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1. Introduction

Among the many different types of centrality concepts defined
for social networks, one finds domination and the corresponding
relational power measures as introduced by van den Brink and
Gilles (2000) (henceforth referenced as vdBG2000) for directed
networks.? vdBG2000 characterize two relational power meas-
ures: the B-measure and the score measure. Their characterization
of the fB-measure helps us understand the key properties of
the B-measure and to compare it with other relational power
measures>; for instance with the outdegree (called score-measure
by vdBG2000 or score function by Herings et al., 2005).

A couple of years later, van den Brink and Gilles (2003) (hence-
forth referenced as vdBG2003) characterized the ranking induced
by the score measure (they call this ranking the ranking by out-
degree). So far, no characterization of the ranking induced by the
B-measure (we will call it the S-ranking) has been published. There
is therefore a gap in the literature because it is not possible to
compare the B-ranking with the ranking by outdegree from an
axiomatic perspective. The aim of the present paper is to fill this
gap.

Since our main emphasis is on the characterization of the §-
ranking, we do not expand further on the motivation for the concept
of domination and for relational power measures; we refer the
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reader to vdBG2000 and, e.g., Herings et al. (2005) and Tabak et al.
(2010).

In the next section, we present the notation and the main defini-
tions. Section 3 presents the characterization of the g-ranking and
compares it with the characterization of the ranking by outdegree
in vdBG2003. In Section 4, we present a new characterization of
the B-measure. This alternative characterization of the f-measure
mainly uses the same axioms as the characterization of the 8-
ranking. This allows us to have a unified view of the ranking and
the measure.

2. Notation and definitions

Unlike vdBG2003, we consider a set of nodes (agents) that is not
fixed, i.e., the set X of nodes is a subset of a countably infinite uni-
verse 2 and X will be allowed to vary in our analysis. The motivation
for allowing X to vary will be detailed in Section 3.5.

Adirected network® Nis a pair (X, D) where D is a binary relation
on X, i.e., a subset of X x X. Examples of such directed networks are
networks of papers and citations or Twitter accounts and followers.
We limit our analysis to finite irreflexive directed networks, that is,
networks N=(X, D) such that X is finite and (a, a) ¢ D for all a € X.
Irreflexivity is assumed because it is coherent with the concept of
domination, but it could easily be dispensed with. The set of all
logically possible finite irreflexive directed networks is denoted by
N.

For every N = (X, D) € Nand a < X, we define the set of succes-
sors of a as Sy(a)={b € X:(a, b) € D} and the set of predecessors of

4 Also often called directed graph or digraph.
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a as Py(a)={b € X: (b, a) € D}. The cardinalities of these two sets
are respectively called outdegree and indegree of node a and are
denoted by sy(a) and py(a).

A relational power measure f (in vdBG2000’s terminology) is
a function mapping every network N = (X, D) € N to a vector in
RX such that fy(a) is the relational power of node a in network N.
For instance, the outdegree sy is the score-measure characterized
in vdBG2000. A relational power ranking - is a function mapping
every network N = (X, D) € NV to a weak order” on X denoted .
For instance, the ranking by outdegree (vdBG2003) is defined by
azy biff sn(a) = sn(b).

For every node a in network N=(X, D), the f-measure is the
relational power measure defined by

1
Bnla) = Z m7

beSy(a)

where, by convention, the sum is equal to zero whenever Sy(a)
is empty. It induces the B-ranking =f defined by a tﬁ, b iff
Bn(a) > Bn(b). This paper will characterize the S-ranking and the
B-measure.

The intuition behind this measure is the following: if node a
dominates node b (there is an arc from a to b), then we have an
argument for increasing the measure of a (there is a corresponding
term in the sum), but this argument is weaker if b is dominated by
many other nodes: the strength of the argument is equal to 1/pn(b).
A similar idea (but a different operationalization) underlies the Elo
ranking for chess players: when a player defeats a strong opponent,
he earns more points than when he defeats a weak one (Elo, 1978).

A much related idea can also be found in the literature on
bibliometrics. The “fractional counting of citations” proposed by
Leydesdorff and Opthof (2010a,b) and Glanzel et al. (2011) and
axiomatized by Bouyssou and Marchant (2016)isindeed quite rem-
iniscent of the f-measure with links having a dual interpretation:
if a paper p is cited by paper g, this raises the index of p by a fac-
tor that is inversely proportional to the number of papers citing q.
Another related index is the PageRank index (Page and Brin, 1998;
Altman and Tennenholtz, 2005), of which the fractional counting
of citations is in some sense a non-recursive version.

3. The B-ranking
3.1. Axioms

We present some conditions satisfied by the S-ranking. The first
one imposes that the labeling of the nodes be immaterial. Before
presenting it, we need a new piece of notation. For every network
N = (X, D) € Nandevery permutation iz of X, we define D™ by (r(a),
(b)) € D™ < (a, b) € D and we define N* =(X, D™).

A 1 (Anonymity). For every permutation mw of X and every N =
(X, D) € N,we have, foralla, b € Xm(a) zy» m(b)< aznb.

