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A B S T R A C T

We investigate how the scientific community's perception of a scientist's prior work changes when one of his
articles is retracted. Relative to non-retracted control authors, faculty members who experience a retraction see
the citation rate to their earlier, non-retracted articles drop by 10% on average, consistent with the Bayesian
intuition that the market inferred their work was mediocre all along. We then investigate whether the eminence
of the retracted author and the cause of the retraction (fraud vs. mistake) shape the magnitude of the penalty. We
find that eminent scientists are more harshly penalized than their less distinguished peers in the wake of a
retraction, but only in cases involving fraud or misconduct. When the retraction event had its source in “honest
mistakes,” we find no evidence of differential stigma between high- and low-status faculty members.

1. Introduction

In July 1987 Charles Glueck, a leading scientist known for his in-
vestigations into the role of cholesterol in heart disease, was censured
by the National Institutes of Health (NIH) for serious scientific mis-
conduct in a study he published in Pediatrics, a major medical journal
(Glueck et al., 1986). At the time the article was retracted, Dr. Glueck
was the author of 200 publications that had garnered more than 10,000
citations. The scandal was well-publicized, including two articles in the
New York Times calling into question the ability of peer reviewers to
root out misconduct in scientific research more generally. Glueck's fall
from grace was swift—he had to resign his post from the University of
Cincinnati College of Medicine—but also far from complete: he found
employment as the Medical Director of The Jewish Hospital Cholesterol
Center in Cincinnati, and was still an active researcher as of 2014,
though he never again received funding from NIH.

Across many economic settings, including the realms of entertain-
ment, sports, and the upper echelons of the corporate world, scandal
looms as one of the primary mechanisms through which the mighty are
often brought low. The consequences of scandalous revelations are
especially important in the scientific community, where reputation
functions like a currency (Partha and David, 1994). However, the ef-
ficiency of the scientific reward system is predicated upon the

community's ability to separate truth from falsehood, to strike in-
accuracies from the scientific record, and to dole out reputational
punishment in the wake of errors or misconduct (Budd et al., 1998;
Lacetera and Zirulia, 2011; Fang et al., 2012; Furman et al., 2012;
Azoulay et al., 2015). Which scientists are most vulnerable to these
punishments? How does the nature of an infraction and the prominence
of the scientist moderate the effect of scandal on scientific reputation?
Because scandal is at its core an informational phenomenon, we study
the professional fate of scientists whose transgressions are suddenly
publicized—to paraphrase the succinct definition of scandal provided
by Adut (2005).

The reigning theoretical paradigm to assess the effects of the re-
velation of information is Bayesian updating. When the “market” (the
scientific community) observes the release of negative information, it
might infer that the agent (in this case, a scientist) was mediocre all
along, therefore discounting the work that he produced in the past. In
line with this paradigm, we develop a theoretical model that in-
corporates two key factors in the community's assessment of a scandal:
(i) the agent's prominence at the time of the negative revelation, and (ii)
the informational content of the disclosure itself. Our model predicts
that more prominent scientists will suffer greater reputation loss than
less prominent authors following disclosures of misconduct, but not
following disclosures of “honest mistakes.”
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To address these issues empirically, we turn to the setting of sci-
entific retractions. We start from a list of biomedical research articles
retracted during a period that spans the years 1980 to 2009. We care-
fully match the authors of these publications to the Faculty Roster of the
Association of American Medical Colleges (AAMC), a comprehensive
panel dataset recording the career histories of U.S. academic biomedical
researchers. This generates a list 376 US-based faculty with at least one
retracted publication (retracted authors) for whom we assemble a cu-
rated history of publications, NIH grants, and citations. Our novel
multi-level panel dataset links individual faculty members associated
with retraction events together with their prior, un-retracted publica-
tion output. We proceed in a symmetric fashion to produce a sample of
articles linked to 759 control authors who were not embroiled in re-
traction scandals, but published articles in the same journals where the
retraction events occurred.1

Armed with these data, we analyze the impact of retraction events
on the rate of citation received by non-retracted articles published prior
to the retraction in a difference-in-differences framework. Analyzing
citations to prior work, rather than citations to articles published after
the retraction event, is a key feature of our empirical strategy.
Following a negative reputation shock, scientists might adjust their
level of effort or face new production constraints (e.g., reduced funding
opportunities). Focusing on unretracted prior work allows us to attri-
bute any shift in citation patterns to the negative reputation shock,
rather than to changes in production inputs.

This type of analysis may, however, confound any citation penalty
suffered by a specific retracted author with the broader consequences of
the scientific community abandoning a research field altogether.
Significant spillover effects of retractions on the evolution of research
fields were documented by Azoulay et al. (2015), who examined the
impact of retractions on the citation of papers in the same field by non-
overlapping authors. In order to isolate the effects of retractions on
individuals’ reputations and avoid the field-level spillover effects, we
focus exclusively on publications by the retracted authors in a different
research subfield than the retracted paper. Having filtered out the re-
search field-specific effects, we find that the pre-retraction work of
retracted authors suffers a 10% average annual citation penalty fol-
lowing a retraction event, relative to the fate of the articles published
by non-retracted control authors.

We then investigate the impact of the authors’ reputation at the time
of the retraction (whether they belonged to the top quartile of the ci-
tation or funding distribution) and of the reasons for the retraction by
carefully separating instances of misconduct (including fraud and pla-
giarism) from instances of mistakes (stemming, for example, from
contaminated biological samples or statistical errors). Our results in-
dicate that the cause of the retraction (mistake vs. misconduct) and the
scientist's prior reputation interact in very specific ways to shape the
magnitude of the community's response. In particular, the work of
eminent authors is not penalized more severely than that of less emi-
nent ones in the case of honest mistakes. However, the difference in
citation penalty is much more pronounced when retraction events stem
from clear-cut cases of scientific misconduct. In these instances, the
prior work of retracted authors sees its rate of citation fall by almost
20%.

Jointly, these results show that the penalty levied by the scientific
community on a retracted author matches the response of a Bayesian
decision maker who holds prior beliefs correlated with the author's
prominence in the profession and perceives misconduct cases as more
informative signals than honest mistakes. To then assess how well the
market is able to parse the “truth” in signals of varying informativeness,
we circle back to the joint distribution of author reputations and

retraction events. Consistent with the scientific community's beliefs, we
find that prior reputation levels are negatively correlated with the in-
cidence of retractions (as it should be if reputation is informative of the
true quality of a scientist). Surprisingly, however, cases of misconduct
are not relatively more prevalent among low-reputation authors and
should not, therefore, carry statistical information. Among possible
explanations, this discrepancy in the market's reaction may suggest
either an information-processing problem (i.e., the market is unable to
filter truth from noise), or an information-acquisition problem (i.e.,
misconduct cases involving famous authors are much more publicized
than all others).

Our study is related to a recent paper by Jin et al. (2013). These
authors also study the effect of retraction events on the citations re-
ceived by prior work from retracted authors, but they focus on the
differential penalty suffered by junior and senior authors on the same
retracted paper. They find that the senior authors (those in last au-
thorship position) escape mostly unscathed following a retraction,
whereas their junior collaborators (typically graduate students of
postdoctoral fellows) are often penalized severely, sometimes to the
point of seeing their careers brought to an abrupt end. Their results are
seemingly at odds with ours, but it is important to note that the var-
iation we exploit exists between authorship teams, rather than within
them. In other words, for each retracted article, we usually focus on a
single author, typically the principal investigator. In contrast, Jin et al.
(2013) compare the citation trajectories of scientists who appeared on
the authorship roster of the same retracted publication.2 Additionally,
our study directly investigates how the type of retraction signal (mis-
take vs. misconduct) moderates reputation penalties, while Jin et al.
(2013) aim to remove such variation by discarding self-reported errors
from their sample of retraction events.

The manuscript proceeds as follows. The next section summarizes
the institutional context of retractions as part of the broader scientific
peer review system. Section 3 introduces a Bayesian model to frame the
empirical exercise. Section 4 describes the data and the process fol-
lowed to assemble it. Section 5 presents our empirical strategy and
results. Section 6 revisits the model to discuss the extent to which the
market's reaction is, in fact, consistent with Bayesian learning. Section 7
briefly concludes.

2. Institutional setting

While the role of scientific research in enabling economic growth
has become a truism among economists, scientific progress does not
unfold in an institutional vacuum. Rather, the scientific enterprise relies
on a set of reinforcing institutions that support individual account-
ability and reliable knowledge accumulation (Merton, 1973; Partha and
David, 1994). In the context of this manuscript, peer review, the allo-
cation of credit through citation, and the retraction system are three
fundamental practices worthy of discussion.

One of the central institutions of science is the peer-review system.
By submitting scientific articles for independent review by expert peers,
the path to publication balances the integrity of published results with
the desire to have an adequate pace of discovery. Similarly, the practice
of citing relevant prior literature allows scientists to clearly and con-
cisely communicate where there contributions fall within the scientific
landscape, while allocating credit to the originators of particular ideas.

Retractions are often the culmination of a process used by journals
to alert readers when articles they published in the past should be re-
moved from the scientific literature. They are qualitatively different

1 We focus on faculty members and exclude technicians, graduate students and post-
docs in order to avoid confounding differences in prominence with differences in career
stage.

2 These authors might be graduate students, postdoctoral fellows, staff scientists, or
heads of laboratory, though they cannot be separately identified within the constraints of
the Jin et al. (2013) empirical exercise. In contrast, we have gathered extensive in-
formation about the scientists in our sample, such as demographic characteristics and past
productivity. At the time of the retraction event, all of the scientists in our sample are
faculty members in a U.S. Medical School.
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from simple corrections in that their intent is to strike the entire pub-
lication from the scientific record. Retraction notices may be initiated
by the journal editors, by all or some of the authors of the original
publication, or at the request of the authors’ employer.

The informational content of retraction notices is highly variable.
Some notices contain detailed explanations about the rationale for the
decision to retract, while others are a single sentence long and leave the
scientific community uncertain about (i) whether the results contained
therein should be disregarded in part or in their entirety, and (ii)
whether the retraction was due to fraud, more benign forms of scientific
misconduct, or instead had its root in an “honest mistake.”

In the recent past, specialized information resources, such as the
popular blog RetractionWatch, have emerged to help scientists interpret
the context surrounding specific retraction events. One aspect of a re-
traction's “back story” that often proves vexing to decipher pertains to
the allocation of blame across members of the authorship team. Only in
the most egregious and clear-cut instances of fraud would a retraction
notice single out particular individuals. In the United States and for
research supported by NIH, scientific misconduct is also policed by the
Office of Research Integrity (ORI) within the Department of Health and
Human Services. ORI is vested with broad investigative powers, and its
reports are often the forerunners of retraction events, sometimes in-
volving more than a single publication.

