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Abstract-Using an index approach to take into account the scattering pattern of the 
observed values, Chen and Leimkuhler showed that the three well-known bibliometric 
distributions (i.e., Lotka’s law of scientific productivity, Bradford’s law of bibliographic 
scattering, and Zipf’s law of word frequency) are equivalent. Furthermore, Chen showed 
that L.otka’s law can be derived from a generating mechanism (the Simon-Yule Model) 
proposed by Herbert A. Simon. In this paper, we use a simulation algorithm based on 
the Simon-Yule model to conduct computational experimentation on these three laws. 
The results indicate that the probability of a new entry ( CY), be it constant or decreas- 
ing, determines the characteristics of all three distributions. 

I. INTRODUCTION 

Three bibliometric distributions are well known in the information science community; they 
are Lotka’s law of scientific productivity (Lotka, 1926), Bradford’s law of bibliographic 
scattering (Bradford, 1934), and Zipf’s law of word frequency (Zipf, 1949). Descriptive 
arguments about the equivalence of these three laws have been reported in the literature. 
To provide a common functional relationship among the three bibliometric distributions, 
Chen and Leimkuhler (1986) proposed a more rigorous approach that, by means of an 
index, takes explicit account of the sequence of observed variable values. The same index 
approach was used to explain the droop phenomenon of Bradford’s law (Chen & Leim- 
kuhler, 1987a), the concave abnormality of Zipf’s law (Chen & Leimkuhler, 1987b), and 
Booth’s law of low-frequency words (Chen & Leimkuhler, 1990) -a dual phenomenon of 
Zipf’s Law. 

Through this index approach, the study of bibliometric distributions boils down to the 
stochastic modeling of Lotka’s law. The development of stochastic bibliometric models 
faces considerable problems in verifying, validating, and experimenting with these mod- 
els (Leimkuhler, 1988). Simon (1977) discussed these problems at length, and he proposed 
a more constructive approach that consists of the following five steps: (1) Begin with raw 
data, not theories; (2) draw simple generalizations from striking features in data; (3) find 
limiting conditions by manipulating the variables; (4) devise simple mechanisms to explain 
steps 2 and 3; and (5) propose explanatory theories that go beyond step 4 and make exper- 
iments. These five steps were adopted by Chen (1989) to show that through the index 
approach, Lotka’s law can be derived from the Simon-Yule model-a generating mecha- 
nism proposed by Simon (1955). 

Because the conventional analytical methods can only derive the “average behavior” 
of the distributions, Leimkuhler (1988) suggested the use of computational experimenta- 
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tion for bibliometric modeling, since it enables us to study the distributions under “extreme 
conditions” (Neuts, 1986a, 1986b). The aim of the paper is to investigate, via simulation, 
the relationships between the parameters of the Simon-Yule model and the shapes of the 
three bibliometric distributions. Specifically, computational experimentation based on two 
versions of the Simon-Yule model are conducted on Lotka’s law, Bradford’s law, and Zipf’s 
law. Through changing the parameters of the Simon-Yule model, we are able to explain 
the regularities and anomalies of the three laws. Furthermore, a time dimension is inchided 
in the computational experimentation, which provides a vatuable insight into the stability 
of the empirical laws. 

This paper is organized as follows. Section 2 provides an overview of the three bib- 
liometric distributions mentioned earlier. Section 3 describes the Simon-Yule model and 
the simulation algorithm derived from it to generate the three distributions; we also argue 
that the computational experimentation is the most promising approach in this instance. 
Sections 4 to 6 are the computational results of these three distributions. Additional effects 
of changing parameters are discussed in Section 7; and finally, Section 8 is the conclusion. 

2. ANALYSIS OF THE BIBLIOMETRIC DISTRIBUTIONS: AN INDEX APPROACH 

2.1 The bibliometric distributions 
In his 1926 paper, Lotka examined patterns of scientific productivity among chemists. 

He discovered that, for some positive constant a, the number of chemists who published 
n papers was approximately a/n2, or 

f(n) = an-‘, n = 1,2,3,. . . 

Letting F(n) = C,?,f(i) be the number of authors who published n or more papers, then 
a frequently used alternative form of Lotka’s law is 

F(n) = a 
J 

Cw 1 
7 dx = an-‘, n = 1,2,3,. . . (1) 

n s- 

Bradford discovered in 1934 that if a comprehensive search on one particular topic 
is carried out for a period of time, and journals are arranged in descending order accord- 
ing to the number of articles found in them, the sources can be divided into a nucleus of 
journals and severa zones containing the same number of articles as the nucleus, and the 
number of journals in the nucleus and succeeding zones will be 

1:j:j’: . . . . (2) 

for some constant j. 
In his 1949 book, Zipf stated that “if one takes the words making up an extended body 

of text and ranks them by frequency of occurrence, then the rank r multiplied by its 
frequency of occurrence, g(r), will be approximately constant.” In symbolic form, 

g(r) = br-‘, r= 1,2,3,. . . (3) 

where b is a positive constant. 
As Chen and Leimkuhler (1986) pointed out, each of these three laws studies a par- 

ticular arrangement of two groups: the observation and the class. Lotka’s law relates the 
observation (the papers) and the class (the authors) by their frequency-size relationship. 
Bradford’s law relates the observation (the papers) and the class (the journals) by the cumu- 
lative-frequency-log-rank approach. Zipf’s law focuses on the observation (the word occur- 
rences) and the class (the words) by their frequency-rank relationship. More recently, the 
terminology “item” and “source” are used more often (e.g., Egghe & Rousseau, 1989, 1990) 
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than the observation and the class. As such, we use the term item-source in the rest of this 
paper as the observation-class relationship. 

2.2 The index approach and its contributions 
Chen and Leimkuhler (1986) introduced the notion of an index i = 1,2,. . . ,m, to take 

the scattering pattern of the observed values of the bibliometric distributions into account. 
In terms of items and sources, we define 

n, = the ith different observed value of n items a source has such that n,,, > n,, 
f(n,) = the number of sources with n, items, 
F(n,) = the number of sources that have no fewer than n, items, 

r, = the ith observed rank of a source where rank depends on the frequency of 
its items, 

g(r,) = the number of items of a source with rank r,, and 
G(r,) = the number of items of sources with rank not greater than r,. 

Three contributions of the indexed approach can be identified. First, Chen and Leim- 
kuhler (1986) showed that the three empirical laws are mathematically equivalent. Using 
notations defined above, for i = 1,2,. . . ,m, 

F(q) = an: - c (4) 

iff G(r,) = d c [rz(rk - rk-,)I 
k=l 

and 

iff g(r,) = d(r, + c)‘, (6) 

where a, b,c,d,e are constants and a,d > 0; b,e < 0; be = 1, ad” = 1. Equations (4), (5), 
and (6), without the index notations, are general formulations of Lotka’s law, Bradford’s 
law, and Mandelbrot-Zipf’s law (Mandelbrot, 1953), respectively. 