~

This condition is identical to Anonymity in vdBG2003. It is clear
that Anonymity is necessary for the B-ranking since the labels of
the nodes do not play any role in the definition of the B-ranking;
only the binary relation D matters.

We also need a monotonicity condition guaranteeing that
adding an arc never hurts the origin.

A 2 (Positive Responsiveness). For every N=(X, D) and N'=(X, D) in
Nandeverya,b,c e Xwitha # b,ifaryb,(a,c)¢Dand D'=DU{(a,
c)}, thena >y b.

5 A weak order on a set A is a complete (a> b or b~ a for every a, b in A) and
transitive (a z b and bz cimply a = c for every a, b, c in A) binary relation.

Notice that this is a strict monotonicity condition. Indeed, after the
addition of the arc (a, c), if a was strictly above b, this strict pref-
erence is preserved and, moreover, if a was indifferent to b, this
indifference is transformed into a strict preference.

This condition is exactly Positive Responsiveness, as defined by
vdBG2003 for characterizing the outdegree.

Let us show the necessity of this condition. When we add an
arc (a, ¢), we add a successor to Sy(a) and, for all other succes-
sors of a, the number of predecessors does not vary. Hence By/(a) =
Bn(a) +1/pn(c) and, so, the B-measure of a increases. At the same
time, when we add an arc (q, c), the number of successors of b does
not vary and the number of predecessors of a successor of b can
possibly increase by 1. Put differently, the f-measure of b remains
unchanged or decreases. Consequently, if a was at least as good as
b in the network N, then a is strictly better than b in N'.

Our next condition says that the addition of nodes that are not
linked to any other node has no influence on the ranking. Before
presenting it, we need a new definition. The restriction of a weak
order - on the set X to a subset X’ ¢ X is the weak order -’ defined
foralla,b e X bya='biffarb.

A 3 (Node Addition). For every network N =(X,D) e N and
N =(Xu{a}, D), the ranking - restricted to X is equal to = .

This condition is not related (at least not in a simple way) to any of
the conditions in vdBG2003. The Node Addition condition is satis-
fied by the S-ranking. Indeed, adding an isolated node (i.e., a node
that is not linked to any other node) does not change the number
of successors or predecessors of any other node. The S-measure of
all other nodes therefore remains constant.

Our next condition formalizes the idea that some arcs are
irrelevant for comparing a and b.

A 4 (Independence of Irrelevant Arcs). Let N=(X, D) and N'=(X, D’)
be two networks in N such that

® (c,d)¢D,D'=DuU{(c, d)},
e c¢{a, b}, d¢Sn(a)USn(b).

Thenazy biffazyb.

This condition is strictly weaker than Independence of Non-
dominated Arcs in vdBG2003. From the definition of the 8-measure,
it is clear that an arc influences the 8-measure of node a only if the
origin of the arc is a or if the destination of the arc is a successor
of a. Independence of Irrelevant Arcs is therefore satisfied by the
pB-ranking.

Consider two nodes a and b such that a dominates many nodes
while b dominates few ones. At first sight, we may be tempted to
conclude that a has more power than b. Suppose in addition that a
is in a very dense region of the network, i.e., a region where nodes
have many predecessors, while b is in a region with a low density.
This may lead us to temper our previous conclusion. Our last con-
dition is based on this idea. It says that increasing the number of
successors of node a and simultaneously increasing their number of
predecessors, in the same proportion, does not improve or worsen
the position of a.

A 5 (Independence of Local Density). Consider two networks N=(X,
D)and N'=(X,D')inNandl,n e N.Letak, ... ak, bk fork e {1,...,
I} be distinct nodes in X such that

1. Py(b*) = {a¥, ..., ak), fork e {1,..., 1},
2. (ak,b¥) ¢ D, fork + k' e {1,...,}andie{1,...,n},
3.0 =DU{(ak, b¥) tk# Kk e {1,....1),i e {1,...,n}}.

Then zZn="Zp-
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N'=(X,D’)
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Fig. 1. Independence of Local Density: left, the network N=(X, D) and right, the
network N’ =(X, D’), with [=3 and n=2.

This condition, illustrated in Fig. 1, is not related to any of the
conditions in vdBG2003. We establish the necessity of this condi-
tion. Consider any node d € X. We must show that Sy(d) = Bn/(d).
We distinguish several cases.

o d¢(ak, ...,k b¥)fork e {1,...,1}. Then the number of terms in
the sum defining the B-measure does not change when going
from N to N/, i.e., when adding arcs of the form (a¥, b*'). The
denominator of each term also remains the same because d is
not the predecessor of any b¥'.

ed= ag‘. Then the term (1/n) corresponding to the arc (d, b¥) is
divided by I because of all the new arcs of the form (af’, b¥). The
number of terms in the sum also changes: node d has [ - 1 new
successors, because of the arcs of the form (d, b¥'), and each corre-
sponding term in the new sum is equal to 1/(n x I). The f-measure
of d therefore remains unchanged since 1/n=1/nl+(I—1)/nl.

e d=bk. There is clearly no new term in the sum. Since we have
assumed in the statement of the condition that a¥, ..., a¥, bk for
k e {1, ..., I} are distinct, we know that none of the new arcs
(af, b¥') has a successor of d as destination. Each term of the sum
therefore remains unchanged.