Retraction events are still rare (occurring at the rate of roughly one
retraction per ten thousand scientific articles), but their frequency has
been increasing steadily over the past 20 years (see Fig. 1). This trend
has been the cause of increasing concern in the media (e.g., Wade,
2010; Van Noorden, 2011), and much hand-wringing within the sci-
entific community (Fang et al., 2012), but its fundamental drivers re-
main an open question. While popular accounts espouse the view that
heightened competition for funding leads to increased levels of slop-
piness, scientists can also gain prominence by detecting instances of
misconduct or error (Lacetera and Zirulia, 2011). Moreover, the rise of
the Internet and electronic resources has in all likelihood increased the
speed at which peers can direct their attention to results that are both
noteworthy and ex-post difficult to replicate.

3. Theoretical framework

Reputation is a canonical concept across the social sciences. Within
the economics literature, the existing theoretical research is concerned
with how, and under what conditions, economic agents acquire a good
(or a bad) one, and more generally, how they influence the beliefs of the
market about their innate type (Mailath and Samuelson, 2006). In

contrast, few empirical studies document the events that can lead actors
to lose their reputation, or quantify the consequences of this loss. Some
notable exceptions include studies that assess how product recalls
(Jarrell and Peltzman, 1985), product liability lawsuits (Prince and
Rubin, 2002), and medical malpractice (Dranove et al., 2012) impact
the producer's subsequent market valuation and demand. Egan et al.
(2016) provides evidence of how financial advisors’ misconduct records
impact their careers and unemployment experiences. The corporate
finance and accounting literature also addresses the career effects of
financial fraud by evaluating how financial fraud and earnings re-
statements impact the reputations of board members (Srinivasan, 2005;
Fich and Shivdasani, 2007). However, reputation loss occupies a more
central place in sociology (Goffman, 1963; Fine, 2001).

Our theoretical framework formalizes the dynamics of reputation in
a model of Bayesian learning. In particular, we explore how scandal
impacts individual reputations, as a function of the informational
content of the scandalous revelation and of the prominence of the in-
dividual scientists involved. The model yields insights that guide the
interpretation of the empirical results.

We begin with a single, representative researcher (the agent) who is
continuously evaluated by the scientific community (the market). The
agent has a fixed binary characteristic that denotes his reliability

∈θ θ θ{ , }.B G

Thus, the agent is either good or bad. We let p0 ≜ Pr(θ = θG) denote the
market's prior belief that the agent is of the good type.3

The agent's output at each point in time is also binary,

∈y {0, 1}.t

In particular, output at time t is given by yt = 1, unless a retraction event
occurs, in which case output is given by yt = 0.

The market learns about the agent's reliability from observing his
scientific output, and rewards the agent with citations based on his
reputation. Let pt denote the market's posterior belief that the agent is
good, conditional on the output produced up to that time.4 The flow of
citations to any of the agent's papers at time t is given by w p( )t , where w
is a strictly increasing and twice differentiable function. In other words,
the citations received by the agent's body of work are a function of the
market's belief that his reliability is high, based on his output history.
Rewards for reputation are highly nonlinear in our database (see
Fig. 7), where the distribution of citations is heavily skewed towards
“superstar” agents.5

3.1. Learning and reputation

The market learns about the agent's reliability through retractions
that we model as a Poisson process. The intensity of the Poisson process
is higher for low-reliability (bad) agents.6 Thus, retractions are rare,
publicly observable events that reveal information about an agent's

Fig. 1. Incidence of PubMed-indexed retractions. Note: The solid line displays the yearly
frequency of retraction events in PubMed as a whole, all retraction reasons included. The
dashed line displays the yearly retraction rate, where the denominator excludes PubMed-
indexed articles that are not original journal articles (e.g., comments, editorials, reviews,
etc.).

3 In practice, a researcher's quality is definitely multi-dimensional, and the shocks we
observe (e.g., a retraction due to mistake or misconduct) lead to updating about different
dimensions (e.g., the author's carefulness or honesty). Ultimately though, we are inter-
ested in the market's ability to trust the author's results. Put differently, reliability re-
quires the author to be both careful and honest, so that every retraction leads to negative
updating about his quality.

4 A sample path that illustrates the dynamics of posterior beliefs in our model is shown
in Fig. 2.

5 We have chosen not to model the agent's actions explicitly, as our data is not suffi-
ciently rich to identify a model with both incomplete information and moral hazard.
However, both the agent's output and the market's reward can be endogenized in the
model through a choice of (unobserved) retraction-reducing effort. This suggests a ver-
sion of the career concerns model of Holmström (1999) that allows for lumpy output and
coarse signals, similar to Board and Meyer-ter-Vehn (2013) or Bonatti and Hörner
(2017a).

6 This type of Poisson process is analogous to the models in Bonatti and Hörner (2017b)
and Halac and Kremer (2017), which analyze how the arrival of bad news impacts
stopping decisions and strategic interactions.
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reliability. As our interest lies in the comparison across rather than
within retracted papers, we assume that a retraction is an equally in-
formative signal for every identifiable author of a retracted paper. The
consequences of this signal, however, vary with each author's prior
reputation, as described below.

More formally, retraction events for an agent of type θ are ex-
ponentially distributed with parameter λθ, where we assume that
λB ≥ λG ≥ 0. Under this learning model, the agent's reputation at each
time t is measured by the market's belief pt. Fig. 2 illustrates the dy-
namics of reputation through a sample path generated by our model.

As Fig. 2 shows, the market's posterior belief pt drifts upward in the
absence of a retraction. Upon observing a retraction, the market belief
jumps downward. The magnitude of this jump is related to the agent's
reputation level pt at the time t of the retraction. Specifically, when an
agent with reputation pt retracts an article, his reputation drops to

≜ = = =
+ −+p θ θ y t

p λ
p λ p λ

Pr[ 0, ]
(1 )

.t t G t
t G

t G t B
d

The change in the agent's reputation is then given by Δ(pt) < 0, where

≜ − = −
− −

+ −+p p p
p p λ λ
p λ p λ

Δ( )
(1 )( )

(1 )
.t t t t

t t B G

t G t B
d (1)

If λG = 0, the expressions above yield pt+dt = 0 and Δ(pt) =− pt. In
other words, when the retraction event is fully revealing of a bad type,
the agent loses his entire reputation, regardless of its initial level.
Conversely, if λG = λB, then Δ(pt) = 0. Clearly, when retraction events
are uninformative, they cause no change in reputations.

Furthermore, Eq. (1) shows that the reputation loss depends only on
the market's beliefs prior to the retraction and on the relative occurrence
of retractions for high- vs. low-reliability scientists. Consequently, the
following measure of the informativeness of retractions is sufficient for
the market's belief updating process:

≜ ≥α λ
λ

1.B

G

Letting p denote the agent's current reputation level, we may then re-
write the change in reputation as

= −
− −

+ −
p α

p p α
p p α

Δ( , )
(1 )( 1)

(1 )
.

(2)

Fig. 3 illustrates the change in reputation Δ(·, α) for several values of
α.

As Fig. 3 shows, the negative effect of a retraction is a nonlinear
function of the agent's prior reputation: for p= 0 and p = 1, the mar-
ket's prior belief is so strong that no signal can affect it. In contrast,
when the market is very uncertain about the agent, the reputation
change is large: the loss −Δ(p, α) is greatest for an agent with an

intermediate reputation.
We now turn to the comparative statics of reputation losses with

respect to the informativeness of the signal. We are particularly inter-
ested in whether a more informative signal has a larger effect on agents
with higher prior reputations. Proposition 1 collects our comparative
statics results.

Proposition 1. Signal Informativeness

As the signal informativeness α increases:

1. retractions yield greater reputation losses for all values of p;
2. reputation losses are increasing in the prior reputation only for low values

of p.

Part (1) establishes that ∂Δ(p, α)/∂α < 0 for all p. This result is
intuitive: if signals are uninformative (α= 1), then Δ(p, 1) = 0 for all p.
Conversely, if signals become arbitrarily informative (α → ∞), then the
reputation loss Δ(p, α) →− p. Part (2) shows that the interaction effect
∂2Δ(p, α)/∂α∂p < 0 if and only if p < α/(1 + α). This effect follows a
similar logic to the level of reputation losses. For agents with sufficiently
high reputation levels, the market essentially attributes a retraction to
“chance,” which also dampens the negative effect of greater signal
precision. As signals become arbitrarily informative, the negative effect
of a retraction becomes increasing in p on (0, 1). Moreover, an increase
in signal precision is most damaging to the agents with the highest
reputation. However, for any finite level of informativeness, the effects
of prior reputation and signal informativeness on the retraction penalty
remain an empirical question.

3.2. Implications for citations

We now turn to the average effect of retractions across a population
of heterogeneous agents. We consider a population of agents i whose
reputations pi are uniformly distributed, i.e., F(pi) = pi. This is con-
sistent with our empirical approach in Section 5, where we use the
quantiles of the distribution of citations and funding as proxies for a
scientist's reputation.7

In order to compare the average effect of a retraction on the cita-
tions of scientists with high and low initial reputations, we partition the
population of agents i in two groups, and we aggregate the reputation
losses at the group level. We assume that the parameters (λB, λG) of the
Poisson process governing the occurrence of retractions are common to
all agents i. We then compare the average effect of a retraction in each
group. In particular, for a given quantile p*, we define the average re-
putation drop for agents with initial levels of reputation pi ∈ [0, p*] and

Fig. 2. Reputation dynamics (λB = 4, λG = 1, p0 = 1/4).
Fig. 3. Reputation losses (α ∈ {2, 6, 25}).

7 Under this assumption, the initial reputation levels pi are then uniformly distributed
by construction.
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pi ∈ [p*, 1], respectively, as follows:

∫

∫

=

= −

L p α p α p

H p α p α p

( *, ) Δ( , )d

( *, ) Δ( , )d .

p
p

p p

1
* 0

*

1
1 * *

1

We now study the gap in the reputation losses of the two groups as a
function of the signal's informativeness. We define the gap in reputation
losses as follows:

≜ −G p α H p α L p α( *, ) | ( *, )| | ( *, )|.

We then obtain the result in Proposition 2, which is illustrated in Fig. 4.

Proposition 2. Critical Partition

For each α, there exists p̂ such that the gap G(p*, α) is increasing in α for
all ≤p p* ˆ.

As Fig. 4 shows, an increase in the informativeness of the retraction
signal α may amplify the difference in the reputation losses of high- and
low-status agents. In particular, if one considers the average reputation
drop across a large enough set of high-status agents (i.e., a sufficiently
low p*), then the gap between the reputation losses of high- and low-
status agents is wider for α = 25 than for α = 6.

Viewed in the light of this result, our main empirical findings—that
high-status agents after a retraction due to misconduct suffer the
sharpest drop in reputation, while the three other reputation losses are
of comparable magnitude to one another—are consistent with a
Bayesian model where misconduct signals are more informative of the
scientist's reliability than honest mistakes.8

It may be useful to illustrate the differences between our paper and
the one in Jin et al. (2013) through the lens of our model. For instance,
the role of prior reputation can explain the finding of Jin et al. (2013)
that established authors (with a very high p) face a smaller retraction
penalty, relative to their less prominent co-authors (for whom un-
certainty still looms large). However, our model also implies that more
drastic events, such as simultaneous retractions of multiple papers due
to a case of misconduct, would cause more severe reputation losses for
more established coauthors, reversing the above result. Unfortunately,
such major events are excluded from the sample in Jin et al. (2013). In
this sense, their paper focuses on retraction events of limited informa-
tiveness.