Second, the indexes i = 1,2,. . . , m, can be divided into three regions: where i is small, 

where i close to m, and otherwise. For small i, n, = i. For i close to m, f(n,) = 1. Let i,, 
be the maximum i such that n, = i and let i, be the minimum i such that f( n,) = 1 and 
f( n,_,) # 1. Then we have the following three important properties: 

1. n, = i, 15 is iy, 
2. n,=iandf(n,)=l, i,+lsisi,,--1, 

and 

3. f(n,) = 1, i,silm, 

where = means approximately equal. These three properties enable us to describe the droop 
phenomenon of Bradford’s law (Chen & Leimkuhler, 1987a) and the concave abnormality 
of Zipf’s law (Chen & Leimkuhler 1987b). 

Third, Zipf’s law focuses mainly on words of high frequency. In contrast, the formu- 
lation of Booth’s law (Booth, 1967) was motivated by two remarkable phenomena asso- 
ciated with words that rarely occurred. Letting f(n) be the number of words appearing 
n times each in a literary text and T be the total number of different words in the same text, 
thenf(l)/T= OS,f(2)/f(l) = 0.33,f(3)/‘(1) = O.l7,f(4)/f(l) = 0.10, andf(5)/f(l) = 
0.07. Chen and Leimkuhler (1990) showed that these equations can also be derived through 
eqn (4) (i.e., the indexed version of Lotka’s law). 

3. GENERATING BIBLIOMETRIC DISTRIBUTIONS: THE SIMON-YULE APPROACH 

After analyzing the bibliometric distributions in Section 2, the logical next step is 
to study the indexed version of Lotka’s law (eqn (4)). Chen (1989) adopted Simon’s (1977) 
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five-step scientific modeling process (see Section 1) to model Lotka’s law. The modeling 
process can be briefly summarized as follows: (a) examining empirical data of Lotka’s law 
using the index approach, (b) some striking features of the data related to eqn (4) are 
observed and generalized, (c) influential variables associated with the data are identified, 
(d) a simple generating mechanism proposed by Simon (1955) is used to derive eqn (4), and 
(e) need for further refinement of the simple mechanism is discussed. The simple mecha- 
nism, called the Simon-Yule model, and its further refinement are briefly reviewed below. 

3.1 The Simon- Yule Model of Lotka’s Law 

According to Simon (1955), the way we select things to use can be described as a 
stochastic process; furthermore, it is a twofold process that consists of imitation and 
association. People select what to use according to what they have used before and what 
others are using (imitation), as well as what they have just recently used (association). 
Although Simon’s original subject matter was the text generation, in terms of items and 
sources, his assumptions can be generalized to be: 

1. there is a constant probability, cy, and the (t + 1)st item will be a source (i.e., a 
source that has not been used in the first t items); and 

2. the probability that the source corresponding to the (t + 1)st item used has been 
used n times before is proportional to n .f( n, I), where f( n, f ) is the number of dis- 
tinct sources used exactly n times each in the first t items. 

Although the Simon-Yule model provides a sound generating mechanism to explain 
the general form of Lotka’s law in eqn (4) (Chen, 1989), several questions need to be 
addressed. For example, (a) what is the impact on the distribution when the size of the 
probability, cy, is varied? (b) Is there any relationship among HI (the index), n,,, (the larg- 
est n), and cu? (c) Is the average items per source (i.e., the total number of items over the 
total number of sources) a function of oc? 

3.2 Further refinement of the Simon- Yule Model 
As noted by Simon and Van Wormer (1963), the above-mentioned model is only a first 

approximation of the reality. They further refined the model by modifying the (Y in the 
first assumption from constant probability to a decreasing function of the total number 
of items. That is, there is a decreasing probability function cy ( I ), 0 d u (t ) 5 I, that the 
(I + 1)st item used is from a source not used previously. An immediate question is whether 
a decreasing function will provide different answers to the three questions listed above than 
constant function does. 

3.3 The need for computational experimentation 
In his paper on bibliometric modeling, Leimkuhler (1988) argued that the use of com- 

putational experimentation is necessary in studying bibliometrics and their application to 
information system design and problem solving. Computational experimentation allows 
researchers to go beyond the analytical methods to examine in detail as the assumptions 
are relaxed (Simon & Van Wormer, 1963). The two versions of the Simon-Yule model 
shown in the previous subsections can be easily programmed on a computer to simulate 
empirical data (n,,f(n,)), i = 1,2,. . . ,m, which exhibit Lotka’s law (Chen, 1989). 

Let N be the total number of items and f(j, t) be the number of distinct sources used 
exactly j times each in the first f items. The simulation algorithm proposed by Simon 
(Simon & Van Wormer, 1963) consists of two steps: 

Step 1. For each I (1 2 f 5 N), a random number, a, is generated from the rectan- 
gulardistributionwithrangeOto 1. lfa<oc(t),f(l,r)=f(l,t- l)+ 1 (i.e., 
a new source is added to the set of previously used sources); otherwise go to 
step 2. 

Step 2. A random number, b, is drawn from the rectangular distribution with range 
1 I b d t. Starting with j = 1, the cumulant of j.f (j, t - 1) is computed, and 
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compared with b until an n is found such that Z/n=, jf(j, t - 1) 2 b. Then 
f(n,t)=f(n,t-l)-l;andf(n+l,t)=f(n+l,t-l)+l.Thisisequiva- 
lent to saying that this tth item used belongs to the group of sources that have 
been used n times previously, and now it is moved to another group where 
every source has been used n + 1 times. 

The simulation data are obtained from a computer program written in Turbo Pascal 
for an 80386 personal computer. To start the simulation program, the initial conditions 
f(n,O), n = 1,. . . ,N, shall be provided. Since moderate changes in the initial conditions 
do not appear to affect the equilibrium distributions of Lotka’s law, we set the initial con- 
ditions with f( 1,0) = 3, and f(n,O) = 0 for n = 2,. . . ,N. In other words, the first three 
usages involve three different items. The simulations are carried out with N ranging from 
1,000 to 30,000. On the other dimension, cy also varied. For constant (Y, it ranges from 0.1 
to 0.9 and 0.1 increment plus the two extreme conditions of cy = 0.01 and (Y = 0.99. For 
the decreasing function, we use Q! (R) = A/hi(R), where A ranges from 1 .OO to 2.00 with 
the increment of 0.25, and R = 1,2, . . . , N. The simulation data generated from Simon’s 
algorithm are then entered into a Lotus l-2-3 spreadsheet to facilitate transformation. 
Graphs are also created from the transformed data for further analyses. 

