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a b s t r a c t

This paper studies the impact of university-industry collaboration on academic research output. We ana-
lyze the channels through which the degree of industry collaboration may be affecting research output.
We exploit a unique longitudinal dataset on all the researchers in all the engineering departments of 40
major universities in the UK for the last 20 years. We use an innovative measure of collaboration based
on the fraction of public research grants that include industry partners. Our empirical findings corrob-
orate that the relationship between collaboration degree and publication rates is curvilinear, and shed
some light on the selection mechanisms at work. Our results are robust to several econometric methods,
measures of research output, and subsamples of academics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a modern economy transforming scientific research into com-
petitive advantages is essential. In the US, extensive collaboration
between universities and industry, and the ensuing transfer of sci-
entific knowledge, is viewed as one of the main contributors to the
successful technological innovation and economic growth of the
past three decades (Hall, 2004). At the same time, according to a
European Commission report European Commission (1995), insuf-
ficient interaction between universities and firms in the EU has
been one of the main factors for the EU’s poor commercial and tech-
nological performance in high-tech sectors. Nowadays, increasing
university-industry collaboration is a primary policy aim in most
developed economies.1
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1 In the 1980s, the US introduced a series of structural changes in the intellectual
property regime accompanied by several incentive programs, designed specifically

The increased incentives (or, as some say, pressure) to collab-
orate with industry may have controversial side effects on the
production of scientific research itself. Nelson (2004), among many
others, argues that the existence of industry involvement might
delay or suppress scientific publication and the dissemination of
preliminary results, endangering the “intellectual commons” and
the practice of “open science” (Dasgupta and David, 1994). Florida
and Cohen (1999) argue that industry collaboration might come at
the expense of basic research: growing ties with industry might
be affecting the choice of research projects, “skewing” academic
research from a basic toward an applied approach.

Academics that contribute to knowledge and technology trans-
fer, on the other hand, maintain that the existence of industry
collaboration complements their own academic research by secur-
ing funds for graduate students and lab equipment, and by
providing them with ideas for their own research (Lee, 2000;
Agrawal and Henderson, 2002). Siegel et al. (2003), for example,
report that “[s]ome scientists explicitly mentioned that these inter-

to promote collaboration between universities and industry (Lee, 2000; Mowery
et al., 2001). Almost 30 years on, many elements of the US system of knowledge
transfer have been emulated in many other parts of the world (see e.g., the UK
Government’s White Paper “The Future of Higher Education”, 2003).
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actions improved the quantity and quality of their basic research”.
Ideas sourced from industry may thus expand traditional research
agendas (Rosenberg, 1998), benefitting the overall scientific per-
formance of researchers.

These opposing claims raise a long-standing question for aca-
demic research: does collaboration with industry increase or
decrease publication rates? Previous research on this issue has
mostly used patenting as a measure of industry collaboration (see
Geuna and Nesta, 2006 and Baldini, 2008 for reviews). The evidence
is somewhat mixed, ranging from the negative effects of patent-
ing on research output reported in surveys of academic scientists
(Blumenthal et al., 1996), to no effect in some of the econometric
studies (Agrawal and Henderson, 2002) to even a positive relation-
ship in some of the recent evidence (Azoulay et al., 2009; Breschi
et al., 2008; Fabrizio and DiMinin, 2008; Stephan et al., 2007; van
Looy et al., 2006).

This paper argues that academic research output is affected
not only by the existence of links with the industry but also by
the degree of industry collaboration, i.e., by the proportion of (or
the share of time spent on) projects with industry involvement.2

By exploring the channels through which industry collaboration
affects publications, our conceptual framework suggests that the
relationship between collaboration degree and publication rates
is neither increasing nor decreasing but is curvilinear, described
by an inverted U-shaped curve. As a result, research output shall
be maximized at intermediate degrees of collaboration, i.e., when
the industry is involved in some but not in all the projects of the
academic.

Our empirical analysis uses an innovative measure of (degree
of) industry collaboration based on the fraction of publicly funded
research projects which include industry partners.3 In contrast
to patents, this measure is continuous in nature, and so is able
to proxy not only for the existence but also for the degree of
industry collaboration. In addition, collaborative links through joint
research, consulting or training arrangements are more widespread
(D’Este and Patel, 2005) and are more important knowledge trans-
fer channels than patents, licenses, and spin-offs, according to
both academics (Agrawal and Henderson, 2002) and firms (Cohen
et al., 2002). Data on research collaborations also provide a more
continued assessment of the level of interaction with industry
than measurements based on the number of patents. Possibly
due to the lack of comparable data, the literature has paid little
attention to these more collaborative forms of university-industry
interaction.

Our measure of collaboration is constructed exploiting com-
prehensive information from the main UK government agency
for funding in engineering, the Engineering and Physical Sci-
ences Research Council (EPSRC), which distinguishes between
collaborative and non-collaborative research grants based on the
involvement of industry partners. In addition to research funds, we
compiled a unique, longitudinal dataset containing research out-
put (publications), patents, and other individual characteristics for
all academics employed in all the engineering departments of 40
major UK universities between 1986 and 2007. Since our dataset
contains the majority of academic engineers in the UK, our results
are not driven by the most successful or academic inventors alone.

2 Our notion of “degree of (industry) collaboration” is inspired by the notion
of “degree of (research) collaboration” used in bibliometric studies. As shown by
Subramanyam (1983), the degree of research collaboration is usually defined as the
number of multicoauthored papers out of the total number of papers (single and
multicoauthored).

3 The presence of industry partners in public research grants might not be a perfect
proxy for the degree of collaboration with industry, as there are other channels of
interaction. The inclusion of private firms as partners in these grants; however, is
highly correlated with obtaining direct funding from industry (Meissner, 2011).

In fact, we can test whether the effects differ across observed cat-
egories of researchers.

Still, the observed degrees of collaboration are not exoge-
nously determined, but are the result of individual and mutual
choices in a two-sided market of academics and firms (Mindruta,
2013; Banal-Estañol et al., 2014). Unobserved characteristics of the
researchers may affect not only their degree of collaboration but
also their academic productivity, thereby influencing the shape of
the collaboration–publication relationship. Our conceptual frame-
work analyzes the potential selection mechanisms at work, and the
direction of the biases one might incur if these mechanisms were
ignored in the estimation. As empirical strategy, to deal with the
endogeneity problem, we use fixed effects and instrumental vari-
able techniques and, to take into account the dynamic nature of
the publications (e.g., Arora et al., 1998; Agrawal and Henderson,
2002), we use a dynamic panel data approach. By comparing instru-
mented and non-instrumented regressions we shall also shed more
light on the selection mechanisms in place.

The paper is organized as follows. In Section 2 we provide the
conceptual framework. In Section 3 we describe the dataset and in
Section 4 we introduce our empirical strategy. Section 5 presents
our results. Section 6 discusses and concludes.

2. Conceptual framework

Our conceptual framework is based on the idea that the degree
of industry collaboration of an academic affects the main determi-
nants of her scientific output, namely, (i) the quality and quantity of
her ideas; (ii) the time and attention she can devote to developing
these ideas and transforming them into papers; (iii) the amount
of resources she has available 4; and (iv) the existence of con-
straints on the scope and/or in the dissemination of research results
(Stephan, 1996, 2012). In the first subsection below, we discuss the
channels through which the degree of industry collaboration may
be affecting research output. In the second subsection, we consider
the characteristics of the academics that may be affecting both their
observed degrees of collaboration and their research output. We
describe the potential selection mechanisms at work, allowing us
to identify potential biases in the estimation.

2.1. Effects of the degree of industry collaboration on research
output

Collaboration with industry can boost research output for
at least two reasons. First, collaboration can expand academics’
research agendas and improve the pool of research ideas
(Rosenberg, 1998). Mansfield (1995) shows that a substantial num-
ber of publicly sponsored research projects stem from industrial
problems encountered in consulting. Collaboration helps aca-
demics gain new insights for their own research and test the
practical application of their theoretical ideas (Lee, 2000). The
generation and/or refinement of ideas through puzzle-solving
may in turn improve research outcomes because the result-
ing ideas can be transformed into more and/or better academic
papers.

Second, industry collaboration can expand the availability of
financial resources. According to survey evidence in Lee (2000), two
of the most important reasons for academics to collaborate are to
secure funds for graduate students and lab equipment, and to sup-
plement funds for their academic research. In recent years, industry

4 The availability of research funding is important for scientists in all academic
disciplines, but especially in resource-intensive fields such as engineering (Stephan,
1996, 2012). Several recent studies have documented a positive impact of public
grants on research performance (Jacob and Lefgren, 2011; Benavente et al., 2012).
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Fig. 1. Estimated publications by fraction of EPSRC funding with industry.

has been identified as an even more important source of funding
for academic research. Private financial support is important in light
of progressive declines in direct government funding (OECD, 2009)
and of more competitive research environments (Stephan, 2012).

Nevertheless, an increase in the degree of industry collaboration
is not necessarily positive for research output for at least five rea-
sons. First, although collaboration may enhance the pool of research
ideas, there might be decreasing returns to scale associated to the
generation of these ideas. Hottenrott and Lawson (2014) show that
research units that receive larger shares of funding originating from
industry are also more likely to develop ideas stemming from pri-
vate partners, suggesting that the pool of ideas for higher degrees
of collaboration is indeed larger. But at high degrees of collabora-
tion, ideas at the margin may not be of the same quality, or may
not even be worth pursuing, and may thus not result in the same
increase in publication rates as the ideas obtained at low degrees
of collaboration.

