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Abstract

We examine the individual, contextual, and institutional determinants of faculty patenting behavior in
a panel dataset of 3862 academic life scientists. Using discrete time hazard rate models and fixed effects
logistic models, we find that patenting events are preceded by a flurry of publications, even holding constant
time-invariant scientific talent and the latent patentability of a scientist’s research. Whereas previous research
emphasized that academic patenters are more accomplished on average than their non-patenting counterparts,
our findings suggest that patenting behavior is also a function of scientific opportunities. This result has
important implications for the public policy debate surrounding academic patenting.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the past few decades, universities and other public-sector research organizations have become
more proactive in their efforts to commercialize scientific discoveries (e.g., Jaffe and Lerner, 2001;
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Jensen and Thursby, 2001; Thursby and Thursby, 2002). This change has spawned a growing
academic literature on university technology transfer, one stream of which has assessed trends
in university patenting and the spillover of university science into the private sector (Jaffe, 1989;
Mansfield, 1995; Henderson et al., 1998). Underlying the well documented upswing in university
patenting has been a sharp increase in the number of individual academic scientists who are listed
as inventors on patents. In this paper, we examine the individual, contextual, and institutional
determinants of academic patenting in a panel dataset of 3862 academic life scientists.

Past research on academic patenting has proceeded along three distinct tracks. The first track has
explored the influence of institutional factors, such as the prestige of the university or the quality
of its technology licensing office, on the intensity of patenting at the university level (Di Gregorio
and Shane, 2003). The second track has followed a more qualitative approach; the architects of
it have shown that there are important differences in the propensity to patent across scientific
and technological fields and in the area-specific motivations underlying patenting activity. This
work has highlighted the notable difference in the precursors to patenting between the life and
physical sciences/engineering (Owen-Smith and Powell, 2001). Researchers in the third track
have focused on evaluating statistically the consequences of patenting for the scientific output of
individual academic scientists (Breschi et al., 2005; Fabrizio and Diminin, 2005).

Our paper shares with this last group of studies a focus on the individual scientist as the level of
analysis, but we concentrate on the antecedents (rather than the consequences) of faculty patenting
activity. We adopt this approach because we view the answer to the question “Who Patents?” as
a necessary input into the policy debate surrounding the consequences of the academic patenting
phenomenon. For example, it seems imprudent to make policy recommendations (e.g., should
patent output be taken into consideration in hiring and promotion decisions?) before gaining a
clear understanding of who is involved in this activity, at what career stage, and at what type
of institution. Furthermore, understanding the determinants of the patenting decision provides a
window into the broader phenomenon of academic entrepreneurship, since among academic life
scientists at least, applying for a patent is a very strong and robust predictor of the decision to
participate in the founding of a biotechnology firm (Stuart and Ding, 2006).

Our study generates a novel set of results, underscoring the benefits of fine-grained longitudinal
data at the researcher level of analysis. Although we present a number of findings, we consider two
to be most distinctive relative to the existing literature on academic patenting. First, we document
that patenting is often accompanied by a flurry of publication activity in the year preceding the
patent application, even after accounting for the lagged stock of publications (in hazard rate
models) or controlling for scientist fixed effects. This result highlights the fact that academic
patenting, rather than merely reflecting the influence of time-invariant demographic factors, also
responds to variation in scientific opportunities. Holding life-time scientific achievement constant,
we find that surges of scientific productivity, not steady research performance, is most likely to
be associated with patenting. We interpret this as suggesting that, at the individual level, the
uncovering of new, productive areas of scientific inquiry is an important precursor to the act of
patenting.

Our second novel finding concerns the establishment of a relationship between what we
construe to be the latent patentability of a faculty’s research and his/her propensity to patent.
While latent patentability typically has been assumed to be unobservable, we are able to devise
a patentability score for each scientist in our sample by using keywords in the publications of
scientists that have already applied for patent rights as a benchmark for patentable research, and
then comparing the research of each scientist in our dataset to this benchmark. Although there is
noise in this proxy, it nevertheless quite strongly predicts a patenting event.
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In addition to our results concerning the association between the onset of patenting and both
scientific opportunity and latent patentability, we also find a pronounced gender difference in the
propensity to patent. In a typical specification, we find that women scientists patent at half the
rate of men (see Ding et al., 2006, for additional exploration of this difference). We also observe
life-cycle effects on the propensity to patent. We find that mid-career academics are much more
likely to patent than are younger and older faculty members. Further, we provide suggestive
evidence that current institutional affiliation and scientists’ social networks influence the onset
of patenting. In particular, our analyses uncover two results: first, we find that the presence of
co-authors who have patented in the past increases the likelihood of a patent application, and
second, we show that scientists are more likely to patent when they are employed at universities
with large patent portfolios. These two findings are consistent both with the existence of genuine
peer effects in patenting and with the idea that the academic labor market matches scientists with
commercial proclivities in similar departments. In addition, the university-level patent effect may
reflect the role of a well-functioning technology licensing office (TLO) in either increasing the
individual-level rewards or reducing the costs of faculty patenting.

Independent of any specific finding, the general analysis herein is relevant to the broader
question of the impact of patenting on the development of academic science. Surveys of university
faculty have found rampant concern that patenting is skewing research agendas toward commercial
priorities, causing delay in the public dissemination of research findings, and crowding out effort
devoted to the pursuit of fundamental knowledge (Blumenthal et al., 1996; Campbell et al., 2002;
Krimsky, 2003). Insofar as our results relate to this issue, the finding that patenting follows a flurry
of publications suggests to us that the crowd-out hypothesis is unlikely to hold true.3 Although we
cannot adjudicate between opposing claims regarding the effect of patenting on individual-level or
university-level outcomes in the present study, one can construe our results as providing the “first
stage” of an econometric analysis of the effect of academic patenting on the rate and direction of
scientific progress, an evaluation we are pursuing in other research (Azoulay et al., 2006).

The rest of the paper proceeds as follows. In the next section, we situate our contribution in the
large and growing literature on academic patenting and highlight what we regard as outstanding
issues that can only be resolved with researcher-level longitudinal data of the kind we analyze.
Section 3 describes data sources and the construction of the sample and discusses our econometric
approach. Section 4 presents descriptive statistics and reports our results. Section 5 concludes.

2. Who patents?

In recent times, the region of overlap between academic science and commercial markets has
experienced significant growth. The expanding interface between these two domains raises myr-
iad questions, ranging from the amount of near-term economic value created by the spillovers of
university research, to the emergence of select universities as engines of entrepreneurial activity,
to the influence of opportunities to commercialize scientific research on the traditional incen-
tive systems that have governed academic science. Researchers have engaged a variety of these
questions, and advancement in our understanding is occurring along many fronts.

Spurred in part by accessible data, many studies have assessed the role of universities as
direct sources of commercial innovations, primarily considering the quality and quantity of their

3 However, if scientific trajectories associated with patents exhaust themselves more quickly than those remaining
free of associations with the world of commerce, then intertemporal substitution of “basic”, fundamental knowledge by
“applied”, patentable output could still be consistent with the patterns we observe in the data.
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innovative outputs. For instance, Henderson et al. examine the relative importance of university
patents, finding that over time there has been a decline in the positive quality gap separating
university patents from those assigned to for-profit firms. Mowery et al. (2001) have investigated
the consequence of the policy changes brought about by the Bayh-Dole Act. They challenge
the conventional wisdom that Bayh-Dole has accelerated universities’ production of patents,
showing that the legislation was not a primary factor in explaining the uptick in patenting at three
prominent universities. At the level of the university, Thursby and Thursby find that university
administrators have become more proactive in pursuing patents and licensing opportunities. Di
Gregorio and Shane explore cross-university differences in the formation of start-up companies,
discovering that intellectual eminence is a central factor distinguishing the universities that spawn
start-up companies.