4. COMPUTATIONAL EXPERIMENTATION OF LOTKA’S LAW 

4.1 Constant entry rate 
Figure 1 is one example of the results of simulations using Lotka’s law with N = 20,000 

and Q! = 0.10 and 0.90. A full graph reveals little information, since the curves are crowded 
along the axes. Thus, we magnify and focus only on the part closest to the origin to deci- 
pher the results. Figure 1 shows that, in general, large Q! tends to generate a smaller nrn, 
the frequency of usage for the most used source, and it also reduces the curve to a near 
vertical line approaching they axis. In other words, higher (Y shows a more evenly distrib- 
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Fig. I. Lotka’s law with constant 01 (N = 20,000). 
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uted usage of sources. In terms of the three regions described in Section 2.2, high (Y de- 
creases and low cy increases the region 3 wheref(n) = 1. In fact, when Q = 0.90, n,, = m 
and there is no excessive region 3. For example, when N = 20,000 n, = m = 8 (i.e., the 
most used sources are used eight times each) (see Table 1). In contrast, when o( = 0.01, the 
frequency of usage for the most used source is 10,578-a highly concentrated result. 

In light of the difficulty in describing different curvatures of these graphs, we need 
some measurement to show the relationship among parameters. Since Fig. 1 shows that a 
large CY seems to have less area under its curve and a small (Y implies large area, we define 
the parameter Area to be the area under the curve formed by ((n,,f(n,)), i = 1,2,. . ,m); 
that is, 

Area = 4 [(tInI) +f(n2))(n2 - n,) + (f(nr) +f(n3))(n3 - n2) 

+ . . + (f(n,,,-,I +f(n,,,))(n,,, - n,,,.-,)I. (7) 

The parameter Area serves as a measurement of the concentration of the usage of the 
sources. Note that more classical and similar concentration measurements do exist (e.g., 
Gini’s index). The use of the parameter Area in eqn (7) (and later in eqns (8) and (9)) is 
due to its fitness for the empirical law being studied. 

If we denote this nominal Area under the Lotka’s curve to be Area, , then from 
Table 1 we can see that Area, increases linearly with respect to the size of N when (Y is 
held equal. For example, at 01 = 0.01, when N = 30,000 Area, = 15943, or approximately 
30 times the Area,_ of 536 when N = 1,000. For this reason, we arbitrarily selected N = 

20,000 to be representative in most of our discussions. Since a larger N automatically 
increases Area,, Area,_ is adjusted and expressed as a percentage of the corresponding 
n,,,f( 1) -the rectangular area with the two extreme points as the corners. The resulting 
fraction is denoted Al and listed in Table 1. Figure 2 indicates how Al varies at different 
levels of cy and N. Figure 2 also shows that regardless the magnitude of N, Al increases 
along with o(, and finally Al_ converges to approximately 16.97% (when Q = 0.99) for all 
N. The reason for this convergence at high level of LY would be a good topic for future 
research. Note also that at the other extreme condition, cy = 0.01, Al also defies this gen- 
eral pattern of positive correlation with CY. 

The ratios according to Booth’s law are also included in this table. Note that when 
01 = 0.20, the ratios approximate those expressed in Section 2.2. Note also that the discrep- 
ancy between M (index) and n,,, (the largest n in the index system) in Table 1 indicates the 
nature of scattering observed values in bibliometric distributions. 

4.2 Decreasing entry rate 
Figure 3 shows that when A varies from 1 .O to 2.0, the curve moves away from the 

origin. However, results in Table 2 also indicate that although Areal_ increases when cy 
increases, the rate of increase is not as significant as in the case of constant Q. Further- 
more, when N is large, the rate of increase is even smaller. This is understandable, since 
the decreasing function eventually generates an (Y that is too small for A to make a signif- 
icant difference. However, note how well the Booth’s ratios comply with the theoretical 
figures in Section 2.2! For instance, at A = 1.5 and N = 20,000, the ratios are approxi- 
mately 0.50, 0.33, 0.17, 0.11, and 0.06. 

Figure 4 shows that AL, as defined in Section 4.1, increases as A (and therefore cu) 
increases in all levels of N. A, increases following a smooth slope for all N except that of 
N = 1,000. It is apparent that the decreasing function has not yet had a chance to remove 
the volatility at that level of N. The decreasing Al with respect to N is caused largely by 
the much faster increase in n,,,f( 1). 

5. COMPUTATIONAL EXPERIMENTATION OF BRADFORD’S LAW 

We began the analysis of Bradford’s law by calculating the Area, denoted as AreaN, 
using the following formula, with the same notations defined in Section 2.2: 
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Table 1. Simulation results of Lotka’s law with constant 01 
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n,, Area,_ A, 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

IPM 30:4-G 

1 6 534 
1 16 371 
I 22 175 
1 21 91 
1 18 44 
I 17 35 
1 13 16 
1 10 13 
I 6 8 
1 5 5 
1 3 3 

5 13 2624 
5 34 1618 
5 43 642 
5 40 303 
5 39 109 
5 27 67 
5 21 26 
5 15 19 
5 9 12 
5 7 7 
5 3 3 

10 16 5235 
10 46 3015 
10 55 1120 
10 52 506 
10 49 174 
10 38 94 
10 27 36 
10 19 25 
10 10 12 
10 7 7 
10 3 3 

15 19 7917 
15 57 4383 
15 65 1547 
15 58 649 
15 56 220 
15 43 119 
15 30 46 
15 20 28 
15 12 15 
15 8 8 
15 3 3 

20 23 10578 
20 66 5722 
20 74 1935 
20 69 783 
20 60 260 
20 48 137 
20 34 48 

205 0.4780 
1972 0.5198 
3991 0.5437 
6023 0.5816 
8011 0.6243 
9916 0.6632 

11899 0.7131 
13963 0.7726 
15936 0.8328 
18015 0.9112 
19816 0.9909 

20 23 31 
20 12 15 
20 8 8 
20 3 3 

25 27 13216 
25 72 6961 
25 81 2332 
25 75 917 
25 66 295 
25 50 148 
25 37 50 
25 23 32 
25 13 16 
25 8 8 
25 3 3 

9 0.4444 0.0000 0.2500 0.0000 0.0000 536 0.2509 
88 0.5341 0.2128 0.1702 0.1915 0.0638 420 0.0241 

183 0.4918 0.4556 0.1556 0.0556 0.0556 292 0.0185 
302 0.5993 0.2099 0.1381 0.1105 0.0497 282 0.0171 
401 0.6060 0.2510 0.1728 0.0658 0.0412 316 0.0295 
496 0.6431 0.2978 0.0909 0.0596 0.025 1 356 0.0319 
611 0.7201 0.2114 0.08 18 0.0341 0.0136 394 0.0559 
716 0.7765 0.1871 0.0486 0.0306 0.0018 441 0.0609 
799 0.8260 0.1530 0.0364 0.0152 0.0030 472 0.0894 
906 0.9205 0.1367 0.0360 0.0144 0.0120 488 0.1170 
987 0.9878 0.0113 0.0010 0.0000 0.0000 499 0.1706 

44 0.5682 
474 0.5359 
990 0.5424 

1523 0.5896 
2014 0.6346 
2487 0.6639 
2958 0.7093 
3450 0.7609 
3954 0.8283 
4492 0.9103 
4957 0.9917 