Second, a high number of ideas, conceivably available from
higher degrees of collaboration, may also create attention
problems. According to attention-based theories of the firm,
decision-makers in any organization need to “concentrate their
energy, effort and mindfulness on a limited number of issues”
(Ocasio, 1997). As argued by Laursen and Salter (2006) in the con-
text of innovative firms, if there are too many ideas, few of them
receive the required level of time or effort to be developed seri-
ously. As a result, high levels of collaboration may generate many
ideas but few academic papers.

Third, collaborative projects usually require time for coordi-
nation, organization, and interaction. Collaboration with a private
partner may also come with “strings attached” in the form of aca-
demic consulting or commercial activities. The general duties of
the academics, and research in particular, might be compromised
by an increase in the time allocated to development, consulting or

commercialization (Florida and Cohen, 1999), thus reducing scien-
tific publication.

Fourth, collaboration may affect the selection of topics and
methodologies (Florida and Cohen, 1999). As argued in Trajtenberg
et al. (1997), industry research and development tends to be
directed at commercial success, while university research generally
focuses on solving fundamental scientific questions. Thus, research
that appeals to industry partners may not necessarily be close to
the research frontier (Rosenberg and Nelson, 1994), and may be less
likely to result in (top) academic publications. This is especially the
case for academics with high degrees of collaboration who may
get locked in service provision for industry (Meyer-Krahmer and
Schmoch, 1998).

Finally, firms’ commercial interests might impose constraints
on the publication activity of collaborating academics, especially
those that collaborate extensively. Firms’ commercial interests may
push firms to include non-disclosure clauses that delay or sup-
press scientific publication (Nelson, 2004). Czarnitzki et al. (2015)
indeed find empirical evidence that the percentage of researchers
that complain about secrecy and publication delay is larger for
researchers sponsored by industry.

As summarized in the upper part of Fig. 1, collaboration can
have positive and negative effects on the factors driving academic
research. The relative magnitudes of these effects and their ultimate
impact on publications change with the degree of collaboration.
From our discussion, we expect the negative effects to be relatively
more important and, thus, to dominate for high degrees of collabo-
ration while the positive ones shall dominate for low degrees of
collaboration. We therefore anticipate the relationship between
collaboration degree and publication rates to have an inverted
U-shape and research output to be maximized at intermediate
degrees of collaboration, i.e., when industry is involved in some
but not all the projects of the academic.
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Table 1
List of universities.

Russell group universities Number of ID* Number of observations Other universities Number of ID Number of observations

Birmingham, University of 193 1523 Aberdeen, University of 45 358
Bristol University 82 581 Aston University 62 573
Cambridge, University of 191 1541 Bangor University 30 179
Cardiff, University of 99 802 Brunel University 117 810
Durham, University of 43 308 City University, London 62 556
Edinburgh, University of 92 724 Dundee, University of 49 400
Exeter, University of 40 317 Essex, University of 29 295
Glasgow, University of 108 1033 Hull, University of 37 338
Imperial College London 268 2109 Heriot Watt University 141 1119
Kings College London 48 330 Lancaster, University of 26 230
Leeds, University of 165 1212 Leicester, University of 37 245
Liverpool, University of 102 888 Loughborough, University of 236 1847
Manchester, University of† 322 2614 Reading, University of 47 395
Newcastle, University of 143 1188 Salford, University of 99 788
Nottingham, University of 167 1317 Strathclyde, University of 179 1563
Oxford, University of 97 843 Swansea University 94 856
Queen Mary London 82 575
Queens University, Belfast 101 920
Sheffield, University of 176 1293
Southampton, University of 136 1060
University College London 127 1045
Warwick, University of 64 621
York, University of 27 205

* Researchers can belong to more than one university during their career. Therefore the numbers of IDs do not add up to 3991, the number of unique individuals in our
sample.

2.2. Mechanisms influencing the collaboration-research output
relationship

This subsection discusses other mechanisms that may affect the
relationship between industry collaboration and research output
described in the previous subsection. We argue that the degrees of
collaboration are not exogenously determined, but are the result of
individual and mutual choices in a two-sided ‘market’ of academics
and firms (Mindruta, 2013; Banal-Estañol et al., 2014).5 Observed
and unobserved characteristics of the researchers (such as senior-
ity, ability or skills) may affect not only their degree of collaboration
but also their academic productivity, thereby influencing the shape
of the collaboration–publication relationship. In this subsection, we
focus on the unobserved characteristics and describe the potential
mechanisms at work, by ‘type’ of researcher, and the direction of
the biases one might incur if these mechanisms were ignored when
estimating the causal effect of degree of collaboration on research
output.

Notice first that there are inherent characteristics of the
researchers that make them both more likely to publish and more
likely to find a good partner. For example, ability or talent is
important for research but it is also highly valued by firms when
searching for research partners (see e.g., Blumenthal et al., 1996). As
a result, highly able academics may end up having higher degrees
of collaboration and better partners than less-able academics. As
argued by Blumenthal et al. (1986), “the most obvious explana-
tion for [the] observed positive relation [between collaboration
and publication] is that companies selectively support talented and
energetic faculty who were already highly productive”. Through
their involvement with more attractive partners, they may end up

5 Firms also weigh the benefits and costs of collaborating with academic part-
ners (Henderson et al., 1998; Salter and Martin, 2001; Cohen et al., 2002; Link and
Scott, 2005; Laursen et al., 2011). Firms report to collaborate to get access to new
university research and discoveries (Lee, 2000), but are also concerned with the
organizational and institutional structure, and the existence of the open science
culture, in academia (Dasgupta and David, 1994). An individual firm’s decision to
collaborate depends on its absorptive capacity (Veugelers and Cassiman, 2005), its
size, and whether it adopts an open search strategy (Mohnen and Hoareau, 2003;
Laursen and Salter, 2004).

producing even more academic papers. As shown in Banal-Estañol
et al. (2013), collaborative projects generate more publications than
non-collaborative ones if and only if the industrial partners are
highly productive. As a result, if one does not take into account
the presence of researcher “fixed effects” such as ability, the esti-
mation may generate positive biases on the effect of high degrees
of collaboration on publications.

Time-invariant individual characteristics may also interact with
time-variant ones and generate other biases. First, some of the
talented academics may develop stronger preferences for indus-
try collaboration and better networking skills, thereby enjoying
higher-quality interactions and more knowledge of the private sec-
tor. We expect these “industry-savvy” researchers to have higher
degrees of collaboration and, at the same time, to choose and to
be chosen by better industrial partners because they screen bet-
ter and they are more appealing academic partners. Thanks to
their involvement with more attractive industry partners, these
academics are again predicted to produce more academic papers
than those at low degrees of collaboration. In sum, more engaged
researchers may have both higher degrees of collaboration and –
because they end up being matched with better partners – more
research output than researchers lacking collaboration taste and
networking skills. We may thus observe a positive bias at the high-
end of the degree of collaboration (those more likely populated
by industry-savvy researchers) and, symmetrically, a negative bias
at low degrees of collaboration (populated by non-industry-savvy
researchers).

Second, some of the talented academics may become more
output-driven in their collaboration choices. We expect these
researchers to publish more and, at the same time, prefer interme-
diate degrees of collaboration, as they are more likely to identify
and ponder the trade-offs described in the previous subsection
(e.g., new ideas vs. time constraints). That is, these highly able,
output-driven researchers may end up having mid-range degrees
of collaboration, while less able, less output-driven academics, may
end up having insufficient or excessive degrees of collaboration
that negatively affect their academic performance. In addition, the
highly able will also end up partnering with more attractive part-
ners, producing even more papers. We may thus observe a positive
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bias on the mid-range degrees of collaboration and a negative bias
in both the low- and high-ends of the degree of collaboration.

Third, some of the talented researchers may also become more
selective over time, given the increased pool of potential indus-
try projects they have available. While collaboration with highly
able scientists is the most beneficial for firms, companies find aca-
demic partners across a whole quality-range of researchers and
departments, with the majority of industry funding going to uni-
versities of medium research quality (Mansfield, 1995). Goldfarb
(2008) argues that star-scientists have many more opportunities
for funding but it is the less-able researchers who typically engage
in programs sponsored by mission-oriented agents such as firms.
Less-able academics may have to accept any industry support in
order to maintain or increase their funding (Carayol, 2003). In
sum, talented, successful researchers may be in a position to be
more selective and engage only in collaborations with high-quality
industry partners. Due to the existence of these types of academics,
we may observe a positive bias at the low-end of the degree of
collaboration and a corresponding negative bias in the mid- and
high-ends.

The selection mechanisms described in this section are sum-
marized in the lower part of Fig. 1. As explained in more detail
in the empirical strategy section, these mechanisms have funda-
mental implications for any attempt to estimate the relationship
between the degree of industry collaboration and research output.
The degree of collaboration is “endogenous,” and it is affected by
observed and unobserved individual characteristics that also affect
research output. Our empirical approach shall control for time-
invariant and time-variant observed characteristics. We shall also
take into account the existence of unobserved characteristics influ-
encing the selection mechanisms at work. Not doing so would result
in a biased estimate of the impact of degree of collaboration on
research output. In our empirical strategy section, we explain how
we address these endogeneity concerns.