The majority of the archival work that has looked at the commercial outputs of universities
has treated the organization as the level of analysis (notable exceptions include Agrawal and
Henderson, 2002; Stephan et al., 2004). Two recent papers (Breschi et al., 2005; Fabrizio and
Diminin, 2005) evaluate statistically the effect of academic patenting on publication output in a
panel dataset of individual scientists. These authors start from a sample of patenting academics,
which they then supplement with a set of non-patenter controls. This empirical strategy is legit-
imate if one focuses on the consequences of academic patenting for other outcomes of interest,
but less so if one is concerned with the antecedents of faculty patenting activity.

In this article, we analyze the probability of patenting in a large, longitudinal, random sample
of university faculty in the life sciences. Our analysis is guided by an interest in four issues. First,
how does the proclivity to patent vary with scientists’ gender and experience in the profession?
Second, what is the relationship between scientific productivity (measured as papers published)
and patenting? Third, are there significant differences across research areas within scientific
disciplines in terms of the apparent “patentability” of the work, and is there any evidence to
suggest that scientists may be altering their research to move toward patentable research? Fourth,
to what extent is the propensity to patent sensitive to the work context of the individual scientist,
particularly the level of commercial orientation of a scientist’s university and his or her co-authors?

Treating each of these in turn, we first ask, how does the propensity to patent change over the sci-
entific career? Economists and sociologists alike have a long-standing interest in career dynamics
in academe, in part because incentives in science vary over the professional life cycle. Two ele-
ments of the institutionalized reward system in science are generally thought to be tenure-invariant:
the tying of peer recognition to priority in research discovery, and the intrinsic satisfaction gar-
nered from solving vexing problems. However, monetary incentives to produce research output
in science do depend on the career stage, and it is well known that the wage-tenure profile in
academic science is not steep (Stephan, 1996). Given the shallow slope of post-tenure salary
increases, Levin and Stephan (1991) suggest that levels of investment in research should vary
over the career life-cycle. In particular, senior scientists with tenured appointments may reallo-
cate some of their effort to consulting and other extra-university income generating opportunities.
Therefore, if the widely held assumptions about changing incentives over the career do in fact
hold, we should observe that the rate of patenting accelerates in the post-tenure interval.

A countervailing possibility is implied by a growing body of ethnographic research that portrays
the increasing acceptance of patenting as a legitimate activity in academic science (Etzkowitz,
1998). If the pendulum has swung to the point that patenting is perceived to contribute to scientists’
scholarly reputations and influence, we would expect to observe that, viewing successive cohorts
of scientists, patenting occurs with increasing frequency in the early career stage. Consistent with
this perspective, Owen-Smith and Powell describe interviews with scientists who have come to
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view patents as reaffirmations of the originality of their work and as contributing to their scientific
visibility. Recent interview-based accounts thus raise the possibility of a significant shift in the
norms and reward system in science, with implications for life-cycle effects in patenting.

Moving on, there is a large literature that connects the gender of a scientist to his or her
performance along traditional dimensions of scientific achievement, such as productivity and
rates of rank advancement (e.g., Long and Fox, 1995). Numerous studies have documented that
women earn comparably lower salaries, garner fewer rank advancements, produce fewer papers,
and exit the profession at a great rate than do men. However, little is currently known about gender
differences in engagement in the commercial aspects of science. In this article, we estimate the
effect of scientists’ gender on the rate of patenting. In a related paper (Ding et al., 2006), we
incorporate qualitative data to probe the possible causes of the difference we find.

Next, we seek to identify the relationship between scientists’ productivity and the likelihood
that they patent. Existing evidence suggests that the scientists with the most stellar academic
credentials are also the most likely to be involved in commercial endeavors. In particular, Zucker et
al. (1998) describe the importance of the geographic location of star scientists in the emergence of
the biotechnology industry. They argue that the direct participation of leading academic scientists
in early stage biotechnology companies was so important that the locations of star scientists served
as geographical constraints on the development of the industry.

The existing literature thus provides reason to expect that patenting is concentrated among the
group of eminent scientists. Yet beyond the general association between research output and the
likelihood of engaging in market-related activities, identifying more precisely the relationship
between the production of papers and patents may adjudicate among the competing mechanisms
that could generate the relationship. In particular, if the magnitude of the stock of scientists’
research output predicts the onset of patenting, it is likely that faculty members’ scientific rep-
utations are important considerations in the decision to patent. If this proves to be the case, a
plausible explanation is that the prominence of the inventor on a patented technology may influ-
ence the university’s ability to capitalize on the intellectual property by affecting the probability
that potential licensees become aware of and interested in the technology.

Consider instead the implication of a positive relationship between the flow, but not the stock,
of scientists’ research output and the probability that a patent is issued. If the flow of output is
the determining factor, we would suggest that scientific opportunities loom large in the transition
to patenting. A flurry of scientific output (a high flow of publications) occurs when a scientist
unearths a productive domain of research. If patenting is a byproduct of a surge in productivity,
we think it reasonable to conclude that a patent is often an opportunistic response to the discovery
of a promising research area.

The third issue we consider is how the specific areas of expertise of academic scientists affect
the likelihood of patenting. Obviously, there exists heterogeneity across scientists in the potential
commercial value of the research they produce. If one needs to account for such differences,
it is tempting to argue that the analyst can accommodate them by incorporating scientist fixed
effects in the analysis. We believe, however, that this represents just a partial solution given the
volume and the diversity of research projects that scientists participate in throughout their careers.
We therefore attempt to develop a direct measure of the “patentability” of scientific research. The
intuition behind the measure is that knowledge of the research foci of academic scientists who have
already patented can be used to identify the domains of science in which research is patentable.
With such a measure in hand, we ask two questions. First, does the latent patentability of scientists’
research in fact affect the probability of patenting? Second, is it the patentability of the stock or
the flow of research outputs that most consequentially influences the propensity to patent?
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Fourth, we explore two elements of scientists’ work contexts. While it is well established that
propensities to patent vary substantially across universities, we do not have a clear sense for the
influence of organizational characteristics on the patenting rates of otherwise similar scientists
within different universities. Numerous studies suggest that the decision to engage in commercial
activity of all sorts is strongly influenced by factors ranging from the norms and culture of
an institution vis-à-vis commercial activity to the quality of the university’s technology transfer
office (Owen-Smith and Powell, 2001; Thursby and Thursby, 2002). Two prevalent considerations
are thus the (potentially endogenous) role of a smoothly functioning technology transfer office
in encouraging faculty to disclose possibly patentable research findings and, more generally, a
pro-commercialization “entrepreneurial culture” at a university. In our analysis, we ask whether
university-level variables influence the patent rate net of controls for many observable individual-
level characteristics.

A related question concerns the influence of proximate colleagues on the patent proclivities
of individual scientists. There are a set of reasons to expect that scientists who work closely
with commercially inclined peers will be more likely to pursue commercial applications of their
scientific research. Stuart and Ding argue that there are two mechanisms through which colleagues
affect the probability that a particular scientist engages in commercial activities. First, peers exert
attitudinal influences, in particular shaping the degree to which a given scientist is likely to embrace
patenting as both a legitimate undertaking for an academic scientist and as a potential contributor
to his or her professional standing. Second, peers convey information that may lower the cost of
patenting, such as contacts in the technology transfer office and advice about how to minimize the
amount of time consumed in patenting. We thus look for what might be labeled as “peer effects”
on the transition to patenting. Specifically, we examine whether scientists who have co-authorship
links with patent holders or with researchers employed in the private sector are themselves more
likely to patent.

A necessary caveat pertains to the thorny issue of causality. Many of our independent variables,
such as publications or latent patentability, could be considered outcomes of interest. Moreover,
it would be incorrect to interpret our findings as providing evidence, inter alia, that publications
and patents are complements or that latent patentability “causes” patent applications. Rather,
we have identified correlates of patenting. The conditional correlations we estimate can still
be useful insofar as they help to narrow the range of plausible theories regarding the effect
of academic patenting on scientific productivity. In addition, since our most interesting results
pertain to what are in fact lagged dependent variables, the study highlights the need to use cor-
rect econometric methodologies to recover causal effects. This is pursued in a companion paper
(Azoulay et al.).

