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A B S T R A C T

This study explores the dynamics of a government sponsored collaboration network concerning the development
of solar photovoltaics (PV) technologies in China, and investigates the effect of network evolution on the sub-
sequent innovation performance of network actors. Network structure characteristics and attribute proximity
variables are jointly examined through a bibliometric methodology based on scientific publication and patent
data. In addressing the evolution of the government sponsored collaboration network, this study has identified
that actors are more likely to engage in collaboration with prior partners, partners of direct & indirect partners,
and partners with similar attributes. These collaboration patterns, in turn, negatively impact direct ties and
network efficiency, and increase the attribute proximity of an actor’s network. On the other hand, the estimation
results indicate that direct ties have an inverted U-shaped effect on innovation performance, while indirect ties
are found to be positively related to innovation performance. As expected, a positive effect of network efficiency
is found on innovation performance. The results of attribute proximity variables suggest geographical proximity
is negatively related to innovation performance. Taken together, the collaboration patterns in the government
sponsored network might have a negative impact on innovation performance of network actors. The empirical
findings extend the network literature that collaboration network matters differently in different research
contexts, and it is no longer appropriate to simply assume that collaboration is purely a good thing. As such,
special attention should be paid to the network structure and composition in further policy design.

1. Introduction

Government agencies, particularly in the OECD countries, have in-
creasingly positioned collaboration activities between the knowledge-
based organizations at the core of innovation policy with the aim to
facilitate the creation, diffusion and utilization of scientific knowledge
and, ultimately, to boost technology development and economic growth
(Autio et al., 2008; Heinze and Kuhlmann, 2008; Poirier et al., 2016). In
line with this objective, an increasing amount of government funding is
provided for collaborations of knowledge-based organizations −
usually enterprises, universities and research institutes (Fier et al.,
2006; Protogerou et al., 2013). Hence, it is important to understand
how government sponsored collaboration networks influence innova-
tion performance to provide empirical evidence of how the commit-
ment of public money has resulted in significant and tangible outcomes
(Clarysse et al., 2009).

Previous network and innovation studies reveal that network
structure and partners composition (in terms of different dimensions of
attribute proximity) are highly relevant in influencing the development

of collaboration networks and their subsequent innovation performance
(e.g., Ahuja, 2000; Broekel and Boschma, 2012; Phelps, 2010). In
analyses of collaboration network evolution, scholars have adopted
either a static approach at a single time point or taking a period as a
whole to explain the totality of network changes (Powell et al., 2005;
Rosenkopf and Padula, 2008). Less attention has been devoted to the
changing nature of network formation over time (Balland et al., 2013;
Ter Wal, 2014). Moreover, the question of whether innovators should
occupy densely interconnected “closed” network positions, or sparsely
connected “open” network positions, has yielded conflicting answers
providing support for both views (e.g., Ahuja, 2000; Baum et al., 2000;
Schilling and Phelps, 2007).

To address these gaps, this study develops a bibliometric metho-
dology based on scientific publications and patent data to analyze: (a)
the evolution of government sponsored collaboration networks in terms
of their changes in network structural effects and attributes proximity
effects from 2003 to 2013 in the Chinese solar PV sector, and (b) the
impact of those changes (in network structural effects and attributes
proximity effects) on the subsequent innovation performance of
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network actors. The research framework is presented in Fig. 1.
This study, first, examines network evolution of government spon-

sored collaboration in research; therefore, in contrast to the pre-
dominant focus on industrial actors in past literature, the focus is on the
science community (universities and public research institutes) when
addressing the impact of government funding on network collaboration.
Second, instead of the predominant focus on network structure, the
effects of both network structure and attributes proximity are included.
Finally, similar studies have not been done in the emerging energy
technologies sector; the predominant focuses of network evolution have
been in the fields of biotechnology, chemicals, and semiconductors.

2. Scientific collaboration and innovation

Scientific collaboration, also referred as research collaboration
(Katz and Martin, 1997; Lee and Bozeman, 2005) or R&D collaboration
(Bjerregaard, 2010), is defined in many ways. Following previous re-
search (Lee and Bozeman, 2005; Ynalvez and Shrum, 2011), scientific
collaboration is viewed as the process through which scientists work
together in a research project with one or more specific goals, including
the common goal of producing new scientific knowledge. As public and
private research funding agencies increasingly require inter-organiza-
tional collaboration for funding and research (Lee and Bozeman, 2005),
this study focuses on inter-organizational scientific collaborations
concerning government funded research involving two or more orga-
nizations in the solar PV sector in China.

The solar PV sector is a suitable research setting for three reasons.
First, the solar PV sector is a high technology industry, where knowl-
edge and innovation are fundamental to the pursuit of competitive
advantage (Schilling and Phelps, 2007; Wu and Mathews, 2012).
Second, due to its nascent and science-based nature, the solar PV sector
has been characterized by a wealth of inter-organizational collabora-
tion networks for innovation activities (Cattani and Rotolo, 2013).
Third, there is a large consensus in the international community that
government R&D investments are the key to foster technological im-
provements in solar PV technologies. The Chinese government has set
up multiple national science and technology plans to support the R&D
of PV technologies (Sun et al., 2014). Additionally, as previous scholars
argued that innovative competence is strongly sector-specific, and the
knowledge base and learning processes related to innovation differ
across sectoral systems of innovation (Quintana-García and Benavides-
Velasco, 2008), a single industry study is preferred.

The evolution of collaboration networks, in terms of ties establish-
ment and termination between different network members (e.g.,
Balland et al., 2013; Gulati and Gargiulo, 1999), is driven by a series of
endogenous effects, such as the search for repeated ties, or the tendency
of actors to form closed networks (friends of friends become friends),
and exogenous effects which depend on external attributes (e.g., var-
ious attribute proximity dimensions). These collaboration patterns, in

turn, determine directly a number of network structural variables and
attributes proximity-related variables.

Several dimensions of attribute proximity, such as geographic, or-
ganizational, cognitive, social, cultural, institutional, and technological
proximity, have been considered as relevant in the development of
collaboration networks and the subsequent innovation performance
(e.g., Balland, 2012; Broekel and Boschma, 2012), but the proliferation
has generated conceptual ambiguity and overlap that may dilute the
significance of the proximity notion (Capaldo and Petruzzelli, 2014;
Knoben and Oerlemans, 2006). Three fundamental dimensions of
proximity, namely, geographical proximity, technological proximity
and institutional proximity, are highlighted in the literature and, thus,
are considered in this study together with three network structure
variables − direct ties, indirect ties and network efficiency (or non-
redundant ties). The changes of these network structural and attribute
proximity variables in the network collaboration patterns of the solar
PV sector from 2005 to 2013 and their effects on innovation perfor-
mance are examined.

3. Method

This study considers co-authored scientific publications from gov-
ernment funded research projects (co-authored by scientists affiliated to
different organizations) as proxy indicators of network properties to
derive structural and proximity variables. Patent data is considered as
proxy indicator of innovation performance. The visualization of the
network evolution patterns are created by Ucinet 6 and the network
pattern changes examined by SIENA.

To analyze the impact of the changes in network structural effects
and attributes proximity effects on the subsequent innovation perfor-
mance of network actors, hypotheses relating to the influence of each
structural and proximity variable on innovation performance are de-
veloped and tested by binomial regression. The hypotheses of the net-
work structure and attribute proximity variables are discussed next.

3.1. Direct ties

The variable of direct ties in collaboration networks refers to the
number of direct partners maintained by the focal actor, providing
three substantive benefits. First, direct ties provide potential access to
other organization’s knowledge elements (Wang et al., 2014) and the
number of direct ties indicates its combinatorial potential with other
knowledge elements (Guan and Liu, 2016). Second, collaborations en-
able the newly created knowledge to become available to all actors
involved and, thus, enhance knowledge sharing (Ahuja, 2000). Third,
most knowledge is subject to economies of scale and scope, especially
for explicit knowledge which, once created, can be deployed in addi-
tional applications at lower marginal cost (Grant, 1997). Therefore, the
number of direct ties in an organization’s collaboration network is

Fig. 1. Research framework of this study.
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considered to be relevant for its innovation performance.
However, too many direct ties have an adverse effect on innovation

(Guan and Liu, 2016) because of management burden (Gilsing et al.,
2008; Vanhaverbeke et al., 2007) and other issues. For instance, Ahuja
and Katila (2001) argue that a large network portfolio creates a risk of
dealing with many unfamiliar streams of knowledge that are increas-
ingly difficult to integrate. Also, Wang et al. (2014) indicate that
combinatorial potentials are probably low when there are too many
direct ties in an organization’s collaboration network, because the
combinatorial potential of any knowledge element has an upper limit.
Subsequently, the variable of direct ties in an innovator’s collaboration
network is expected to have an inverted-U shape effect on its innovation
performance (e.g., Gilsing et al., 2008; Guan and Liu, 2016;
Vanhaverbeke et al., 2007), thus generating the following hypothesis:

Hypothesis 1. Direct ties have an inverted-U shaped effect on
innovation performance.