We conclude this section by deriving implications for the effect of
retractions on the flow of citations. Consider an agent with initial

reputation pi. In order to correctly capture the effect of a retraction, we
must consider two elements: the shape of the rewards for reputation
w p( )i ; and the drop in the market's beliefs Δ(pi). The change in citations
is given by

≜ −+w p w p w pΔ( ( )) ( ) ( ).t
i

t
i

t
i

1

Consider, for example, an exponential reward function =w p e( )i pi.
We can then write the percentage drop in citations as

=
d w p

p
ln ( )

dp
Δ( ).

i

i
i

Thus, under an exponential reward function, the results of Proposition 1
that relate the dynamics of reputation pt

i to the signal informativeness α
also apply to the relative drop in citations w p( )t

i .
The exponential rewards function is a reasonable approximation to

the distribution of citations and funding at baseline in our data.
Consequently, in our empirical analysis, we report regression results in
logs and apply the insights derived earlier for reputation levels.

4. Data construction

This section details the construction of our multilevel, panel dataset.
We begin by describing the criteria used to select the sample of re-
tracted scientists and how we identified their career and publication
histories. Next, we present the outcome variables used in the study, as
well as our classification of retraction type and author prestige. The last
step is to explicate the process through which a sample of control au-
thors—faculty members who did not experience a retraction event, but
are otherwise similar to the retracted authors—was selected.

4.1. Retractions, retracted authors, and career histories

In order to build our sample of retracted authors and their pub-
lication histories, we begin with a set of 1129 retractions published in
the period 1977–2007, and retracted prior to 2009. The source of these
retractions is PubMed, the United States National Library of Medicine's
(NLM) primary database for biomedical and life science publications.
PubMed contains more than 24 million citations and indexes articles
along a number of dimensions, including retraction status.

The critical ingredient in the construction of our dataset is the bib-
liome for each retracted author, i.e., an exhaustive and accurate list of
articles published by these authors. A perennial challenge in collecting
author-specific publication data is name disambiguation, since biblio-
graphic databases such as PubMed and Web of Science do not typically
include individual author identifiers. A related paper by Lu et al. (2013)
uses self-citation linkages (starting with the retracted paper) to build
author publication histories; this approach has the advantage that it is
automated, scalable, and effectively deals with errors of commis-
sion—mistakenly attributing publications authored by a namesake to
the focal author. However, it is much less effective in warding off errors
of omission, especially when scientists have multiple streams of work
that are not connected through self-citation. In our view, this limitation
argues against the use of an automated approach: using authors’ prior
work that falls outside the line of research culminating in a retraction
can help us distinguish between the punishment meted out to in-
dividual scientists from the loss of intellectual credibility suffered by
the specific ideas associated with the retraction. This concern leads us
to invest in the labor-intensive process of disambiguating publication
histories manually. This is a rate-limiting step for our empirical ap-
proach, and it has implications for the way in which we select control
authors (see below).

First, we carefully matched retracted authors to the Faculty Roster
of the Association of American Medical Colleges (AAMC), to which we
secured licensed access for the years 1975 through 2006, and which we
augmented using NIH grantee information (cf. Azoulay et al. (2010) for

Fig. 4. Average reputation losses (p* = 3/4, α ∈ {6, 25}).

8 For ease of exposition, we interpret the comparative statics with respect to the signal
informativeness α as a comparison of different signals. In Appendix A, we extend the
model to simultaneously account for several informative signals and obtain analogous
results.
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more details).9 Whenever the authors we identified in this way were
trainees (graduate students or postdoctoral fellows) at the time of the
retraction event, we excluded them from the sample.10 See Appendix B
for a full description of the process of matching author names to the
Faculty Roster.

We were able to match at least one author on 43% of the retracted
publications to scientists in the AAMC Faculty Roster. While this figure
may seem low, it is a reflection of the fact that the majority of the
retractions are authored by non-US scientists who would not, by defi-
nition, be expected to appear in the AAMC Faculty Roster. The match
rate for American scientists is much higher. Of the 488 retractions with
US reprint addresses, we matched at least one author on 412 (84%) of
the publications. The matching process yielded 195 retractions with
one author matched, 148 retractions with two authors matched, and
146 retractions with three or more authors matched. Since many of
these authors are involved in multiple retractions, matched authors
have an average of 1.5 retracted publications in the sample. As in
Azoulay et al. (2015), our analyses exclude the 202 retraction cases
where the retracted paper's claims remain valid after the retraction
event (i.e., most—but not all—cases of plagiarism, duplication of
publications, faulty IRB approval, etc.).11 From this sample of retrac-
tions, we matched a total of 376 retracted faculty authors. For more
information on the author matching process, see Appendix B.

Once matched to the AAMC Faculty Roster, we linked authors to
their publication histories by developing detailed PubMed search
queries that return the author's entire body of work. Fig. 5 illustrates
this process for the case of one faculty member, Kirk E. Sperber, MD.
This process allowed us to identify author publication histories while
carefully removing papers belonging to other authors with similar or
identical names, and reliably capturing the full set of a scientist's
publications.12

4.2. Citation data

The primary outcome in the analyses presented below is the annual
flow of citations to authors’ publications in the sample. Citations are
both a measure of intellectual credit and professional attention.
Scientists cite prior work in order to communicate where their con-
tributions fall within their field or subfield, and to bestow credit to the
research they are building upon. Citations also serve as the currency
that is essential to maintaining the incentives and norms that compel
honest work and competition in science (Merton, 1957).13 We follow in
the footsteps of prior scholarship in the economics of science in using an
information shock to trace out the effect of this shock on the citation
trajectories of scientific articles published before the shock (e.g.,
Furman and Stern, 2011; Azoulay et al., 2015).

Since PubMed does not provide citation data, we use Thomson-
Reuters’ Web of Science (WoS) to obtain citations for publications in
PubMed. We match PubMed with WoS to generate a dataset with 190
million cited-to-citing paper pairs. This resulting dataset contains cited-
to-citing pairs for all PubMed-indexed articles that cite other PubMed-
indexed articles.14 Our analyses exclude all self-citations from any
member of the authorship team.

4.3. Nature of retraction events: misconduct vs. “honest mistake”

An important implication of our model is that different types of
news should trigger different responses. In particular, the informa-
tiveness of the signal contained in a retraction event determines the
extent to which the market updates on the reliability of a scientist's
prior work. We propose a distinction between misconduct and “honest
mistakes” as a pragmatic solution to the challenge of identifying re-
traction events that may be perceived quite differently by the scientific
community.

In order to differentiate between retractions due to misconduct and
retractions due to mistakes, we used the misconduct codes assigned to
retractions in Azoulay et al. (2015). These codes required manual re-
view of every retraction and their associated public documents to se-
parate misconduct retractions from retractions due to mistakes
(Appendix D provides more details on the assignment of these codes.)
The difference between retractions due to misconduct and mistakes is
often quite stark: misconduct retractions include cases of fabricated
data and conclusions, while contaminated samples and reagents are the
most frequent reasons for mistake retractions.15

Importantly, we do not assume that misconduct events provide
stronger evidence regarding an author's reliability, relative to mistakes.
Instead, our empirical specifications allow the market response to de-
pend on the type of event in a flexible fashion. Certainly, instances of
fraud and misconduct attract much more attention in the comment
sections of specialized blogs such as RetractionWatch, while retractions
due to mistakes tend to be less sensational. We comment on the re-
lationship between misconduct and publicity when discussing our re-
sults in Section 6.

4.4. Measures of author prestige

The seminal work of Merton (1968) alerted scholars that recogni-
tion and rewards for a given level of achievement are more likely to
accrue to scientists whose reputation was already established, a phe-
nomenon known as the “Matthew Effect.” As pointed out by Jin et al.
(2013), the retraction phenomenon presents an opportunity to ask
whether the Matthew Effect also operates in reverse, that is, whether
more prominent are penalized more harshly by the scientific commu-
nity in the wake of a retraction than their less-distinguished peers. In
their work, Jin et al. (2013) choose to operationalize prior prestige
using authorship position on the retracted article. Given the prevailing

9 An important implication of our reliance on these source of data is that we can only
identify authors who are faculty members in U.S. medical schools, or recipient of NIH
funding. Unlike Lu et al. (2013), we cannot identify trainees, staff scientists without a
faculty position, scientists working for industrial firms, or scientists employed in foreign
academic institutions. The great benefit of using these data, however, is that they ensure
we know quite a bit about the individuals we are able to identify: their (career) age, type
of degree awarded, place of employment, gender.

10 We do so because these trainees-turned-faculty members are selected in a non-
random fashion from the entire population of trainees which we cannot get systematic
data about.

11 We verified that including these retractions in the sample does not materially affect
our conclusions.

12 This manual process is made possible by the construction of a dossier on each au-
thor, based on a combination of curriculum vitae, NIH biosketches, Who's Who profiles,
accolades/obituaries in medical journals, National Academy of Sciences biographical
memoirs, and Google searches. More details regarding the procedure used to link authors
with their publication histories can be found in Appendix C.

13 Citations can also be used for less noble purposes such as appeasing editors and
reviewers by adding citations, or making larger claims by reducing the number of cita-
tions. It is a limitation of our study that we do not have the ability to determine which
cites are “strategic” rather than “substantive” [cf. Lampe (2012) for examples of such
strategic citation in the case of patents].

14 In a separate analysis, available from the authors, we found that citations from
PubMed-indexed articles to PubMed-indexed articles that are also in the Web of Science
account for 86% of the total number of citations that are received by these articles in a
sample of 320,000 articles carefully matched between the two sources of data. The cor-
relation between PubMed-to-PubMed citations and WoS-to-PubMed citations is higher
than.99. We conclude that our decision to focus on the PubMed-to-PubMed citation in-
formation for the analyses presented in this paper is innocuous.

15 The case of anesthesiologist Scott Reuben is a clear-cut example of retractions due to
misconduct. As a professor at Tufts University purportedly running clinical trials on the
effectiveness of painkillers, Reuben was charged with and found guilty of health care
fraud, resulting in a sentence of six months in federal prison and over $400,000 in fines
and restitution. Our retractions data set contains 15 of his publications, many of which
were simultaneously retracted. Instead, an example of a “honest mistake” consists of the
authors retracting a publication after realizing that they mistakenly analyzed the genetic
code of a butterfly rather than a dragonfly (Arikawa et al., 1996). Occasionally, authors
also retract papers due to flawed interpretation of results, or conclusions nullified by
subsequent studies.
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authorship norms in most of natural and life sciences, this approach
effectively distinguishes between high and low-status scientists within a
research team (i.e., graduate student or postdoctoral fellow vs. faculty
member or principal investigator).