3. Data, sample characteristics, and econometric approach

We examine the determinants of faculty patenting behavior in a panel dataset of academic life
scientists employed at universities and non-profit research institutes. This area was chosen because
the biomedical fields have accounted for the preponderance of university patenting and licensing
activity (Mowery et al.). While we have not selected scientists because they have patented, we
have sampled from scientific disciplines that we know to have significantly contributed to a vibrant
area of technological development. We began by drawing 12,000 doctoral degree recipients from
UMI Proquest Digital Dissertations, which lists Ph.D. recipients from more than one thousand
universities. In forming the sample, we randomly selected individuals, but only those with Ph.D.s
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Table 1
Top 15 scientific disciplines in the sample

UMI subject code UMI subject description Frequency

487; 303 Biochemistry 855 (22.2 percent)
306 Biology, general 563 (14.6 percent)
410 Biology, microbiology 466 (12.1 percent)
419 Health sciences, pharmacology 239 (6.2 percent)
490 Chemistry, organic 212 (5.5 percent)
786 Biophysics, general 210 (5.4 percent)
369 Biology, genetics 191 (4.9 percent)
433 Biology, animal physiology 170 (4.4 percent)
982 Health sciences, immunology 167 (4.3 percent)
307 Biology, molecular 102 (2.6 percent)
301 Bacteriology 61 (1.6 percent)
287 Biology, anatomy 54 (1.4 percent)
571 Health sciences, pathology 52 (1.3 percent)
349 Psychology, psychobiology 37 (1.0 percent)
572 Health sciences, pharmacy 34 (0.9 percent)

This table reports the Top 15 disciplines from which our sample was drawn. These disciplines have spawned the greatest
number of biotechnology firm founders, scientific advisors and executives. The table also reports the frequency and the
proportion of scientists in our sample for each of these 15 scientific disciplines.

in scientific disciplines that have informed commercial biotechnology.4 This assures a random
sample of Ph.D.s in areas in which academic research may have significant, short-term commercial
value.

Given our focus on the life sciences, one might question whether our results generalize to other
academic fields, such as mechanical or electrical engineering. One should note, however, that our
definition of life sciences is expansive. For example, our data include scientists holding Ph.D.’s in
chemistry, chemical engineering, materials engineering, plant biology, veterinary sciences, and
food science. The life sciences, broadly construed, represent such a large slice of the academic
patenting phenomenon that the issue of generalizability does not loom particularly large.5

Next, we obtained scientists’ publication records from the ISI’s Web of Science database.
Because the Web of Science includes authors’ affiliations, we were able to identify Ph.D. graduates
who pursued careers outside of academe. After removing individuals who (i) had no publications
in any post-graduate year, (ii) published exclusively under corporate affiliations, or (iii) exited
academe early in their careers,6 we were left with 3862 scientists, all of whom we know to have

4 To identify the scientific disciplines that have been most important to biotechnology, we coded the educational back-
grounds of the Ph.D. holding, university-employed scientific advisory board members of all publicly traded biotechnology
firms. The source of information on scientific advisors’ degrees was the IPO prospectuses of the 533 U.S.-based biotech-
nology firms that have been filed with the U.S. Securities and Exchange Committee. We then stratified the random draw
from UMI to correspond to the disciplines and Ph.D. grant years of firms’ scientific advisors. For example, 22 percent of
biotechnology company scientific advisors hold biochemistry Ph.D.s; we drew a corresponding proportion of biochemists
into our sample. Table 1 lists the Top 15 disciplines from which scientists in our sample are selected.

5 In a related paper, one of the authors assembled a dataset of “superstar” academic patenters, who were defined to be
U.S.-based academics with more than 17 patents between 1976 and 2004 (this corresponds to scientists above the 99th
percentile of the patent count distribution). Among the 544 such scientists, he found only 138 (25.37 percent) who did
not fit our definition of “life scientists”.

6 Ph.D.s with academic affiliations lasting less than 5 years were dropped from the dataset to exclude post-doctoral
fellows who later moved to jobs in industry.
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been employed at research institutions. Each scientist is observed from the year after he or she
earned a Ph.D. until 1999, unless the individual exited academia.7 The final panel contains 54,737
person–year observations between 1968 and 1999.

3.1. Variables

A brief description of the patenting process in academia is useful to interpret the results we
will present. The process begins when a faculty member discloses an invention to the university’s
technology transfer office (TTO).8 The commercial potential of this invention is then evaluated
by the TTO, which may decide to seek patent rights on the invention. Usually concurrently, the
TTO will market the innovation to potential licensing partners in industry. A typical licensing
agreement specifies a 40 percent royalty rate for the individual faculty inventor, to be assessed on
the gross licensing revenues the invention accrues.

The patents of the academic scientists in our data were assembled from the NBER patent
database (Hall et al., 2001). To identify academic patenters, we matched the scientists in our
dataset to the list of inventors in the NBER patent database. Matches were performed on the basis
of last and first names, and we used information on assignee (university) and geographic region
to eliminate false matches.9

Within the sample of 3862 scientists, we found 473 (12.2 percent) patenters who were listed
on 1372 patents. Out of these patents, 342 were assigned to corporate entities (of which 31
were co-assigned to a university and a corporation), even though the inventors of interest were
academically affiliated based on information revealed in other patent applications filed by the
inventor or in publication records. Most of these corporate patents have multiple inventors, and
a university scientist could be listed as one of the inventors for his advice during the process of
invention. A typical example is Richard J. Lagow, who obtained a Ph.D. in inorganic chemistry
from Rice University in 1970 and subsequently held professorships at MIT and the Univer-
sity of Texas Austin. Lagow began patenting in 1973, and his patents have been assigned to
MIT, University of Texas, and Exfluor Research Corporation. Among the 31 patents for which
Exfluor is the assignee and Lagow is an inventor, 28 involved multiple inventors and 3 listed
Lagow as the sole inventor. Based on the data sources available to us, it is not possible to
determine Lagow’s exact role in developing these inventions and what type of arrangement
Lagow has with University of Texas, but from the titles and abstracts of the Exfluor patents
it is clear that the patented inventions are based on knowledge closely related to Lagow’s

7 We assume a researcher has exited academia when he or she fails to publish for five consecutive years or when the
scientist begins to publish almost exclusively under a corporate affiliation. In either case, we censor observation in the
year in which a scientist last publishes under a university affiliation.

8 Faculty members are contractually obligated to disclose potentially commercializable discoveries developed on univer-
sity premises to the TTO; in theory (but see below) they do not have the option to patent university-originated discoveries
without going through the official channels. The average TTO received 78 invention disclosures in 2003 but filed only 40
new patent applications (AUTM, 2003). Of course, these numbers vary widely across institutions depending on whether
involvement with the world of commerce corresponds to a well-established culture within the institution.

9 Because we know the affiliations of the scientists in our data, we do not face the daunting name-matching challenges
described in Trajtenberg (2004). We are able to rule out false positives by insisting that both scientists’ names and
affiliations match the inventor and assignee fields in the patent data. When scientist and inventor names matched but
institutions did not, we compared the subject matter of patents to the content of scientists’ papers to form a judgment
about whether a match was valid. In making this assessment, we incorporated additional information, such as the location
of the inventor and whether or not a given patent had multiple inventors.
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research. Therefore, our data suggests that a non-trivial portion of faculty patenting activity
may occur without the official involvement of their employing university’s technology transfer
office.

For each scientist in our data, we explore two dependent variables: the transition to first patent
application and a dummy variable indicating whether the researcher applied for at least one patent
in a given year.

3.1.1. Research output and latent patentability
We create three measures of scientists’ research output. From the Web of Science we computed

annual paper publication counts for each scientist. We count all papers on which a scientist is listed
as an author.10 While this seems a good proxy for the rate of a given scientist’s output, we would
also like to measure the content of this output. We do this in two different ways. First, we use the
affiliation data available from Web of Science to identify all instances in which a scientist wrote a
paper that was co-authored with one or more individuals in a corporate research and development
lab. We assume that papers co-authored with researchers in industry are more likely to be of an
applied nature, and thus we consider publishing with co-authors in industry as an indicator of the
degree to which scientists are engaging in commercially oriented research.