3. Data

In this section, we provide a detailed account of how we cre-
ated our dataset. For this study, we built a unique longitudinal
dataset containing individual characteristics, publications, research
funds, and patents for all researchers employed in all the engi-
neering departments of 40 major UK universities between 1986
and 2007 (see Table 1 for a list of the universities). Through the
British Library, we searched for university calendars and prospec-
tuses providing detailed staff information for all the universities
with engineering departments in the UK.6 Our final sample con-
tains all the universities that had calendar information available,
including all the universities that are members of the prestigious
Russell group, a coalition of 24 research-intensive UK universities,
as well as 16 other comprehensive or technical universities.7

We retrieved the academics’ names and ranks for all the years
from 1986 to 2007. We focused on academic staff carrying out
both teaching and research and did not consider research officers

6 By act of Parliament, the British Library is entitled to receive a free copy of every
item published in the UK. These data were supplemented with information from the
internet archive, a not-for-profit organization that maintains a free internet library
committed to offering access to digital collections. Their collection dates back to
1996 and enabled us to retrieve information from outdated Internet sites.

7 We identified the initial set of engineering departments from the 1996 and 2001
Research Assessment Exercises (RAEs). We did not find staff information for eight
institutions which are similar to the 16 non-Russell group universities in our sample.
We did not consider any of the 39 post-92 universities either, as these were not full
research institutions for all the years considered in our analysis. We also excluded
the Open University and Cranfield University which, as distance and postgraduate
institutions, respectively, have a very different structure.

or teaching assistants. We followed the researchers’ career paths
between the different universities by matching names and subject
areas and by checking the websites of the researchers. Academics
leave (and join or rejoin) our dataset at different stages in their
career, when they move to (or from) abroad, industry, departments
other than engineering (e.g., chemistry, physics), or universities
that are not part of our dataset, resulting in an unbalanced panel.
They represent the basis for our data collection and enable us to
retrieve information on publications, research funds, and patents.

Our final sample contains information on 3991 individuals. The
final sample excludes all inactive researchers (those with nei-
ther publications nor funds during the entire sample period) and
researchers who were present for less than six consecutive years
so that all of our (stock) variables could be created.8 We describe
below our sources and measures of research output (our dependent
variable), degree of industry collaboration (our main independent
variable), as well as funding, patents, and other individual charac-
terizing variables. We provide summary statistics in the first panel
of Table 2.

3.1. Research output

Data on publications were obtained from the ISI Science Citation
Index (SCI). The number of publications in peer-reviewed journals
is not the only measure but is the best recorded and the most
accepted measure for research output as they are essential for gain-
ing scientific reputation and for career advancements (Dasgupta
and David, 1994). We collected information on all the articles pub-
lished by researchers in our database while they were employed
at one of the institutions in our sample. Most entries in the SCI
database include detailed address data that allowed us to iden-
tify institutional affiliations and unequivocally assign articles to
individual researchers.9

As a main measure of research output for each researcher in
each year, we use the normal count of publications (countit), i.e.,
the number of publications in t on which researcher i is named
as an author. Publication counts; however, might be misleading
for articles with a large number of authors and may not reflect
a researcher’s effective productivity. Therefore, we also use the
co-author-weighted count of publications (co-author weighted
countit), which we obtain by weighting publications by the inverse
of the publication’s number of co-authors.

We also separate the count of publications by type of aca-
demic research (basic or applied). To construct these measures,
we use the Patent Board (formerly CHI) classification (version
2005), developed by Narin et al. (1976) and updated by Kimber-
ley Hamilton for the National Science Foundation (NSF). Based on
cross-citation matrices, it characterizes the general research orien-
tation of journals, distinguishing between (1) applied technology,
(2) engineering and technological science, (3) applied and targeted
basic research, and (4) basic scientific research. Godin (1996) and
van Looy et al. (2006) reinterpreted the categories as (1) applied
technology, (2) basic technology, (3) applied science, and (4) basic
science; and grouped the first two as “technology” and the last two
as “science.” We use the normal count of publications in each of
these two categories and denote them “applied” (applied countit)
and “basic” (basic countit), respectively. Due to the applied charac-
ter of the engineering sciences, 74% of all publications are applied.

8 Estimations considering a shorter time window of just three consecutive years
are used in the robustness checks. The descriptive statistics as well as the empirical
results are very similar to those of the main estimation.

9 Publications without address data had to be ignored. However, we expect this
missing information to be random and to not affect the data systematically.
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Table 2
Descriptive statistics.

Full sample (33601 obs) Mean Sd Min Max Correlation with

Countt Had some fundingit Fraction of funding with industryit

Dependent variables
Countit 1.64 2.68 0 41 1 0.228*** 0.125***

Co-author weighted countit 0.59 0.93 0 12.26 0.916*** 0.208*** 0.106***

Average impact factorit 0.44 0.72 0 27.07 0.436*** 0.167*** 0.100***

Applied countit 0.9 1.62 0 24 0.778*** 0.206*** 0.122***

Basic countit 0.46 1.52 0 26 0.712*** 0.125*** 0.0216***

Explanatory variables
Had some EPSRC fundingit 0.67 0.47 0 1 0.228*** 1 0.405***

Fraction of EPSRC funding with industryit 0.2 0.35 0 1 0.125*** 0.405*** 1
Patentit 0.03 0.18 0 1 0.124*** 0.0794*** 0.0577***

Lecturerit 0.34 0.48 0 1 −0.183*** −0.194*** −0.0998***

Senior lecturerit 0.28 0.45 0 1 −0.104*** −0.0511*** −0.0204***

Readerit 0.1 0.3 0 1 0.0853*** 0.0453*** 0.0276***

Professorit 0.27 0.45 0 1 0.242*** 0.228*** 0.109***

Low vs high collaborators in publications†(27667 obs) Low collaborators (13484 obs) High collaborators (14183 obs) t-test difference

Dependent variable Mean Sd Min Max Mean Sd Min Max
Countit 1.43 2.41 0 37 2.22 3.13 0 41 ***
Explanatory variables
Had some EPSRC fundingit 0.59 0.49 0 1 0.73 0.44 0 1 ***
Fraction of EPSRC funding with industryit 0.19 0.34 0 1 0.3 0.38 0 1 ***

Low vs high collaborators in funding††(23645 obs) Low collaborators (11188 obs) High collaborators (12457 obs) t-test difference

Dependent variable Mean Sd Min Max Mean Sd Min Max
Countit 1.71 2.62 0 37 2.26 3.2 0 41 ***
Explanatory variables
Had some EPSRC fundingit 0.78 0.42 0 1 0.82 0.39 0 1 ***
Fraction of EPSRC funding with industryit 0.07 0.19 0 1 0.5 0.41 0 1 ***

Low vs high recipients of funding†††(28508 obs) Low funding (12853 obs) High funding (15655 obs) t-test difference

Dependent variable Mean Sd Min Max Mean Sd Min Max
Countit 0.97 1.73 0 23 2.45 3.3 0 41 ***
Explanatory variables
Had some EPSRC fundingit 0.38 0.49 0 1 0.89 0.31 0 1 ***
Fraction of EPSRC funding with industryit 0.11 0.31 0 0 0.36 0.38 0 1 ***

Type of institution (28508 obs) Russell group (18374 obs) Non-Russell group (8408 obs) t-test difference

Dependent variable Mean Sd Min Max Mean Sd Min Max
Countit 2.02 3.02 0 41 1.25 2.16 0 33 ***
Explanatory variables
Had some EPSRC fundingit 0.68 0.47 0 1 0.62 0.48 0 1 ***
Fraction of EPSRC funding with industryit 0.24 0.37 0 1 0.24 0.38 0 1

Academic rank (28508 obs) Professor (7955 obs) Not professor (20553 obs) t-test difference

Dependent variable Mean Sd Min Max Mean Sd Min Max
Countit 2.86 3.66 0 41 1.36 2.25 0 32 ***
Explanatory variables
Had some EPSRC fundingit 0.84 0.37 0 1 0.59 0.49 0 1 ***
Fraction of EPSRC funding with industryit 0.3 0.36 0 1 0.22 0.37 0 1 ***

*p < 0.10, **p < 0.05, ***p < 0.01.
† High (low) collaborators are those who have an average lifetime collaborative publications with the industry above (below) the median. Academics with zero publications

excluded.
†† High (low) collaborators are those who have an average lifetime collaborative EPSRC funding with the industry above (below) the median. Academics with zero funding

excluded.
††† High (low) funding receivers are those who have received EPSRC funding in the previous 5 years above (below) the median.

3.2. Degree of industry collaboration

Our measure of industry collaboration is based on grants
awarded by the Engineering and Physical Sciences Research Council
(EPSRC), the main UK government agency for research in engi-
neering and the physical sciences, and by far the largest provider
of funding for research in engineering (more than 50% of overall
third-party funding). The EPSRC encourages (but does not require)
academic researchers to find private partners for their research
projects. As defined by the EPSRC, “Collaborative Research Grants
are grants led by academic researchers, but involve other partners”.