Independence of Local Density is a kind of normalization
condition,® in the sense that it permits comparisons across
networks with different densities or to compare nodes located in
different parts of a single network, with different local densities.
Another example of a normalized index is the density of a network
(number of arcs divided by n(n — 1)/2); it is normalized in the sense
that it is a ratio, and it is thereby independent of the size of the
network. Comparisons across networks of different size are thus
possible. Notice that such a normalization has nothing to do with
units of measurement.” Indeed, even if we change the measure-
ment unit, i.e., we multiply the standard density index (resp. the
B-measure) by 2, by 10 or by 100, the scaled up density index (resp.
the scaled up B-measure) remains normalized and comparisons
across networks remain possible.

6 This concept of “normalization” is often used in the literature on networks (e.g.,
Ruhnau, 2000; Koschiitzki et al., 2005).

7 Contrary to the Dominance Normalization condition used in vdBG2000, as
explained later.

Fig. 2. Before step 1. The nodes a, b, their successors and the predecessors of their
successors in the network N=(X, D).

3.2. Result

We are now ready to state our first result, characterizing the
ranking induced by the S-measure.

Theorem 1. A relational power ranking satisfies (i) Anonymity,
(ii) Positive Responsiveness, (iii) Node Addition, (iv) Independence of
Irrelevant Arcs, and (v) Independence of Local Density if and only if it
is the B-ranking.

Before proving this theorem, we state and prove a lemma.

Lemma 1 (Transfer). Let N=(X, D) and N'=(X, D’) be two networks
in Mand n € N be such that

1. Py(b)={ay, ..., an}, Pn(D') = {ay, ..., ap),

2. Py(b) = {d}, az, ..., an}, Pnv(b) = {a1, @), ..., ap},
3. (a;,b')¢Dand (aj,b) ¢ Dforallie{1,...,n},

4. DAD' = {(ay, b), (a3, b'), (a1, b'), (a}, b))

If = satisfies Independence of Local Density, then =y =7
Proof. Consider the network N’ =(X, D”) such that
D"=Du{(a;,b'),(a;,b):i e {1,...,n}}.

By Independence of Local Density, -y» =2n. By Independence of
Local Density as well, =y, ==\ . Hence =y=7p. O

Proof of Theorem 1. The necessity of our conditions has been
shown above. We now prove the sufficiency. Choose any two nodes
a,bin X. In a number of steps, we will transform the network N into
N1, Ny, etc. in such a way that (1) the 8-measure of a and b will
not change and (2) the way a and b compare to each other will also
not change. At each step, the obtained network will be simpler.
When we will reach Ny, it will be so simple, that, using Anonymity
and Positive Responsiveness, it will be easy to know how a and b
compare to each other. Figs. 2-6 illustrate the proof with a simple
example. The initial network N=(X, D) is displayed in Fig. 2.

Step 1. Let us construct Ny =(Xj, D7) as follows. Let m be the
least common multiple of py(c) for all ¢ € Sy(a)USn(b). For each
successor c of a, we do the following (we will do the same with the
successors of b). Let n=m/pn(c). We relabel a as d}, c as c1 and the
other predecessorsofcasd?, .. ., dll’N(C). We add n — 1 new nodes ¢y,

..., cn and (n—1)pn(c) new nodes di withie {2,...,n},je{1,...,
pn(c)}. Thanks to Node Addition, the new nodes have no influence
on the comparison between a and b. We then add (n — 1)pn(c) new
arcs from ¢; to di forie{2, ..., n},je{l1, ..., pn(c)}. Thanks to
Independence of Irrelevant Arcs, the new arcs have no influence on
the comparison between a and b. We then add an arc from each di to
eachcy foralli # i € {1,...,n}andallj € {1, ..., pn(c)}. Thanks to
Independence of Local Density, a zy, b iff a Zy b. As a result of this
step (see Fig. 3), all successors of a and b have the same indegree
m. Notice that By, (a) = By(a) and By, (b) = Bn(b).

Step 2. Let us construct N, =(X5, D,) as follows. For each suc-
cessor c of a, we add 1+m new nodes: c, dy, ..., dn. Thanks to
Node Addition, the new nodes have no influence on the compar-
ison between a and b. We add a new arc from each dy, ..., dy to
c. Thanks to Independence of Irrelevant Arcs, the new arcs have
no influence on the comparison between a and b. We add two new
arcs (a, ¢'), (dy, ¢) and we remove the arcs (q, c), (d1, ¢').
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Fig. 3. Step 1. The network N; = (X, D1). The nodes added during step 1 are repre-
sented by a square. The least common multiple m is 6.