0.2OQO 0.0800 0.1200 0.0400 
0.2913 0.1654 0.0748 0.0591 
0.3240 0.1620 0.0950 0.0447 
0.3129 0.1102 0.0735 0.0367 
0.255 1 0.1072 0.0689 0.0352 
0.2489 0.1127 0.0424 0.0279 
0.2288 0.0791 0.038 I 0.0186 
0.1996 0.0530 0.0232 0.0175 
0.1450 0.0345 0.0168 0.0046 
0.0792 0.0147 0.0037 0.0005 
0.0079 0.0004 0.0000 0.0000 

2642 0.0403 
1935 0.0047 
1331 0.0039 
1339 0.0049 
1450 0.0104 
1705 0.0154 
1918 0.0352 
2142 0.0429 
2321 0.0590 
2447 0.0855 
2498 0.1694 

105 0.5143 
998 0.5411 

2018 0.5476 
3036 0.5827 
3985 0.6211 
4915 0.6596 
5933 0.7106 
6934 0.765 1 
7939 0.8293 
9008 0.9112 
9918 0.9919 

0.3333 0.1481 0.0741 0.0926 5300 0.0187 
0.3019 0.1204 0.0963 0.0667 3704 0.0023 
0.3113 0.1620 0.0887 0.05 16 2545 0.0021 
0.3041 0.1357 0.0820 0.0447 2626 0.0029 
0.2764 0.1329 0.0549 0.0303 2879 0.0067 
0.2619 0.0956 0.0506 0.03 12 3353 0.0110 
0.2265 0.0804 0.0372 0.0209 3838 0.0253 
0.1919 0.0586 0.0234 0.0124 4287 0.0323 
0.1472 0.0328 0.0150 0.0050 4649 0.0588 
0.0803 0.0125 0.0035 0.0007 4904 0.0853 
0.0079 0.0002 0.0000 0.0000 4998 0.1693 

149 0.4698 0.3429 0.2857 0.0857 0.0714 8034 0.0145 
1504 0.5259 0.3338 0.1517 0.0796 0.0544 5446 0.0016 
3039 0.5535 0.3002 0.1576 0.0779 0.0559 3703 0.0014 
4538 0.5837 0.2990 0.1351 0.0774 0.0521 3838 0.0022 
5930 0.6147 0.2914 0.1265 0.0642 0.0326 4285 0.0053 
7388 0.6547 0.2756 0.0980 0.0476 0.0269 5056 0.0088 
8917 0.7102 0.2291 0.0764 0.0403 0.0210 5777 0.0198 

10482 0.7724 0.1821 0.0581 0.0240 0.0120 6446 0.0284 
11954 0.8329 0.1443 0.03 18 0.0131 0.0061 6980 0.0467 
13491 0.9106 0.0801 0.0136 0.003 1 0.0010 7348 0.0748 
14871 0.9915 0.0085 0.0001 0.0000 0.0000 7498 0.1695 

0.3878 0.1837 0.1327 0.0612 
0.3356 0.1483 0.1063 0.0537 
0.3217 0.1581 0.0820 0.0539 
0.3060 0.1285 0.0748 0.05 14 
0.2729 0.1244 0.0630 0.0338 
0.2576 0.0999 0.0465 0.0295 
0.2209 0.0844 0.0346 0.0206 
0.1813 0.0586 0.0227 0.0125 
0.1435 0.0333 0.0129 0.0057 

10713 0.0103 
7162 0.0012 
4780 0.0011 
4997 0.0018 
5719 0.0044 
6719 0.0075 
7674 0.0188 
8578 0.0256 
9309 0.0468 
9806 0.0747 
9997 0.1697 

0.0804 0.0129 0.0025 0.0010 
0.0091 0.0002 0.0000 0.0000 

246 0.5000 0.3008 0.2033 0.1057 
2435 0.5170 0.3249 0.1581 0.1033 
4993 0.5484 0.3112 0.1494 0.0829 
7539 0.5832 0.2986 0.1321 0.077 1 
9992 0.6247 0.2695 0.1245 0.0628 

12417 0.6632 0.2590 0.0988 0.0488 
14892 0.7123 0.2252 0.0802 0.0347 
17470 0.7728 0.1810 0.058 I 0.0233 
19958 0.8342 0.1412 0.0348 0.0121 

0.0627 
0.0606 
0.0484 
0.0344 
0.0270 
0.0228 
0.0132 
0.0055 

22509 0.9109 0.0803 0.0134 0.0027 O.ooO9 
24770 0.9909 0.0090 0.0002 0.0000 0.0000 

13376 0.0082 
8710 0.0010 
5883 0.0009 
6202 0.0015 
7114 0.0039 
8404 0.0069 
9606 0.0181 

1073 1 0.0248 
11637 0.0437 
12256 0.0747 
12496 0.1697 

continued 
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Table 1. contmued 

N 
Ly (000) IN n,,, T 

f(2)/ ,':(33:' Wl:' f(5)/ 
S(l)/7- "f(l) f(l) Area, A, 

0.01 30 28 15740 304 0.5033 0.3203 0.2288 0.0784 0.0523 15943 0.0066 
010 30 84 8154 2915 0.5252 0.2972 0.1450 0.1156 0.0614 10224 0.0008 
0.20 30 84 2677 5988 0.5464 0.3139 0.1494 0.0889 0.0581 6964 0.0008 
0.30 30 83 1031 9033 0.5818 0.2986 0.1376 0.0735 0.0464 7370 0.0014 
0.40 30 6X 327 11987 0.6243 0.2700 0.1235 0.0643 0.0339 8529 0.0035 
0.50 30 55 161 14891 0.6619 0.2605 0.0989 0.0518 0.0264 10071 0.0063 
0.60 30 38 51 17899 0.7122 0.2255 0.0813 00346 0.0223 11.545 0.0178 
0.70 30 25 32 21COO 0.7723 0.1839 0.0572 0.0231 00118 12898 0.0249 
0.80 30 13 16 23988 0.8348 0.1416 0.0334 0.0123 0.0055 13980 0.0436 
0.90 30 8 8 27036 0.9112 0.0804 0.0131 0.0026 0.0009 14717 0.0747 
0.99 30 3 3 29722 0.9908 0.0090 0.0002 0.0000 00000 14994 0.1697 

____- 

AreaH = $I(G(r2) f G(r,)f(logr, - logr,) + (G(r3) + G(r,f)(logr, - logr,) 

+ . . + (Gtr,,,) + Gtr,n-I)(logr,,, - logr,,,_,)l. (8) 

Furthermore, we define AB = AreaJ[ G(r,,,)log(r,,,)l, where the denominator is the larg- 

est area possible for the curve. 