3.2. Indirect ties

Indirect ties in the collaboration network refer to the actors that the
focal actor can reach in the network through its partners and their
partners (Gulati and Gargiulo, 1999). It can be visualized as: (A) part-
ners with (B), and (B) allies with (C). The focal actor (A) and the third
partner (C) have no direct linkage, but are connected indirectly through
the common partner (B). The focal actor’s partners can bring knowledge
and information on relevant technological developments in different
parts of the network through indirect ties that extend far beyond its
direct reach (Ahuja, 2000). In general, the more indirect ties a focal
actor has, the more knowledge and information the focal actor can
search (Guan and Liu, 2016) to enhance innovation performance.
Meanwhile, unlike direct ties, indirect ties entail relatively low or no
maintenance costs for the focal actor and, thus, benefits of indirect ties
are extremely welcome (Ahuja, 2000), which posits the following:

Hypothesis 2. Indirect ties have a positive effect on innovation
performance.

3.3. Network efficiency

Structural holes, a concept often used to measure the network effi-
ciency of actors in a collaboration network, refers to gaps in informa-
tion flows between actors linked to the same focal actor but not linked
to each other (Burt, 1992). From the perspective of structural holes
theory, ego networks, in which an actor’s partners have no link with
each other, are preferred to densely tied networks; because ego net-
works are rich in structural holes, and so, usually implies access to
mutually unconnected partners and consequently to many distinct in-
formation flows, therefore, leading to higher network efficiency (Ahuja,
2000). In addition, an actor network rich in structural holes has few
constraints in exploring new ideas because it is rarely affected by
knowledge inertia, which is a common phenomenon in redundant
network structures (Guan and Liu, 2016). Thus, minimizing redundancy
between partners provides higher network efficiency and has a positive
effect on innovation performance. Thus,

Hypothesis 3a. Network efficiency has a positive effect on innovation
performance.

However, Vanhaverbeke et al. (2007) argue that while accessing
complementary knowledge and information is one issue, under-
standing, assimilating and applying it is another. Redundant ties be-
tween partners can foster the development of shared norms of behavior
and explicit inter-organizational knowledge sharing routines (Uzzi,
1997) and, thus, could help organizations to understand, assimilate
and, eventually, acquire different knowledge elements (Guan and Liu,
2016; Kogut, 2000). Furthermore, dense ties between partners are also

likely to spur the creation of inter-organizational trust that may prevent
opportunistic behavior (Ahuja, 2000; Vanhaverbeke et al., 2007).
Without trust and shared norms of behavior, sharing knowledge and
combining skills are likely to be difficult and unproductive in any
context (Coleman, 1990). In short, the lower network efficiency asso-
ciated with dense, embedded networks can maximize the benefits from
collaboration, and thus, may enhance innovation performance. Hence,

Hypothesis 3b. Network efficiency has a negative effect on innovation
performance.

As discussed, both views above may be valid in view of the effects of
collaboration for technological innovation, therefore prompting two
different hypotheses. On one hand, accessing novel and complementary
knowledge and information requires an emphasis on diversity and
disintegrated network structures; on the other, assimilation and appli-
cation of such novel knowledge may favor more redundant network
structures for integrating the diverse inputs.

3.4. Geographical proximity

Geographical proximity, which is denoted as territorial, spatial,
local or physical proximity (Knoben and Oerlemans, 2006), can be
measured in distance unit, such as kilometres (Villani et al., 2017), or
expressed as the actor’s perception of the spatial area according to the
boundaries of the country or regions (Balland, 2012). This study adopts
the latter view, namely the geographical co-location, so that two actors
who are from the same province are considered as similar on this di-
mension.

The core idea behind increasing the geographical proximity is that
shorter physical distance between actors facilitates easier interaction
(Capaldo and Petruzzelli, 2014; Villani et al., 2017), and provides a
more direct access to information and knowledge, especially when
knowledge is tacit, complex and sticky (Knoben and Oerlemans, 2006).
Interactive learning is made easier when interactions are facilitated
and, thus, the innovation performance may also be increased. There-
fore,

Hypothesis 4a. Geographical proximity has a positive effect on
innovation performance.

However, Boschma (2005) argues that interactive learning may not
necessarily be due to geographical proximity. Scholars have put for-
ward the notion of temporary geographical proximity (Torre, 2008),
implying that actors need not be in constant geographical proximity
when collaborating. Meetings, short visits and temporary co-location
might be sufficient for actors to build other forms of proximity which,
subsequently, allow collaboration over large geographical distances. In
this case, geographical proximity may be harmful for interactive
learning and innovation when actors in a region become too inward
looking, and so, the learning ability of local actors may be weakened
(Boschma, 2005). In these situations, when co-located actors are cog-
nitively too close, geographical proximity gives rise to unintended
knowledge spillovers and creates a climate of mistrust as a result of
localized competition pressure (Carrincazeaux et al., 2008). Hence,

Hypothesis 4b. Geographical proximity has a negative effect on
innovation performance.

3.5. Institutional proximity

In the literature, institutional proximity is studied on national and
organizational levels. At the organizational level, institutions are re-
lated to the norms and routines presented in an organization. In this
way, organizational and institutional forms of proximity may be
strongly interconnected (Boschma, 2005). Usually, institution proxi-
mity at this level refers to the institutional kind of organizations in the
triple helix model, where the companies, universities and public
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research institutes are distinguished (Angelini, 2014; Etzkowitz and
Leydesdorff, 2000). This study follows the organizational level of in-
stitutional proximity, and two universities, for example, are considered
as similar institutions.

The literature on knowledge and proximity identifies an association
between institutional proximity and the presence of knowledge
transfer, interactive learning and innovation (Boschma, 2005; Ponds
et al., 2007). Institutional proximity is believed to be beneficial for
learning and innovation. New knowledge creation and innovation go
along with uncertainty and opportunism, and so, institutions function
as a sort of ‘glue’ for collective action because they reduce uncertainty
and lower transaction costs (Boschma, 2005). Institutional proximity
facilitates collective learning and innovation by allowing free knowl-
edge transfer among agents based on a common language, shared ha-
bits, a law system securing ownership and intellectual property rights,
etc. (Balland, 2012), particularly in respect of tacit knowledge thanks to
a mutually understandable language including shared routines and
practices (Angelini, 2014).

Conversely, institutional proximity could be unfavorable for new
ideas and innovations due to institutional lock-in, providing no op-
portunities whatsoever for newcomers. Furthermore, Boschma (2005)
argues that institutional proximity may lead to institutional inertia,
hindering the development of new innovations that require the build-up
of new, or the restructuring of old, institutional structures. Further,
institutional proximity also could give rise to unintended knowledge
spillovers and a climate of mistrust as a result of competition pressure
for limited resources (such as funding), while a culture of shared trust is
often regarded as a capability that supports learning and innovation.
Thus,

Hypothesis 5a. Institutional proximity has a positive effect on
innovation performance.

Hypothesis 5b. Institutional proximity has a negative effect on
innovation performance.

3.6. Technological proximity

The concept of technological proximity, sometimes denoted as
cognitive proximity (Angelini, 2014), is defined as the similarity among
actors in terms of technological knowledge bases. Knoben and
Oerlemans (2006) argue that the fundamental difference is that cog-
nitive proximity can be considered as a broader concept referring to
“how” actors interact, whereas technological proximity refers to “what”
they exchange and the potential value of these exchanges. This study
identifies PV-related inventors based on publication and patents data,
so, technological proximity occurs when both actors are PV-related
inventors, given that PV-related inventors develop the same kind of
knowledge base.