Thanks to Transfer, Zy, = Zy, and, therefore, azy, biffazy, b.
Hence azy, b iff azzyb. Notice that By,(a) = Bn(a) and By, (b) =
Bn(b). As a result of this step (see Fig. 4), all successors of a have no
successor; each predecessor (unless it is a) of a successor of a has
no predecessor and has only one successor.

Step 3. This step is similar to the previous one; it handles the
successors of b. Let us construct N3 =(X3, D3) as follows. For each
successor c of b, we add 1+m new nodes: ¢, dq, ..., dn. Thanks to
Node Addition, the new nodes have no influence on the comparison
betweenaand b. We add anew arc fromeachds,.. ., dy, toc’. Thanks
to Independence of Irrelevant Arcs, the new arcs have no influence
on the comparison between aand b. We add two new arcs (b, ¢'), (dq,
c) and we remove the arcs (b, ¢), (dq, ¢’). Thanks to Transfer, a ZN; b
iff a zy, b. Hence a zy, b iff a Zy b. Notice that By, (a) = fn(a) and
Bn;(b) = Bn(b). As a result of this step (see Fig. 5), all successors
of a and b have no successor and they all have the same indegree;
each predecessor (unless it is a or b) of a successor of a or b has no
predecessor and has only one successor; a and b have no successor
in common.

Step 4. Let N4 = (X4, D4) be such that X4 =X3 and D4 = D3\({(c, d) :
d ¢ Sny(a)U Sy, (b)). Thanks to Independence of Irrelevant Arcs,
azy, b iff axzy, b. Hence azy, b iff a;zyb. Notice that Bn,(a) =
Bn(a) and By, (b) = Bn(b). As a result of this step (see Fig. 6), all
arcs have a successor of a or b as destination; only a and b can have
an outdegree larger than 1; only successors of a or b have a positive
indegree; a and b have no successor in common; all successors of a
and b have no successor and they all have the same indegree.

We now consider three cases.

1. Bn(a)= Bn(b). In this case, it is easy to see that a and b have the
same outdegree in N4. Because of the high symmetry of N4, there

26n(b).
fu(b) = { )

is clearly a permutation 7 of X4 such that (a)=b, w(b)=a and
NJ = Ny (there are actually many such permutations). Because
of Anonymity, we have bi,\,z a<axzy,b. Since Nj = Ny, this
implies a~y, b and, hence, a~y b.

2. Bn(a)> Bn(b). In this case, the outdegree of a in Ny is larger than
that of b. By removing some arcs leaving a, we can construct a
network Ns (see Fig. 6) in which By (a) = By, (b). From case 1, we
know that a ~y, b and by Positive Responsiveness, we conclude
that a >y, b. Hence a >y b.

3. Bn(a)< Bn(b). This case is handled as the previous one.

3.3. Independence of the conditions in Theorem 1

For each of the five conditions invoked in Theorem 1, we provide
an example of a relational power ranking satisfying four conditions
but one. This proves that our result cannot be improved by dropping
one of the five conditions.

Example 1 (Anonymity). Choose anya € Q.ForallN =(X,D) e N
and all b € X, define the relational power measure f by

ifb=a,

otherwise.

Bn(b),

Define then the relational power ranking = by b =y ciff fy(b) > fn(c),
forallb,c e X.

Itis simple to check that - violates Anonymity but satisfies Node
Addition, Positive Responsiveness, Independence of Irrelevant Arcs
and Independence of Local Density.

Example 2 (Positive Responsiveness). Forall N = (X, D) € N, define
the relational power ranking = by =y=X2. It is simple to check
that = violates Positive Responsiveness but satisfies Anonymity,
Node Addition, Independence of Irrelevant Arcs and Independence
of Local Density.

Example 3 (Independence of Irrelevant Arcs). For all N = (X, D) €
N and all a € X, define the relational power measure f by fy(a) =
Bn(a) — ZCGPN(a)'BN(C)' Define then the relational power ranking
= by a=nbiff fy(a) > fy(b) foralla, b € X.

Adding a node to the set X does not affect the B-measure of
any node and Node Addition is therefore satisfied. Anonymity is
clearly satisfied. Positive Responsiveness holds because, when we
add anarcfromnode a to any other node d, the measure fy(a) strictly
increases. Indeed, By(a)strictly increases and, forallc € Py(a), Bn(c)

A
b
° °
[
u
[

Fig. 4. Step 2. The network N, =(X3, D,). The nodes added during step 2 (3 groups of 7 nodes) are represented by a triangle.
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£
A

Fig. 5. Step 3. The network N3 = (X3, D3). The nodes added during step 3 (2 groups of 7 nodes) are represented by a empty square.

N,
ey

: :

]
u
O

Fig. 6. Step 4. The network N4 = (X4, D4) contains all arcs in this figure. The network N5 =(X5, Ds) contains only the solid arcs.

remains constant except if d € Sy(c). In that case, By(c) decreases.
The overall effect on fy(a) is thus an increase.