5.1 Constant entry rate 
Using N = 20,~ as an example, Fig. 5 is the composite graph of four Bradford’s 

curves with CY = 0.01, 0.20, 0.40, and 0.90. Note that the graph is the functional represen- 
tation of what is usually called Leimkuhler’ law (1967). Thus, Leimkuhler-Bradford’s 
law/curve is used in Figs. 5 to 8. 
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Fig. 2. Area under Lotka'q curve (A,) wth constant u. 
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Fig. 4. Areas under Lotka’s curve (At.) with w(R) = A/in(R), R = 1.2,. . . , 20,000. 
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Table 2. Simulation results of Lotka's law, with crfR) = A/in(R) where R = 1,2,. ,h’ 

1.00 I 26 101 169 
1.25 I 24 62 212 
1.50 I 23 51 271 
1.75 I 22 39 317 
2.00 I 21 28 348 

1.00 5 48 426 686 
1.25 5 5s 254 845 
1.50 5 48 194 1033 
I.75 5 49 133 1219 
2.00 5 42 97 1367 

1.00 10 68 794 1262 
1.25 10 68 476 1576 
1.50 10 68 365 1889 
1.75 10 61 252 2235 
2.00 10 62 182 2532 

1.00 15 80 1143 1800 
1.25 15 80 675 2227 
1.50 15 80 515 2700 
1.75 15 80 356 3198 
2.00 I5 17 248 3600 

1.00 20 84 1500 2280 
1.25 20 96 819 2861 
1.50 20 95 673 3445 
1.75 20 88 460 4069 
2.00 20 89 314 4586 

1.00 25 95 1854 2747 
1.25 25 100 1074 3454 
1.50 25 102 800 417-l 
1.75 25 104 539 4920 
2.00 25 100 362 5583 

1.00 30 101 2192 3220 
1.25 30 III 1260 4047 
1.50 30 111 955 4895 
1.75 30 110 641 5764 
2.00 30 109 432 6545 

0.4142 0.6143 0.1571 0.1000 
0.4481 0.4421 0.1895 0.0526 
0.5129 0.3309 0.1079 0.1079 
0.5205 0.3091 0.1394 0.1818 
0.5316 02811 0.1676 0.1622 

0.5044 0.2977 0.1590 0.0838 
0.4935 0.3309 0.1511 O.fl99 
0.4976 0.3346 0.1868 0.1109 
0.5086 0.3387 0.1935 0.0952 
0.5267 0.3417 0.1528 0.0931 

0.0429 214.5 0.0303 
0.0421 204.0 0.0346 
0.1079 230.5 0.0325 
0.0727 257.0 0.0399 
0.0595 264.5 0.0511 

0.0694 917.0 0.0062 
0.0959 838.0 0.0079 
0.0603 928.0 0.0093 
0.0645 994.0 0.0121 
0.0569 1076.0 0.0154 

0.4992 0.2952 0.1714 0.0984 0.0810 1676.5 0.0034 
0.5006 0.3105 0.1736 0.1065 0.0659 1606.0 0.0043 
0.4971 0.3365 0.1715 0.1076 0.0756 1724.5 0.0050 
0.5087 0.3369 0.1803 0.0915 0.0730 1853.5 00065 
0.5257 0.3366 0.1630 0.0924 0.0594 1996.0 00082 

0.4894 0.3326 0.1657 0.0988 00795 2427.0 0.0024 
0.4926 0.3254 0.1778 0.1112 00720 2298.5 0.0031 
0.5056 0.3216 0.1692 0.1070 0.0571 2471.5 0.0035 
0.5181 0.3132 0.1768 00863 0.0670 2654.0 0.0045 
0.5208 0.3419 0.1552 0.1003 0.0624 2844.0 0.0061 

0.4816 03597 0.1585 0.1056 0.0692 3176.5 00019 
0.4939 0.3390 0.1599 0.1125 0.0672 2963.0 0.0024 
0.5030 0.3289 0.1679 0.1062 0.0600 3169.0 0.0027 
0.5092 0.3369 0.1747 0.0936 0.0565 3435.5 0.0036 
0.5118 0.3524 0.1670 0.0950 00609 4642.0 0.0049 

0.4816 0.3492 0.1602 0.1156 0.0582 3883.0 0.0016 
0.4939 0.3353 0.1530 0.1184 0.0645 3604.5 0.0020 
0.5026 0.3308 0.1540 O.ll15 0.0686 3849.5 0.0023 
0.5106 0.3229 0.1684 0.0999 0.0685 4109.0 0.0030 
0.5182 0.3246 0.1701 0.0954 0.0667 4409.5 0.0032 

0.4904 0.3097 0.1659 0.1203 0.0665 3657.0 0.0013 
0.4977 0.3133 0.1708 01087 0.0665 4210.0 0.0017 
0.5046 0.3186 0.1688 0.0980 0.0745 4590.0 0.0019 
0.5095 0.3301 0.1709 0.1042 0.0678 4858.0 0.0026 
05141 0.3337 0.1664 0.1004 0 0627 5195.5 0.0036 

Figure 6 illustrates how AB reacts to changing CY and N, and it shows that the curves 
have a pattern that are mirror image of Fig. 2. For example, at a! = 0.01 (an extreme con- 
dition), As of different N converges at =0.90. Note here that G( r,,?) is the same as N. On 
the other hand, as Q! increases As decreases at approximately the same rate across ail N 
until cr reaches another extreme condition of 0.99; then As shows sudden increases, yet 
still at about the same rate for all N. The results of Area,, and As are summarized in 

Table 3. 
Based on Fig. 6, we can easily visualize the maximum, minimum, and the point where 

A8 is approximately 50% of all possible area (in this case, N+log(r,,,)). In fact, that is how 
we determined the curves to demonstrate in Fig. 5. As shown in Fig. 5, these points are 
approximately at cy = 0.01, 0.90, and 0.20, respectively. At o( = 0.20 and Al, = 50%, the 
curve is near linear and cut through diagonally the rectangle whose sides are G(r,,) = N 
and log( rm). As cx decreases from 0.20, two things happen. First, Gf 1) increases; and sec- 
ond, the curve moves northwesterly and causes Areaa to increase. Most of the drastic 
slope changes take place at the first few points on the curve; then the curve return to its 
linear form, though with a flatter slope. The slope of the linear portion decreases as CY 
decreases. When cy increases, the curve moves toward the southeastern direction, the slope 
of the linear portion of the curve also decreases, and the sudden jumps occur at the fast 
few points away from the origin. 