The importance of technological proximity is based on the concept
of absorptive capacity (Cohen and Levinthal, 1990), which concerns
acquisition of external knowledge by an organization and the capability
to recognize it, decode it, and elaborate it − particularly when
knowledge is tacit (Angelini, 2014). The similarity of the knowledge
bases is emphasized because it could greatly help the process of
knowledge exchange between organizations.

However, knowledge production and innovative processes often
require dissimilar, complementary bodies of knowledge possessed by
heterogeneous agents, and a limited technological distance hardly
triggers this kind of processes (Oerlemans et al., 2013). In other words,
technological proximity could hinder the exposure of novel knowledge
and information of network actors. Boschma, (2005) also argues that
technological proximity may be detrimental to interactive learning as it
not only decreases the potential for learning, but also increases the risk
of lock-in and the problem of involuntary spillovers to competitors.

Similar to the effects of network efficiency, there are two

contradictory effects of attribute proximities between a focal actor and
its partners in innovation and, thus, prompts two competing predictions
with respect to the relationship between each proximity and innova-
tion:

Hypothesis 6a. Technological proximity has a positive effect on
innovation performance.

Hypothesis 6b. Technological proximity has a negative effect on
innovation performance.

4. Evolution of government sponsored collaboration network

4.1. Scientific co-publication data collection

Although co-authored publication is by no means a perfect indicator
of a scientific collaboration network because not all collaborative re-
search projects eventuate in a co-authored paper (Katz and Martin,
1997) and a publication may be co-authored where, in fact, no sig-
nificant collaboration has taken place (Wong and Singh, 2013), co-
publications have many advantages for analyzing scientific collabora-
tions, including objectivity, specificity, publicly availability and large
sample size (Ubfal and Maffioli, 2011), thus making it the most com-
monly used approach for analyzing scientific collaboration (Glänzel and
Schubert, 2005). In China, the number of scientific publications is one
of the most important evaluation indicators of government sponsored
research, and publications must acknowledge the specific funding
sources. Hence, it is assumed that publications with government
funding acknowledgements are the output of government sponsored R&
D activities, and co-publications that have government funding ac-
knowledgements imply government sponsored scientific collaborations.

This study has extracted the publication data on solar PV in China
by interrogating the database of Web of Science (WoS); specifically, the
following databases therein: a) Web of Science TM Core Collection (the
Science Citation Index Expanded part, SCI), specializing in science and
medicine, and b) China Science Citation Database SM, specializing in
Chinese scientific papers (CSCD). To collect all the publications related
to solar PV technologies, this research has adopted the keyword search
strategy, which also presents two main limitations. First, many highly
related publications do not contain expected keywords, while some
publications containing them are not really relevant (Cattani and
Rotolo, 2013). Second, the solar PV technologies are evolving rapidly,
making it difficult to search all the related data by one or a few key-
words. To minimize these limitations and increase the reliability of
data; this study has conducted an extensive review of previous research
and solar PV technologies itself; and identified a series of core terms for
filtering the large number of publications (see Appendix A). Since the
Chinese government support in R&D was negligible before 2003 (De La
Tour et al., 2011); publications data are collected from 2003. As a re-
sult; an initial sample of 13,686 publications is obtained; from 2003 to
2013. Furthermore; this study excludes publications in which the first
affiliation is international organizations based on the assumption that
research activities are dominated by the researchers of the first af-
filiation; yielding a new sample of 10,366 publications. It is believed
that this approach assures a higher degree of coherence with the phe-
nomenon under investigation. Of the 10,366 publications; 9327 pub-
lications are sponsored by government.

4.2. Patent data collection

Patent data are subject to limitations; for instance, part of the
technical knowledge may remain unpatented either because it is un-
patentable or because an organization may choose not to patent (to
keep in secrecy), and the propensity to patent may differ widely across
industries and organizations (Nelson, 2009). These limitations not-
withstanding, a large body of research has demonstrated the validity of
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patents as proxies to measure innovative activities (e.g., Gilsing et al.,
2008; Guan and Liu, 2016; Petruzzelli, 2011).

The patents data were extracted from the patent databases of the
State Intellectual Property Office (SIPO) of the People’s Republic of
China, selecting all patents with photovoltaic IPC (International Patent
Classification) codes. These IPC codes tag all patents concerning in-
ventions related to solar photovoltaic technologies (see Appendix B).
Only applicants based in Mainland China is considered. The initial
sample consists of 21,108 solar PV patents from 1985 to 2013. Because
a few patents are assigned to subsidiaries, this study carefully ag-
gregates patents to the organization level (e.g., universities, public re-
search institutes, enterprises). For the purpose of this research, appli-
cants who are not listed in the publication database are excluded,
resulting a revised sample of 8, 846 patents.

It should be noticed that, the patent data used in this study are
patent applications, rather than patents granted. According to previous
scholars (e.g., Belderbos et al., 2010; Crosby, 2000), patent applications
reflect actual innovation activities in a given year and granted patents
are more reliable for innovation qualities. The patenting process has
several formal and informal steps that must occur before a patent is
granted, and it usually takes 4–5years on average for a patent to be
granted from its date of application (Belderbos et al., 2010; Liegsalz and
Wagner, 2013), making patents granted a poor indicator of recent in-
novation activities. Additionally, many patent applications do not lead
to patents granted due to issues relating to examiners, fees and policy,
rather than that they are not novel and useful. Furthermore, this study
investigates the impact of a collaboration network on the innovation
performance of collaborating organizations based on a longitudinal
data set (2003–2013), and not all patents applied for during this period
are granted. Therefore, patent applications are used in this research as a
proxy measure of innovation performance.

There are some simplifications and assumptions. First, international
partners are excluded because information of the organizational attributes
of international partners is unavailable. Second, collaboration relation-
ships, typically, last for more than one year, and, generally, government
grants are awarded for a number of years (Schilling and Phelps, 2007). In
the literature, the duration of collaborative networks vary from one year
(Stuart, 2000) to five years (Gulati and Gargiulo, 1999). Following
Schilling and Phelps (2007), a conservative approach is taken by assuming
research relationships to last for three years. Third, inventing authors are
distinguished from non-inventing authors, and it is assumed that there are
sparse, if any, interactions between inventing authors and non-inventing
authors within the same organization.1 In this research, inventing actor
refers to all solar PV-related inventing authors in an organization, whereas
non-inventing actor includes all non-inventing researchers in an organi-
zation. Therefore, scientific collaboration in this study refers to inter-or-
ganizational collaboration at the actor level, which is similar to Katz and
Martin’ (1997) ‘group level’ and ‘inter-organizational’ collaboration.

4.3. Network visualization

Based on a 3-year moving window (e.g., 2003–2005), nine snap-
shots of government sponsored collaboration network are created using
Ucinet 6 (see Borgatti et al., 2002) which measures the structural
properties and attribute proximities of networks (see Table 1). Each
network snapshot is constructed as an undirected binary adjacency
matrix, and repeated collaboration between the same pair of actors in a
time window is treated as one link. The nine snapshots (i.e.,
2003–2005, 2004–2006 … 2011–2013) are labelled as Network 2005,
Network 2006, …, Network 2013 respectively, i.e. Network 2005 is

based on the co-authored publications data during 2003–2005.
NetDraw (Borgatti, 2002) was used to generate diagrams of the

networks for the representation of network dynamics over time. Fol-
lowing Powell et al. (2005), this study scales the size of nodes to re-
present the number of ties an organization has, and uses the color and
shape of nodes to represent the attributes of actors. As such, if the
proximity mechanism drives collaboration, the images would display a
preponderance of nodes of the same color or shape. Moreover, if new
partners are chosen on the basis of their common partners, the images
depict more and more triangles or other closed figures. Two snapshots
of the government sponsored networks (Network 2008 and Network
2013) are selected to contrast network collaboration patterns.2 The
coding of colors, size, and shapes of nodes and lines for the inter-
pretation of the network patterns are given in Figs. 2 and 3.

Several key features stand out for Network 2008 in Fig. 2. (1) The most
active participants in the collaboration network are public research in-
stitutes (rounded square) and universities (circle) which indicates that
government sponsored research collaboration in the early years of solar PV
mainly concentrated in the science community. While public research
institutes primarily refers to institutes of the Chinese Academy of Sciences
(CAS), such as the Institute of Physics, Institute of Chemistry, and Institute
of Semiconductors, universities actors mainly include top ranking uni-
versities in China, such as Nankai University, Fudan University, Peking
University and Tsinghua University. (2) Orange ties, which denote re-
gional collaboration, are prevalent particularly for large nodes, providing
evidence that most actors are likely to collaborate with partners within the
same region. (3) Only large nodes have a wide variety of partners, while
some of the smaller nodes have little diversity in their partners.