Partners generally contribute either cash or “in-kind” services to
the full economic cost of the project.10

We obtained information on all the grants awarded since 1986.
For each grant, we collected the start year, duration, total amount of

10 The EPSRC does not favor specific types of academic research output. Both col-
laborative and non-collaborative grants are awarded based on peer-review and
monitored through end-of-award reports. There are; however, no specific mea-
sures for evaluating the success of the knowledge exchanges between science and
industry.
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funding, names of principal investigator (PI) and co-investigators,
grant-receiving institution, and names of partner organizations, if
any. In order to construct our proxy for the degree of collaboration
with industry we use the presence of private partners. Our variable,
which we name fraction of EPSRC funding with industryit, repre-
sents the fraction of collaborative EPSRC funds of an individual i in
the five previous years (i.e., between t-4 and t). We use a five-year
window to reflect the profile of an academic in terms of her past
stream of funding.

To be precise, this variable was constructed as follows. We
divided the total monetary income of each grant between the PI and
her co-investigator(s). We took into account the participation of all
investigators but positively discriminated PIs by assigning them
half the grant value and splitting the remaining 50% among the co-
investigators. PIs were assigned a major part as they are expected
to lead the project. We additionally spread the grant value over the
award period.11 This was done in order to account for the ongo-
ing benefits and costs of the project and to mitigate the effect of
focusing all the funds at the start of the project. Finally, for each
year and for each researcher we computed the fraction of “collab-
orative” funds in the last five years, i.e., those that included one or
more industry partners, over all EPSRC funds received in the same
period.

3.3. Funding

As discussed in the conceptual framework section, the avail-
ability of funds is an important factor for research output. We
therefore created an indicator variable (had some EPSRC fundingit)
that takes value 1 if academic i received any EPSRC funding (col-
laborative or not) in the five previous years and 0 otherwise. We
used the indicator instead of the funding level because the latter
is discipline-specific (some disciplines require more funding than
others). As for industry collaboration, we used a five-year window
to reflect the academic’s profile.

3.4. Patents

In the conceptual framework, we argued that the commercial-
ization of research results might impose constraints on publication
activity. Our analysis should therefore control for patent activity.
By including patents, we also separate the effect of patenting from
the effect of collaborating with industry, as defined above. Prior
research has considered patenting itself to be an indicator of a
researcher’s involvement with industry. As a result, the benefits
and costs of collaboration might also appear through the patent
channel.

We obtained patent data from the European Patent Office (EPO)
database. We collected those patents that identify the aforemen-
tioned researchers as inventors and were filed while they were
employed at one of the 40 institutions. We not only consider
patents filed by the universities themselves, but also those assigned
to third parties, e.g., industry or government agents (as shown by
Lawson, 2013a,b; 52% of academic patents in the UK are not owned
by the university). The filing date of a patent was recorded as rep-
resenting the closest date to invention. Since the filing process can
take several years, we were only able to include patents published
by 2007, hence filed before 2005.12 The EPO only covers a sub-

11 If the grant lasted two years, we split it equally across those two years. If it lasted
three or more years, the first and the last years (which are assumed to not represent
full calendar years) received half the share of an intermediate year.

12 Just like previous studies (see e.g., Fabrizio and DiMinin, 2008), data construc-
tion requires a manual search in the inventor database to identify entries that were
truly the same inventor and exclude others with similar or identical names. This was

sample of patents filed with the UK Intellectual Property Office
(UKIPO). Nevertheless, the patents that are taken to the EPO are
those with a higher economic potential and/or quality (Maurseth
and Verspagen, 2002) and have been used in the past to analyze
academic patenting in Europe (see Lissoni et al., 2008).

To measure the impact of patenting on the timing of publica-
tions, we use a dummy variable indicating whether the academic
i filed any patent in the same year (patentit), or in the two years
preceding the publication (patentit−1 and patentit−2). Researchers
in Europe, unlike the US, cannot benefit from a “grace period” and
hence have to withhold any publication related to the patent until
the patent application is filed. We therefore expect a lag of up to
two years between invention and publication in a journal.

3.5. Individual characteristics

Research output might be linked to the researcher’s personal
attributes such as sex, age, education, and academic rank. Aca-
demic rankit is the only time-variant observable characteristic in
our dataset. Thus, we incorporate information on the evolution
of researchers’ academic status from lecturer to senior lecturer,
reader, and professor. Lecturer corresponds to an assistant pro-
fessor in the US; whereas, senior lecturer and reader would be
equivalent to an associate professor.

We also include, as an additional time-variant characteristic of
an academic at a given point in time, her past publications. Indeed,
as argued by Stephan (1996), there is a “cumulative advantage” in
science that results in a dynamic relationship between past and
present publication output.

3.6. Interaction variables

The effect of degree of industry collaboration on research out-
put might differ across observed categories of academics. In order
to investigate whether the relationship differs between academics
who have certain observed characteristics, we create indicator vari-
ables that reflect (i) being above or below the median lifetime share
of publications with industry co-authors; (ii) being above or below
the median lifetime share of collaborative grants; (iii) being above
or below the median amount of funding during the previous five
years; (iv) belonging to the selected Russell group of universities;
and, (v) being at an earlier stage of their careers as opposed to being
senior researchers (professors). We allow researchers to change
groups when they change universities or are promoted. Panels 2–6
in Table 2 present the descriptive statistics of the two main vari-
ables of interest for these subsamples.

4. Empirical strategy

This section describes the econometric specification of our
model, the methods we use to estimate it, and the instrumental
variables we exploit in order to do so.

4.1. Econometric specification

According to our conceptual framework, the relationship
between the degree of collaboration and the publications of an
academic can be curvilinear. Indeed, increasing the degree of
collaboration with industry can boost research output, as collab-
oration may improve the pool of research ideas and expand the

done by comparing the address, title, and technology class for all patents potentially
attributable to each inventor. The EPO database is problematic in that many inven-
tions have multiple entries. It was thus necessary to compare priority numbers to
ensure that each invention is only included once in our data.
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availability of financial resources. But at high degrees of collabo-
ration, it may also be negative, because there might be decreasing
returns associated to the generation of ideas, extensive industry
involvement may impose time constraints and cause attention
problems, and commercial objectives and strategic behavior may
push industrial partners to impose constraints on the selection
of topics and methodologies and the dissemination of research
results.

So we estimate a model where academic research output is a
quadratic function of the degree of collaboration with industry.
Additionally, we make use of the variables described in the pre-
vious section to control for other factors, other than the degree of
collaboration, which may also affect research output. We include,
e.g., the ability of having raised EPSRC research funds, which prox-
ies for other resources the researcher may have available. We also
incorporate patent indicator variables to account for the existence
of other constraints on the scope and/or in the dissemination of
research results. We also include past academic output to account
for other factors affecting the pool of ideas of the researcher and her
ability to transform them into papers. To proxy for seniority and the
existence of other time constraints, we also include her academic
rank.

Accordingly, we formulate the following empirical model:

yit =
2∑

j=1

˛jyi(t−j) + ˇ1hfit−1 + ˇ2f init−1 + ˇ3f in2
it−1 +

2∑

k=0

�kpi(t−k) + ıxit−1 + �i + �it

where yit stands for academic i’s research output at time t
(either countit, co-author weighted countit, applied countit, or basic
countit); hfit−1 is the indicator variable had some EPSRC fundingi−1;
finit−1 is the fraction of EPSRC funding with industryit−1; pit is the
indicator variable patentit for having filed at least one patent at
time t; and, xit−1 is a vector of other time-variant individual charac-
teristics including academic rankit-1 and year. All the independent
variables except the patents are lagged because of the publication
lead time. The error term contains two sources of error: the aca-
demic i’s fixed effect term �i, and a disturbance term vit. Since the
distributions are highly skewed, we take logarithms of both the
research output and degree of industry collaboration variables. As
these figures contain zero values, we add the unit before we take
logarithms.

4.2. Empirical methods

The presence of time-invariant individual factors, �i, in the
error term produces correlation among the individual errors across
different periods of time, making ordinary least squares (OLS)
inefficient and yielding incorrect standard errors. In addition, as
explained in the conceptual framework, there are inherent charac-
teristics of the researchers (e.g., ability) that make them both more
likely to publish and more likely to find good partners and, there-
fore, to have higher degrees of collaboration. This creates problems
of endogeneity for our main variables of interest. Thus, we first
estimate our model using a generalized least squares with a fixed
effects estimator (GLS FE).

But still, correcting for fixed effects alone may not be suffi-
cient to address the biases introduced by the selection mechanisms
described in the conceptual framework. There are time-variant
unobserved individual characteristics, such as becoming more
industry-savvy, more output-driven, and/or more selective. These
time-variant individual unobserved traits may affect both research
output and degree of collaboration causing the latter independent
variable to be again endogenous. Fixed effects based methods are
not sufficient in dealing with this source of time-variant endo-
geneity. Thus, to obtain consistent estimates of the coefficients of
interest, we use an estimator that instruments our collaboration

measures with instrumental variables that affect industry collab-
oration but not research output directly (GLS FE IV). Below, we
discuss which instruments we use.