Bibliometric modeling 545 

from top down: a = 0.01, 0.2, 0.4, and 0.9 
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log(ri) 

Fig. 5. Lelmkuhler-Bradford’s law with constant 01 (N = 20,000). 
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Fig. 6. Areas under Leimkuhler-Bradford’s curve (A,) with constant CX. 
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Table 3. Simulation results of Bradford’s law and Zipf’a law with constant oi 

cy log(r) log(g(r)) Area, Area, .Afl A/ 

0 01 1 0.954 2.728 869.9 1.441 0.9118 0.5537 
0.10 1 I.944 2.569 1505.0 2.328 0.7742 0.4661 
0.20 I 2.262 2.243 1387.5 2.559 0.6134 0 5044 
0.30 1 2.480 1.959 1241.8 2.505 0.5007 0.5155 
0.40 1 2.603 I.643 1044.3 2.361 0.4012 0.5521 
0.50 1 2.695 1.544 951.0 2.182 0.3529 0.5245 
0.60 1 2.786 1.204 835.9 1.894 0.3000 0.5646 
0.70 1 2.855 1.114 770.6 1.669 0.2699 0.5249 
0.80 1 2.903 0.903 719.1 1.163 0.2477 0 4435 
0.90 1 2.957 0.699 739.5 0.947 0.2501 0.4581 
0.99 1 2.994 0.477 996 6 0.708 0.3329 0.4958 

0.01 5 I.643 3.419 7729.3 2.316 0.9409 0 4123 
0 10 5 2.676 3.209 9883.8 3 827 0.7387 0.3457 
0.20 5 2.996 2.808 8320.8 4 064 0.5555 0.483 1 
0.30 5 3.183 2.48 I 6935.9 3.932 0.3358 0.4979 
0.40 5 3.304 2.037 5766.2 3.677 0.3490 0.5364 
0.50 5 3.396 1.826 5001.8 3.348 0.2946 0.5399 
0.60 5 3.471 1.415 4394.3 2.937 0.2532 0.5980 
0.70 5 3.538 I.279 3960.6 2.551 0 2239 0.5638 
0.80 5 3.597 1.079 3682.7 2.128 0 2048 0.5482 
0.90 5 3.652 0.845 3661.6 1.674 0.2005 0.5423 
0.99 5 3.695 0.477 5352 6 0.824 0 2897 0 3674 

0.01 10 2.021 3.719 19072.6 2.934 0 9437 0.3904 
0.10 10 2.999 3.479 ‘1552.7 4.604 0.7187 0.44 13 
0.20 10 3.305 3.049 17572.8 4.827 0.53 17 0.4790 
0 30 10 3.482 2.704 14307 4 4.654 0.4109 0.4943 
0.40 10 3.692 2.241 11826.1 3.343 0.3203 0.5249 
0.50 10 3.692 1.973 10172 9 3.946 0.2755 0.5417 
0.60 10 3.773 1.556 8855.X 3.325 0.2347 0.5833 
0.70 10 3.841 1.398 796 1.5 2 964 0.2073 0 5520 
0.80 10 3.900 1.079 7370.7 2.420 0.1890 0.575 1 
0.90 10 3.955 0.845 7325.3 1.905 0.1852 0 5700 
0.99 10 3.996 0.477 10770.8 0.938 0 2695 0.4921 

0.01 15 2.173 3.899 30812.9 3.292 0 9453 0 3885 
0.10 15 3.177 3.642 33737.3 5.096 0.7079 0.4404 
0.20 15 3.483 3.189 27084.5 5.310 0.5 184 0.4781 
0 30 15 3.657 2.812 21828.4 5.113 0.3979 0.4972 
0.40 15 3.773 2.342 17970.1 4.763 0 3175 0.5390 
0.50 15 3.896 2.076 153’7.’ &_ * 4.306 0 ‘640 0.5361 
0.60 15 3.950 1.663 13320.8 3.146 1).2X8 0 5703 
0.70 15 4.020 1.447 11983.8 3 243 0.19x7 0.5575 
0.80 15 4.078 1.176 11097 0 2.679 0.1x13 0.55X6 
0.90 15 4.130 0.903 10996.1 2.092 0 1775 0.5609 
0.99 15 4.172 0.477 16015.0 1.013 0.255Y 0.5090 

0.01 20 2.312 4.024 43742.4 3.552 O.Y460 0.3818 
0.10 20 3.295 3.758 46252.9 5.465 0.7019 0.4413 
0.20 20 3.601 3.287 36674.3 5.672 0 5092 0.4792 
0.30 20 3.780 2.894 29274.2 5.443 0 3872 0.4975 
0.40 20 3.904 2.415 24039.3 5.05 1 0.3079 0.5357 
0.50 20 3.996 2.137 205 13.4 4.569 0.2567 0 5351 
0.60 20 4.076 1.681 17826.6 3.966 0.2187 0 5789 
0.70 20 4.145 1.491 16004.0 3.418 O.lY31 0 5531 
0.80 20 4.202 1.176 13797.3 2.837 0 1761 0.5742 
0.90 20 4.256 0.903 14669.8 1.937 0 1723 0.5039 
0.99 20 4.297 0.477 21098.5 1.000 0 2455 0.3877 

0.01 25 2.391 4.121 56597 4 3.768 0 946X 
0.10 25 3.386 3.843 58938.7 5.755 0.6963 
0.20 25 3.698 3.368 46442.2 5.959 0.5023 
0.30 25 3.877 2.962 36876.2 5.708 0.3805 
0.40 25 4.000 2.470 30247.3 5.300 0.3025 
0.50 25 4.094 2.170 25685.6 4.78 I 0 2510 
0.60 25 4.173 1.699 2228 1.4 4.138 0 ‘136 
0 70 25 4.242 1.505 19976.8 3.550 0.1884 
0.80 25 4.300 1.204 18483.7 2.Y22 0 1719 
0.90 25 4.352 0.903 18321.9 2.009 0. I684 
0.99 25 0.394 0.477 26372.8 0.989 0.240 I 

0.3823 
0 4423 
0 4784 
0 4970 
0.5365 
0.538 1 
0.5836 
0.5561 
0.5643 
05113 
0.4717 

contlnlted 
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Table 3. continued 
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01 

0.01 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

log(r) log(g(N Areaa Areaz AB AZ 

2.483 4.197 70564.8 3.942 0.9473 0.3783 
3.465 3.911 71836.7 6.004 0.6911 0.443 I 
3.717 3.428 56089.2 6.201 0.4950 0.4789 
3.956 3.013 44354.2 5.928 0.3737 0.4973 
4.079 2.515 36381.9 5.499 0.2973 0.5360 
4.173 2.207 30854.8 4.955 0.2465 0.5380 
4.253 1.708 26746.7 4.285 0.2096 0.5899 
4.322 1.505 23961.0 3.660 0.1848 0.5627 
4.380 1.204 22163.9 3.013 0.1687 0.5713 
4.432 0.903 21980.6 2.065 0.1653 0.5159 
4.473 0.477 31608.6 0.95 1 0.2356 0.4459 

5.2 Decreasing entry rate 
Figure 7 is the composite graph of these three Bradford’s curves using a decreas- 

ing function (Y(R) = A/m(R), R = 1,2,. . .20,000. The three curves are generated using 
A = 1, 1.25, and 2, with A = 1.25 to be the most linear of the three. 