Network 2013 (Fig. 3) reflects the growing network complexity and
a number of noticeable features are present. (1)The green square node
holds a dominant position in the network, reflecting that most active
members are inventing actors, with the CAS at the centre of the network
connected to a number of inventing actors which are notably uni-
versities (circle). (2) Besides the traditional leading universities in
previous years, a large number of actors, such as Zhejiang University,
South China University of Technology, Harbin Institute of Technology
and Jilin University, play an increasingly important role in the network.
(3) The organizational composition of the network has shifted as in-
dustrial actors have increased considerably in number, and other actors,
such as industrial associations, government departments are also en-
gaged directly in the network. (4) The large amount of orange color ties
are evident outside the centre of the network, reflecting that most nodes
at the periphery are linked with nodes within the same region.

In short, the overall picture has shifted from one in which public
research institutes and universities were the dominant actors to one in
which industrial actors are also important. This reflects evidence that
innovation policy is changing in the solar PV sector with increased
amounts of government funding for enterprises’ R&D activities.

4.4. Statistical examination of network evolution

As a supplement to the visualizations, this study undertakes a sta-
tistical examination of network dynamics and assesses the collaboration
patterns, using the stochastic actor-based model in the SIENA.3 software
(Snijders et al., 2010), which is part of the network software package
STOCNET4

1 From the data on patents and publications, it is found that researchers in an orga-
nization often conduct research in research group (s) and work together in co-publica-
tions and patents applications. Usually, inventing authors and non-inventing authors of
the same organization come from different departments and rarely interact with each
other.

2 To simplify the presentations, this study includes only those actors in the main
component of each network snapshot, thereby removing the isolates. Most network
measures are based on the main component, which is a connected graph for which
measures can be generated.

3 SIENA stands for ‘Simulation Investigation for Empirical Network Analysis’. For more
details, please refer to https://www.stats.ox.ac.uk/∼snijders/siena/.

4 STOCNET is a software system for the advanced statistical analysis of social networks,
focusing on probabilistic (stochastic) models. See http://www.gmw.rug.nl/∼stocnet/
StOCNET.htm.
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Following previous scholars (e.g., Balland et al., 2013; Van de Bunt
and Groenewegen, 2007), the creation of linkages employs the uni-
lateral initiative and reciprocal confirmation model, which is built through
specifying the ‘effects’ that drive the evolution of the collaboration
network (see Snijders et al., 2009 for more detail). This study specifies
the effects in the model to be (a) three structural effects − degree

effect, transitive triplets effect and transitive ties effect; and (b) three
proximity effects that describe the role of individual attributes of actors,
namely, geographical, institutional and technological proximity.

According to Snijders et al. (2010), the degree effect, also called
density effect, considers the number of relations of each actor; the
transitive triplets effect is the classical representation of network

Table 1
Structural properties and attribute proximities of the government sponsored collaboration networks.

Network Number of
Actors

Average Direct
Ties

Average
Indirect Ties

Average Network
Efficiencya

Average Geographical
Proximitya

Average Institutional
Proximitya

Average Technological
Proximitya

Network 2005 155 2.065 17.665 0.840 0.400 0.640 0.520
Network 2006 171 2.234 21.642 0.846 0.396 0.552 0.487
Network 2007 223 2.143 24.440 0.854 0.371 0.543 0.532
Network 2008 282 2.284 31.676 0.835 0.408 0.545 0.522
Network 2009 351 2.416 44.288 0.841 0.453 0.576 0.554
Network 2010 442 2.683 64.072 0.854 0.475 0.601 0.543
Network 2011 552 3.065 89.998 0.868 0.467 0.606 0.523
Network 2012 690 3.670 128.129 0.861 0.471 0.586 0.530
Network 2013 811 4.298 173.663 0.843 0.449 0.569 0.528

Note:
a Means the isolates are excluded.

Fig. 2. Government sponsored research collaboration network 2008, main components.

Fig. 3. Government sponsored research collaboration network 2013, main components.
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closure by calculating the number of transitive triplets to determine the
likelihood for partners of partners to become partners; transitive ties
effect (earlier called direct and indirect ties effect) is defined by the
number of actors to whom an actor is tied directly and indirectly.

The influence of proximity-based mechanisms on the evolution of a
network can be evaluated by means of the ‘same covariate effect’
(Angelini, 2014). Technological proximity occurs when actors develop
the same kind of knowledge. Geographical proximity is determined
according to the co-location within the same spatial area. In this study,
province is taken as the analysis unit, and thirty-one spatial areas in
China are distinguished. In line with previous scholars (e.g., Balland,
2012; Ponds et al., 2007), institutional proximity appears when orga-
nizations have the same institutional form according to the triple helix
model (Etzkowitz and Leydesdorff, 2000).

The t-value of convergence indicates the goodness-of-fit of the si-
mulated model (Snijders et al., 2010) and the t-ratios for all parameters
in all observations are less than 0.1 in this study, indicating the model
estimation converges to stable outcomes (Ter Wal, 2014). To confirm a
stable result of the estimation algorithm, the estimation processes are
repeated until the estimation results obtained in consecutive trials are
very similar (Snijders et al., 2010). Results of parameter estimations of
the changes in collaboration network from 2003 to 2013 is modeled in
8 waves based on 1000 simulation runs (the default). The shift between
two consecutive snaphsots of network, say, from Network 2005 to
Network 2006, is labelled as a wave in Table 2.

As shown in Table 2, the degree effect is negative and significant
during the whole period, suggesting that researchers are more likely to
collaborate with prior partners. The effect of transitive triads, namely
collaboration with actors of partners, is positive and significant in wave
4, then wanes in wave 5, and emerges stably in the last three waves.
Regarding the direct and indirect ties, a positive and significant effect in
the whole period is found, implying that actors are more likely to col-
laborate with partners of partners, or indirect partners.

Turning to the attribute proximity effects, geographical proximity is
positive and significant in the whole period, suggesting that actors
prefer to collaborate with actors who are located in the same region.
The effect of institutional proximity is negative and significant in wave
2, but positive and significant in the last four waves, and not significant
in other waves. Interestingly, the direction has changed from negative
in the first three waves to positive in the last five waves. This suggests
that actors are more likely to engage in inter-institutional collaboration
before 2009, but tend to collaborate with partners with a similar

institutional context thereafter.
Taken together, the results of the network structural effects and the

attribute proximity effects indicate that actors are more likely to col-
laborate with familiar partners (i.e., prior partners, partners of direct &
indirect partners) and partners with similar attributes (geographical &
institutional proximity). These collaboration patterns, in turn, de-
termine directly a series of network structural and partner composition
variables, and eventually impact the innovation performance of net-
work actors. Specifically, selecting cooperation partners among those
with whom they have cooperated already in the past hinders the in-
crease of direct ties of the focal actor, and collaborating with partners of
direct and indirect partners reduces network efficiency. Clearly, colla-
borating with partners of similar attribute increases the attribute
proximity.

5. Impact of collaboration network on innovation performance

5.1. Measurement of variables

5.1.1. Dependent variables
In line with previous scholars who use patent count directly as the

proxy of innovation performance (e.g., Ahuja, 2000; Demirkan and
Deeds, 2013), this study measures the dependent variable as the
number of patent applications by the actors in a year.

5.1.2. Independent variables
The independent variables in this study are direct ties, indirect ties,

network efficiency and three dimensions of attribute proximities. This
study calculates all these variables using UCINET 6 for
Windows–Version 6.556.

5.1.2.1. Direct ties. This variable is measured by the number of
collaborations to whom the focal actor is connected directly (i.e., the
size of the ego-network or the degree centrality), namely, the number
direct partners of the focal actor. Since this study proposes an inverted
U-shaped relationship between innovation performance and the
number of direct ties, the squared term of the number of direct
partners is also used.

5.1.2.2. Indirect ties. This variable comprises the number of partners
the focal actor can reach indirectly. There are different possibilities to
operationalize indirect ties. In line with prior researchers (e.g., Ahuja,

Table 2
Estimation results for network evolution in SIENA.