Because we have at our disposal detailed career and publication
histories for each of the scientists in our sample, we adopt a strategy to
measure variation in prior prestige that is more global in nature. In a
first analysis, we compute each matched author's cumulative citation
count, across all of their publications, through the year before their first
retraction. We define “high-status” scientists as those authors who be-
long in the top quartile of this citation distribution at baseline, and
those whose cumulative citations place them in the bottom three
quartiles as “low-status.” Using this measure, high-status scientists ac-
count for 58% of all of the articles published by retracted authors up to
the year of their first retraction.

In a second analysis, we also compute cumulative funding from the
National Institutes of Health (NIH). Again, we defined high-status au-
thors as those in the top quartile of the corresponding distribution at
baseline, and low-status authors as those in the bottom three quartiles.
The high-funding group accounts for 47% of all the articles published
by retracted authors up to the year of their first retraction.16

4.5. Identifying and selecting control authors

To shed light on the counterfactual citation trajectories of retracted
authors’ pre-retraction publications, we need to assemble a set of con-
trol authors. The most direct approach to identifying controls would be
to select from the population of scientists those whose flows and stocks
of publications best mirror the corresponding flows and stocks for re-
tracted authors, as in Jin et al. (2013). However, this direct approach is
infeasible, since we do not have at our disposal name-disambiguated
bibliomes for every individual in the AAMC Faculty Roster. Instead, we
follow an indirect approach that enables us to delineate, ex ante, a much
smaller set of potential control authors that we expect to exhibit pro-
ductivity profiles comparable to that of the retracted authors, at least on
average. The onus will be on us to demonstrate, ex post, that treated and
control authors are well-balanced along demographic characteristics
and output measures.

Specifically, we focus on the authorship roster of the articles im-
mediately preceding and following the retracted publication in the
same journal/issue. Using adjacent articles to construct a control group
for a set of treated articles is an approach pioneered by Furman and
Stern (2011), and adopted by Furman et al. (2012), and Azoulay et al.
(2015).17 The procedure we follow mirrors in all respects the process
we adopted to identify treated authors in the sample of retracted arti-
cles: matching the authors to the faculty roster, then assembling

Fig. 5. Matching Authors to their Bibliomes. Note: The example above illustrates the matching procedure employed to identify the career publication histories of faculty authors. In the
example, Kirk Sperber is an author on three publications retracted due to fabricated data (he was later barred from receiving grants and contracts for four years by the Department of
Health and Human Services’ Office of Research Integrity). His earliest retraction came in the Journal of Immunology in December 2005. Our hand-curated PubMed query for Dr. Sperber
utilizes common coauthors and research topics for his publications, as well as the relevant date range; it also addresses his lack of consistency in using a middle initial as an author. The
query results in 78 publications, which we verified as his complete body of work. 60 of these articles were published prior to his earliest retraction (2005), and 7 publications were
intellectually related (via the PMRA algorithm) to a retracted paper.

16 We also used average citations per publication and average yearly funding as
measures of prestige, and the results were similar to those we present below. We con-
sidered using membership in the National Academy of Sciences (NAS) as an additional
measure of author prestige. However, this measure did not give us enough power to
perform our analysis as only 3.6% of the authors in our sample were members of the NAS
at baseline.

17 One can think of different choices to identify a set of potential control authors,
including choosing a random article in the same journal/issue as the treated article, or all
non-retracted articles in the same journal/issue. In past work, we showed that there is
very little difference between choosing a “random neighbor” as opposed to a “nearest
neighbor” (Azoulay et al., 2015).
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detailed publication histories (see Appendices B and C). The final
analytic sample includes only retracted authors for whom we have lo-
cated at least one matched control author. In total, we have 759 such
control authors. Tables 1 and 2 demonstrate that the control authors
selected by our procedure are very similar to the retracted authors
along multiple dimensions, a point to which we return in more detail
below.

One legitimate concern with this indirect approach to selecting
control authors is that of contamination: these immediately adjacent
publications could be intellectually related, or their authors might have
been competing for funding during the period leading up to the re-
traction. If this were the case, then it is possible that the retraction
event also affected the control author and the market's perception of her
work. Fortunately, the data allows us to do more than speculate about
the potential for contamination: we can assess empirically the extent to
which treated and control authors are related. First, we use the PubMed
Related Citation Algorithm (see Appendix E for more details) to as-
certain whether the retracted articles and their journal/issue neighbors
are intellectually related. We find this to be the case in only three in-
stances.18 Second, we check in NIH's Compound Grant Applicant File
whether treated/control author pairs compete directly for funding. We
found no instances of author pairs who applied for funding from the
same component institute within NIH and whose work was evaluated
by the same review committee in a window of five years before the
retraction event. Despite publishing in the same journal at the same
time, we conclude that treated and control authors’ scientific trajec-
tories are sufficiently distinct in intellectual space to ward off the
specter of contamination between the treated and control groups. At the
same time, the fact that they are part of the same broad labor market
(faculty members in US Medical Schools), participate in the same broad
scientific fields, and face a similar institutional environment entails that
the comparison between their publications and the citations they garner
over time is substantively meaningful.

4.6. Descriptive statistics

Our sample includes 23,620 publications by 376 retracted authors
and 46,538 by 759 control authors.19 Since each control faculty
member entered the dataset because it is the author of a paper that
appeared in the same journal and issue as a retracted paper, we can
assign to them a counterfactual date of retraction, which is the year in
which the retracted author to which they are indirectly paired experi-
enced a retraction event. Table 1 compares treated and control authors
along demographic dimensions, such as gender, degree, career age, and
eminence (measured as cumulative citations as well as cumulative
funding). Retracted authors are slightly more likely to be male, and also
have slightly higher cumulative funding and citation impact as of one
year before the earliest associated retraction event, relative to control
authors. Below, we will show that these small differences in baseline
achievement levels do not translate into differences in achievement
trends before the treatment.

Appendix D provides details regarding the extent to which specific
authors were singled out as particularly blameworthy. The assignment
of blame was unambiguous for only 24 out of the 376 retracted authors
in the sample (6.38%). The majority of blamed authors are precisely the
types of scientists that would be less likely to ever appear in the AAMC
Faculty Roster: graduate students, postdoctoral fellows, or techni-
cians.20 Moreover, the set of blamed authors is a proper subset of au-
thors whose work was retracted because of misconduct; in our data,

Table 1
Baseline descriptive statistics for retracted and control authors.

Mean Std. Dev. Median Min Max

Control authors (n = 759)
Female 0.19 0.39 0 0 1
Degree year 1975.13 10.85 1975 1941 1999
MD 0.41 0.49 0 0 1
PhD 0.48 0.50 0 0 1
MD/PhD 0.10 0.30 0 0 1
Misconduct – earliest

associated retraction
0.53 0.50 1 0 1

Blamed author – earliest
associated retraction

0.00 0.00 0 0 0

Cumulative citations 2776 4961.30 1091 0 45,077
Cumulative funding ($1000s) 5971 15,884.90 1362 0 302,862

Retracted authors (n= 376)
Female 0.16 0.36 0 0 1
Degree Year 1976.95 10.64 1978 1938 1998
MD 0.39 0.49 0 0 1
PhD 0.49 0.50 0 0 1
MD/PhD 0.11 0.31 0 0 1
Misconduct – earliest

associated retraction
0.40 0.49 0 0 1

Blamed author – earliest
associated retraction

0.06 0.24 0 0 1

Cumulative citations 2994 4543 1267 1 28,633
Cumulative funding ($1000s) 6373 12,619 2191 0 132,403

Note: The set of 376 retracted authors consist of authors from 412 retracted papers for
which we matched at least one author to the Faculty Roster of the Association of
American Medical Colleges (AAMC). The 759 control authors are authors from adjacent
articles in the same journal and issue as their retracted counterpart, and matched to the
AAMC in the same fashion. The 12 retracted and 24 control authors who were NIH in-
tramural researchers are excluded from the cumulative funding calculations, because
their research funded through a very different system. The percentage of authors af-
filiated with misconduct cases for their earliest retractions is different between the two
groups because the number of control authors varies by retraction case.

Table 2
Baseline descriptive statistics for author-publication pairs.

Mean Std. dev. Median Min Max

Control author-publications (n= 46,538)
Article age (years) 9.34 7.42 8 0 32
First author 0.16 0.37 0 0 1
Middle author 0.41 0.49 0 0 1
Last author 0.43 0.49 0 0 1
Cumulative article citations 42.25 136.29 16 0 18,301

Retracted author-publications (n = 23,620)
Article age (years) 9.43 7.30 8 0 32
First author 0.16 0.37 0 0 1
Middle author 0.39 0.49 0 0 1
Last author 0.44 0.50 0 0 1
Cumulative article citations 44.35 89.22 18 0 3430

Note: The retracted- and control author/publications pairs in the sample correspond to
articles published by the retracted and control authors prior to their affiliated retraction
event. Authors were matched to their pre-retraction publications by developing PubMed
search queries for each scientist using relevant keywords, names of frequent collabora-
tors, journal names and institutional affiliations. The publication information for each
paper, including publication date and authorship list, was gathered using the PubHarvester
open source software tool [http://www.stellman-greene.com/PublicationHarvester/]. In
biomedical journal publications, the last author is usually the primary investigator (lab
director), and junior investigators (e.g. post-docs, graduate students, junior faculty) are
listed as first or middle authors. Citation data was obtained through Thomson-Reuters’
Web of Science (WoS) database, and we excluded all self-citations. We defined within-field
and outside-field citations based on the PubMed Related Citations Algorithm (PMRA),
such that citations from other publications within the same PMRA field were considered
within-field. We removed all articles that were in the same PMRA field as original re-
tracted or control publications.

18 We select the articles twice-removed from the retracted publication in the table of
contents in these three instances.

19 The publications we considered for inclusion in the sample include only original
research articles, and exclude reviews, editorials, comments, etc.

20 Retraction events at such an early stage of one's career would certainly decrease the
likelihood of ever holding a faculty position in the future.
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there is not a single example of an article retracted because of a mistake
which laid blame for the event at the feet of a specific member of the
research team. As a result, while the “blamed” indicator variable is
interesting from a descriptive standpoint, we will not use it in the rest of
the analysis.

Table 2 presents descriptive statistics at the level of the author/ar-
ticle pair, which is also the level of analysis in the econometric exercise.
The stock of citations received up to the year of retraction is well ba-
lanced between treated and control articles. This is the case not simply
for the mean and median of these distributions, but for other quantiles
as well (see Fig. 6). Fig. 7 provides evidence of the skew in the dis-
tribution of eminence at baseline, measured in terms of cumulative
citations (Panel A) and cumulative NIH funding (Panel B). These
quantile plots provide some empirical justification for splitting our
sample along the top quartile of these distributions to distinguish the
effect of retractions on eminent (top quartile) and less distinguished
(bottom three quartiles) scholars.

5. Methodological considerations and results

5.1. Identification strategy

To identify the impact of retractions on author reputations, we ex-
amine citations to the authors’ pre-retraction work, before and after the

retraction event, and relative to the corresponding change for control
authors. Retraction events may influence a number of subsequent re-
search inputs, including effort, flow of funding, referee beliefs, and
collaborator behavior. Since our goal is to measure sudden changes in
the reputation of individual faculty members embroiled in retraction
cases, we focus on pre-retraction publications only. The quality of these
publications is not affected by subsequent changes to the research en-
vironment. The difference-in-differences research design allows us to
measure the impact of retractions, while accounting for life-cycle and
time-period effects that might be shared by retracted and non-retracted
authors.

