, 

~t 3 -~ 
- - l+(pm(3))  ' 

pm(3)ln (p (3)) 

(93) 

(94) 

yielding Table 6. 

Table 6. Values of P3 and #~ for diverse values of pro(3), for 13 = 1/2. 

Pm (3) 1.5 2 3 5 10 100 

~3 1.097 1.160 1.241 1.330 1.429 1.635 

~ 1.103 1.179 1.288 1.431 1.630 2.329 

We see again that  the same tendencies of the comparison of It1, ItS, #2, #~, #3, #~ are found as 
in the case fl --- 1. 

We close with an open problem. 

OPEN PROBLEM. Describe the TT average and T T T  average in case of N-grams where the 
number of items is limited to the number of documents in a database (e.g., an OPAC, used by 
a cataloger, as described in Section 2). Since, here, the number of items (denoted A) is fixed 
and since there are T N N-grams (cf. Theorem 3.1), we might end up, for not even very large N 
with the relation T N > A, hence, with more sources than items, which is out of the scope of the 
informetric theory which was briefly described in Section 2. 
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