Second, it would be desirable to account directly for differences among scientists in the inherent
“patentability” of their research. To construct such a measure, we have used the title words in
scientists’ publications to identify the areas in which they have conducted research, and then
applied weights to theses areas based on an (endogenous-to-the-sample) measure of the extent
to which other scientists working in these areas have patented their discoveries. Intuitively, we
use the publications of scientists who have already applied for patent rights as the benchmark
for patentable research, and then compare the research of each scientist in our dataset to this
benchmark to generate a research patentability score for each scientist–year. Specifically, the
research patentability score for scientist i in year t is defined as:

PATENTABILITYit =
J∑

j=1

wi
j,t−1

nijt∑
k

nikt

where j = 1, . . . , J indexes each of the scientific keywords appearing in the titles of the journal
articles published by scientist i in year t,11nijt is the number of times each of the keywords j has
appeared in scientist i’s articles published in year t, and wi

jt is a weight for each keyword that
measures the frequency with which word j is used in the titles of articles published by scientists
who have entered the patenting regime in year t or earlier, relative to those who have not entered
the patenting regime as of year t (the calculation of wi

jt is detailed in the data Appendix A available
on the JEBO website). Intuitively, the patentability of a scientist’s research can change because
of a change in the direction of the research of that scientist or because other patenters’ research
increasingly comes to resemble that of the scientist. The former effect is captured by the ratio

10 In other words, we treat sole-authored and co-authored papers as equivalents, but restricting the set of papers to those
where the focal scientist appears first or last in the authorship list generates results substantively similar to those we present
below.
11 We relied on title words in journal articles instead of journal- or author-assigned keywords because the Web of Science

database did not begin to include keyword descriptors until 1992. However, the titles of biomedical research papers
typically indicate the research area and the methodology used in the paper. We find high overlap between title words and
keywords in the papers for which both are available.
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nijt/
∑

knikt , the latter by the weights wi
j,t−1. Because the benchmark in year t − 1 is used to

weight title words in year t, year-to-year changes in the research patentability score will reflect
only actions of the scientist (through their choices of title keywords), rather than contemporaneous
changes in the benchmark.12

Finally, to capture the idea that the inherent patentability of past research might still influence
the current propensity to patent, we compute a depreciated stock of the research patentability score
using a perpetual inventory model. Through the impact of the depreciation rate δ,13 this formulation
captures the fact that the recent substantive research orientation of a scientist’s research should
influence current behavior more strongly than scientific trajectories that unfolded in the more
distant past:

STOCK RPit = (1 − δ)STOCK RPi,t−1 + FLOW RPit =
t∑

τ=0

(1 − δ)t−τ FLOW RPiτ

3.1.2. Demographic, university, and network attributes
Following a number of studies of the determinants of scientists’ productivity, we were also

able to construct many covariates to account for individual and institutional factors that may
influence rates of publication and patenting. We coded gender based on first names. In the few
instances of gender-neutral names for which we could not determine sex based on web searches,
we assumed that the focal scientist was male. To account for life-cycle effects (Stephan), we
include the number of years since a scientist earned his or her Ph.D. Because the time involved
in publishing scientific research varies across fields, the regressions include a full set of dum-
mies for researchers’ dissertation subject areas. Some of the regressions control for time-invariant
quality differences among researchers through the inclusion of scientist fixed effects. In spec-
ifications without fixed effects, we enter a dichotomous measure of the quality of a scientists’
Ph.D. degree granting institution, which is a dummy variable indicating whether or not a sci-
entists’ doctoral program was ranked in the Top 20. Specifically, we collected Gourman Report
rankings for all institutions in our dataset. Gourman ranking are available at the field level and
were issued for the first time in 1980. We assigned universities their original rating for all years
prior to 1980 (and updated them every other year for the subsequent period). In addition, we
compute a count of the number of patents held by a scientist’s Ph.D. granting university dur-
ing the 5 years prior to his or her degree granting year to control for any possible imprinting
effects.

We also include a number of employer-level variables that may influence scientists’ patent-
ing. These covariates are updated each year and when scientists change employers. First, given
the existing evidence that prominent universities are more likely to be involved in commercial
activities, we include a quality rank dummy variable analogous to the one constructed for Ph.D.
granting institutions. Second, we use the AUTM surveys to create a technology transfer office
(TTO) dummy variable, which is set to one in all years in which a scientist’s employing university

12 Previous researchers have developed other measures of proximity in technological space. For instance, Jaffe (1986)
used a cosine-based measure to assess the proximity between the R&D portfolio of any given pair of firms. While this
approach works well for measuring technological distance between dyads, it is not well suited to our setting since we
need to measure the distance between the scientific trajectory of any given scientist relative to that of a benchmark group
of (patenting) scientists.
13 We set δ equal to 0.15, the Griliches constant used by many innovation researchers on whose work this paper builds.

We verified that our core results are not sensitive to this arbitrary choice.
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has an active TTO. Third, a university’s stock of patents (excluding those of the focal scientist) is
entered in the model, among other things to control further for institutional differences in support
for patenting.

Finally, to capture the patenting proclivities of our scientists’ co-authors, we measure both
the number of co-authors and whether the co-authors have applied for patents. We are able to
identify patenting behavior only for co-authors who are also members of our sample. Since the
set of scientists analyzed here are drawn randomly from the population, this limitation should not
introduce bias, although the resulting count is clearly a noisy proxy for the underlying concept.
Furthermore, to distinguish the co-author peer effect from the influence of peers at the same
institution, we exclude co-authors who are also co-workers when creating these two variables.

3.2. Econometric considerations

Estimating the determinants of faculty patenting behavior requires a procedure that accommo-
dates the discrete nature of the event. Since our interest lies in analyzing the dynamics associated
with the onset of patenting in scientific careers, we employ discrete-time hazard rate models
(Cox, 1972; Myers et al., 1973; Allison, 1982). The use of discrete-time models (as opposed to
continuous-time models such as the Cox) is motivated by the fact that our failure time variable
displays multiple events within each time period. For a researcher i during experience interval
t, let the discrete-time hazard rate be pit = Pr[Ti = t|Ti ≥ t, Xit], where Ti is the time at which
researcher i experiences an event and Xit a vector of covariates. We use a logistic regression
function to link the hazard rate with time and the explanatory covariates:

ln

[
pit

1 − pit

]
= αt + β′Xit

where αt is a set of experience interval dummies. In practice, we estimate a simple logit of the
decision to apply for a patent, where the observations corresponding to years subsequent to the
first event have been dropped from the estimation sample. In this model, the factor change in the
probability that a scientist will experience an event relative to probability of not experiencing an
event is computed as exp(β). Though this differs from the Cox model (in which the hazard rate
multipliers are to be interpreted relative to a non-parametric baseline hazard), the logit model
estimates converge to the Cox estimates as the time interval approaches 0 (Thompson, 1977).

These models largely rely on between-scientist variation in the covariates to identify the
determinants of the first transition to patenting. A complementary approach is to consider how
within-scientist changes in covariates influence the propensity to patent. We do so by estimating
so-called “fixed-effects” logit models by conditional maximum likelihood (Chamberlain, 1984).
In contrast to our implementation of the standard logits, this approach analyzes the careers of
patenting scientists in their entirety rather than just until the year of first patent application. In
other words, we treat patenting as a repeatable event in the fixed-effects logit regressions. There is,
however, a countervailing cost in the fixed-effects approach—it drops all observations correspond-
ing to scientists who never patent.14 We believe that together, the discrete-time hazard models
and the fixed effects logit models provide a comprehensive picture of the academic patenting
phenomenon.

14 Conditional maximum likelihood estimation requires some variation in the dependent variable to condition out the
individual scientist effects. Because scientists who have never patented have no variation on the outcome variable, they
must be dropped from the analysis.
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Fig. 1. Distribution of patent count for patenting scientists.