We now show that Independence of Irrelevant Arcs does not
hold. Consider the network N=(X, D) with X={a, b, c, d, e} and
D={(c,a),(e,b)}.Thena~pbbecause fy(a)=—1=fy(b). We now add
the arc (¢, d) to this network and we obtain N'=(X, D") with D’ ={(c,
a), (e, b), (c, d)}. We have a <y b because fy(a)=-2 and fy(b)=-1,
contrary to what Independence of Irrelevant Arcs imposes.

Independence of Local Density holds because fy(a) is a combi-
nation of the S-measures of some nodes and we have shown in
Section 3.1 that the B-measure of all nodes remains unchanged
when we increase the local density as in the statement of Indepen-
dence of Local Density.

Example 4 (Independence of Local Density). ForallN =(X,D) e N
and all a € X, define the relational power measure f by fy(a)=sy(a).
Define then the relational power ranking = by a =y b iff fy(a) > fn(b)
foralla,b e X.

It is simple to check that - violates Independence of Local
Density but satisfies Anonymity, Node Addition, Positive Respon-
siveness and Independence of Irrelevant Arcs.

Example 5 (Node Addition). For all N=(X,D) € AMand all a € X,
define the relational power measure f by

SN(a)v
fn(a) =
Bn(a),

Define then the relational power ranking = by a =y b iff fy(a) > fn(b)
foralla,b € X.

To see that Node Addition is not satisfied, use the following
example. Consider the network N=(X, D) with X={a, b, ¢} and
D={(a, b), (b, a), (b, ¢), (¢, b), (c, a)}. We have fy(a)=sy(a)=1. Simi-
larly, fy(b)=2 and fy(c) = 2. Therefore, b ~y ¢ >y a. Consider now the
network N’ =(X, D) with X' ={a, b, ¢, d}. We have fy/(a) = Bn/(a) =
1/2. Similarly, fy/(b) = 3/2 and fy/(c) = 1. Therefore, b >y ¢ >y a.
Hence =y # =\ contrary to what Node Addition imposes.

It is clear that Anonymity, Positive Responsiveness, Indepen-
dence of Irrelevant Arcs and Independence of Local density are
satisfied when #X>3. It is also clear that Anonymity, Positive
Responsiveness and Independence of Irrelevant Arcs hold when
#X < 3. Finally, Independence of Local density holds when #X <3
because Independence of Local Density is vacuous (the premise is
never true) when #X < 3.

if#X < 3,

otherwise.
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Table 1

Comparison of the axioms in Theorem 2.4 in vdBG2003 and in our Theorem 1. Node Addition is satisfied by the ranking by outdegree, but is not used in its characterization.

Theorem 2.4 in vdBG2003 Our Theorem 1

Anonymity Anonymity
Positiye responsiveness
(Node Addition)

==

54

< Node Addition
Independence of Non-Dominated Arcs =

Positive responsiveness

Independence of Irrelevant Arcs

Independence of Local density

These five examples formally prove the logical independence of our
conditions. Yet, the last one, although formally correct, is not fully
satisfactory.Indeed, if we would state Theorem 1 for sets containing
at least four nodes, Example 5 would no longer work. Finding a
better example or slightly weakening some of our conditions so
as to obtain conditions that are logically independent even if the
result is stated for sets containing at least k alternatives (with k> 3)
is left as an open problem.

3.4. Comparison with the characterization of the ranking by
outdegree

Theorem 2.4 in vdBG2003 characterizes the ranking by
outdegree by means of three conditions: Anonymity, Posi-
tive Responsiveness and Independence of Non-Dominated Arcs.
Obviously, the same result holds in a framework where X is allowed
to vary: no additional condition is needed to characterize the out-
degree. So, when we compare their Theorem 2.4 (adapted to a
framework with X varying) and our Theorem 1, we find the follow-
ing (see Table 1). The ranking by outdegree and the S-ranking have
two characterizing axioms in common: Anonymity and Positive
Responsiveness. They both satisify Node Addition, but this condi-
tion is not used in the characterization result for the outdegree.
The fact that the ranking based on the outdegree can be charac-
terized without appealing to Node Addition is also the sign that
the measure on which this ranking is based is somewhat simpler
than the f-measure. What are then the differences? The ranking
by outdegree satisfies Independence of Non-Dominated Arcs while
the B-ranking satisfies a weaker independence condition, namely
Independence of Irrelevant Arcs. Besides, the S-ranking satisfies
Independence of Local Density.

3.5. Why do we let X vary?

Given a fixed, finite set of nodes, the number of possible
networks is also finite. And the set of all different values taken by
the B-measure is also finite. Any axiom stated for rankings imposes
an ordering constraint or an equality constraint on some pairs
of values. When the set of all different values is finite, an axiom
imposes a finite number of such constraints. With a finite set of
axioms, the number of ordering or equality constraints remains
finite. Obviously, with a finite number of ordering or equality
constraints imposed on a finite number of pairs of values, it is
impossible to completely determine what these values are, unless
they are equally-spaced. For instance, the set of all values taken
by the outdegree is equally-spaced. It is the set {0, 1,2, ...,n—1},
where n is the size of the set of nodes. But the set of values taken
by the B-measure on a fixed set of nodes is not equally-spaced. For
instance, with 4 alternatives, the set of values that can possibly be
taken by the S-measure is {0, 1/3, 1/2, .. .}. We therefore think it is
impossible to characterize the g-ranking with a fixed set of nodes.