Parameter estimates Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8

Rate of change 2.6074*

(0.2952)
2.9778*

(0.3052)
5.0210*

(0.4228)
4.1292*

(0.2942)
3.8625*

(0.2376)
6.1077*

(0.2710)
6.1509*

(0.2075)
6.7088* (0.1775)

Degree −2.2352*

(0.4461)
−2.0801*

(0.3299)
−2.6716*

(0.3314)
−3.2403*

(0.2727)
−3.3513*

(0.2030)
−3.1107*

(0.1717)
−3.1035*

(0.1277)
−3.1161*

(0.1105)
Transitive triads 0.0841 (0.3386) 0.2724 (0.2685) 0.1141 (0.2871) 0.4703†

(0.2474)
0.1243 (0.1793) 0.7355*

(0.0590)
0.2427*

(0.0871)
0.2748* (0.0853)

Direct & indirect ties 0.7496*

(0.2500)
0.7152*

(0.2128)
0.9021*

(0.2095)
0.5936*

(0.1672)
0.7523*

(0.1468)
0.7047*

(0.0932)
0.7737*

(0.0726)
0.7035* (0.0725)

Geographical
Proximity

1.6997*
(0.2963)

1.5655*

(0.2922)
1.9932*

(0.1920)
2.3690*

(0.1732)
2.4689*

(0.1425)
1.9382*

(0.1227)
2.0090*

(0.1070)
1.7548* (0.1037)

Institutional Proximity −0.4330
(0.3894)

−0.6551*

(0.2992)
−0.2221
(0.3229)

0.0727 (0.2583) 0.3518†

(0.1900)
0.3968*

(0.1338)
0.2425†

(0.1377)
0.2700* (0.1003)

Technological
Proximity

−0.0491
(0.2595)

0.1222 (0.2122) 0.0791 (0.1809) 0.2871 (0.1806) 0.1105 (0.1382) 0.0469 (0.1058) 0.0917 (0.0933) 0.1027 (0.0786)

Standard errors in parentheses, beneath regression coefficients.
Wave 1= from Network 2005 to Network 2006.
Wave 2=from Network 2006 to Network 2007.
….
Wave 8=from Network 2012 to Network 2013.
* P < 0.05.
† P < 0.10.
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2000; Guan and Liu, 2016; Vanhaverbeke et al., 2007), this study
chooses a variable that measures the impact of indirect ties while taking
into account the decline in tie strength of more distant ties. This study
operationalizes the variable using ‘distance weighted centrality’
measure – Everett and Borgatti (1999). This variable is calculated by
summing all ties at several distances weighted by their path distances,
namely, the sum of the number of actors that can be reached in k steps
divided by k. For k= 1, this is equivalent to degree centrality, namely
the direct ties, and thus indirect ties only calculates the number of other
actors in the network that the focal actor can reach at path distances of
two or greater (k≥ 2) which, thus, excludes direct ties. The result is
that collaboration partners receive smaller weights the longer the path
distance to the focal actor.

5.1.2.3. Network efficiency. The variable of network efficiency has been
used extensively in prior research (e.g., Ahuja, 2000; Phelps, 2010). The
network efficiency of actor i is obtained by using the following formula:

∑ ∑=
⎡

⎣
⎢
⎢

⎛

⎝
⎜ −

⎞

⎠
⎟

⎤

⎦
⎥
⎥

≠p m N j qNetwork efficiency 1 / ,i
j q

iq jq

(1)

where Piq is the proportion of ties invested by actor i in the relationship
with q, mjq is the marginal strength of the relationship between actor j
and actor q (as this study uses binary data, all values of miq are set to 1 if
a tie exists and 0 otherwise), and N represents the number of partners to
which focal actor i is connected. This measure ranges from a maximum
of 1, indicating that every contact of the focal actor is non-redundant,
down to a minimum approaching 0, indicating high contact redundancy
and, therefore, low efficiency. If all of an actor’s partners were
unconnected to each other, the value of the measure would be 1.
Connections between an actor’s partners imply a higher ∑ P m

q
iq jq and,

consequently, a lower value indicative of lower efficiency and fewer
structural holes.

5.1.2.4. Attribute proximity measures. The attribute proximity-based
measures refer to three dimensions of attribute proximities, namely
geographical proximity, technological proximity and institutional
proximity. Proximity refers to correlation between ego attributes and
its partners’ attributes, and is measured by being in the same category.
The value of this measure is the proportion of direct ties between focal
actor and partners in the same attribute category to focal actor's total
number of direct ties. Proximity-based measures range from a
maximum of 1, indicating that all partners are of same attribute
category as the focal actor, down to a minimum 0, indicating no
partner is of the same attribute category as the focal actor.

5.1.3. Control variables
To minimize alternative explanations and isolate the marginal ef-

fects of the independent variables, this study controlled for several
variables whose influence on innovation performance might be con-
founded with the independent variables.

5.1.3.1. The number of publications. The number of publications in the
year observed was controlled. The number of publications is assumed to
proxy the size of an organization, given that larger organizations may
result in more papers. The size of an organization could impact the
results heavily, as big organizations with more researchers can handle
more direct ties and, thus, increase the upper limit of beneficial direct
ties. As discussed above, too many direct ties can have a negative
impact on the innovation performance. Additionally, the number of
scientific publication could to some extent be used to proxy the variable
of research intensity, which is a common control variable in the
innovation literature (Ahuja, 2000; Benner and Tushman, 2003).
Actors that invest heavily in R&D are expected to have a higher rate
of innovation, and R&D investments may also play a role in enhancing

the ability to recognize, value and assimilate external knowledge
(Phelps, 2010; Vanhaverbeke et al., 2007). This study argues that the
number of scientific publications is more appropriate to proxy the
research intensity of university and public research institutes than
traditional R&D expenditure-related measures, as scientific publications
are the important output indicators of scholars in universities and
public research institutes. In fact, the number of scientific publications
has been used to measure scientific and technological strengths of a
region (Van Noorden, 2014).

5.1.3.2. Technological diversity. Technological diversity is another
important factor that can affect the innovativeness of a focal actor.
Actors with high technological diversity may be more innovative due to
greater internal knowledge flows (Garcia-Vega, 2006), and more able to
absorb extramural knowledge (Phelps, 2010). In this study, the variable
technological diversity is constructed based on the inverted Herfindahl
index, which, conventionally, is used to indicate industry concentration
and, now, is becoming a popular measure of technological
diversification (e.g., Chiu et al., 2008; Garcia-Vega, 2006; Phelps,
2010). The Herfindahl index of diversification can be expressed as
follows:

∑ ⎜ ⎟= ⎡

⎣
⎢ − ⎛

⎝
⎞
⎠

⎤

⎦
⎥

= N
N

Technological Diversity 1it
J

j
jit

it

1 2

(2)

where Nit is the total number of patents obtained by actor i in the five
years prior to year t. Njit is the number of patents in technology class
(IPC symbols) j in actor i’s five year patent stock. This variable may take
on values between 0–1. A higher value implies that an actor invests
more resources into technological diversification whereas a low value
suggests that the scope of technology is relatively narrow (Chiu et al.,
2008). In this research, the technological diversity ranges between 0
and 0.9787.

An additional control for actor-level unobserved heterogeneity is
lagged dependent variables, which are frequently used to control for
unobserved heterogeneity in actor patenting propensity (e.g., Ahuja
and Katila, 2001; Guan and Liu, 2016; Schilling and Phelps, 2007;
Vanhaverbeke et al., 2007). Moreover, actors in different regions may
have different propensities to apply for patents, a dummy variable is
introduced to indicate if the actor is located in Beijing or Shanghai,
since it is posited that actors located in Beijing or Shanghai may have a
different propensity to patent. Furthermore, to control the hetero-
geneity between university and public research institutes, this study
also includes a dummy variable to indicate whether an actor is a uni-
versity. Finally, this study includes year dummy variables to control for
changes in patenting over time due to systematic period effects such as
differences in macroeconomic conditions or technological opportunity.
Accordingly, eight year dummy variables are created, and the reference
year is 2013. Table 3 presents descriptions of the variables.