A maintained assumption in this approach is the absence of citation
trends that might affect the pre-retracted articles of retracted authors,
relative to control authors. Preexisting trends loom especially large as a
concern because prior research has demonstrated that retracted articles
exhibit a pronounced citation uptick (relative to articles published in
the same issue) in the months and years immediately leading up to the
retraction event (Furman et al., 2012). Fortunately, we can evaluate the
validity of the control group ex post, by flexibly interacting the treat-
ment effect with a full series of indicator variables corresponding to
years before and after the retraction date. This is a common diagnostic
test with a difference-in-differences research design, and its result will
be reported below.

An additional issue could confound the interpretation of the results.
We have modeled the process through which the scientific community
updates its beliefs regarding the reputation of individual scientists fol-
lowing a retraction. Empirically, this response might be commingled
with learning about the foundations of the intellectual area to which the
retraction contributed. Indeed, prior work has shown that non-retracted
articles related to the same line of scientific inquiry see their rate of
citation drop in the wake of a retraction (Azoulay et al., 2015). To filter
out this aspect of the learning process, we focus on pre-retracted work
by the retracted authors that does not belong to the same narrow
subfield as the underlying retraction.

In practice, we use the topic-based PubMed Related Citations
Algorithm (PMRA) to define intellectual fields (see Appendix E). We
remove all publications that are related (in the sense that PMRA lists
them as a related citation) to the source article. These deletions are
performed in a parallel fashion for both treated and control authors. In
total, we remove 12.2% of retracted authors’ pre-retraction publica-
tions that were in the same PMRA field as one of their retracted articles,
and 9.2% of control authors pre-retraction publications that were in the
same PMRA field as their source publications (i.e., the article adjacent
to the retraction in the same journal/issue). The descriptive statistics
above, and the econometric analyses below refer only to this sample of
author/publication pairs without the set of in-field publications.

Fig. 6. Cumulative citations to pre-retraction publications. Note: Cumulative number of
citations up to the year preceding the corresponding earliest retraction event for 21,103
retracted authors’ publications and 42,115 control authors’ publications.

Fig. 7. Cumulative citations and funding at baseline. Note: We compute the cumulative number of citations (Panel A), and cumulative amount of funding (Panel B) up to the year
preceding the corresponding earliest retraction event for all 376 retracted and 759 control authors, and plot it against 100 percentiles of the corresponding distribution.
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5.2. Econometric considerations

Our econometric model relates the number of citations to author i's
pre-retraction article j received in year t to characteristics of both i and
j:

= + × +

+ + +

E y X β β ϕ

ψ δ γ

[ | ] exp[ RETRACTED AFTER (AGE )

(AGE ) ]

i

t

ijt it 0 1 jt it

jt ij

where AFTER is an indicator variable that switches to one in the year
during which author i's experiences his first retraction, RETRACTED is
equal to one for retracted authors and zero for control authors, the age
functions ϕ and ψ are flexible functions of author age and article age
consisting of 50 and 33 indicator variables (respectively), the δt's re-
present a full set of calendar year indicator variables, and the γij's are
fixed effects corresponding to author-publications pairs.

The dependent variable yijt is the number of forward citations re-
ceived by author i's article j in year t (excluding self-citations). About
44% of all observations in the sample correspond to years in which the
article received exactly zero citations. We follow the long-standing
practice in the analysis of bibliometric data to use the conditional fixed-
effect Poisson model due to Hausman et al. (1984), which we estimate
by quasi-maximum likelihood (Gouriéroux et al., 1984; Wooldridge,
1997). The standard errors are robust, and clustered at the level of
individual authors.

5.3. Econometric results

We report the results of the simple difference-in-differences speci-
fication in Table 3, column 1. The coefficient estimate implies that,
following a retraction event, the rate of citation to retracted author's
unrelated work published before the retraction drops by 10.7% relative
to the citation trajectories of articles published by control authors.

Fig. 8 displays the results of the dynamic version of the model es-
timated in column 1. We interact the treatment effect variable with
indicator variables for number of years until (respectively after) the
author's earliest retraction event. We graph the estimates corresponding
to these interaction terms along with the associated 95% confidence
intervals. Relative to control authors, the retracted authors’ pre-re-
traction publications receive slightly more citations in the pre-retrac-
tion period; however, this difference appears to be roughly constant in
the years leading up to retraction—there is no evidence of a pre-trend,

validating ex post our research design and control group. Fig. 8 also
shows that the citation penalty appears to increase over time; it appears
to be a permanent, and not merely transitory, phenomenon.

5.3.1. Exploring heterogeneity in the retraction effect
We begin by splitting the sample into high- and low-status sub-

groups, first using cumulative citations as a marker of eminence
(Table 3, columns 2a and 2b), second using cumulative funding
(Table 3, columns 3a and 3b). Since high-status authors tend to produce
more publications, splitting the sample by separating the top quartile of
each status metric from its bottom three quartiles yields subsamples of
approximately equivalent size. We cannot detect large differences in the
magnitude of the treatment effects across these groupings. Even in the
case of funding, where there is a slightly larger difference in the post-
retraction penalty for low-status faculty members (7.6% vs. 12.2%

Table 3
Citations to pre-retraction articles, by author prominence and misconduct.

Full sample Author status Retraction type

(1) Citations Funding (4a) (4b)

(2a) (2b) (3a) (3b) Mistake Misconduct
High Low High Low

After retraction −0.113** −0.100* −0.105** −0.070 −0.130** −0.086* −0.193**

(0.033) (0.042) (0.039) (0.050) (0.046) (0.038) (0.053)

Nb. authors 1,130 286 844 277 829 577 553
Nb. of author-publications 70,158 40,665 29,493 32,265 35,671 38,204 31,954
Nb. of author-paper-year obs. 1,736,319 979,230 757,089 802,765 878,238 888,557 847,762

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is Author-Publication-Year, and the dependent variable is number of
citations. All models incorporate a full suite of calendar year effects as well as indicator variables for the age of the publication and age of the author. High-status authors are those in the
top quartile in terms of the author's cumulative citations (column 2a) or funding (column 3a) at baseline. Low-status authors are those in the bottom three quartiles of the same measures
(columns 2b and 3b). NIH intramural scientists are excluded in the funding status models. The retraction type is defined by the earliest retraction for a given retracted author (controls
retain the code associated with the retracted author with whom they are affiliated). The after retraction coefficients in columns 4a and 4b are significantly different from one another at
the 5% level (z-score = 1.64).
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column (1a) imply that the prior articles of authors
involved in retractions experience a statistically significant (1− exp[−0.113]) = 10.7% yearly decrease in citation rate after the retraction event, on average. QML (robust) standard
errors in parentheses, clustered around individual author.

* p < 0.05.
** p < 0.01.

Fig. 8. Dynamics of retraction effect on citations to pre-retraction publications. Note: The
dots in the above plot correspond to coefficient estimates stemming from conditional
fixed effects quasi-maximum likelihood Poisson specifications in which the citation rates
for articles published by retracted and control authors prior to their first associated re-
traction event are regressed onto year effects, article age indicator variables, as well as 15
interaction terms between treatment status and the number of years before/after the
retraction event (the indicator variable for treatment status interacted with the year of
retraction is omitted). The 95% confidence intervals (corresponding to robust standard
errors, clustered around unique author identifiers) around these estimates is plotted with
the help of capped spikes.
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decrease), this difference is in itself not statistically significant.
The next step is to split the sample by separating instances of mis-

conduct from instances of mere error (see Appendix D for the process of
assigning misconduct and mistake coding). The estimates reported in
columns (4a) and (4b) of Table 3 do suggest a much stronger market
response when misconduct or fraud are alleged (17.6% vs. 8.2% de-
crease).

5.3.2. Interaction between prior eminence and the informativeness of the
retraction event

Table 4 splits the sample into four subgroups, corresponding to both
the status and misconduct dimensions. One result stands out qualita-
tively: the high-status authors are more harshly penalized than their
less-distinguished peers, but only in instances of misconduct (columns
1b and 2b). In all other subgroups, the differences in the magnitude of
the treatment effect are modest at best.21 But are the differences in
treatment effect across subgroups themselves statistically significant?
This is less clear, since our strategy of splitting the overall data into four
subgroups results in relatively noisy estimates for some of the sub-
groups. An alternative is to pool the entire data and focus on the
coefficients for the interaction effects corresponding to each subgroup.
Appendix G discusses these comparison challenges and deploys two
different approaches to comparing magnitudes statistically. Regardless
of the approach chosen, the statistical tests support the main qualitative
conclusion: high-status authors embroiled in misconduct cases are
punished significantly more severely than high-status authors guilty of
making a mistake resulting in a retraction. The claim that the high-
status misconduct group's penalty is greater than that of all the other
subgroups is statistically more tenuous.

6. Discussion

6.1. Bayesian learning

Three different comparisons bear directly on the suitability of our
simple Bayesian framework to explain the empirical patterns that
emerge from the econometric analysis.

First, for authors of any status, the effect of a retraction due to
misconduct is larger than the effect of a retraction due to mistake
(Table 3, columns 4a and 4b). This result is consistent with a model
where a case of misconduct is more informative about an author's re-
liability, i.e., a higher α in Proposition 1. See Fig. 3 for the intuition
behind this result.

Second, the most significant effect of retractions occurs only after a
misconduct event for authors in the top status quartile. Citation pe-
nalties for all other event type/author status combinations have a lower
and relatively homogeneous effect (Table 4). The aggregate implica-
tions of our model match these regression results (see Fig. 4 for a simple
illustration). When a signal is very informative, it has a large impact on
an author's reputation, independently of its initial level. The resulting
loss of reputation is therefore largest for high-status authors. Con-
versely, when the signal is not particularly informative, the reputation
loss is mostly tied to the initial level of uncertainty. This is highest for
agents with intermediate reputations, which explains why very high-
and very-low status authors may experience similar drops in reputation.

Third, we can go one step beyond the binary distinction between
high- and low-status authors. We do not have sufficient statistical
power to recover the full shapes of the reputation loss as characterized
in our model, for example in Fig. 3. Instead, to generate the coefficients
graphed in Fig. 9, we partition authors into quintiles of the status dis-
tribution.22 We then contrast the effects of different types of retraction
events for each of five status grouping. Fig. 9, Panel A suggests that the
largest drop in citations following a mistake occurs for scientists with
intermediate reputation levels (the third quintile). Conversely, the drop
in citations following misconduct is largest for the highest-status sci-
entists (fourth and fifth quintiles in Fig. 9, Panel B).23

Together, these results suggest that the market response to a re-
traction event is consistent with Bayesian learning about the author's
reliability. In particular, the distinct responses to mistakes and mis-
conduct indicate that the market considers misconduct events as more
precisely revealing the (low) quality of an individual scientist, relative
to instances of “honest mistake.”