By considering a variable set of nodes and imposing a finite
number of axioms, we actually impose infinitely many constraints.
This way, it is possible to isolate the B-ranking among all possible
rankings.

4. The f-measure

In this section, we are interested in the B-measure itself, and
no longer in the ranking induced by the 8-measure. A characteri-
zation of the S-measure has already been published by vdBG2000.
The alternative characterization we will propose will use many of
the conditions already introduced for the characterization of the
B-ranking presented in the previous section. It therefore offers a
unified view of the ranking and the measure and it allows us to
clearly identify the difference between the ranking and the measure
in terms of axioms.

Since any relational power measure induces a ranking and since
we already characterized the B-ranking in Theorem 1, a first way
to impose conditions on a relational power measure fis to impose
the conditions of Theorem 1 on the ranking induced by f. This way,
we are sure that fis a numerical representation of the S-ranking
in the sense that fy(a) > fy(b) iff azﬁ b. Yet, these conditions will
not be strong enough to characterize the f-measure because many
different measures induce the same ranking. Indeed, any strictly
increasing transformation of finduces the same ranking as the one
induced by f. So we need to add some new conditions and/or to
reinforce some of the conditions used in Theorem 1. We will actu-
ally use two additional conditions and reinforce the Node Addition
condition.

4.1. Axioms

We begin with an additivity condition satisfied by the g-
measure. Suppose two networks have the same set of nodes while
their sets of arcs have almost nothing in common. Then, if we merge
the two networks, the relational power measure of any node is the
sum of the relational power measure in the two original networks. It
is difficult to motivate this condition on purely normative grounds.
Why the sum and not another binary operation? Or more generally,
why should the measure in the merged network be a combination
of the measures in the original networks? There is no clear nor-
mative reason for this. Yet such a condition is necessary if we want
to characterize the measure rather than the ranking. We can nev-
ertheless motivate this condition by some operational arguments:
the fact that the measure in the merged network is the sum of the
measures in the original networks guarantees that the measure will
be easy to calculate and that many optimization problems that we
may want to define and to solve (in terms of the relational power
measure), will have some nice computational properties.

Before we formally define our additivity condition, we need an
extra piece of notation: for N = (X, D) € A, define Iy={a € X: (b,
a)or(a, b) € D for some b € X}.

A 6 (Additivity). Let Xc 2. Consider three networks N;i=(X, D1),
Ny =(X, D) and N = (X, D1 UDy) € N such that there is some a € X
with Iy, Ny, = {a} and Py(a)=40. Then fn(b) = f,(b) + fn,(b) for all
nodes b € X.

This condition, illustrated in Fig. 7, is clearly similar in spirit
to the Additivity over Independent Partitions condition used in
vdBG2000.
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Fig. 7. Additivity. The network N=(X, D; UD,) with two components connected via
a.

Let us show the necessity of this condition for the S-measure.
Choose any node b € X (except a). If it has successors in Ny, then it
has no successors in N5 (and vice versa). Besides, its successors in N
are the same asin N;.And the predecessors of the successors of b are
the same in N as in N1. Hence By(b) = By, (b) + 0 = By, (b) + Bn, (b).
We now consider the node a. It has successors in N7 and in Ny, but
the predecessors of the successors of a in Ny are distinct of the
predecessors of the successors of a in N,. Furthermore the merging
of Ny and N, does not change the set of predecessors of any node.
Hence By(a) = B, (@) + Bn,(a).

The second additional condition says that a node that has no
successor nor predecessor has a relational power measure equal to
zero.

A7 (Isolated Node). LetN = (X,D) € Nanda € X.IfSy(a)=Py(a)=9,
then fy(a)=0.

This is very close in spirit to the Dummy Node Condition of
vdBG2000, but our condition is weaker because vdBG2000 impose
fn(a)=0 whenever a node has no successor. It is clearly satisfied by
the B-measure.

We now reinforce the Node Addition condition: adding an iso-
lated node (that has no successor nor predecessor) has no effect on
the relational power measure.

A 8 (Node Addition*). For all networks N =(X,D) e Nand all a €
Q\ X, if N'=(Xu{a}, D), then fy(b) = fy/(b) for all b € X.

Node Addition* is not related to the Dummy Node Condition of
vdBG2000. The necessity of Node Addition* for the S-measure is
obvious. The following example shows that Node Addition does
not imply Node Addition*.

Example 6. For all N = (X, D) € A, define the relational power
measure f by

fa(a) = ﬁ”gf), Ya e X.