GLS models, though, cannot correct for the error autocorrela-
tion created by the inclusion of past research outputs (i.e., lagged
dependent variables) as explanatory variables. Therefore, we also
estimate a dynamic generalized method of moments (GMM)
panel data model: the Arellano–Bond GMM estimator (GMM AB)
(Arellano and Bond, 1991; Blundell and Bond, 1998). This estimator
transforms the model into first differences and eliminates the indi-
vidual effects – and, thus the cause of the autocorrelation across
time periods. Lagged dependent variables are instrumented with
not only the exogenous variables described in the next subsection
but also with deeper lags of the independent and dependent vari-
ables which are remote enough in the past so that their correlation
with current publications has been dissipated. Indeed, we make
sure that the GMM models satisfy both the autocorrelation test
and the Sargan test of over-identifying restrictions.13 In our case,
the required depth of the lags is three periods; whereas, the fund-
ing history goes back five years. To make sure that this is not the
cause of further hidden autocorrelation, and as a robustness check,
we also estimate our model using a funding stock variable based
on only two years of funding, as opposed to five.

4.3. Instrumental variables

We instrument the fraction of EPSRC funding with industry
variable using the economic activity of the area and the overall
share of industry funding of the department. Economic activity of
the area is approximated by the yearly number of manufacturing
firms, as listed in the COMPUSTAT database, in the own and adja-
cent postcodes of the university where the academic works. The
share of funding from industry received by the whole department
is obtained from research assessment exercise (RAE) data, which
provide information on the amount of research funds received by
each department in the UK, decomposed by source (public, private,
and other funding) for the years 1993–2007. We also instrument
the variable had some EPSRC funding, using the aggregate amount
of funding received by the department, based on the same RAE data.

Our instruments for the degree of collaboration assume that
local economic activity and the overall industry involvement of
the department do not affect individual research output but do
have an impact on the individual’s opportunity to collaborate with
firms. Similarly, total funding of the department, our instrument
for had some EPSRC funding, should not affect individual research
output but should have an impact on the individual’s ability and
opportunity to obtain funds. Our instruments are jointly significant
in the first stage regressions. The residuals-based Smith–Blundell
test rejects the exogeneity of our collaboration variables. Sub-
sequently, we use the Sargan/Hansen’s statistic to test that our
instruments satisfy the over-identifying restrictions. Notice that,
given that some of our instruments were only available from 1993
onwards, the number of observations is reduced in the regressions
with instruments.

13 The autocorrelation test of the Arellano–Bond estimator rules out that the resid-
uals’ dynamic structure is a source of autocorrelation and is thus an ignored cause
of bias of the estimates. The Sargan test assumes that the model is identified and
tests the validity of the over-identifying restrictions; in our case that the depth of
the lags of the dependent and other regressors used as instruments is sufficient to
rule out their endogeneity.
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Fig. 2. Estimated publications by fraction of EPSRC funding with industry.

5. Empirical results

In this section we present our estimates of the impact of the
degree of industry collaboration. We first introduce our main
results and perform robustness checks. Finally, we analyze whether
the results differ across observed categories of researchers.

5.1. Main results

Table 3 reports the basic estimates of research output, mea-
sured as the normal count of publications. Column 1 displays the
estimates of the non-instrumented GLS with fixed effects (GLS FE)
model. Column 2 shows the estimates of our benchmark model,
the GLS with fixed effects and instrumental variables (GLS FE IV).
Column 3 adds one- and two-year lagged counts of publications
as explanatory variables (GLS FE IV lags).14 Column 4 uses the
Arellano–Bond GMM model, with lagged endogenous and exoge-
nous variables and year dummies as instruments (GMM-AB).

At the bottom of the table, we include goodness of fit statis-
tics. For each GLS specification, we report the R2 and the F-statistic
associated with the joint significance of all regressors and the joint
significance of the instruments. The null of joint non-significance
is rejected in all the models. For the GMM models, we report (i)
the Wald Chi2 tests, which reject the joint non-significance of the
regressors; (ii) the Sargan/Hansen tests, which are insignificant,
suggesting that the models do not suffer from over-identification,
and (iii) the Arellano–Bond tests, which do not reject the null that
there is an absence of third (or higher) order correlation of the
disturbance terms of our specifications, which is required for the
consistency of these estimates.

We proceed by reporting the effects of funding and degree of
collaboration. Notice that the had some EPSRC funding variable
allows us to compare the predicted number of publications for any
degree of collaboration (including zero) to the predicted number
of publications for a researcher without funding. In total, we have

14 Although the GLS IV estimator does not correct for the autocorrelation created
by the endogeneity of lagged publications, we include this specification to compare
the resulting coefficients with those obtained using the GMM-AB estimator.

a “baseline” productivity prediction, i.e., the expected number of
publications for an academic who does not have any funding (hf = 0
and fin = 0 in the equation in Section 4.1), an additional effect for
those that have non-collaborative funding (hf = 1 and fin = 0) and
another effect emanating from the degree of collaboration (hf = 1
and fin > 0). As shown in Table 3, all the funding and degree of col-
laboration coefficients have the same sign (and are all significant)
in all the specifications. Thus, we first explain the results using the
benchmark specification. Then we compare the magnitudes of the
coefficients of the benchmark to those of the non-instrumented
specification to shed some light on which of the selection mech-
anisms described in the conceptual framework is consistent with
the empirical findings.

5.1.1. Effect of funding and degree of collaboration with industry
The antilog of the constant term minus one, which in the bench-

mark specification in column two is equal to 0.60, is the baseline
productivity prediction, i.e., the expected number of publications
for an academic at the lowest rank (lecturer) who does not have
any funding or patents.

Turning to our measure of funding, we find that, consistent with
our conceptual framework, the positive and significant coefficient
for the variable had some EPSRC fundingt−1 (ˇ1 in the equation in
Section 4.1) corroborates that (non-collaborative) research funding
enhances research output. The coefficient implies that for a lecturer
with no patents the marginal effect of having non-collaborative
EPSRC funding compared to not having any EPSRC funding at all is
equal to 0.35 (additional) publications.15

The linear coefficient of the fraction of EPSRC funding with
industry variable (ˇ2 in the equation in Section 4.1) is positive and
significant (0.925) and the coefficient of the quadratic term (ˇ3
in the same equation) is negative and significant (−1.710). These
results indicate that the effect of the degree of industry collab-
oration on the number of publications has an inverted U-shape.

15 This marginal effect is the difference between the baseline number of publica-
tions when the academic had some EPSRC funding – the antilog of (0.471 + 0.199)
minus one – and the baseline publications calculated as described above – the antilog
of 0.471 minus one.
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Table 3
Impact of industry collaboration on research output.a

1 2 3 4
Model GLS FE GLS FE IV GLS FE IV GMM AB†

Dependent variable countit countit countit countit

Funding and collaboration:
Had some EPSRC fundingit−1 0.044*** 0.199** 0.203** 0.066*

(0.013) (0.083) (0.083) (0.035)
Fraction of EPSRC funding with industryit−1 0.373*** 0.925*** 0.897*** 0.286*

(0.099) (0.352) (0.344) (0.167)
Fraction of EPSRC funding with industry2

it−1 −0.421*** −1.710*** −1.651*** −0.432*
(0.145) (0.655) (0.638) (0.249)

Patent filed:
Patentit 0.026 0.040* 0.040* 0.059**

(0.019) (0.021) (0.021) (0.024)
Patentit−1 0.014 0.037* 0.035* 0.014

(0.019) (0.020) (0.020) (0.025)
Patentit−2 0.037* 0.039* 0.038* 0.017

(0.021) (0.021) (0.021) (0.026)

Academic rank:
Senior lecturerit−1 0.048*** 0.025 0.022 −0.013

(0.014) (0.018) (0.018) (0.009)
Readerit−1 0.093*** −0.002 −0.007 0.001

(0.022) (0.027) (0.027) (0.020)
Professorit−1 0.109*** −0.003 −0.009 0.017

(0.025) (0.032) (0.032) (0.019)

Lagged publications:
Countit−1 0.031*** 0.820***

(0.008) (0.046)
Countit-2 0.003 0.042***

(0.007) (0.015)

Constant 0.479*** 0.471*** 0.453*** 0.087***
(0.014) (0.039) (0.040) (0.022)

Number of observations 33601 28508 28508 26782
Number of ID 3991 3975 3975 3724
Number of instruments 0 3 3 164
F (Joint sig. of instr. in 1st stage) 14.25*** 14.25***

R2̂ (overall) 0.247 0.087 0.369
F 19.072*** 8.961*** 8.709***

Wald chi2 12597***

AR(1) test z (p-value) 0
AR(2) test z (p-value) 0
AR(3) test z (p-value) 0.7205
Sargan test (p-value) 0.1699

Robust standard errors in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01.
a The dependent variable, the lagged dependent variables and the fraction of EPSRC funding with industryare in logarithms.
† Endogenous variables are fraction of EPSRC funding with industry and lagged count. Lagged endogenous and exogenous variables and year dummies are used as

instruments.

According to the estimated curve, the fraction EPSRC of funding
with industry that would result in the maximum number of pub-
lications is 0.31.16 Thus, in the range of 0–31%, increasing the
fraction of collaborative EPSRC funding results in more publica-
tions, but beyond that threshold a higher fraction is associated with
a decreasing number of publications. In other words, all else equal,
researchers who have approximately one third of their EPSRC fund-
ing in collaboration with the industry achieve the highest level of
research output.