4. Results

We begin with some basic descriptive information about the sample. In Fig. 1, we plot the
distribution of patents for the 473 (12.2 percent) patenting researchers in the sample. The histogram
illustrates a rapid drop off after one; most patenters are listed on one or two patents throughout
their career, and very few scientists in our data receive more than 10 patents. Thus, even when
we restrict our attention to patenting scientists, the act of patenting never becomes routine for the
majority. Fig. 2 displays the distribution of scientists’ total publication counts, broken out by their
patenting status. Consistent with the conventional wisdom that patenting is concentrated among

Fig. 2. Distribution of publication count for patenting and non-patenting scientists.
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Table 2
Descriptive statistics

Mean S.D. Min. Max.

Time-varying (58,562 person–year observations)
Experience 10.201 7.122 1 32
Patent flow dummy 0.017 0.131 0 1
Publications flow 1.729 2.379 0 35
Publications stock 17.563 26.759 0 386
Research patentability flow 0.022 0.049 0 4.173
Research patentability stock 0.111 0.142 0 4.201
Collaboration tie with company scientists 0.235 0.424 0 1
Average number of identified co-authors per paper 0.122 0.244 0 10
Identified co-authors have patents 0.039 0.193 0 1
Employer graduate school in Top 20 0.231 0.422 0 1
Employer has TTO 0.488 0.500 0 1
Employer patent stock 71.80 145.18 0 2189
Calendar year 1986 7.741 1968 1999

Time-invariant (3862 observations)
Female 0.211 0.408 0 1
Ph.D. university graduate school in Top 20 0.308 0.462 0 1
Ph.D. university 5-year patent stock 18.983 40.906 0 566
Scientist has one or more patents 0.122 0.328 0 1

the group of academically productive scientists, the distribution for the patenter subsample is
much less skewed than that of the non-patenter subsample.

4.1. Descriptive statistics

Table 2 presents the summary descriptive statistics for variables used in our analysis. Table 3
reports, by scientists’ patenting status, the mean research and employer characteristics measured
at five career stages. The data in this table are quite suggestive in that they show, across all
variables and all experience intervals, a difference between patenters and non-patenters. The
table shows that researchers who have sought and received patent rights for their discoveries are
more productive at each career stage: they publish on average 35 percent more research papers
as those who have not yet patented. Scientists who have applied for patent rights are closer to
commercial research than their non-patenting counterparts, as indicated by the fact that they have
collaborated more often with researchers in the private sector. Likewise, the intrinsic patentability
of their research is higher across all years of professional experience. Although this relationship is
intuitive, it suggests that our journal article title-word-based measure of research patentability may
in fact capture some of the patentability in scientists’ research. Finally, patenters are more likely
to work at universities where patenting activity is intensive (as measured by current employer
patent stock); the presence of a TTO does not appear to make a difference in these univariate
comparisons; and they are more likely to have co-authors that have themselves patented.

Fig. 3 displays the distribution of patenting events over time. Although we observe an uptick
in the years following Bayh-Dole, it is also clear that patenting activity was taking place even
before the adoption of the Act. This is consistent with the findings of Mowery et al. In addition,
the figure demonstrates a relatively persistent increase in patenting in the academic life sciences,
which has been documented elsewhere.
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Table 3
Scientists’ mean research and employer characteristics at five career stages by patent application status

Experience = 5 Experience = 10 Experience = 15 Experience = 20 Experience = 25

Yesa Noa Yesa Noa Yesa Noa Yesa Noa Yesa Noa

Research publication flow 1.563 (1.648) 1.290 (1.801) 2.524 (2.945) 1.821 (2.228) 3.208 (3.276) 2.036 (2.629) 3.513 (4.029) 2.215 (2.888) 3.395 (4.023) 2.179 (2.955)
Research publications stock 6.760 (5.971) 5.832 (6.668) 19.066 (16.753) 14.996 (14.819) 35.389 (28.251) 24.429 (23.490) 50.974 (40.143) 37.227 (34.069) 74.386 (60.078) 48.098 (45.535)
Research patentability flow 0.024 (0.028) 0.016 (0.050) 0.043 (0.133) 0.023 (0.047) 0.037 (0.032) 0.027 (0.032) 0.047 (0.048) 0.032 (0.041) 0.037 (0.029) 0.036 (0.038)
Research patentability stock 0.078 (0.074) 0.052 (0.091) 0.178 (0.183) 0.113 (0.142) 0.230 (0.181) 0.157 (0.130) 0.289 (0.166) 0.209 (0.144) 0.293 (0.122) 0.245 (0.175)
Has collaboration ties with

firm scientists
0.156 (0.365) 0.088 (0.283) 0.355 (0.480) 0.237 (0.425) 0.528 (0.500) 0.357 (0.479) 0.693 (0.462) 0.463 (0.499) 0.772 (0.421) 0.520 (0.500)

Identified co-authors have
patents

0.042 (0.201) 0.013 (0.114) 0.072 (0.260) 0.030 (0.170) 0.120 (0.326) 0.046 (0.210) 0.136 (0.344) 0.084 (0.277) 0.149 (0.358) 0.108 (0.311)

Employer graduate school
ranks in Top 20

0.323 (0.470) 0.264 (0.441) 0.313 (0.465) 0.219 (0.413) 0.250 (0.434) 0.200 (0.400) 0.197 (0.399) 0.181 (0.385) 0.175 (0.382) 0.170 (0.376)

Employer has TTO 0.531 (0.502) 0.384 (0.486) 0.620 (0.487) 0.486 (0.500) 0.694 (0.462) 0.595 (0.491) 0.719 (0.450) 0.688 (0.463) 0.825 (0.382) 0.738 (0.440)
Employer patent stock 107.4 (206.8) 53.6 (136.7) 159.4 (307.3) 64.6 (133.7) 143.0 (224.1) 75.9 (116.4) 134.4 (185.1) 110.2 (155.1) 172.3 (238.6) 120.8 (163.7)
Observations 96 3610 166 2429 216 1621 228 1072 114 519

This table reports the mean research and employer characteristics measured at five different stages in scientists’ career: the 5th, 10th, 15th, 20th and 25th year after the scientist
was granted a Ph.D. Within each career stage, the table is further broken out by whether a scientist has ever applied for a patent (e.g., if a scientist applied for a patent between
the 16th and 20th year after he was granted a Ph.D., he contributed to the mean values of the “no” category of experience: 5, 10 and 15, and to the mean values of the “yes”
category of experience: 20 and 25).

a Scientist has at least one patent application.
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Fig. 3. Distribution of patenting activity over time. This figure plots the number of patent applications filed in each year
and the proportion of scientists who have filed for one or more patent applications in each year.

Fig. 4. Unconditional hazard of first patent application by Ph.D. cohort. This figure plots the kernel-smoothed estimate
of the unconditional hazard of first patent application for three cohorts of scientists.

Fig. 4 displays, for the first decade of scientists’ careers, the unconditional hazard of first patent
application against experience (as measured by years since graduation) for three non-overlapping
cohorts of scientists: those who received their Ph.D. between 1967 and 1975, those who earned
their degree between 1976 and 1985, and those who matriculated between 1986 and 1990. The
figure is suggestive. It shows that over successive cohorts, the probability of patenting in an early
career stage has increased, and in the latest cohort of life scientists in our data, it is increasing at
a greater rate.15

15 The decline in the unconditional hazard for the third cohort after the 5th year of experience is caused by the gradual
censoring of the patent data. Specifically, the NBER patent database contains data on patents issued until 1999. Because
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Fig. 5. Patent co-inventorship patterns over professional experience. A “solo” inventor patent is one that lists a single
inventor. A “three or more inventor” patent is one that lists at least three inventors. Proportions represent the percent of all
first-time patents applied for by academic scientists in a given post-Ph.D. experience year that belong to either of these
two categories.

The observed increase in early career patenting is likely caused by multiple factors. One
possible explanation for the greater incidence of patenting among early career scientists is that
in recent years, post-doctoral fellows are more likely to be listed as co-inventors on patents
emanating from the research conducted in their advisors’ labs. Examining data from the 1970s
and 1980s, Stephan and Ma (2005) report that there has been an increase during this period both
in the proportion of scientists who begin their careers as post-doctoral fellows and in the duration
of these fellowships. We cannot explore this possibility directly because our data neither allow
us to distinguish post-docs from regular faculty, nor do they identify advisor/post-doc pairings.
However, we are able to document general trends in the incidence of patent co-inventorship.