#
Node Addition™ is clearly violated while Node Addition is satisfied.

4.2. Result

Theorem 2. A relational power measure f satisfies (i) Additivity, (ii)
Isolated Node and (iii) Node Addition* and induces a ranking - sat-
isfying (iv) Anonymity, (v) Positive Responsiveness, (vi) Independence
of Irrelevant Arcs, and (vii) Independence of Local Density if and only
if f=kp for some positive real number k.

Instead of imposing Anonymity, Positive Responsiveness, Inde-
pendence of Local Density, and Independence of Irrelevant Arcs on
the ranking induced by the relational power measure f, we could
alternatively redefine those conditions for relational power meas-
ures and impose them directly on f. For instance, Anonymity would
become

A 9 (f-Anonymity). For every permutation m of X and every N =
(X, D) € N, we have, forall a, b € X fy=(7t(a)) > fy=(7(b)) < fn(a) >
fu(b).

The statement of Theorem 2 would then read “A relational power
measure f satisfies f-Anonymity, f-Positive Responsiveness, f-
Independence of Local Density, f-Independence of Irrelevant Arcs,
Additivity, Isolated Node and Node Addition* if and only if f=kf
for some positive real number k.” We prefer the former statement
because it makes clear which conditions are specifically tailored
for the index (the cardinal conditions), as opposed to the ordinal
conditions.

Proof of Theorem 2. The necessity of our conditions has been
shown above. We now prove the sufficiency. Clearly, if f satisfies
Node Addition*, then - satisfies Node Addition. Hence, thanks to
Theorem 1, = ==F (defined in Section 2). Consider two networks
N=(X,D)and M = (Y, B) € N'with a € XnY. The proof will consist
of three parts: (i) the index fy(b)=kpBn(b), for any node b € X; (ii)
the index fy(b)=kpBm(b), for any b € Y (with the same constant k);
(iii) parts i and ii hold even if XNnY=0.

By construction, for any ¢ € Xord € Y, By(c) and By(d) are ratio-
nal numbers. There exist therefore

e a natural number z,
e #X natural numbers x., V¢ € X, such that By(c)=x./z and
¢ #Y natural numbers y., V ¢ € Y, such that By(c)=y./z.

Let us choose any b € X and construct a new network N =(X,
D)withD'=Dand X' =X U {b’, ¢y, ..., Cx,, 1,1, - - -, €x,.z). By Node
Addition*, fy/(b) = fy(b). By construction, By/(b) = Bn(b). By Iso-
lated Node, fy/(c) =0 for all ¢ € X'\ X. We now construct a series
of networks N1, No, ... in a number of steps.

Step 1. Define Ny =(X', D1) by

D :D/U{(b’,cl)}u{(eu,cl):j:1,...,2—1}.

By construction, By, (b)= Bn(b) and By, (b')=1/z. By Addi-
tivity, fy, (b) = fn(b) and fy, (b') = fn(b'). Let y = fiy, (b'); thanks to
Anonymity, it is independent of b’ (and thus of b) because it only
depends upon the structure of the subgraph {(b’, ¢1)}U{(eq, ¢1):
j=1,...,z-1}

Step i, fori e {2, ..., xp}. Define N;=(X', D;) by

D; =D U{(b',chhu{lej,c) j=1,...,2—1}.

By construction, By,(b) = Bn(b) and B,(b') =i/z. By Additivity,
fn;(b) = fn(b). Anonymity and Additivity imply fy,(b’) = iy. Notice
that, at the end of Step vafob (b') = xpy.Itisalsoclear that lngb (b) =
,BNXb(b’). This and Theorem 1 imply fob(b) =fNXb(b’). As a conse-
quence, fiy(b) = fiy, (b) = fiy, (b') = x5. So,

WD) xy
OB M

Remember we have shown that y does not depend on b. The ratio
fn(b)[Bn(b) is therefore constant for all b € X. This concludes the
proof of part i.

Notice also that the same reasoning applies to the network M
and any b € Y, that is,

fulb) _ ypy _ @)
Bu(b)  yp/z
for any b € Y. By construction, z is the same number in (1) and (2).
The same holds for y. The ratio fy(b)/Bn(b) is therefore constant for
all N = (X, D) € N that share a common agent a and for all b € X.
This concludes the proof of part ii.

We now turn to part iii. Consider two networks N=(X, D)
and M=(Y, B) with XnY=@. We can easily construct a third
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network O=(Z, C) with XnZ # ¢ and YNnZ # ¢. Applying the
above reasoning to the pair (N, O) and to the pair (M, O)
yields fiy(b)/Bn(b) =fo(b)/Bo(b)=fu(b)/Bm(b). The ratio fy(b)/Bn(b)
is therefore constant for all N = (X, D) € Nand forall b € X.

In order to complete the proof, define k=yz and notice that, by
Positive Responsiveness, k> 0.

4.3. Independence of the conditions in Theorem 2

Examples 1, 3 and 4 in Section 3 are stated for rankings but
are all induced by a relational power measure. They can therefore
be reused for showing that none of Anonymity, Independence of
Irrelevant Arcs or Independence of Local Density is implied by the
other conditions of Theorem 2.