5.2. Model specification and estimation

The dependent variable, namely the number of patents of a focal
actor, is a non-negative, integer count variable. Under this condition,
the Poisson regression approach or negative binominal regression
models are appropriate (Demirkan and Deeds, 2013). The Poisson
model assumes that the conditional mean and variance of the depen-
dent variable are equal, but patent data often present over-dispersion
(Vanhaverbeke et al., 2007). In the presence of over-dispersion, stan-
dard errors of coefficients will, generally, be underestimated, leading to
spuriously high levels of significance (Schilling and Phelps, 2007).
Negative binominal regression models, as extensions of the Poisson
estimation, correct for over-dispersion and, thus, have been used ex-
tensively in studies of over-dispersed dependent variables (e.g., Ahuja
2000; Capaldo and Petruzzelli, 2014; Guan and Liu, 2016). That is the
case for this study and, thus, the negative binomial regression that
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allows for over-dispersion by incorporating an individual, unobserved
effect into the conditional mean is employed.5

Since this study uses unbalanced panel data with several observa-
tions on the same actor at different points in time, the individual actor
effects to control for unobserved heterogeneity across actors is em-
ployed. Moreover, the panel data implementation of the negative bi-
nomial model accommodates explicit control of individual unobserved
effects through two widely used methods: fixed effects and random
effects (Clark and Linzer, 2015; Gilsing et al., 2008). The Hausman test
is regularly deployed as a test for whether random effects can be used,
or whether fixed estimation should be used instead (e.g., Gilsing et al.,
2008; Phelps, 2010; Vanhaverbeke et al., 2007). However, researchers
have recently criticized the commonly-used Hausman test as neither a
necessary nor a sufficient statistic for deciding between fixed and
random effects (e.g., Bell and Jones, 2015; Clark and Linzer, 2015).
They argue that a random effects model that properly specifies the
within and between effects will provide identical results to fixed effects,
regardless of the result of a Hausman test. Moreover, one side effect of
the features of fixed-effects models is that they cannot be used to in-
vestigate time-invariant causes of the dependent variables (Torres-
Reyna, 2011). In line with previous researchers who study the role of
networks within the context of innovation, and considering patent
count as the dependent variable (e.g., Ahuja, 2000; Gilsing et al., 2008;
Guan and Liu, 2016), this study chooses a random-effects specification
of the negative binomial regression to control for unobserved hetero-
geneity.

5.3. Regression results

Table 4 provides the descriptive statistics and correlations for all
variables. As shown, there is substantial variation across actors in most
of the key variables. The variance exceeds the mean for the variable of
innovation performance, and indicates that the dependent variable
suffers from over-dispersion.6 To assess the potential threat of

multicollinearity, this study estimates the variance inflation factors
(VIF) for each independent variable. The results show that the max-
imum variance inflation factor is 5.40, below the recommended
threshold level of 10 (Powers and McDougall, 2005), indicating that
multicollinearity should not be a problem in this study.

Table 5 represents the results of the regression analysis using
random-effects negative binomial estimation, with robust standard er-
rors; all significance levels are for two-tailed tests. Model 1 presents the
base model with only control variables included. Model 2 adds the four
structural variables and model 3 adds the three attributes proximity
variables to the specification. Model 4 is the complete specification,
namely the full model. The Wald statistics at the bottom of Table 5
indicate models 2–4 provide significant improvement in fit relative to
model 1. Moreover, the coefficients and significance of most in-
dependent variables are relatively stable over all the models (except the
variable of network efficiency), indicating the robustness of the results.
The full model is (i.e., Model 4) used to produce the results.

5.3.1. Structural variables
Hypothesis 1 predicts direct ties have an inverted-U shaped effect on

innovation performance. As Table 5 shows, the coefficient of direct ties
is positive and significant (b=0.0233, p < 0.05), while the coefficient
of direct ties squared is negative and significant (b= -0.0005,
p < 0.01). This indicates that direct ties have an inverted-U shaped
effect on innovation performance, supporting Hypothesis 1. In other
words, direct ties are beneficial for innovation; however, with the in-
crease in the number of direct partners after a specific point, dimin-
ishing returns start to dominate. Hypothesis 2 argues that indirect ties
have a positive effect on innovation performance. As expected, the re-
gression result of indirect ties in Table 5 is positive and significant
(b=0.0033, p < 0.05), supporting Hypothesis 2.

Hypothesis 3 presents two competing predictions for the effect of
network efficiency on focal actor’ innovation performance. Hypothesis
3a, predicting network efficiency has a positive effect on innovation
performance, is supported by the result in Model 4 in Table 5. Inter-
estingly, the estimated coefficient of the variable network efficiency is
enhanced in terms of the magnitude and the significance level from
Model 2 (i.e., without three attributes proximity variables, b= 0.4733,
p < 0.05) to Model 4 (i.e., the full model in which the attributes
variables are introduced, b=0.5878, p < 0.05). This implies that

Table 3
Definitions and operationalization of variables.

Variables Operationalization and Measurement

Dependent variable
Innovation performance The number of patents, an actor applied for in a given year t

Network structural variables
Direct ties Degree centrality: the number of collaborations to whom the focal actor is directly connected to
Indirect ties Weighted distance reach centrality: the sum of the number of actors that can be reached in k steps divided by k, k≥ 2
Structural hole Network efficiency: the ratio of non-redundant ties to total ties for the focal actor

Attribute proximity variables
Geographical Proximity The proportion of direct ties between focal actor and partners in the same province to focal actor's total number of direct ties.
Institutional Proximity The proportion of direct ties between focal actor and partners of the same organizational type (e.g., university, enterprise) to focal actor's

total number of direct ties.
Technological proximity The proportion of direct ties between focal actor and partners of the same knowledge base (PV-related inventor) to focal actor's total number

of direct ties.

Control variables
The number of publications The number of publications of the focal actor in year t
Technological diversity Inverted Herfindahl index measures IPC symbols in the previous 5 years
Lagged innovation performance Innovation performance is lagged for one year
Beijing or Shanghai Dummy variable: 1 if the first affiliation of this publication is located in Beijing or Shanghai, and 0 otherwise
University Dummy variable set to one if the actor is a university (public research institute is the reference)
Year dummy Dummy variable: 1 indicating a particular year (2005–2012), 2013 is 0 for the reference

5 A likelihood-ratio test provides strong evidence of over-dispersion in the data sug-
gesting that negative binomial models are more appropriate over Poisson regression to
predict the variable of innovation performance.

6 This study also conducted supplementary analyses to evaluate the presence of over-
dispersion in the dependent variable using generalized negative binomial regression. The
LR-test of alpha=0 show that the negative binomial model is preferred to the Poisson
regression model.
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interaction might exist between network efficiency and attribute
proximity variables.7

5.3.2. Attribute proximity variables
Hypotheses 4–6 proposed contradictory effects of attribute proxi-

mities on focal actor’s innovation performance. The results in Table 5
show that the coefficient of geographical proximity is negative and
significant (b=0.3588, p< 0.01), providing strong support to Hy-
pothesis 4b. Moreover, the results indicate that the variables of in-
stitutional and technological proximities have negative sign on in-
novation performance, but they do not reach the lowest significance
level. Therefore, Hypotheses 5 and 6 are not supported.

5.3.3. Control variables
The coefficients of some control variables are also significant.

Specifically, prior innovation performance (i.e., innovation perfor-
mance lagged) has a positive effect on current innovation performance,
albeit only at the 10% significance level in the full Model. As expected,
technological diversity is positive and significant in all models, which
confirms the previous researchers’ argument that actors with high
technological diversity may be more innovative due to greater internal
knowledge flows and more able to absorb extramural knowledge (e.g.,
Garcia-Vega, 2006; Phelps, 2010). In line with previous researchers
(e.g., Vanhaverbeke et al., 2007; Gilsing et al., 2008; Quintana-García
and Benavides-Velasco, 2008), a significant and positive effect is found
in the number of publications coefficient on innovation performance.
However, the effect of organizational type is not significant, indicating
that researchers in universities and public research institutes are no
different in terms of innovation performance. Finally, the coefficient of
Beijing or Shanghai is positive and significant in all models, indicating
researchers in Beijing or Shanghai might be more innovative or/and
have greater propensity to patent.