Fig. 2 shows the impact of funding and the degree of industry
collaboration on publications for the benchmark specification (GLS
FE IV) as well as that of the other specifications (GLS FE, GLS FE
IV with lags, and GMM-AB). Using the estimates of each model, we
plot the predicted number of publications against the degree of col-
laborative EPSRC funding for a lecturer with no patents. The degree
of collaborative EPSRC funding ranges from 0% to 100%, i.e., from
no funding involving industry partners (all non-collaborative) to

16 This is the antilog (minus one) of the fraction x satisfying the first order condition
of the number of publications’ maximization problem, i.e., x* = ˇ2 /[−2*ˇ3].

all funding including industry partners. For the benchmark spec-
ification, we also plot the predicted number of publications for a
researcher that has not received any EPSRC funding (the predicted
number is similar for the other models).

5.1.2. Comparing the GLS IV FE benchmark to the
non-instrumented specifications

For all specifications, the intercept and the linear coefficient are
positive and significant and the quadratic term is negative and sig-
nificant. Thus, independently of the estimation method chosen,
the effect of the degree of industry collaboration on the num-
ber of publications is curvilinear and the curve has an inverted
U-shape, as for the benchmark. Noticeably, the curve estimated
without instrumenting (GLS FE) is flatter, peaks at higher degrees
and, more importantly, lies below the GLS specifications that instru-
ment collaboration (GLS FE IV, GLS FE IV with lags) for degrees of
collaboration below 80% and above for those above 80%. Thus, not
accounting for the endogeneity problem results in a negative bias
for low and medium degrees of collaboration and a positive bias for
high degrees.
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Table 4
Impact of industry collaboration for other measures of research output.a

1 2 3 4 5
Model GLS FE IV GLS FE IV GLS FE IV GLS FE IV GLS FE IV
Dependent variable Co-author weighted countit Applied countit Basic countit Countit Countit

Collaboration stock 5 yrs 5 yrs 5 yrs 2 yrs 5 yrs
Sample Full Full Full Full 10 yr BP†

Funding and collaboration:
Had some EPSRC fundingit−1 0.079 0.100 0.184*** 0.580*** 0.243**

(0.051) (0.074) (0.054) (0.142) (0.104)
Fraction of EPSRC funding with industryit−1 0.720*** 0.952*** 0.028 0.992*** 0.994**

(0.214) (0.307) (0.209) (0.331) (0.438)
Fraction of EPSRC funding with industry2

it−1 −1.535*** −1.785*** −0.509 −3.228*** −2.154***
(0.395) (0.575) (0.399) (0.661) (0.811)

Patent filed:
Patentit 0.029** 0.030 0.034** 0.050** 0.043*

(0.013) (0.020) (0.015) (0.020) (0.026)
Patentit−1 0.028** 0.014 0.012 0.042** 0.013

(0.013) (0.020) (0.014) (0.020) (0.024)
Patentit−2 0.026* 0.045** 0.021 0.043** 0.043*

(0.013) (0.020) (0.014) (0.021) (0.026)

Academic rank:
Senior lecturerit-1 0.012 0.017 −0.004 0.053*** −0.016

(0.011) (0.016) (0.012) (0.016) (0.023)
Readerit-1 −0.003 −0.000 −0.006 0.014 −0.033

(0.017) (0.025) (0.018) (0.025) (0.033)
Professorit-1 −0.034* 0.002 −0.010 −0.015 −0.034

(0.021) (0.030) (0.022) (0.031) (0.039)

Constant 0.282*** 0.283*** 0.106*** 0.236*** 0.536***
(0.024) (0.036) (0.026) (0.071) (0.097)

Number of observations 28508 28508 28508 31837 16250
Number of ID 3975 3975 3975 4436 1625
R2̂ (overall) 0.001 0.054 0.03 0.131 0.197
F 8.80*** 7.93*** 2.12*** 13.119*** 6.986***

Robust standard errors in parentheses, *p < 0.10, **p < 0.05, ***p < 0.01.
a The dependent variable and the fraction of EPSRC funding with industry are in logarithms.
† Balanced panel of 10 years.

Relating these empirical findings to our conceptual framework,
we conclude that when we instrument the degree of industry
collaboration using measures of economic activity around the
academics’ universities, and thus control for supply side oppor-
tunities for collaboration, we remove part of the positive bias on
publications for high degrees of collaboration introduced by the
presence of a large proportion of industry-savvy researchers. These
academics manage to select and to be selected by high-quality
partners. Contrarily, the negative bias of the un-instrumented spec-
ification observed at the lower end of the degree of collaboration
could be due to the presence of a large proportion of non-industry-
savvy researchers that have not developed the same screening
capacity, and are not as appealing academic partners to collaborate
with.

The negative bias for low degrees of collaboration is also con-
sistent with the existence of less-able academics becoming less
output-driven and choosing (or being forced to choose) degrees
of collaboration that are too low. In contrast, the negative bias
obtained for intermediate degrees of collaboration is inconsistent
with the hypothesis that talented and output-driven academics
would choose intermediate degrees of collaboration. The positive
bias observed for high degrees of collaboration is also inconsis-
tent with the hypothesis that less-able and less output-driven
academics choose degrees of collaboration that are too high.

Finally, the potential positive bias of the highly selective
academics at the lower end of the distribution of degrees of
collaboration does not exist or must be overcome by the nega-
tive bias introduced by the non-industry-savvy researchers or the
less-output-driven, i.e., the proportion of highly able selective aca-
demics in the lower degrees of collaboration appears to be low.

At high degrees of collaboration, the plausible negative bias intro-
duced by lower-able academics undertaking a high number of
collaborative projects with low publication potential, seems to be
dominated by the positive bias introduced by the industry-savvy
researchers.

5.1.3. Effects of past research output
Note that the curve obtained using the GMM-AB specification

is above all other curves for all degrees of collaboration. This is
because, as shown in column 4 of Table 3, the GMM-AB coeffi-
cient associated with the previous year’s publications is positive,
significant, and large. Because we have taken logarithms, we can
interpret this coefficient as an elasticity. Thus, an increase in the
number of publications in the previous year by 100% (i.e., dou-
bling them) would result in the following year’s expected number
of publications increasing by 82 percentage points.

As in earlier papers, our estimates suggest that there is persis-
tence in publications. Several explanations are possible. First, there
can be a “Matthew effect” (Merton, 1968), which describes the pos-
sibility that the work of those with a higher number of publications
receive greater recognition than equivalent work by those that
publish less. Second, a higher number of publications reinforces
the attractiveness of the academic as a collaborator, increasing her
chances of obtaining more and/or better industrial partners and,
in turn, higher returns on her collaborations in terms of research
output.

Still, the GMM-AB results do not change qualitatively our results
and corroborate that the relationship between the degree of collab-
oration with industry and research output can be represented as an
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Table 5
Impact of industry collaboration by groups of academics.a

1 2 3 4 5
Model GLS FE IV GLS FE IV GLS FE IV GLS FE IV GLS FE IV
Dependent variable Countit Countit Countit Countit Countit

Reference group (group indicatorit−1 = 0) High collab High collab High funding Russell group Non professor
Non-reference group (group indicatorit−1 = 1) Low collab† Low collab†† Low funding††† Non Russell group Professor

Funding and collaboration:
Had some EPSRC fundingit−1 0.236** 0.142 0.161* 0.175** 0.161*

(0.105) (0.107) (0.087) (−0.088) (0.087)
Group indicatorit−1 *had some EPSRC
fundingit−1

−0.090 0.047 0.004 −0.1 0.259
(0.129) (0.139) (0.048) (−0.087) (0.190)

Fraction of EPSRC funding with industryit−1 1.364*** 1.580*** 1.270*** 1.051*** 0.862**
(0.414) (0.430) (0.392) (−0.389) (0.382)

Group indicatorit−1 *fraction of EPSRC funding
with industryit−1

−0.846** −0.509 −0.073 −0.038 −0.812
(0.359) (0.389) (0.291) (−0.344) (0.612)

Fraction of ESPRC funding with industry2
it−1 −2.687*** −2.723*** −2.177*** −1.386* −1.677**

(0.814) (0.845) (0.743) (−0.74) (0.810)
Group indicatorit−1 *fraction of EPSRC funding
with industry2

it−1

1.810** −0.120 −0.685 −0.676 1.511
(0.837) (0.902) (0.700) (-0.809) (1.212)

Patent filed:
Patentit 0.040* 0.029 0.039* 0.040* 0.040*

(0.021) (0.021) (0.021) (−0.021) (0.021)
Patentit−1 0.036* 0.031 0.034* 0.037* 0.037*

(0.021) (0.021) (0.020) (−0.02) (0.020)
Patentit−2 0.040* 0.031 0.036* 0.038* 0.039*

(0.021) (0.022) (0.021) (−0.021) (0.021)

Academic rank:
Senior lecturerit−1 0.025 0.017 0.022 0.027 0.030

(0.019) (0.020) (0.019) (−0.019) (0.019)
Readerit−1 −0.004 −0.015 −0.012 −0.002 0.008

(0.027) (0.029) (0.027) (−0.027) (0.028)
Professorit−1 −0.006 −0.028 −0.024 −0.004 −0.091

(0.033) (0.034) (0.033) (−0.032) (0.144)

Constant 0.490*** 0.573*** 0.518*** 0.451*** 0.502***
(0.040) (0.086) (0.042) (−0.079) (0.082)

Number of observations 27667 23645 28508 28508 28508
Number of ID 3833 3150 3975 3975 3975
R2̂ (overall) 0.105 0.053 0.180 0.101 0.089
F 7.963*** 8.209*** 9.637*** 8.669*** 7.923***

Robust standard errors in parentheses, *p < 0.10, **p < 0.05, ***p < 0.01.
a The dependent variable and the fraction of EPSRC funding with industry are in logarithms.
† Based on being below the median in the percentage of average lifetime EPSRC funding with the industry. Academics with zero funding excluded.
†† Based on being below the median in the percentage of publications co-authored with the industry. Academics with zero publications excluded.
††† Based on being below the median in the amount of EPSRC funding received in the past 5 years.

inverted U-shape even when we control for the positive effect of
past research performance.