Fig. 5 presents the proportion of all first-time patents in our data that list (i) a sole inventor
(dashed line) or (ii) three or more inventors (solid line), plotted against the number of years since
the patenting academic scientist received his or her Ph.D. degree. The figure demonstrates a clear
negative trend in scientists’ proclivities to receive sole invented patents over their careers and a
slightly positive trend in the incidence of multiple-inventor patents over the career. These data
alone do not permit us to rule out firmly the possibility that early career patenting is somehow
associated with changes in the profession-wide duration and prevalence of post-doctoral fellow-
ships, but it is evidently the case that the life-cycle trend is from sole to multiple-inventor patents,
not vice versa.

Although other explanations are feasible, we think it likely that part of the cause of the increase
in slope in the early career hazard of patenting observed in Fig. 4 reflects the fact that, over the
three decades spanned by our data, patenting has come to be recognized as a legitimate form of
scientific output in the academic life sciences. If this is the case, in future years we may observe

our measure of patenting is dated to the time of the filing of an application for a patent that eventually issues, the final
years of our data contain fewer patenting events because we do not observe patents that were applied for prior to 1999,
but did not issue until after this year. This same censoring process explains the apparent decline in patenting in the final
few years displayed in Fig. 3.
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that further increases in academic patenting will occur in the early career years as patents come
to be viewed as an important means of disseminating research findings and therefore of building
a professional reputation.

4.2. Discrete-time hazard rate models

We now present results from the discrete-time hazard rate regressions. The results can be
found in Table 4. Model (1) includes the variables often thought to be associated with academic
patenting, but without the paper count and the patentability variables. All models control for
(unreported) Ph.D. subject areas and calendar year dummies. The results confirm the patterns
that were already apparent in the descriptive statistics. We find evidence that controlling for the
number of co-authors, scientists with at least one patenting co-author are more likely to patent.
We caution readers against interpreting this correlation as evidence of patenting peer effects, as it
could merely reflect assortative matching among scientists along some other dimension correlated
with patenting. In the baseline specification, we also find an effect of co-authorship with corporate
researchers on the likelihood of first patent application. At the mean of the other covariates, having
co-authored with researchers in industry increases the predicted probability of patenting by 25
percent.16

The female scientist dummy variable has a sharply negative and highly statistically significant
effect on the likelihood of patenting. We estimate that the odds that a women scientist will become
a first-time patenter are 49 percent the odds of a male scientist (see Ding et al.).

Unlike the individual-level covariates, the impact of employer-related variables is mixed. We
do find a robust effect for the patent stock of the current employer. Like the positive effect of having
co-authors with patents, this result raises the possibility of peer effects, but it also could be that
employment at a high-patent-intensity university reflects the (otherwise unmeasured) influence
of well-functioning technology licensing office, or that it derives from a matching process by
which patent-oriented scientists are more likely to receive and accept offers from patent-focused
employers. In contrast to the patent activity of the current employer, we do not find an effect for
the intensity of patenting at the university where the scientist earned his/her doctorate. Likewise,
the effect of the presence of a technology licensing office is also negligible. This could be due
to the fact that this organizational innovation diffused quite rapidly among Tier-1 universities
following passage of the Bayh-Dole Act.

Model (2) adds two variables to the specification: a scientist’s count of publications in year t −
1, and a cumulative stock of publications up to year t − 2. We consider these variables to represent
the centerpiece of our analysis, as they help us to adjudicate between competing explanations
of the association between scientific productivity and patenting. In the first and all subsequent
regressions, only the flow variable is significant, suggesting that patenting is accompanied by a
flurry of scientific activity. At the mean of the data, each additional research publication increases
the researcher’s odds of entering the patenting regime during the next year by 10 percent; a one

16 In Table 4, the hazard of patenting appears to start increasing from 5th year after Ph.D. and peak during the 9th to
15th year after Ph.D. relative to the baseline category (23rd to 29th years after Ph.D. grant). We caution the reader that
this trend reflects our decision to limit the analysis to the first patenting event. Because we drop scientists from the data
once they have patented, we would expect more negative duration dependence as only those scientists who have not yet
patented prior to an experience interval remain in the risk set during that interval. In Table 5, when we included repeated
patenting events in the fixed effects specifications, the positive effect of experience [5, 8] over the baseline experience
category disappears.
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Table 4
Discrete-time hazard models of patenting

(1) (2) (3) (4)

Experience [1, 4] 0.253 (0.272) 0.290 (0.277) 0.329 (0.280) 0.301 (0.278)
Experience [5, 8] 0.438 (0.245)† 0.450 (0.250)† 0.499 (0.253)∗ 0.453 (0.252)†
Experience [9, 15] 0.652 (0.233)∗∗ 0.635 (0.237)∗∗ 0.678 (0.239)∗∗ 0.637 (0.237)∗∗
Experience [16, 22] 0.623 (0.229)∗∗ 0.604 (0.228)∗∗ 0.628 (0.228)∗∗ 0.606 (0.227)∗∗
Female −0.707 (0.153)∗∗ −0.672 (0.153)∗∗ −0.674 (0.153)∗∗ −0.673 (0.153)∗∗
Collaboration tie with company scientistst−1 0.208 (0.106)∗ 0.065 (0.113) 0.075 (0.113) 0.068 (0.114)
Average number of identified co-authors per papert−1 0.456 (0.113)∗∗ 0.441 (0.114)∗∗ 0.434 (0.115)∗∗ 0.442 (0.114)∗∗
Identified co-authors have patentt−1 0.532 (0.194)∗∗ 0.341 (0.207)† 0.350 (0.207)† 0.342 (0.207)†
Ph.D. university graduate school in Top 20 0.103 (0.103) 0.090 (0.103) 0.091 (0.103) 0.091 (0.103)
Ph.D. university 5-year patent stock 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
Employer graduate school in Top 20 −0.005 (0.120) −0.011 (0.119) −0.009 (0.119) −0.010 (0.119)
Employer has a TTOt−1 0.043 (0.117) 0.016 (0.118) 0.016 (0.118) 0.015 (0.118)
Employer patent stockt−1×100 0.087 (0.033)∗∗ 0.086 (0.033)∗ 0.085 (0.033)∗ 0.086 (0.033)∗
Research publication stockt−2 −0.001 (0.002)
Research publication stockt−3 0.001 (0.003)
Research publication stockt−3 −0.001 (0.003)
Research publication flowt−1 0.093 (0.020)∗∗ 0.104 (0.022)∗∗ 0.098 (0.023)∗∗
Research publication flowt−2 −0.030 (0.027) −0.040 (0.028)
Research publication flowt−3 0.033 (0.027)
Constant −6.351 (0.398)∗∗ −6.461 (0.402)∗∗ −6.497 (0.404)∗∗ −6.465 (0.402)∗∗
Log-likelihood −2563.20 −2548.48 −2547.83 −2547.08
Wald χ2 319.33 359.47 362.09 364.97
Model d.f. 44 46 47 48
Pseudo- R2 0.06 0.06 0.06 0.06

(5) (6) (7) (8) (9)