Figure 8 shows that AB decreases as A (thus a) increases, independent of N. In fact, 
we selected N = 1,000, 20,000, and 30,000 for illustration purposes, and the three curves 
basically overlap each other. Table 4 summarizes the values of AreaB and AB at different 
levels of A and N. Since the “all possible area” can also be expressed as N.log(r,,,), it 
automatically increases when the number of iteration, N, increases. However, the overlap- 
ping curves in Fig. 8 imply that Areaa (the nominal area) changes proportional to N, thus, 
AB appears to remain unaffected by changing N. A simple regression analysis using N = 
20,000 yields As = 0.7244 - O.l776A, with R2 = 0.9843. Similar to Fig. 5, the 50% curve 
(A = 1.25) in Fig. 7 is the most linear one, the minimal curve (A = 2.00) bends southeast- 
erly, and the maximal curve bends northwesterly. Again, when (Y increases, both Areaa 
and As decrease, and vice versa. 
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Fig. 7. Leimkuhler-Bradford’s law with u(R) = A/In(R), R = 1.2,. ,20,000. 
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Fig. 8. AreasunderLelmkuhler-Bradford’scurve (AR) wthw(R) =A/ln(R),R= 1.2. ,2o,ooo. 

Based on Fig. 8, the maximum, minimum, and the 50% points are determined to be 
at approximately A = 1.0, 2.0, and 1.25, respectively-the three curves we chose to include 
in Fig. 7. 

6. COMPUTATIONAL EXPERIMENTATIONOFZIPF'S LAW 

The Area under Zipf’s curve (Area,) is calculated as follows: 

Area~=~~(log~(~~)+logg(r,))(log~,-logr,)+(logg(r,)+logg(~~))(log~,-log~~) 

+ ‘.’ + e%g(r,) + logg(r,,~,))(logr,,, - logr,,-,)I. (9) 

We also define Az = Areaz/[(log(g(r,,,))(log(r,,))], where the denominator is the largest 

possible Area,. 

6.1 Constant entry rate 
Several Zipf’s curves are plotted in the same graph in Fig. 9. In addition to (Y = 0.01, 

0.30, 0.60, we add to our graph the other extreme point a! = 0.99. 
Figure 10 shows how A;, varies under different CY and N. The pattern here is less 

clearly defined, especially when N = 1,000. However, if we flip the graph both horizon- 
tally and vertically, its general pattern is similar to that of Fig. 2. The effect of N shows 
greater dispersion and is not as pronounced as that of (Y. Also, when compared to Fig. 2 
and Fig. 5, the maximum point locates at the near-center of the CY spectrum, rather than 
at the extreme points. The values of Areaz and Az are summarized in Table 3. The nom- 
inal values of the area, Area,, follows the general pattern of Az: as cx increases, it 
increases also; however, after reaching a certain maximum point it eventually decreases. 



Bibliometric modeling 

Table 4. Simulation results of Bradford’s law and Zipf’s law with 
a(R) = A/In(R), R = l,2,. ,N 
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A NWW log(r) log(g(r)) Areaa Areaz A, AL 

1.00 1 2.228 2.004 1237.2 2.615 0.5553 0.5856 
1.25 1 2.326 1.792 1138.4 2.575 0.4894 0.6177 
1.50 1 2.433 1.708 1107.0 2.510 0.4550 0.6039 
1.75 I 2.501 I.591 1020.4 2.406 0.4080 0.6046 
2.00 I 2.542 I.447 963.0 2.323 0.3788 0.6317 

1.00 5 2.836 2.629 7908.0 4.153 0.5577 0.5570 
I .25 5 2.927 2.405 7233.0 4.1 I9 0.4942 0.5851 
I .50 5 3.014 2.288 6777.1 4.052 0.4497 0.5875 
1.75 5 3.086 2.124 6304.0 3.939 0.4086 0.6010 
2.00 5 3.136 1.987 5949.7 3.830 0.3794 0.6147 

1.00 IO 3.101 2.900 17267.9 4.943 0.5568 0.5497 
I .25 IO 3.198 2.678 15798.8 4.912 0.4940 0.5735 
1.50 10 3.276 2.562 14699.3 4.840 0.4487 0.5767 
1.75 10 3.349 2.401 13693.6 4.721 0.4089 0.587 1 
2.00 10 3.403 2.260 12921.3 4.600 0.3797 0.598 1 

1.00 15 3.255 3.058 27166.2 5.444 0.5564 0.5469 
1.25 15 3.348 2.829 24847.5 5.415 0.4948 0.5717 
1.50 15 3.431 2.712 23168.7 5.342 0.4502 0.5741 
1.75 I5 3.505 2.55 I 21513.1 5.213 0.4092 0.5830 
2.00 I5 3.556 2.394 20231.1 5.087 0.3793 0.5976 

1.00 20 3.358 3.176 37419.1 5.816 0.5572 0.5453 
1.25 20 3.457 2.944 34234.8 5.786 0.4952 0.5686 
1.50 20 3.537 2.828 31856.0 5.712 0.4503 0.5710 
1.75 20 3.609 2.663 29544.1 5.584 0.4093 0.5810 
2.00 20 3.661 2.497 27680.7 5.448 0.3780 0.5960 

1.00 25 3.439 3.268 47879.2 6.113 0.5569 0.5439 
1.25 25 3.538 3.03 I 43844.0 6.085 0.4957 0.5674 
1.50 25 3.621 2.903 40739.6 6.011 0.4500 0.5718 
1.75 25 3.692 2.732 37749.6 5.878 0.4090 0.5828 
2.00 25 3.747 2.559 35432.5 5.743 0.3782 0.5989 

1.00 30 3.508 3.341 58540.8 6.364 0.5563 0.5430 
1.25 30 3.607 3.100 53549.2 6.333 0.4949 0.5664 
1.50 30 3.690 2.980 49694.1 6.257 0.4489 0.5690 
1.75 30 3.761 2.807 46031.2 6.122 0.4080 0.5799 
2.00 30 3.816 2.635 43142.1 5.979 0.3769 0.5947 

Based on Fig. 10, the minimum, the maximum, and the 50% points of Az are the 
ones illustrated in Fig. 9, namely, CY = 0.01, 0.60, 0.30, respectively. Figure 9 can be ana- 
lyzed from several angles. First, the general negative slope remains to be the characteris- 
tics of these Zipf’s curves; however, the slope flattens with the increase of a. Second, the 
initial “kink” in the Zipf’s curve remains, but becomes less pronounced as CY increases. 
Third, log(g(r)) decreases when CY increases, but log(r) increases when (Y increases; thus, 
the “largest area possible,” as we have used the term previously, changes its shape from 
vertical rectangles to horizontal rectangles. Note that similarly to the results obtained from 
previous sections, when cr = 0.60 and Az = 50’70, the curve is near linear. However, the 
curve is also near linear when cx = 0.99, partly due to the many fewer observation points 
(m, the maximum index, is 3). 