5.1.4. Effects of the other explanatory variables
We control for the number of patents filed by the academic to

take into account other constraints on the scope of research and/or
in the dissemination of research results and to compare our results
to previous papers (e.g., Azoulay et al., 2009; Breschi et al., 2008).
In accordance with the recent literature, having filed patents in the
current year (t) is positively associated with publications, both for
the GLS IV FE and the GMM-AB models. The marginal increases;
however, are small.17 In the GLS IV FE model, having filed patents
in each of the previous two years (t−1 and t−2) is also positive and
significant. The marginal increases associated with patents filed in
current and in previous years are very similar, thus not suggesting a
publication delay. These coefficients are positive but not significant
in the GMM-AB model.

We further control for academic rank but we find a significant
effect of seniority on publications only for the non-instrumented
model. The effect of seniority in the instrumental variables’ regres-

17 The associated effect is calculated as the antilog (minus one) of the coefficient
of the indicator variable and ranges from 0.04 to 0.06 extra publications.

sions is absorbed by the instrumented funding variable. Seniority
may thus be better at explaining access to funding than publication
counts.

5.2. Robustness checks

In Table 4, we reproduce the results of our benchmark model
using different measures of research output and collaboration and
a balanced sample of academics.

5.2.1. Co-author-weighted count of publications
The first column shows the impact of the fraction of collabora-

tive EPSRC funding when publications are weighted by the number
of co-authors. The baseline number of the co-author weighted pub-
lication count is 0.33. The coefficients of the linear and quadratic
terms of the fraction of EPSRC funding with industry variable are
significant. The effect of the had some EPSRC funding variable
is insignificant, suggesting that funding may increase the num-
ber of publications simply by increasing the size of the teams.
This is further suggested by the negative effect of the professor
dummy, as these may primarily benefit from larger labs through
co-authorship. The effect of patents is positive and significant as in
the benchmark regression in Table 3.
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5.2.2. Count of basic and applied publications
Columns 2 and 3 decompose the effects by research orientation.

We report the estimates of the impact of the degree of collaboration
on the count of applied (“technology”) and basic (“science”) pub-
lications. The baseline number of applied and basic articles is 0.33
and 0.11, respectively. Thus, the expected number of basic publi-
cations is lower than that for applied publications. The existence
of EPSRC funding positively impacts the number of basic publica-
tions, but the fraction of collaborative EPSRC funding does not. For
applied research, the linear and quadratic coefficients associated
with industry collaboration variables are instead significant, simi-
lar to the benchmark regression in Table 3. This is due to the fact
that we consider the field of engineering, where the majority of
publications are classified as “applied”.

The effect of patents also differs by type of research. Our results
in the benchmark specification in Table 3 show that having filed
a patent in the current and in each of the two previous years sig-
nificantly increases the overall number of publications. Columns 2
and 3 in Table 4 show that when separating the effect for applied
and basic publications, all the coefficients of having filed patents
retain the positive sign. There are interesting differences; however,
in terms of magnitude and significance. We find a significant posi-
tive contemporaneous effect of patenting on basic publications and
a delayed significant positive effect on applied ones. Indeed, while
basic research may produce a variety of complementary research
outputs that can result in publications and patents, it may be delay-
ing the publication of more applied, technically-oriented, research
papers.

5.2.3. Two-year based funding stock
The estimates in column 4 use a variation of the main explana-

tory variables. Here, the variables had some EPSRC funding and
fraction of EPSRC funding with industry include the stream of funds
received in the last two years only (as opposed to the last five).
Although this choice is a less accurate reflection of the funding
profile of the academic, it deals better with potential autocorrela-
tion issues. Additionally, basing our measure on a shorter window
allows younger and more mobile researchers to enter the sample.
All coefficients of interest have the same sign and similar magnitude
as in the main five-year stock regressions. The degree of collabora-
tive funding resulting in the maximum number of publications is
lower than that of the benchmark regression (0.17 as opposed to
0.31). This may be due to the fact that funded projects usually last
longer than two years. The positive, long-term effects of collabora-
tion may not be well captured and the degree-maximizing output
is smaller. Instead, the model attributes a very large part of the
variation in publications to the variable had some EPSRC funding.

5.2.4. Balanced sample
The specification in column 5 is estimated using only those

researchers that can be observed for the full last 15 years of our
sample, so that we are able to build the five-year funding and indus-
try collaboration variables and estimate a balanced 10-year panel.
This specification enables us to explore whether the full-sample
estimates have been significantly affected by attrition. Again, all
coefficients of interest have the same sign and similar magnitude as
in the full-sample regressions, which we interpret as being an indi-
cation that attrition has not caused important biases in the main
estimates. The degree resulting in maximum number of publica-
tions is also very similar.

5.3. Results by categories of academics

In Table 5, we test how our benchmark model results differ
across categories of academics by interacting our main explanatory
variables (had some EPSRC funding and fraction of EPSRC funding

with industry) with different group-indicator variables. For each
categorization, the group indicator variable takes the value 0 if the
academic belongs to the so-called reference group and the value
1 if the academic belongs to the non-reference group. Thus, the
main coefficient of a given regressor (for instance, fraction of EPSRC
funding with industryt−1) reflects its effect for those in the ref-
erence group. The effect for those in the non-reference group is
obtained by adding to the main coefficient the coefficient associ-
ated to the interacted term (group indicator * fraction of EPSRC
funding with industryt−1), if significantly different from zero. As
explained below, the trade-off between industry collaboration and
publications exists for all the categories of researchers analyzed.
That is, the effect of the linear term of the variable fraction of EPSRC
with industry is positive and that of the quadratic term is negative
for all specifications, both for the reference and the non-reference
groups. The magnitudes of the effects; however, differ.

The first column distinguishes between academics who are
high collaborators in terms of having an above the median share
of publications co-authored with industry (reference group) from
those that have an average below the median. The main effects for
the linear and quadratic terms of the variable fraction of EPSRC
with industry are larger than those in the benchmark case in
Table 3. Thus, the relationship between the degree of collabora-
tion and publications for high-collaborators is characterized by a
more concave curve than the relationship corresponding to the
benchmark’s estimates. The interaction terms’ estimates are signif-
icant and of the opposite sign, albeit of a smaller magnitude, than
the main effects. This indicates that the relationship for the group
of low-collaborators is still an inverted U-shape, albeit less con-
cave. Therefore, occasional collaborators also experience gains and
losses when varying their degree of collaboration, but the effects
are weaker. Indeed, the breadth of ideas, the funding obtained, as
well as the constraints imposed, seem relatively more important
for heavy collaborators.

The second column distinguishes academics with an above-
the-median percentage of average lifetime of EPSRC funding with
industry (reference group) from those below. The magnitude of the
main effects on publications is larger than those in the benchmark
model and is also larger than those in column 1. This suggests that
high collaborators based on lifetime funding exhibit a relationship
between the degree of collaboration and publications that is even
more sensitive to changes in the degree of collaboration than the
relationship of high-collaborators based on joint publications. The
correction estimates for low-collaborators as per this measure are
not significant.

The third column separates academics with high levels of fund-
ing, i.e., those above the median in the amount of EPSRC funding
received in the last 5 years, from those with lower levels of fund-
ing. Again the main coefficients of the funding variables are larger
than those of the baseline model in Table 3. In addition, the correc-
tion coefficients for the non-reference group are not significantly
different from zero.

In column 4, we distinguish between academics working in a
Russell group university from those that do not. We find similar
coefficients to those in the benchmark model and no significant dif-
ference between researchers in the group of well-known research
intensive institutions from those in lesser-known and less-funded
institutions. Lower levels of core funding may force smaller insti-
tutions to rely relatively more on external grants (Perkmann et al.,
2013) and result in higher degrees of engagement with industry
(D’Este and Patel, 2005). But the trade-offs of industry collaboration
in terms of academic output appear to be similar for academics at
very different kinds of institutions.