Table 4
Citations to pre-retraction articles, by author prominence and misconduct interactions.

Status: citations Status: funding

High Low High Low

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)
Mistake Misconduct Mistake Misconduct Mistake Misconduct Mistake Misconduct

After retraction −0.079† −0.191** −0.097† −0.100* −0.027 −0.200* −0.135* −0.152*

(0.047) (0.066) (0.051) (0.051) (0.055) (0.079) (0.055) (0.070)

Nb. authors 160 126 417 427 149 128 411 418
Nb. of author-publications 22,635 18,030 15,569 13,924 18,256 14,009 18,369 17,302
Nb. of author-paper-year obs. 528,115 451,115 360,442 396,647 439,066 363,699 410,869 467,369

Note: Estimates stem from conditional quasi-maximum likelihood Poisson specifications. The unit of analysis is Author-Publication-Year, and the dependent variable is number of
citations. All models incorporate a full suite of calendar year effects as well as indicator variables for the age of the publication and age of the author. High-status authors are those in the
top quartile in terms of the author's cumulative citations (columns 1a, 1b) or funding (columns 2a, 2b) at baseline. Low-status authors are those in the bottom three quartiles of the same
measures (columns 1c, 1d, 2c, and 2d). NIH intramural scientists are excluded in the funding status models. The retraction type is defined by the earliest retraction for a given retracted
author (controls retain the code associated with the retracted author with whom they are affiliated).
Exponentiating the coefficients and differencing from one yields estimates interpretable as elasticities. For example, the estimates in column (1b) imply that the prior articles of high-
status authors involved in a “misconduct” retraction experience a statistically significant (1 − exp[−0.191]) = 17.4% yearly decrease in citation rate after the retraction event, on
average. QML (robust) standard errors in parentheses, clustered around individual authors.

† p < 0.10.
* p < 0.05.
** p < 0.01.

21 Appendix F shows that even after removing from the sample authors involved in
multiple retractions across multiple years, these patterns continue to hold, at least qua-
litatively.

22 In this case, status is only measured by cumulative citation count at the time of the
retraction.

23 These statements must be interpreted with a great deal of caution, since the sample
size is too small for these differences between coefficient estimates to be statistically
significant. We only mean to suggest that their overall pattern is consistent with the more
nuanced implications of our model.
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From this standpoint, the fact that the ratio of misconduct and
mistake retractions is about the same for both high and low-status au-
thors (Table 5) is an anomaly. While high-status scientists experience
fewer retractions overall, observing a mistake vs. misconduct retraction
is not particularly helpful to predict the eminence of a retracted author.
If misconduct is a more informative signal, and high-status scientists
are, in fact, more reliable on average, we would expect them to exhibit
a lower misconduct-to-mistake ratio.

6.2. Market overreaction

We now explore three distinct explanations for the discrepancy
between the empirical distribution of retraction events and the theory
consistent with an equilibrium market response, i.e., for why the
market “overreacts” to instances of misconduct by high-status authors.

It is possible that the market overestimates the informativeness of
misconduct events. Under this interpretation, the outlook on the mar-
ket's ability to correctly “parse the truth” is quite bleak. Quite simply,
the scientific community may perceive the misconduct (vs. mistake)
signal as more revealing while, in fact, high-reliability authors cheat at
a similar rate as low-reliability authors—they just retract fewer papers.

However, misconduct retractions come closer to our definition of
scandal—a suddenly publicized transgression. Very few, if any, in-
stances of retraction due to mere error lead to editorials, pontificating,
or hand-wringing in scientific journals or the national press. Instead,
much of the public attention to the retraction phenomenon can be

attributed to a handful of high-profile cases of scientific misconduct.24

Thus, an equally plausible explanation for the discrepancy in responses
is based on rational inattention: acquiring information about the validity
of scientific results is costly, but it is relatively cheaper to learn about
highly-publicized retractions. This mechanism introduces a scale di-
mension to the market response, whereby a larger number of re-
searchers are aware of fraud by famous authors, which leads to a pro-
portionally larger drop in citations.

Finally, the citation penalty may represent more than just the
market's response to an information shock. For instance, it may be part
of an implicit incentive scheme that sees ordinary scientists recoil from
the prior work of scientists embroiled in scandal, particularly if they
have achieved great fame. That part of the punishment is carried out by
giving less credit to the author's earlier work makes sense especially if
some of the citations accruing to these scientists were “ceremonial” in
nature. If principal investigators can control the likelihood of their team
making a mistake or explicitly cheating, then this stigmatization
[whether understood as a deterrent or as pure sociological mechanism à
la Adut, 2005] could discourage scientific misconduct.

7. Concluding remarks

The distribution of scientific recognition is a complex phenomenon.
Disproportionate amounts of credit are given to the very best authors in
a field (Merton, 1968), but these authors must maintain their reputation
at a high level through consistent performance. We have documented
the scientific community's response to negative information shocks
about a scientist's past output. The flow of credit (in the form of cita-
tions) responds to scandal (i.e., retractions involving misconduct), all
the more sharply when bad news involve an established member of the
profession. Overall, the community's response is consistent with Baye-
sian learning under the assumptions that high-status scientists have a
better initial reputation, and that misconduct is a more revealing signal,
compared to an honest mistake.

In our current approach, we have taken the retraction-generating

Fig. 9. Retraction effect on citations to pre-retraction publications, by status quintile. Note: The dots in the above plots correspond to coefficient estimates stemming from conditional
fixed effects quasi-maximum likelihood Poisson specifications in which the citation rates for articles published by retracted and control authors prior to their first associated retraction
event are regressed onto year effects, article age indicator variables, as well as five interaction terms between the treatment indicator variable and five indicator variables corresponding
to each quintile of the author status distribution. Status is defined by the author’s cumulative citations at baseline. Panel A limits the sample to publications of retracted authors and their
controls who were associated with a retraction event stemming from mistake, while Panel B includes only publications for retracted authors and their controls that were associated with a
retraction event stemming from misconduct. The 95% confidence intervals (corresponding to robust standard errors, clustered around unique author identifiers) around these estimates is
plotted with the help of capped spikes.

Table 5
Status and retraction type – two-way table of frequencies.

Low status High status

Mistake 152 [58.02%] 68 [61.82%] 220
Misconduct 110 [41.98%] 42 [38.18%] 152
Total 262 110 372

Note: Total author counts for each status group are displayed in the bottom row, while
total author counts for each retraction type are displayed on the far right column. The
percentages refer to the fraction of events in that cell for the corresponding column
(status grouping). As can be readily observed, the ratio of misconduct and mistake re-
tractions is about the same for both high and low-status authors.

24 Stem cell science has been rocked by two especially sensational scandals. The first
was the case of Woo-suk Hwang—the South Korean scientists who fabricated experiments
and claimed to have successfully cloned human embryonic stem cells. More recently, the
media gave major coverage to the retraction of a stem cell paper that claimed to use acid
baths to turn mature cells into stem cells. Tragically, one of the Japanese authors on the
retracted paper, Yoshiki Sasai, committed suicide at his research lab.
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process as given. In other words, we do not attempt to construct and
test a model of scientist behavior and market response to scandal,
where the frequency and the consequences of a retraction are jointly
determined in equilibrium. With endogenous effort choices, in-
corporating drivers of incentives such as punishment schemes and ca-
reer concerns would enhance our understanding of the scientific reward
system. The data currently available do not allow us to distinguish the
effects of pure learning from those of more elaborate incentive schemes.
However, developing empirical tests capable of adjudicating their re-
lative salience is a valuable objective for future research in this area.

One limitation of looking at the retraction phenomenon through the
prism of information revelation is that it sheds light on only a fraction
of the private costs of false science—those narrowly associated with the
prior work of the scientists embroiled in scandal. But these scientists
bear additional costs in the form of foregone future funding, colla-
boration, and publication opportunities. Moreover, we cannot say
anything definitive regarding the private benefits of fraud or sloppiness,
because we only observe their consequences conditional on detection
by the scientific community. Furman et al. (2012) have shown that
retracted articles exhibit “excess” citations prior to retraction.25

Therefore, it is reasonable to infer that undetected instances of false
science confer on their authors enhanced prestige, as well as privileged
access to tangible resources, such as editorial goodwill, better trainees,
or state-of-the-art laboratory equipment. These benefits are extremely
difficult to assess without making a host of untestable assumptions.

A troubling narrative is that prominent and powerful scientists es-
cape major reputational damage following scientific misconduct scan-
dals, while their junior colleagues shoulder most of blame. For example,
a March 2017 New York Times article titled, “Years of Ethics Charges,
but Star Cancer Researcher Gets a Pass,” reported that cancer biologist

Carlo Croce of Ohio State University had avoided any official sanctions
from the university or federal agencies, despite multiple accusations of
academic fraud. Croce “largely placed the blame for any problems with
figures or text on junior researchers or collaborators at other labs”
(Glanz and Armendariz, 2017). This report fits the more general
storyline of established professionals and executives skirting blame
following scandals.

Jin et al. (2013) show that scandals impact the reputations of early
career scientists more than that of senior authors. But our evidence
speaks to reputation penalties across researchers who are in a similar
career stage. Among scientists with established track records, we find
that retraction events involving misconduct disproportionately hurts
the reputation of the most prominent authors.

Our findings do not imply that the scientific community currently
has the optimal incentive system, but by showing the additional pun-
ishments for misconduct and revealing that senior scientists cannot
escape blame, our results do speak against the jaundiced narrative that
regards peer review as fundamentally undermined by hypercompeti-
tiveness, fraud, and other forms of misconduct (Fang and Casadevall,
2015). Furthermore, the results highlight the importance of transpar-
ency in the retraction process itself. Retraction notices often obfuscate
the difference between instances of “honest mistake” and scientific
misconduct in order to avoid litigation risk or more rigorous fact-
finding responsibilities. In spite of this garbled information, our study
reveals that the content and context of retraction events influences their
fallout. We surmise that more straightforward “findings of fact” pub-
lished concurrently with a retraction notice would allow the scientific
community to mete out punishment more effectively, thus buttressing
the norms that govern the Republic of Science.

Appendix A. Model extensions

A.1 Two signals

Consider a model where retractions can occur due to two different processes. In particular, a “mistake” retraction follows a Poisson process with
parameter λθ, and a “misconduct” retraction arrives according to an independent process with parameter μθ. When a retraction event occurs, its type
is publicly observed.

Because information arrives continuously to the market, when a retraction occurs, the drop in the agent's reputation depends on the probability
distribution of that retraction type only. Therefore, let

≜ >β
μ
μ

1B

G

denote the relative informativeness of the misconduct signal. The resulting drop in reputation is given by Δ(p, α) following a mistake event and by
Δ(p, β) following a misconduct event.

We assume that the misconduct signal is more informative of the agent's low reliability, i.e. β > α. Our earlier Proposition 1 states that
reputations suffer a larger drop following a retraction due to misconduct than after a mistake.