Experience [1, 4] 0.342 (0.279) 0.334 (0.279) 0.355 (0.282) 0.325 (0.280) 0.518 (0.325)
Experience [5, 8] 0.473 (0.251)† 0.445 (0.251)† 0.437 (0.250)† 0.464 (0.251)† 0.514 (0.310)†
Experience [9, 15] 0.642 (0.237)∗∗ 0.624 (0.237)∗∗ 0.615 (0.236)∗∗ 0.633 (0.238)∗∗ 0.793 (0.303)∗∗
Experience [16, 22] 0.603 (0.228)∗∗ 0.596 (0.228)∗∗ 0.591 (0.227)∗∗ 0.594 (0.228)∗∗ 0.709 (0.303)∗
Female −0.664 (0.153)∗∗ −0.663 (0.153)∗∗ −0.661 (0.153)∗∗ −0.664 (0.153)∗∗ −0.669 (0.153)∗∗
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Collaboration tie with company scientistst−1 0.052 (0.113) 0.045 (0.113) 0.039 (0.113) 0.049 (0.113) 0.056 (0.114)
Average number of identified co-authors per papert−1 0.426 (0.117)∗∗ 0.422 (0.118)∗∗ 0.427 (0.119)∗∗ 0.424 (0.118)∗∗ 0.437 (0.141)∗∗
Identified co-authors have patentt−1 0.306 (0.206) 0.307 (0.205) 0.307 (0.205) 0.295 (0.206) 0.291 (0.208)
Ph.D. university graduate school in Top 20 0.090 (0.103) 0.088 (0.103) 0.087 (0.103) 0.088 (0.104) 0.088 (0.104)
Ph.D. university 5-year patent stock 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
Employer graduate school in Top 20 −0.015 (0.120) −0.016 (0.120) −0.016 (0.119) −0.020 (0.120) −0.022 (0.120)
Employer has a TTOt−1 0.009 (0.118) 0.008 (0.118) 0.007 (0.118) 0.008 (0.118) 0.012 (0.118)
Employer patent stockt−1×100 0.089 (0.034)∗∗ 0.090 (0.034)∗∗ 0.090 (0.034)∗∗ 0.090 (0.034)∗∗ 0.090 (0.034)∗∗
Research publication stockt−2 −0.001 (0.002) −0.001 (0.002) −0.001 (0.003) −0.001 (0.002) −0.001 (0.003)
Research publication flowt−1 0.083 (0.023)∗∗ 0.082 (0.023)∗∗ 0.081 (0.023)∗∗ 0.079 (0.022)∗∗
Research patentability stockt−2 0.402 (0.287) 0.356 (0.301) 0.356 (0.300)
Research patentability stockt−3 0.116 (0.325)
Research patentability stockt−3 0.104 (0.341)
Research patentability flowt−1 1.522 (0.739)∗ 1.475 (0.746)∗ 1.496 (0.745)∗
Research patentability flowt−2 1.212 (0.698)† 1.246 (0.698)†
Research patentability flowt−3 −0.140 (0.960)
High research patentability flowt−1 0.311 (0.113)∗∗ 0.322 (0.113)∗∗
Publication flowt−1 × experience [1, 4] 0.005 (0.028)
Publication flowt−1 × experience [5, 8] 0.109 (0.034)∗∗
Publication flowt−1 × experience [9, 15] 0.061 (0.032)†
Publication flowt−1 × experience [16, 22] 0.081 (0.036)∗
Publication flowt−1 × experience [23, 29] 0.116 (0.055)∗
Constant −6.446 (0.414)∗∗ −6.382 (0.419)∗∗ −6.340 (0.423)∗∗ −6.474 (0.404)∗∗ −6.609 (0.439)∗∗
Log-likelihood −2545.98 −2545.05 −2544.77 −2543.98 −2543.26
Wald χ2 363.98 365.27 365.42 373.44 378.62
Model d.f. 49 51 53 48 52
Pseudo- R2 0.06 0.06 0.06 0.06 0.06

Notes: (1) Number of observations: 54,737; number of researchers: 3862; number of first patenting events: 473. (2) For all researchers in the sample, only observations on or
before the year of the first patenting event or censoring have been used (i.e., for all researchers that have patented, the observations after the year of their first patent application
were not used in the analysis). (3) All models control for Ph.D. subject areas and calendar year dummies. (4) Experience [23, 29] is the base category. (5) A dummy variable
indicating whether the researcher has zero publication in year t − 1 is included in Models (5)–(7), though not reported in the table; a dummy variable indicating whether the
researcher has zero publication in year t − 2 is included in Models (6) and (7), though not reported in the table; a dummy variable indicating whether the researcher has zero
publication in year t − 3 is included in Model (7), though not reported in the table. (6) Robust standard errors in parentheses, clustered by scientist. (7) † significant at 10 percent;
*significant at 5 percent; **significant at 1 percent.
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standard deviation increase (2.38) in the flow of research publications is associated with a 25
percent increase in the likelihood of patenting relative to the baseline rate. In Models (3) and (4),
we explore further the timing of this flurry by using more flexible specifications for the distributed
lag of publications. In Model (3), we include the flow of publications in year t − 2 and the stock
up to year t − 3. In Model (4), we include the flow of publications in year t − 3 and the stock up to
year t − 4. In both cases, only the coefficient for the 1-year lagged variable is significant; in other
words, a 1-year lag appears to capture accurately the timing of the publication flurry associated
with patenting.

This conditional correlation strikes us as being an important finding, for it informs the alter-
native interpretations of the association between scientific productivity and involvement with the
world of commerce. In the first interpretation, commercialization activities correspond to attempts
by scientists to monetize established reputations and professional status. This view is compati-
ble with a life-cycle model of the decision to patent in which the activity is pursued by highly
productive scientists to extract additional value from their reputations for scientific eminence. In
the second interpretation, publications and patents are co-occurring outputs that often encode the
same set of scientific insights; patents, just like publications, reflect genuine shocks to scientific
opportunities. The occurrence of a patenting event is then most likely to be associated with the
unearthing of a fruitful new avenue of scientific inquiry. We see the correlation between the onset
of patenting and the lagged flow, but not the stock, of publications as much more consistent with
the latter interpretation.17 The plausibility of this interpretation is reinforced by a peculiar aspect
of U.S. patent law which grants inventors a 1-year grace period from the date of publication for the
filing of a patent application (Merges, 1997, 226). In other words, an academic inventor wishing to
maximize the effective life of a patent would apply to the USPTO exactly 364 days after the date
of publication, provided that he/she is willing to forego patent protection in foreign jurisdictions.

Using the specification in Model (2) as a benchmark, Models (5) through (8) examine the
influence of the latent patentability of the scientist’s research on his/her propensity to enter the
patenting regime. We perform the analysis to parallel the approach taken in previous models.
Model (5) adds the flow of our research patentability score in year t − 1 (i.e., based on our
endogenous-to-the-sample measure, the extent to which the papers a scientist has published in the
previous year are substantively similar to the work previously published by patenting scientists)
and the corresponding cumulative stock up to year t − 2. At the mean of the data, increasing the
patentability score by one standard deviation raises the likelihood of first patent application by 8
percent. Moreover, as can be seen in Models (6) through (8), the conclusion is not substantially
altered when using a more flexible functional form to model the distributed lag of the latent
patentability score.18

We draw two conclusions from these results. First, the strong effect of the latent patentability
measure suggests that it is indeed possible to use bibliometric data gleaned from journal articles
to proxy for inter-person (or intra-person, inter-field, inter-university, etc.) differences in the level
of commercial orientation of scientific research. Second, here again, we find that only the flow

17 This interpretation is also consistent with Murray and Stern’s (2005) analysis of paper–patent pairs, but it suggests
that this phenomenon is not confined to the single journal whose articles they analyze. Of course, since we do not examine
the actual content of patents and papers, we can only provide circumstantial evidence in favor of a substantive linkage
between these two forms of output. In practice, it seems likely that patentable claims will be spread over a number of
papers revolving around a common theme, some published before, some after the filing of the patent application.
18 Specifically, in Model (8), we replace the research patentability flow at t − 1 with a dummy for observations that lie

above the 75th percentile of the research patentability flow variable.
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influences the likelihood of patenting. Just as in the case of publications, the onset of patenting
appears simultaneous with a change in the content of a scientist’s research in a direction that
makes it more similar to that of scientists who have already applied for patent rights. However,
because it is the flow, and not the stock of this measure that seems to matter, the evidence is
consistent with the idea that a patent application does not constitute merely a response to changes
in the formal and informal incentives faced by academic scientists over their careers, but also
reflects the seizing of opportunities along a novel research trajectory.