Lastly, column 5 distinguishes between academics that are of a
lower academic rank from those holding the rank of full professor.
The trade-off associated with the degree of collaboration may have
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been less pronounced for senior academics. Extensive experience
and consolidated networks could make the new insights and the
additional funds acquired through collaboration relatively less rel-
evant, but at the same time constraints may also be less important.
Young researchers, instead, are at a crucial point of their careers,
and their research output is expected to be relatively more sensi-
tive to collaboration (Dasgupta and David, 1994). According to our
estimates, though, a professor does not experience a significantly
different impact of the degree of industry collaboration compared
to someone at a lower academic rank.

Overall, we conclude that although there are significant differ-
ences, the curvilinear effect of the degree of industry collaboration
holds for different categories of academics. We interpret this as
evidence of the robustness of our results.

6. Discussion and conclusion

The effect of research collaboration on publication outcomes
has received little attention in the academic literature to date,
which has primarily focused on academic patenting and spin-
off formations as channels of interaction between science and
industry. Many authors have argued, though, that research collabo-
rations, contract research, and consultancy are far more important
channels of knowledge transfer. They are; however, more diffi-
cult to measure empirically and even more difficult to compare
across institutions and time, which may explain why the litera-
ture has paid scant attention to these more collaborative forms of
university-industry interactions.

This paper uses homogeneous information on the collaborative
grants awarded by the EPSRC, by far the most important funding
source of research in engineering sciences in the UK, to measure
university–industry collaboration over a 20-year period. We show
that the effect of collaboration depends on the share of projects
undertaken in collaboration with industry, i.e., on the degree of
collaboration. Our results indicate that the number of publications
increases both with the presence of EPSRC funding and with the
fraction of EPSRC funding in collaboration with industry, but only
up to a certain point. For degrees of collaboration above 30–40%,
research output declines.

These results confirm the expectations of our conceptual frame-
work which argues that the degree of collaboration-publication
relationship could be described by an inverted U-shaped curve.
Indeed, the formation of links with the private sector may boost
research output because collaboration can provide new ideas and
additional funding. But high degrees of collaboration can also dam-
age research output, as research ideas may then be of lower value,
industry may impose non-disclosure clauses or because extensive
collaboration could reduce the time to do research and cause atten-
tion problems.

Our results may provide an explanation for some of the (appar-
ently mixed) results in the literature, which has effectively focused
on linear relationships. On the one hand, they might explain the
positive effects documented in studies that investigate forms of col-
laboration that require little to no direct interaction (e.g., contact
through technology transfer offices and trade fairs, as in Hottenrott
and Lawson, 2014). Academic patenting can also be viewed as
collaboration requiring low levels of interaction (Agrawal and
Henderson, 2002). The evidence of a positive relationship between
patenting and publications (Azoulay et al., 2009; Breschi et al.,
2008; Fabrizio and DiMinin, 2008; Stephan et al., 2007) is then con-
sistent with the idea of patenting being on the increasing part of
the inverted U-shaped curve.

But on the other hand, our results can also explain the negative
effects documented in other studies. Previous research that inves-
tigates the effects of forms of collaboration that require substantial

interaction, as for example in academic start-ups, find a negative
effect. Toole and Czarnitzki (2010) show that US academics that
receive funding to start or join for-profit firms are more productive
than their peers, but that they produce fewer publications after
receiving the grant. Goldfarb (2008) tracks a sample of 221 univer-
sity researchers funded by the NASA and concludes that researchers
repeatedly funded by the NASA experienced a reduction in aca-
demic output. In these cases, the effect is likely to have been that
associated to the decreasing part of the inverted U-shaped curve.

Our results are robust to various measures of academic research
output and to various subsamples of academics. Nevertheless, some
remarks are in order. Basic research output is positively affected
by the presence of EPSRC funding but not significantly affected by
the degree of industry collaboration. Conversely, for applied pub-
lications we find no significant effect of the presence of EPSRC
funding but a significant inverted U-shaped effect of the degree
of industry collaboration. Indeed, the effects of collaboration iden-
tified in the conceptual framework are especially important for
applied research. The availability of financial resources, one of the
benefits of collaboration, is key for applied research programs.18

Research ideas arising from collaboration are also more likely to be
turned into applied research papers. At the same time, publication
constraints should especially affect applied publications as applied
research can be published as patents or publications, resulting in
potential publication delays (Perkmann and Walsh, 2009).

A key challenge in our analysis is that the observed degrees of
collaboration are not exogenous, but are the result of individual and
bilateral choices in a two-sided “market” of academics and firms.
Our conceptual framework shows that the direction of the bias
one might incur, if selection issues are ignored, depends on which
mechanism is at work. Our empirical analysis compares the results
of our instrumental-variable benchmark specification to those of a
non-instrumented regression to shed some light on which mech-
anism is the most important in our data. We document a negative
bias for low degrees of collaboration and a positive bias for high
degrees. This is consistent with the presence of a large propor-
tion of “industry-savvy” researchers at the high-end of the range
of the degrees of industry collaboration. Indeed, this presence shall
introduce a positive bias in publications because industry-savvy
researchers end up being matched with more productive firm part-
ners, resulting in more productive research projects.

Our results also bolster empirical evidence from previous sur-
veys and cross-sectional studies on the effects of collaborative
research funding on academic output by showing that these results
hold for a large longitudinal sample. Even after controlling for
endogeneity, we find supportive evidence of the positive impact
of the existence of collaboration, as in Gulbrandsen and Smeby
(2005). The negative effect of high degrees of collaboration is
also consistent with other survey results (Blumenthal et al., 1996)
and cross-section empirical evidence (Manjarres-Henriquez et al.,
2009).

We also find a direct, positive effect of patenting on publica-
tions, just as in the earlier literature. The contemporaneous effect
of patent disclosure is similar to the one of past patents, giving no
evidence of a “secrecy” effect. Yet when we distinguish between
types of research, we find a stronger contemporaneous effect of
patents on publications in basic science journals. This may explain
the positive correlation found in papers that analyze publication
and patenting activity of researchers in basic sciences, e.g., life-
science (Azoulay et al., 2009; Breschi et al., 2008) and the lack of

18 Financial rewards; however, might also have a positive impact on the production
of basic research because basic and applied research efforts are complementary
(Thursby et al., 2007) or because they induce a selection of riskier and more basic
research programms (Banal-Estañol and Macho-Stadler, 2010).
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contemporaneous correlation found in papers that analyze applied
sciences, e.g., engineering (Agrawal and Henderson, 2002). We do;
however, find a delayed positive effect of patenting for publications
in applied journals, suggesting that applied research may suffer
from secrecy. Perkmann and Walsh (2009) indeed argue that more
applied projects are more likely to be affected by secrecy because
of their immediate commercial viability.

In terms of policy or managerial implications, our findings sug-
gest that program interventions encouraging academic researchers
to collaborate with industry may be beneficial. A moderate degree
of industry collaboration not only facilitates the transfer of knowl-
edge and accelerates the exploitation of new inventions, but it
also increases academic research output. Our results point at the
disadvantages of academic policies that favor the separation of
tasks at the university. If some faculty members focus on research
while others perform other activities such as collaboration and
development, scientific output might suffer. Indeed, according to
our estimates, two academics collaborating moderately (degree of
30–50%) would publish more than a non-collaborating and a fully
collaborating one combined (degrees of 0% and 60–100%).

On the other hand, our results also indicate that there are
degrees of collaboration that may be excessive in the sense of being
detrimental in terms of research productivity. Several factors point
to an increase in the degrees of industry collaboration in recent
times (Stephan, 2012). As the degrees of involvement with industry
increase, more academics may find themselves on the decreasing
part of the curve. Indeed, academics might start pursuing research
lines that no longer result in breakthrough discoveries resulting in
fewer publications. In addition, high degrees of collaboration can
negatively affect material and data exchange between academics
and thus be damaging to the academic community as a whole
(Stephan, 2012). But high degrees of collaboration can also bring
gains in terms of patenting or better employment prospects for
graduates.

Ours can only be a first step in the analysis of the effects of the
various channels of knowledge transfer. We had to limit our anal-
ysis to research collaborations sponsored through public funding,
which can only proxy for the extent of the collaboration activities.
Including private partners in these grants, though, is highly cor-
related with obtaining direct funding from the industry (Meissner,
2011). We therefore expect that the curvilinear effect would remain
unhindered if, instead of using our measure of degree of industry
collaboration, we were to use the overall degree of engagement. In
terms of magnitudes, though, the curve may peak at higher degrees
of collaboration. First, mechanically, if direct funding is added in
the numerator and denominator, the fraction increases. Second,
because of the positive correlation, the researchers with one third
of their EPSRC funds with industry shall have a substantial amount
of direct funding.

With more comprehensive and homogeneous information, we
could also make comparisons between the effects of research
collaboration and other channels of knowledge transfer such as
consultancy and patents. In our sample, research collaborations
have a stronger impact than patents. It might also be of interest
to tackle interactions between the different channels. We know
little about whether collaboration channels complement or substi-
tute each other. Consultancy, for example, might have a positive
effect on research output if and only if it is complemented by col-
laboration in research. Of course, this is only a conjecture and a
challenging task for future research.
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Banal-Estañol, A., Macho-Stadler, I., Pérez-Castrillo, D., 2013. Research output from
university-industry collaborative projects. Econ. Dev. Q. 27 (1), 71–81.
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