Finally, Bayesian updating and rational expectations have testable implications for the distribution of retractions in a population of high-and low-
reputation agents. In particular, if the market holds correct beliefs pt at each point in time, the arrival rate of a retraction for agents with reputation p
is given by

+ + − +p λ μ p λ μ( ) (1 )( ).G B B B

It then follows that the distribution of retractions of different kinds is related to the current reputation level of an agent.

Proposition 3. Relative Frequency

The fraction of misconduct events is decreasing in the agent's reputation p.
Similarly, the distribution of retracted authors’ reputations for each kind of retraction should differ in a systematic way: high-reputation agents

should be relatively more frequent among authors with a retraction due to mistake.

A.2 Changing types

Suppose the agent's type follows a continuous-time Markov chain with transition rate matrix

25 When false science persists in the literature without retraction, the authors’ reputations benefit from the additional credit for both productivity (one additional item on their CVs)
and their abnormally large citation counts.
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This means intuitively that the effect of—even arbitrarily precise—signals fades away as time passes (because the underlying fundamental is likely to
have changed).

In our context, we can compute this “depreciation effect” backwards. In particular, if the market assigns probability p to θ= θG after a retraction,
it will assign probability
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to the agent's type being good t periods ago. While π(p, t) will be increasing or decreasing depending on the comparison of p with its long-run mean, it
will always move in the direction of dampening the most recent change, i.e., the retraction.

A.3 Proofs

Proof of Proposition 1. (1.) Differentiating Δ(p, α) with respect to α yields
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which is negative over the range p ∈ [0, 1/(1 + α−1)].□

Proof of Proposition 3. The relative frequency of misconduct events is given by
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whose derivative is
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which is negative because α < β.□

Proof of Proposition 2. Use the definition of Δ(p, α) given in (2) to compute |H(p*, α)| − |L(p*, α)|. The result then follows directly.□

Appendix B. Author matching

This appendix describes the method used to match retraction and control article authors to the augmented Association of American Medical
Colleges (AAMC) Faculty Roster [cf. Azoulay et al. (2010) for more details on the AAMC Faculty Roster]. Our process involved two main steps, using
different pieces of available information about authors, publications, and grants. We have checked that our matching criteria of both steps is reliable
and conservative, such that we are very confident in the accuracy of our final set of matched authors.

As a first step, we matched all authors for whom we already had a confirmed AAMC Faculty Roster match and full career publication histories
from prior work (see Azoulay et al., 2012). We determined this set of pre-matched authors by identifying any relevant source publications (retracted
or control articles) in the validated career publications for our set of previously matched authors.

For the remaining unmatched retraction or control authors, we undertook an iterative process to determine accurate matches in the augmented
AAMC Faculty Roster. As a first pass, we identified potential matches using author names, and confirmed and matched those with only one possible
match. For those with common names or multiple potential name matches, we used additional observable characteristics such as institution,
department, and degree to remove erroneous potential matches. When multiple potential matches remained, we compared the topic area of the
retracted/control paper to the grant titles, PubMed publication titles and abstracts associated with author name and the AAMC Faculty Roster entry.
In these cases, we only declared a match when the additional information made the choice clear.

Appendix C. Linking scientists with their journal articles

The next step in data construction is to link each matched author to their publications. The source of our publication data is PubMed, a bib-
liographic database maintained by the U.S. National Library of Medicine that is searchable on the web at no cost.26 PubMed contains over 24.6
million citations from 23,000 journals published in the United States and more than 70 other countries from 1966 to the present. The subject scope of

26 http://www.pubmed.gov/.
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this database is biomedicine and health, broadly defined to encompass those areas of the life sciences, behavioral sciences, chemical sciences, and
bioengineering that inform research in health-related fields. In order to effectively mine this publicly-available data source, we used PUBHARVESTER,27

an open-source software tool that automates the process of gathering publication information for individual life scientists (see Azoulay et al., 2006
for a complete description of the software). PUBHARVESTER is fast, simple to use, and reliable. Its output consists of a series of reports that can be easily
imported by statistical software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting to link accurately individual scientists
with their published output. The first relates to what one might term “Type I Error,” whereby we mistakenly attribute to a scientist a journal article
actually authored by a namesake; The second relates to “Type II error,” whereby we conservatively exclude from a scientist's bibliome legitimate
articles:

C.1 Namesakes and popular names

PubMed does not assign unique identifiers to the authors of the publications they index. They identify authors simply by their last name, up to two
initials, and an optional suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially when their last
name is relatively common.

C.2 Inconsistent publication names

The opposite danger, that of recording too few publications, also looms large, since scientists are often inconsistent in the choice of names they
choose to publish under. By far the most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent use of
suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these measurement problems, we opted for a labor-intensive approach: the design of individual search queries that relies on relevant
scientific keywords, the names of frequent collaborators, journal names, as well as institutional affiliations. We are aided in the time-consuming
process of query design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches. PUBHARVESTER provides the
option to use such custom queries in lieu of a completely generic query (e.g., “azoulay p”[au] or “krieger jl”[au]). For authors with
uncommon names and distinct areas of study, a customized query may simply require a name and date range. For example, scientist Wilfred A. van
der Donk required a simple PubMed search query: (“van der donk wa”[au] AND 1989:2012[dp]). On the other hand, more common names
required very detailed queries that focus on coauthor patterns, topics of research, and institution locations. An example of this type of detailed query
is that of author John L. Cleveland in our data: ((“cleveland jl”[au] OR (“cleveland j” AND (rapp or hiebert))) NOT (oral OR
diabetes OR disease[ad]) AND 1985:2012[dp]).

As an additional tool, we also employed the Author Identifier feature of Elsevier's Scopus database to help link authors to their correct publication
histories. This feature assigns author identification numbers using names, name variants, institutional affiliations, addresses, subject areas, pub-
lication titles, publication dates and coauthor networks.28 We compared the publication histories compiled by the Scopus system to our detailed
PubMed queries and found greater than 90% concordance, and extremely few “Type I” errors in either system. Our systematic comparisons led us to
believe that the Scopus system provides an accurate set of career publications.

Appendix D. Measuring misconduct and blame

In order to distinguish between instances of misconduct and instances of “honest mistakes,” we relied on the coding scheme developed in Azoulay
et al. (2015). These authors developed a procedure to capture whether intentional deception was involved in the events that led to a specific article
being retracted. They investigated each retraction by sifting through publicly available information, ranging from the retraction notice itself, Google
searches, the news media, and blog entries in RetractionWatch.

The “intent” coding scheme divide retractions into three categories:

1. No Sign of Intentional Deception for cases where the authors did not appear to intentionally deceive the audience (i.e., “honest mistakes”).
2. Uncertain Intent when negligence or unsubstantiated claims were present, but an investigation of the public documents did not hint at malice on

the authors’ part.
3. Intentional Deception is reserved for retractions due to falsification, intentional misconduct, or willful acts of plagiarism.

There is of course an element of subjectivity in the assignment of these codes, but the third category can be distinguished from the first two
unambiguously.29

For the empirical exercise performed in this manuscript, we lumped the “No Sign of Intentional Deception” and “Uncertain Intent” categories into
a single “honest mistake” grouping. This coding choice ensures that retracted authors associated with a misconduct retraction have been linked
unambiguously to a case of intentional deception. In robustness checks, we also replicated the results presented in Table 4 while (a) lumping the
uncertain cases with the clear-cut cases of misconduct; and (b) dropping from the sample all the retractions that belong to the “uncertain Intent”
category. These tweaks had an impact on the precision of some of the estimates presented in Table 5, but did not change its take-away message.

We evaluated the assignment of blame among the authors of each retracted publication, and coded which authors were deemed at-fault for the
events that led to retraction. On occasion, the retraction notice singles out particular authors. In other cases, the notice itself might be silent on the
topic of blame, but other publicly available sources of information (e.g., newspaper articles, press releases, blog posts, ORI investigation reports)
enable us to pinpoint the individual deemed responsible. Additionally, authors are occasionally blamed by omission, such as when an author name is
conspicuously absent from a series of retractions or related documents, or the retracted publication has a sole author.

27 The software can be downloaded at http://www.stellman-greene.com/PublicationHarvester/.
28 Described at http://help.scopus.com/Content/h_autsrch_intro.htm.
29 The codes for each retraction, together with a rationale for the category chosen, can be downloaded at http://jkrieger.scripts.mit.edu/retractions_index.html.
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In the full sample of 1,129 retractions, 565 had at least one “blameworthy” author according to our definition. However, the majority of blamed
authors are precisely the kinds of scientists less likely to ever appear in the AAMC Faculty Roster (e.g. graduate students, postdoctoral fellows, and
technicians). Only 24 out of the 376 retracted authors we could match to the AAMC Faculty Roster qualified as blameworthy using the criteria above.

Appendix E. In-field and out-of-field publications

This appendix describes our method of identifying “related” publications for all of the retracted/control publications in our sample. In the
econometric analyses, we separated publications that were in the same line of scientific inquiry as the retracted or control source article. We treated
these closely related papers separately because in prior work (Azoulay et al., 2015), we found that papers in the same field as a retraction experience
citation declines due to their intellectual association with the retracted piece. Therefore, we wanted to remove such papers to avoid contaminating
our measurement of individual reputation effects with the field-level effects found in this prior work. Furthermore, by identifying the entire set of
related papers, we can also differentiate between citations coming from within vs. outside a particular field.

The data challenge in the paper is to separate, in the body of published work for a given scientist that predates a retraction, the set of articles that
belong to the same narrow intellectual subfield as the retraction from the set of articles that lies outside the retracted article's narrow subfield. This
challenge is met by the use of the PubMed Related Citations Algorithm [PMRA], a probabilistic, topic-based model for content similarity that
underlies the “related articles” search feature in PubMed. This database feature is designed to aid a typical user search through the literature by
presenting a set of records topically related to any article returned by a PubMed search query.30 To assess the degree of intellectual similarity
between any two PubMed records, PMRA relies crucially on MeSH keywords. MeSH is the National Library of Medicine's [NLM] controlled voca-
bulary thesaurus. It consists of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity.
There are 27,149 descriptors in the 2013 MeSH edition. Almost every publication in PubMed is tagged with a set of MeSH terms (between 1 and 103
in the current edition of PubMed, with both the mean and median approximately equal to 11). NLM's professional indexers are trained to select
indexing terms from MeSH according to a specific protocol, and consider each article in the context of the entire collection (Bachrach and Charen,
1978; Névéol et al., 2010). What is key for our purposes is that the subjectivity inherent in any indexing task is confined to the MeSH term
assignment process and does not involve the articles’ authors.