6. Discussion

6.1. Main findings

The main purpose of this study is to explore a) the evolution of the
government sponsored collaboration network; and b) its effect on col-
laborating actors’ innovation performance. In addressing the evolution
of the government sponsored collaboration network, the SIENA model
confirms the three structural effects (degree, transitive triads, direct/
indirect ties) and two proximity effects (geographic and institutional) to
be significant parameters in modeling 8 waves of innovation in the solar
PV industry from 2003 to 2013. The results of the network structural
effects and the attribute proximity effects indicate that actors are more
likely to engage in collaboration with prior partners, partners of direct
& indirect partners, and partners with similar attributes (geographical &
institutional proximity). These collaboration patterns, in turn, will
hinder the increase of direct ties, reduce network efficiency, and in-
crease the attribute proximity of an actor’s network. While collabora-
tion network is only a tool, the real concern is the effect on innovation
performance. In other words, what is needed is to understand what
these types of networking really mean for the innovation performance
of the collaborating actors.

Regarding the role of direct ties, an inverted-U shaped effect is
found on innovation performance, confirming the findings of pervious
researchers (e.g., Demirkan and Deeds, 2013; Vanhaverbeke et al.,
2007). It indicates actors benefit from collaboration directly with other
actors, however, up to a certain point. Guan and Liu (2016) argue that
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7 To specify the interaction between network efficiency and attribute proximity vari-
ables, this study reran the model 2 in Table 5 with three attribute proximity variables
added respectively. The result showed that the network efficiency coefficient became
positive and significant when geographical proximity or technological proximity was
controlled, while the result was unchanged when institutional proximity was controlled.
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further increases in direct ties hinder the organization’s ability to in-
novate by reusing its extant knowledge elements, as combinatorial
potentials of these knowledge elements are exhausted. Demirkan and
Deeds (2013) argue that adding a large proportion of new members to
the ego-network aggravates the complexities and uncertainties asso-
ciated with the management of the network. Therefore, to facilitate
innovations, the ego-network size of an organization in a collaboration
network should be maintained at a moderate level, which might be
expected to depend on combination of factors, notably, the size of or-
ganization and age structure of team members.

By contrast, indirect ties are found to be positively related to in-
novation performance. In other words, being well connected to the rest
of the collaboration network through indirect ties is advantageous for
inventing-actors, adding empirical evidence to the network literature.
Therefore, when seeking innovation opportunities, an organization
should conduct not only a local search around its ego-networks but also
a distant search, namely collaborate with actors who already have more
partners.

Regarding the role of network efficiency in the collaboration net-
work, the results suggest non-redundant network structure has a posi-
tive effect on innovation performance, which is in contrast with Ahuja
(2000) who demonstrated that structural holes were negatively related
to innovation output. While Ahuja’s finding supports Coleman’s (1990)
proposition that network actors benefit most from cohesive (or re-
dundant) ties, the finding of this study confirms Burt’s (1992) argument
that ego networks rich in structural holes (high network efficiency)
imply access to mutually unconnected partners and, consequently,
many distinct information flows. Guan and Liu (2016), similarly, sug-
gest that an organization should be embedded in open collaboration
networks to benefit its innovation performance.

Another main contribution of this study is that network structure
and attributes proximities are jointly considered in assessing their effect
on innovation performance. The results show that all proximity-based
variables have negative effects on innovation performance, although
most of the coefficients are not significant. Moreover, this study finds

that the impact of network structure variables on innovation perfor-
mance changes in terms of the magnitude and significance level of
coefficients, when proximity-based variables are introduced. In parti-
cular, the effect of network efficiency on innovation performance is
enhanced. This reflects the potential interaction effects between net-
work structural variables and attribute variables on actors’ innovation
performance, providing important implications for further research.

Furthermore, it should be noted that this study focused on the
government sponsored collaboration network, namely collaboration
networks generated by policy instruments, which might differ from the
emerging networks without external stimulus. The government spon-
sored collaboration network could be viewed as the outcome of the
interaction between government agencies and a set of knowledge-based
organizations, making it different from self-organizing networks as
there is a wide range of organizations that exert influence on network
evolution and subsequent innovation performance. To this end, an
additional analysis of the whole collaboration network (including col-
laborations without government funding support) has been conducted.8

Except that the magnitude and the significance level of the estimated
coefficients change, the signs of the estimated coefficients for the
variables concerned are similar to the regression results for the gov-
ernment sponsored collaboration network. It seems that the govern-
ment sponsored collaboration network is not different in terms of the
specific effects of collaboration network on innovation performance.
One possible explanation is that in the vast majority of research colla-
borations, the public research organizations in particular, are supported
by government funding.

6.2. Implications

6.2.1. Theoretical implications
As previously discussed, our understanding of network evolution is

Table 5
Random effects negative binomial regression for innovation performance.

Variables Model 1 Model 2 Model 3 Model 4

Structural Variables
Direct Ties 0.0244*(0.0118) 0.0233*(0.0118)
Direct Ties Squared −0.0005**(0.0002) −0.0005**(0.0002)
Indirect Ties 0.0036*(0.0015) 0.0033*(0.0015)
Network efficiency 0.4733†(0.2607) 0.5878*(0.2623)

Attribute Variables
Geographical Proximity −0.3734**(0.1281) −0.3588**(0.1277)
Institutional Proximity −0.0959(0.1388) −0.1299(0.1377)
Technological Proximity −0.1285(0.1197) −0.1583(0.1204)

Control Variables
Innovation performance lagged 0.0173*(0.0075) 0.0145†(0.0076) 0.0172*(0.0074) 0.0145†(0.0075)
Technological diversity 1.468***(0.168) 1.4397***(0.1619) 1.4399***(0.1694) 1.3929***(0.1638)
The number of publications 0.0165***(0.0026) 0.015***(0.0038) 0.0162***(0.0026) 0.0151***(0.0038)
Universities 0.0352(0.1424) 0.0436(0.1309) 0.0344(0.155) 0.0615(0.1451)
Beijing or Shanghai 0.4187**(0.1333) 0.3272**(0.1239) 0.4674***(0.1323) 0.3876**(0.124)
Year dummy variables Included Included Included Included
Constant −0.4461†(0.2603) −1.7666***(0.4578) −0.1555(0.2828) −1.4911**(0.4619)
Number of actors 200 200 200 200
Number of actors-years (obs.) 940 940 940 940
Wald chi-squared (d.f.) 339.96***(13) 390.67***(17) 352.32***(16) 404.11***(20)
Log-likelihood −1864.3356 −1852.7928 −1859.1769 −1847.5596
Likelihood-ratio test vs. pooled 87.11*** 63.05** 83.2*** 59.17**

Notes: Year dummy variables were included in the models but their coefficients were not reported in the table.
Standard errors in brackets.

† P < 0.10.
* P < 0.05.
** P < 0.01.
*** P < 0.001.

8 As the additional analysis did not yield significant results, it is not included in this
paper.
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still preliminary as the network evolution is a very complex process in
the light of actors’ different priorities, environments and mindsets.
Relying on the emerging network evolution model-SIENA, this study
adds to the growing literature on network dynamics through con-
sidering network structural effects and organizational attributes-related
effects jointly. The empirical results indicate that both network struc-
tural effects and organizational attributes-related effects are relevant
for collaboration network formation.

The findings on direct ties and indirect ties confirm the prescription
in the literature to use indirect ties as an efficient and effective way of
maximizing network benefits (Ahuja, 2000; Burt, 1992, Powell et al.,
1996). Further, indirect ties can act as information channels and fa-
cilitators of knowledge exchange between network actors, but need to
bear relatively low or no maintenance costs for direct partners. As such,
it seems reasonable to assert that it is beneficial for the focal actor to
keep its indirect ties as extensive as possible. However, this study ar-
gues that indirect ties do not guarantee that the focal actor can achieve
the desired innovation performance. Ahuja (2000) argues that direct
ties and indirect ties can differ significantly in the nature and/or con-
tent of benefits that they provide to the focal actor, and that, even when
direct ties and indirect ties provide the same kind of benefit, the
magnitude and the level of benefits provided by indirect ties may be
significantly different from those provided by direct ties. The difference
between direct ties and indirect ties may have different effects on dif-
ferent innovation activities. This indicates that further studies ex-
amining collaboration networks and innovation should be designed to
reflect the potential differences.

Regarding another ongoing debate in the network literature on
whether innovators should occupy “closed” or “open” networks, the
finding of this study supports the latter. It should be noticed that this
conclusion is unlikely to be true universally. Ahuja (2000), for instance,
has demonstrated that open networks (higher network efficiency) were
negatively related to innovation output. Coleman (1990) acknowledges
that social relationships that constitute social capital for one kind of
productive activity may be impediments for another. Ahuja (2000) si-
milarly argues that the optimal structure of inter-organizational net-
works depends on the objectives of the network members. Burt (2005)
further argues that different forms of network structure may play dif-
ferent roles for different populations or goals. This study also has no
intention to indicate that closed networks are inferior to open network
or vice versa. Rather, this study argues that whether open networks are
more productive than closed network depends on the context being
studied or, more precisely, the different innovation activities con-
ducted.