6.2 Decreasing entry rate 
Simulation results are summarized in Table 4. Figure 11 depicts the pattern of Az 

with respect to A and N. Since the minimal Areaz is greater than 50%, only the minimum 
and maximum points are selected to plot the Zipf’s curves in Fig. 12. 

When these decreasing functions are evaluated at A = 1.0 and 2.0 with N = 20,000, 
the minimum values of CY are =O.l and =0.2, respectively, at the end of the iteration. 
Thus, it is no surprise that these two curves lie somewhere around the curve of the con- 
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stant CY = 0.30 in Fig. 10. Most of the observations made in Section 6.1 still hold true- 
the flattened slope, the reduction of the initial “kink,” the decreasing log(g(r)), and 
increasing log(r) -as cy increases. Table 4 is the summary of values of Areaz and Az 
under different A and N. Note that Areaz and Az are inversely related. 

7. SIGNIFICANT FINDINGS 

7. I The effeei of CY and N 
As discussed in the previous sections, it is clear that the shapes of the curves in all three 

distributions are affected the most by the new entry rate 01. All simulation results show that 
lower n: raises the concentration level. This is because lower cy implies higher chance of 
using old sources, which results in a higher concentration level. In the case of constant (Y, 
the number of iteration makes little difference in terms of the Ievel of concentration. In 
the cases of decreasing function, larger N also causes the Q to be smaller eventually, and 
the distributions are affected accordingly. 

As observed in Section 6.2, decreasing cy (R) can generate curves similar to those of 
constant CX, depending on the minimum CY in a(R). On the other hand, we did some pre- 
liminary experiments in mixing several levels of cu within one simulation. For instance, we 
began with CY = 0.01 for 5,000 iterations, and then change CY to 0.90 for another, 5,000 iter- 
ations. The results were compared with the ones begun with cy = 0.90 and then followed 
by ~1 = 0.01. The usage patterns are different, but patterns are difficult to detect in our lim- 
ited tests. The effect of mixed CY still awaits future research. On the other hand, CY also 
affects other parameters in significant ways. 

7.2 Index number m 
Figure 13 indicates that regardless of the level of N, the simulation generates the max- 

imum number of indexes (ranks) with constant LY = 0.20. Within the scope of our simula- 
tion, all indexes are reduced to be three when cy = 0.99, independent of the level of N. The 
maximum number of ranks IV? increases between (Y = 0.01 to 0.20, then declines at an 
increasing rate as cy continues to increase. On the other hand, Fig. 14 shows that nr12, the 
frequency of usage for the most used source (usually only one at this rank), dechnes con- 
tinuously at a decreasing rate as CY increases. This looks logical, since higher cy implies lower 
chance of using old sources, which results in lower n,,,. 

7.3 Average items per source 
Table 5 summarizes the average items per source (p). Figures I5 and 16 show the rela- 

tionships between p and 01. Apparently p decreases as cy increases, regardless of the level 
of N, and whether cx is constant or a decreasing function. The difference is that in the case 
of constant 01, JLS of different N are very similar, whereas the separation is much greater 
in decreasing function. In either case, given that N is held constant in each simulation, 
higher 01 means lower concentration (due to increasing number of distinct sources used), 
which results in lower p. 

7.4 Interpretation of the resutts 
At this point we need to revisit Simon’s first assumption in his Model I. Since CY is the 

rate of new entry, then given total items N, the total possible distinct sources F( 1) would 
be arN; thus, p = l/or, which is independent of N. Since lower a: decreases Ff l), that means 
the same number of items must be distributed among a smaller set of sources; hence, higher 
concentration. 

Simon’s first assumption affects primarilyf( 1) because CY determines the probability 
of transferring numbers fromf(0) to f( 1). On the other hand, the second assumption deter- 
mines the allocation of items among the previously used sources. Since increasing usage 
of a source increases its probability of being used again, with each iteration bypassing the 
first assumption, the most used sources have the probability of usage increasing exponen- 
tially. Given that a smaller cy increases the usage of previously used sources, it is logical 
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Table 5a. Average items per source: Constant o[ 

(Y 1K SK IOK 15K 20K 

0.10 1 I .3636 10.5485 10.0200 9.9734 10.1420 
0.20 5.4645 5.0505 4.9554 4.9358 5.0125 
0.30 3.3113 3.2830 3.2938 3.3054 3.3206 
0.40 2.4938 2.4826 2.5094 2.5291 2.4969 
0.50 2.0161 2.0105 2.0346 2.0305 2.0169 
0 60 I .6361 1.6903 I .6855 1.6824 1.6810 
0.70 1.3966 1.4493 I .4422 1.4310 I .4324 
0.80 1.2516 1.2645 I .2596 1.2549 I .2550 
0.90 1.1038 1.1131 1.1101 1.1119 I.1102 

Table 5b. Average items per source: al(R) = A/In(H) K = 1,2,. .N 

A N= IK 5K IOK 15K 2OK 

I .oo 5.9172 7.2886 7.9239 8.3333 8.7719 
1.25 4.7170 5.9172 6.3452 6.7355 6.9906 
I .50 3.6900 4.8403 5.2938 5.5556 5.8038 
1 .-I5 3.1546 4.1017 4.4743 4.6904 4.9152 
2.00 2.8736 3.6576 3.9494 4.1667 4.3611 

Normalized by using A = 1 .OO as base 

I .oo 1 .oOOo I 0000 1 .oooo I .oooo I .oooo 
1.25 0 7972 0.8118 0.8008 0.8083 0.7969 
1.50 0 6236 0.6641 0.668 1 0.6667 0.6616 
I .75 0.5331 0.5628 0.5647 0.5628 0.5603 
2.00 0.4856 0.5018 0.4984 0.5OOu 0.4972 
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Fig. 15. Results: Average items per source (p) with constant cx 
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Fig. 16. Results: Average items per source (p) with a(R) = A/In(R) where R = 1,2,. ,20,000. 

that n,, should increase faster. This affects basically the region where f( n,) = 1. Thus, 
changing cy effectively changes the shape of the curves of these empirical laws. 

It is not clear why m does not increase any faster with respect of N. Even at N = 
30,000, m is less than 100, resulting in very large scattering patterns. It is also interesting 
to note that m is at or near maximum around CY = 0.20-an important point for all three 
empirical laws-albeit the reason for such a phenomenon is still under research. 

8. CONCLUSIONS 

In this paper we showed the importance of computational experimentation in deriv- 
ing the behavior of the bibliometric distributions. Based on computational experiments, 
we demonstrated that the three bibliometric distributions can be simulated using Simon’s 
generating algorithm. Furthermore, we analyzed the simulation results, and were able to 
conclude that the probability of new entry, CX, was the most influential in determining 
the shapes of the curves and the characteristics of the distributions. On the other hand, the 
number of iterations, N, becomes a factor only when it affects (Y, as in a decreasing func- 
tion a(R), R = 1,2,. . .,N. 
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