Using the MeSH keywords as input, PMRA essentially defines a distance concept in idea space such that the proximity between a source article
and any other PubMed-indexed publication can be assessed. The algorithm focuses on the smallest neighborhood in this space that includes 100
related records.31 The following paragraphs were extracted from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The similarity between documents is measured by the words
they have in common, with some adjustment for document lengths. To carry out such a program, one must first define what a word is. For us, a word is
basically an unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens, spaces, new lines, and punctuation.
A list of 310 common, but uninformative, words (also known as stopwords) are eliminated from processing at this stage. Next, a limited amount of
stemming of words is done, but no thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words from titles are
also classified as text words, but words from titles are added in a second time to give them a small advantage in the local weighting scheme. MeSH terms are
placed in a third category, and a MeSH term with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or phrases in the case of MeSH) comprise the
representation of a document. No other fields, such as Author or Journal, enter into the calculations.
Having obtained the set of terms that represent each document, the next step is to recognize that not all words are of equal value. Each time a word is used, it
is assigned a numerical weight. This numerical weight is based on information that the computer can obtain by automatic processing. Automatic processing
is important because the number of different terms that have to be assigned weights is close to two million for this system. The weight or value of a term is
dependent on three types of information: 1) the number of different documents in the database that contain the term; 2) the number of times the term occurs
in a particular document; and 3) the number of term occurrences in the document. The first of these pieces of information is used to produce a number
called the global weight of the term. The global weight is used in weighting the term throughout the database. The second and third pieces of information
pertain only to a particular document and are used to produce a number called the local weight of the term in that specific document. When a word occurs
in two documents, its weight is computed as the product of the global weight times the two local weights (one pertaining to each of the documents).
The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a term that occurred in most of the documents
would really tell one very little about a document. On the other hand, a term that occurred in only 100 documents of one million would be very helpful in
limiting the set of documents of interest. A word that occurred in only 10 documents is likely to be even more informative and will receive an even higher
weight.
The local weight of a term is the measure of its importance in a particular document. Generally, the more frequent a term is within a document, the more
important it is in representing the content of that document. However, this relationship is saturating, i.e., as the frequency continues to go up, the importance
of the word increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be considered more important just
because it is longer; therefore, a length correction is applied.
The similarity between two documents is computed by adding up the weights of all of the terms the two documents have in common. Once the similarity
score of a document in relation to each of the other documents in the database has been computed, that document's neighbors are identified as the most
similar (highest scoring) documents found. These closely related documents are pre-computed for each document in PubMed so that when one selects
Related Articles, the system has only to retrieve this list. This enables a fast response time for such queries.32

To summarize, PMRA is a modern implementation of co-word analysis, a content analysis technique that uses patterns of co-occurrence of pairs of
items (i.e., title words or phrases, or keywords) in a corpus of texts to identify the relationships between ideas within the subject areas presented in
these text (Callon et al., 1989; He, 1999). One long-standing concern among practitioners of this technique has been the “indexer effect” (Whittaker,

30 Lin and Wilbur (2007) report that one fifth of “non-trivial” browser sessions in PubMed involve at least one invocation of PMRA.
31 However, the algorithm embodies a transitivity rule as well as a minimum distance cutoff rule, such that the effective number of related articles returned by PMRA varies between 58

and 2097 in the larger sample of 3071 source articles published by the 451 star scientists in the five years preceding their death. The mean is 185 related articles, and the median 141.
32 Available at http://ii.nlm.nih.gov/MTI/related.shtml.
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1989). Clustering algorithm such as PMRA assume that the scientific corpus has been correctly indexed. But what if the indexers who chose the
keywords brought their own “conceptual baggage” to the indexing task, so that the pictures that emerge from this process are more akin to their
conceptualization than to those of the scientists whose work it was intended to study?

Indexer effects could manifest themselves in three distinct ways. First, indexers may have available a lexicon of permitted keywords which is
itself out of date. Second, there is an inevitable delay between the publication of an article and the appearance of an entry in PubMed. Third,
indexers, in their efforts to be helpful to users of the database, may use combinations of keywords which reflect the conventional views of the field.
The first two concerns are legitimate, but probably have only a limited impact on the accuracy of the relationships between articles which PMRA
deems related. This is because the NLM continually revises and updates the MeSH vocabulary, precisely in an attempt to neutralize keyword vintage
effects. Moreover, the time elapsed between an article's publication and the indexing task has shrunk dramatically, though time lag issues might have
been a first-order challenge when MeSH was crated, back in 1963. The last concern strikes us as being potentially more serious; a few studies have
asked authors to validate ex post the quality of the keywords selected by independent indexers, with generally encouraging results (Law and
Whittaker, 1992). Inter-indexer reliability is also very high (Wilbur, 1998).

Appendix F. The impact of authors with multiple retractions

In the analyses presented in the main body of the manuscript, we use the retracted authors’ earliest retraction event as their year of “treatment.”
One problem with this approach is the possibility that scientists are associated with retraction events across multiple years over the course of their
careers. This is not idle speculation: 71 of the 376 authors (18.88%) in the sample have retraction events that occur in more than one calendar year
(with a maximum of nine different years with retractions). If we also count authors who retract multiple articles in the same year, the number of
multiple retractors grows to 115 (30.59%). This appendix investigates the role that these “multiple retractors” have on the manuscript's key findings.
First, we provide descriptive summaries regarding the nature of the retracted authors with retractions that span more than one year. We focus on this
group, rather than additionally including authors with multiple retractions in the same year, because the paper's theoretical and empirical approach
rely heavily on the timing of the earliest retractions as representing one-time shocks to scientist reputation. Retractions across multiple years are a
threat to this approach because, in those cases, the timing of the reputation shock is spread out such that our empirical estimation could be picking
up reactions to the subsequent retractions and assigning those responses to the earlier events. Next, we evaluate the impact of the multiple-retraction
cases by running the regression analyses with the multiple retractors removed.

As one might expect, multiple retractions authors are more likely to be affiliated with misconduct retractions than the singleton retractors. Table
F2 (supplementary material) shows that of the 71 scientists in our sample with retractions in more than one year, 69.01% have earliest retractions
associated with misconduct. Among the 305 single retractions authors, only 33.77% have misconduct earliest retractions. This disproportionate
number of misconduct cases among the multiple retractors raises the possibility that more drawn out (and potentially more severe and higher-
profile) “retraction episodes” drive the negative citation impact for prior work. This concern motivates our supplemental regression analysis that
excludes the multiple retractors group (see below).33 In contrast to the misconduct split, the proportion of high-status authors (as measured by
cumulative citations) is fairly similar for singleton and multiple retractors. Table F3 (supplementary material) shows that 30.49% and 23.94% of
single and multiple retraction authors, respectively, are high status.

To evaluate the impact of multiple retractors on our results, we ran our primary sets of regressions (Tables 3 and 4, as well as the event-study
graph) excluding the authors with multiple retraction events spanning multiple years. We also excluded their associated control authors, so that the
sample contains the articles of authors with retraction events occurring in the same year, together with the corresponding control authors identified
by looking at articles in the same/journal issues as the retraction events. Naturally, excluding these authors means that the coefficients of interest are
less precisely estimated, especially when splitting the sample using the misconduct and status covariates.

Column 1 of Table F5 (supplementary material) shows that despite the more limited sample, we still see that retraction authors experienced a
statistically significant drop in citations to prior work after the retraction event. The magnitude of this effect is slightly smaller than in the main
analyses (8.1% yearly decrease in citation rate, as opposed to 10.7% in the full sample version). Figure F2 displays the interactions between the
treatment effect variable with indicator variables for number of years until the retraction event. The general pattern is the same as the full sample
version (Fig. 8), but there are two notable differences. First, the confidence intervals are slightly larger in Figure F2. Second, the magnitude of the
treatment effect is more steady over time than in the full sample analysis, with very little change between year three and year nine after treatment.
One explanation for this difference is that the steady negative slope in the full analysis graph may be influenced by the multiple retraction authors’
later retraction events, which serve as additional shocks to their reputation.

The results in Table F6, supplementary material (which is analogous to Table 4 in the paper) show that the subgroup comparisons remain
directionally the same with multiple retractors excluded. We still find the most stark difference between mistake and misconduct authors within the
high-status category (as measured either by citations or funding). We also continue to observe similar magnitudes in the citation decline for low-
status authors, whether or not misconduct is involved in the corresponding retraction event.

We highlight two important findings contained in these supplemental analyses. First, multiple-retraction authors are more likely to be associated
with misconduct cases than are singleton retractors. Removing the multiple-year retraction authors from the analysis sample reduces statistical
power, but our main results continue to hold, at least qualitatively. A single retraction event is enough to damage the reputation of an author's prior
work, and the punishment meted out by failing to cite these authors still varies across misconduct and status subgroups in ways that are consistent
with our theoretical predictions.

Appendix G. Comparing magnitudes for the treatment effects across author groups

In our analysis of heterogeneous treatment effects, we split the sample by retraction type interacted with status cells (Table 4). The advantage of
the “split-sample” approach is that the corresponding treatment effects are estimated off control groups that correspond exactly to the treatment
group (e.g., high-status retracted authors are only compared to high-status control authors). A downside of this approach, however, is that it becomes

33 Jin et al. (2013) and Lu et al. (2013) remove authors who retracted publications multiple times from their analyses. This data construction choice makes the difference-in-differences
analysis more straightforward, but also entails that the misconduct/mistake split in their sample of authors is less representative of the split in the overall population of retracted authors.
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more challenging to compare the magnitudes of the treatment effects, since they are estimated from separate samples that are not randomly selected
from the overall data.

An obvious alternative is to run a regression on the entire sample, interacting the “after retraction” treatment variable (as well as all the other
covariates) with indicator variables for each of the four subgroups. Unfortunately, we cannot get this fully saturated specification to converge.

We use two different approaches to statistically compare the magnitudes of the treatment effects across subgroups. First, under the assumption
that, conditional on the included covariates, the four subsamples are randomly drawn from the overall data, then we can compare the coefficients’
magnitudes using a Z-test in the spirit of Clogg et al. (1995):

=
−

+
Z

β β

SE SE
a b

a b

1 1

1
2

1
2

Using this approach, the p-value for the one-tailed test of equality between the treatment effects in columns (1a) and (1b) is 0.08. But the p-value for
the one-tailed test of equality between the treatment effects in columns (1b) and (1d) is 0.13: the difference between these coefficient estimates is not
statistically significant at conventional levels.

Since the Z-test relies on a problematic assumption (that the subsamples are randomly drawn from the overall data), we also pool the data in a
slightly simplified version of the fully-saturated model. In particular, our pooled specification does not include a full suite of interaction terms
between the year effects, age effects, and the subgroup indicator variables. The results are displayed in Table G1 (supplementary material). Columns
(1) and (2) utilize the entire analysis sample, and columns (3) and (4) split the sample by author citation status. We use Wald hypothesis tests to
compare the magnitudes of the treatment effect variables. In column (1), we observe a statistically significant (p < 0.05) difference between the
misconduct and mistake groups. In column (2), we compare the treatment effects for each of the four subgroups. The Wald test statistic allows us to
reject the null hypothesis that the coefficient on the treatment variable “After Retraction × High Status × Misconduct” is equal to any of the other
treatment variables (when the Wald test is performed in a pairwise manner). We cannot reject the null hypothesis that any of the other three
treatment variables are equal at conventional levels of statistical significance. Column (3) also offers support for the claim that the high-status
misconduct group suffers the largest citation penalty; conversely, in column (4), the two low-status subgroups experience penalties that are sta-
tistically indistinguishable from one another.

Appendix H. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.respol.2017.07.003.
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