Using Model (8) as the benchmark, Model (9) examines whether the pre-application flurry
of publications varies in magnitude over the life cycle. We find no evidence of a flurry during
the first 4 years of the experience clock. For life scientists, this period typically corresponds to
post-doctoral fellowships, before obtaining a first job as an established, independent investigator.
In subsequent years, the magnitude of the flurry is in fact quite stable.

In summary, we find that individual rates of patenting respond to scientific opportunities and
that patenting coincides with a genuine change in the content of these scientists’ research. In
contrast, evidence regarding institutional influences on scientists’ propensity to patent is mixed.
We do not find evidence of “imprinting” of the commercial norms of the university in which a
scientist earned his/her Ph.D., but we do find that the current employer’s patent stock exerts a
positive influence on individual patenting rates. The presence of a TTO does not appear to have a
strong effect at the individual-level of analysis, although this variable is of course highly correlated
with the university patent stock. Finally, we do find evidence that having patenting co-authors
raises the odds of patenting for individual researchers.

4.3. Fixed-effects logit models

The results presented above suffer from two limitations. First, they only pertain to the decision
to apply for the first patent. For a sizable proportion of scientists, patenting is a repeated event,
and the determinants of patenting could differ in the group of serial patenters. Moreover, one
might object that our result regarding the flurry of publications contemporaneous with patenting
assumes that the lagged stock of publications adequately captures differences in talent among
scientists. It would be desirable to subject this set of results to a more stringent test. For these
reasons, Table 5 replicates Models (1), (4), (7) and (8) in Table 4 using fixed-effects logit models.
In these models, patenting is treated as a repeated event, and there are as many observations in
the estimation sample as there are person–years for patenting scientists.19

Model (2) in Table 5 shows that the impact of the 1-year lagged count of publications remains
even after accounting for time-invariant talent differences among scientists through fixed individ-
ual effects and that the inclusion of additional lags does not modify the result. We interpret this
finding as suggesting that within-scientist changes in scientific opportunities influence their like-
lihood of patenting. Similarly, Model (3) highlights the role of changes in the latent patentability
of a scientist’s research, which again appear to correlate with patenting events. As in the case of
the discrete hazard models, we find an effect only in the year immediately preceding the year of
patent application. In Model (4), we summarize the patentability measure with a dummy variable
set to one for observations above the 75th percentile of the continuous research patentability
variable, which yields similar results. The statistical significance of these effects is weaker than

19 We also drop the stock variables from the specifications, since they move too slowly to be separately identified from
the individual effects.
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Table 5
Fixed-effect logit models of probability of patenting

(1) (2) (3) (4)

Experience [1, 4] 0.060 (0.446) 0.053 (0.446) 0.032 (0.448) 0.061 (0.446)
Experience [5, 8] 0.315 (0.374) 0.295 (0.374) 0.278 (0.376) 0.296 (0.374)
Experience [9, 15] 0.561 (0.280)∗ 0.524 (0.280)† 0.513 (0.282)† 0.523 (0.280)†
Experience [16, 22] 0.535 (0.188)∗∗ 0.500 (0.189)∗∗ 0.490 (0.190)∗∗ 0.499 (0.189)∗∗
Collaboration tie with company scientistst−1 −0.106 (0.133) −0.120 (0.135) −0.121 (0.134) −0.124 (0.134)
Average number of identified co-authors per papert−1 0.323 (0.197) 0.303 (0.198) 0.291 (0.199) 0.309 (0.197)
Identified co-authors have patentst−1 0.430 (0.208)∗ 0.392 (0.209)† 0.379 (0.209)† 0.371 (0.209)†
Employer graduate school in Top 20 −0.195 (0.205) −0.175 (0.206) −0.179 (0.206) −0.173 (0.206)
Employer has a TTOt−1 0.355 (0.138)∗∗ 0.358 (0.138)∗∗ 0.355 (0.138)∗∗ 0.361 (0.138)∗∗
Employer patent stockt−1×100 0.020 (0.039) 0.019 (0.039) 0.018 (0.039) 0.017 (0.039)
Research publication flowt−1 0.034 (0.017)∗ 0.030 (0.017)† 0.032 (0.016)∗
Research publication flowt−2 −0.003 (0.018)
Research publication flowt−3 −0.0001 (0.018)
Research patentability flowt−1 2.138 (1.203)†
Research patentability flowt−2 −0.164 (1.021)
Research patentability flowt−3 −0.949 (1.160)
High research patentability flowt−1 0.199 (0.113)†

Log-likelihood −2016.65 −2014.37 −2011.87 −2012.87
Wald χ2 580.56 585.11 590.12 588.11
Model d.f. 19 22 26 21
Pseudo- R2 0.13 0.13 0.13 0.13

Notes: (1) Number of observations: 9312; number of researchers: 473. (2) All models control for period dummies 1975–1976, 1977–1979, 1980–1982, 1983–1985, 1986–1988,
1989–1991, 1992–1994, 1995–1997, 1998–1999; base category is 1967–1974. (3) Experience [23, 29] is the base category. (4) Dummy variables indicating whether the researcher
has zero publication in year t − 1, t − 2 and t − 3 are included in Model (3), though not reported in the table. (5) † significant at 10 percent; *significant at 5 percent; **significant
at 1 percent.
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in the corresponding “cross-sectional” hazard rate models. This is not surprising since the choice
of research topic by individual scientists is likely to exhibit stickiness.

5. Discussion and conclusion

The policy debate regarding interactions between industry and academia in general, and aca-
demic patenting in particular, has often taken for granted the idea that patenting represents a
fundamental departure from the norms of the “Republic of Science”. According to this view,
academic researchers toil in relative obscurity by producing fundamental knowledge up until the
time they receive tenure; subsequently, they may monetize their reputation by involving them-
selves in commercial pursuits. Patents, though not necessarily remunerative in and of themselves,
provide academic researchers with visibility and status in the world of commerce, for example
by contributing to the likelihood that they are invited to sit on corporate advisory boards (Stuart
and Ding).

The findings in this paper challenge the standard account. First and foremost, our results suggest
that patents and publications correspond to two types of output that have more in common than
previously believed. Indeed, the positive relationship between patent applications and the flow, but
not the stock, of publications suggest that patents and papers encode similar pieces of knowledge,
a fact exploited by Murray and Stern in their investigation of the anti-commons hypothesis.
Second, our results suggest that the academic incentive system may be evolving in ways that
accommodate deviations from traditional scientific norms of openness. Many patenting events in
our data take place in the early years of scientists’ careers, and the slope of the patent–experience
curve has become steeper with more recent cohorts of scientists. This finding dovetails with
qualitative accounts that emphasize that patents are becoming de rigueur on academic vitas
in many institutions and are even considered legitimate forms of research output in promotion
decisions.

If the present paper enhances our understanding of the antecedents of academic patenting,
much work is yet to be done to comprehend the effects of this now-prevalent practice on the rate
of scientific progress. Does applied research (as embodied in patents) crowd-out the fundamental
pursuit of knowledge (as measured by publications)? Answering this question is difficult because
patenting is a choice variable for scientists and the outcome of a decision that could easily reflect
expectations of future scientific productivity. One perspective on the regressions in this paper is
that they represent analyses of the selection process whose estimation is necessary to recover
causal effects of patenting on scientific output (Azoulay et al.). But our results also alert us to
the possibility that the substantive content of post-patent publications might be different from
these scientists’ pre-patent output, leading naturally to the study of the effect of patenting on the
direction of scientific progress. One could envision the use of our measure of latent patentability,
whose construction is a contribution of this paper, on the left-hand side of a regression equation
to investigate this question. In other words, rather than use inter- or intra-scientist differences in
the patentability of research to predict the onset of patenting as we have done, one could analyze
how patenting (and other career events, such as promotions) affect the commercial orientation of
scientists’ research.

Finally, our findings suggest that social contagion might be an important mechanism through
which the practice of academic patenting diffuses among the population of life scientists.
The result that scientists whose co-authors patent are more likely to patent themselves is
consistent with genuine “peer effects”, but it is also consistent with assortative matching of
co-authors along some other dimension correlated with patenting, such as scientific produc-
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tivity. Distinguishing between these competing hypotheses remains a valuable goal for future
research.
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