Taken together, it is reasonable to argue that direct ties and indirect
ties, open and closed networks may differ in the nature or content of
benefits that they provide to the focal actor, and these differences, in
turn, will affect the focal actor’s innovation performance differently.
Accordingly, a distinction of innovation activities is expected to be
helpful in better understanding how collaboration networks influence
innovation. In fact, scholars have attempted to differentiate innovation
performance in terms of exploratory and exploitative innovations in
investigating the effect of collaboration networks on innovation per-
formance. However, existing studies distinguishing exploratory and
exploitative innovations also yielded inconsistent findings. By distin-
guishing exploratory and exploitative innovations, Vanhaverbeke et al.
(2007) found that indirect ties have a positive effect on both ex-
ploratory and exploitative innovations, whereas Guan and Liu (2016)
demonstrated that indirect ties have only a negative effect on ex-
ploratory innovation. Moreover, Vanhaverbeke et al. (2007) found that
network efficiency has a negative effect on exploitative innovation,
whereas Guan and Liu (2016) demonstrated that network efficiency has
a positive effect on exploitative innovation. One possible explanation is
that there is no clear distinction between exploratory and exploitative
innovations, which have been operationalized in different ways in the
literature, as authors adapt them to their research needs with various

interpretations. Identifying different innovation activities properly is,
therefore, likely to be critical to better understand the relationship
between collaboration network and innovation performance, although
there is probably no simple, universal answer.

6.2.2. Policy implications
This study focuses on government sponsored collaboration networks

and, thus, provides important implications for policy makers. As dis-
cussed, an increasing amount of government funding is provided for
collaborations of enterprises, universities and public research institutes
as a means to strengthen their innovative capabilities. A collaboration
network is widely assumed to be “a good thing” and should be en-
couraged (Katz and Martin, 1997). However, the findings of this study
indicate that collaboration is not always “a good thing”. On the one
hand, this study identifies that actors are more likely to engage in
collaboration with prior partners, partners of direct and indirect part-
ners, and partners with similar attributes in the government sponsored
collaboration network. On the other hand, these collaboration patterns
might be harmful to innovation performance of network actors. Speci-
fically, collaborating with partners of direct and indirect partners re-
duces network efficiency, which is found to be conductive to innovation
performance. Moreover, collaborating with partners of similar attri-
butes increases the attribute proximity and, thus, might not be con-
ducive to innovation. Furthermore, too many direct ties impede in-
novation performance, and appropriate direct ties can enhance
innovation performance; the threshold point might depend on the
actor-specific capabilities, which is an area that demands further study.
In short, it is no longer appropriate to simply assume that more partners
are better and that all network actors will benefit equally from similar
collaboration networks. These findings convey important implications
for policy-makers that more attention must be paid to the network
structure and composition in future policy design.

6.2.3. Practical implications
The findings of this study also provide important implications for

practitioners on how collaboration networks might be structured to
enhance their innovation performance. For instance, they should col-
laborate directly with partners who are well connected, but the direct
partners should be maintained at a moderate level as their innovation
performance could suffer from having too many partners at the same
time. Moreover, their innovation performance will be better off when
their direct partners are not connected with each other. Furthermore,
collaboration across regional boundaries will benefit their innovation
performance.

6.3. Limitations and future research

The study is subject to some limitations, which also open perspec-
tives for future research. First, the government sponsored collaboration
network is constructed based on co-authored scientific publications
with government funding acknowledgement. Although extensively used
in the literature for analyzing scientific collaborations, co-authored
publications is only a rough proxy as it cannot capture “hidden” sci-
entific collaboration and can be overrepresented by the ‘honorary’
collaboration (Katz and Martin, 1997). Moreover, researchers in en-
terprises are not motivated to publish their findings like scientists
within universities and public research institutes. Hence, the network in
this study is incomplete. Future research could extend our under-
standing of the collaboration network by using a more exhaustive da-
tabase. Second, this study measures innovation performance based on
patent applications of an organization. It should be noticed that a pa-
tent is not necessarily an innovation as, usually, commercialized patents
are regarded as innovations in the literature (e.g., Dodgson et al., 2008;
Jaffe and Stavins, 1994). Moreover, the measure may not capture all of
an organization’s innovations as part of technical knowledge may re-
main unpatented either because it is unpatentable or because an
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organization may choose not to patent for secrecy. Third, this empirical
study is limited to only one industrial context, namely the emerging
solar PV sector. The results cannot be simply generalized to other in-
dustrial contexts. However, the methodology in this paper could be
replicated. Further corroboratory evidence using data from different
samples and industry contexts is encouraged to validate this study’s
findings and, especially, to test the hypotheses of the present research
further.

7. Conclusion

While the literature highlights the importance of a collaboration
network in promoting innovation, empirical investigation of network
evolution and its effect on network actor’s innovation performance is
very recent, particularly the government sponsored collaboration net-
work. This study is exploratory and an early attempt to analyze the
dynamics of a government sponsored collaboration network along the
development of an emerging high-tech sector in the Chinese context,
and investigates the effect of network evolution on the subsequent in-
novation performance by considering the network structural effects and
attribute proximity-based effects.

The results indicate that the evolution of the government sponsored

collaboration network indeed follows some patterns. These collabora-
tion patterns could lead to a high ratio of geographical proximity and a
low ratio of network efficiency of the collaboration network, both of
which impact innovation negatively. The empirical findings also extend
the network literature that, direct ties and indirect ties, open network
and closed network might differ in the nature or content of benefits that
they provide to the focal actor. Taken together, such findings should
lead to a better understanding of the ways in which government R&D
funding interacts with the collaboration behaviors of knowledge-based
organizations, and the consequent impact on innovation. This under-
standing, therefore, could ultimately lead to the improved design and
implementation of innovation policy instruments, which are of parti-
cular importance to the emerging energy-saving technologies.
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Appendix A

The search terms with boolean operator for solar PV scientific publications: Silicon OR “Si” OR Thin film* OR Cadmium Telluride OR CdTe OR
Copper Indium Selenide OR CIS OR CuInSe* OR Copper Gallium Diselenide OR CGS OR Copper Indium Gallium Diselenide OR CIGS OR Copper Zinc
Tin OR CZTS OR “Organic photovoltaic*" OR ‘Organic PV*" OR “Organic solar cell*" OR OPV OR Polymer OR Dye sensiti* OR DSSC* OR “Quantum
dot” OR “Concentrat* photovoltaic*" OR ‘Concentrat* PV’ OR “Concentrat* solar cell*" OR CPV OR junction OR III–V OR Gallium indium OR GaInP
OR InGaP OR GaInAs OR InGaAs OR Germanium OR Ge OR Gallium arsenide OR GaAs OR ‘Photovoltaic* effect’ OR “Photovoltaic* material’ OR
‘photovoltaic* Propert*" OR “Photoelectric Conversion’ OR (Photovoltaic* same soliton*) AND ‘Solar cell*" OR “Photovoltaic*" OR “PV cell*" in the
Topic OR “Photovoltaic* effect” OR ‘Photovoltaic* material’ OR “photovoltaic* propert*" OR ‘Solar Cell*" OR “Photovoltaic Cell*’ OR “PV Cell*’ in
the Title, and the address is China.

Appendix B

IPC green inventory (The photovoltaics part)

Photovoltaics (PV) International Patent Classification (IPC)

Devices adapted for the conversion of radiation energy into electrical energy H01L27/142, 31/00-31/078 H01G 9/20 H02N 6/00
Using organic materials as the active part H01L 27/30, 51/42-51/48
Assemblies of a plurality of solar cells H01L 25/00, 25/03, 25/16, 25/18, 31/042
Silicon; single-crystal growth C01B 33/02 C23C 14/14, 16/24 C30B 29/06
Regulating to the maximum power available from solar cells G05F 1/67
Electric lighting devices with, or rechargeable with, solar cells F21L 4/00 F21S 9/03
Charging batteries H02J 7/35
Dye-sensitised solar cells (DSSC) H01G 9/20 H01M 14/00
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