In order to prove that Node Addition* is not implied by the other
conditions of Theorem 2, we can use fy as defined in Example 5. Yet,
we prefer to use Example 6. It is simpler than Example 5 and it can-
not be used in place of Example 5 for showing the independence of
the conditions of Theorem 1 because it induces a ranking that satis-
fies the Node Addition condition. Besides, Example 6 does not make
a distinction between sets with at most three nodes and sets with
more than three nodes. The logical independence of the axioms in
Theorem 2 is thus more strongly established than for Theorem 1.

For the other conditions, we need some additional examples.

Example 7 (Positive Responsiveness). Forall N = (X, D) € N, define
the relational power measure f by

fn(a)=0, Va e X.

The ranking induced by fviolates Positive Responsiveness. All other
conditions are satisfied. This example is essentially identical to
Example 2, but stated in terms of relational power measure.

Example 8 (Additivity). ForallN = (X, D) € N, define therelational
power measure f by

fu(@) = (Bn(@)?, Va e X.

It obviously violates Additivity. That is satisfies Isolated Node and
Node Addition* is clear as well. Since fis a strictly increasing trans-
form of B, it is also a numerical representation of the ranking =#
and it therefore satisfies Anonymity, Positive Responsiveness, Inde-
pendence of Local Density, and Independence of Irrelevant Arcs.

Example 9 (Isolated Node). For all N = (X, D) € N, define the rela-
tional power measure f by

fn(a) = #D + Bn(a), Va € X.

It clearly violates the Isolated Node condition. It satisfies Addi-
tivity because each of #D and Sy(a) are additive measures. Node
Addition* is easy to check since the addition of an isolated node
does not change #D. Anonymity is obvious. Positive Responsive-
ness holds because, when we add an arc, all measures increase by
1, but the measure of the origin of the arc increases by more than 1.
Independence of Local Density is satisfied. Indeed, when we trans-
form a network as in the statement of the condition, the measure
of all nodes (without exception) increases by exactly 1. A similar
reasoning shows that Independence of Irrelevant Arcs holds.

4.4. The characterization of van den Brink and Gilles

In this section, we present vdBG2000’s characterization of the
B-measure and we compare it with ours. In their characterization
of the f-measure, vdBG2000 use the following four axioms.

A 10 (Dominance Normalization). ForeverynetworkN = (X, D) € N,

D fnla)=#la e X : Py(a) 0.

aeX

A11 (Dummy Node Property). ForeverynetworkN = (X, D) € Nand
every a in X with Sy(a)=4¢, it holds fy(a)=0.

A 12 (Symmetry). For every network N = (X, D) € N and every a, b
in X such that Sy(a)=Sn(b) and Py(a)=Pn(b), it holds fn(a)=fn(b).

For the fourth axiom, we need a new definition. A collection
{D1, ..., Dn} of binary relations on X is an independent partition of
N=(X, D) if

e the union of {Dy, ..., D} is equal to D,

e all relations {Dy, ..., Di} are mutually disjoint,

e each node has no predecessor in D or has predecessors in only
one of the relations {Dq, ..., Dm}.

A 13 (Additivity over Independent Partitions). Forevery network N =
(X, D) € N, ifthe collection {D1, ..., Dm} of binary relations on X is an
independent partition of N = (X, D), then

(@ = fixpp(@),
i=1

foralla € X.
Their characterization result is then:

Theorem 3 (vdBG2000, Th. 2.7, p. 145). Suppose X is given. A rela-
tional power measure satisfies Dominance Normalization, Dummy
Node Property, Symmetry and Additivity over Independent Partitions
if and only if it is the B-measure.

The most salient difference between vdBG2000’s result and our
Theorem 2 is that vdBG2000 exactly characterize the S-measure
while we characterize it up to a multiplicative constant. We do
so because we think there is no need for normalization in the
sense that there is no need for setting a unit of measurement (in
vdBG2000’s words, p.144). To make our point clear, we consider
a simple example in geometry. Suppose we want to characterize
the Euclidean distance. Shall we impose an axiom saying that the
distance be measured in meters? Or in yards? Definitely not. We
want to characterize the Euclidean distance up to a multiplica-
tion by some positive real number. This is perfectly sufficient for
understanding the Euclidean distance. The same is true for the -
measure: the relational power measure fdefined by fy(a) = 108n(a)
is for all purposes as good as By(a). We therefore want to charac-
terize the B-measure up to a multiplication by some positive real
number.

Since vdBG2000 want to exactly characterize the S-measure,
they need to use a normalization condition for setting a unit of mea-
surement: this is their Dominance Normalization. Unfortunately
this is a complex condition and it does more than normalizing (in
the sense of setting a unit of measurement for) the relational power
measure. If it were just a normalization condition (in the sense of
setting a unit of measurement), then the three other conditions
(namely Dummy Node Property, Symmetry and Additivity over
independent partitions) would characterize the 8-measure up to
a multiplication by some positive real number. This is clearly not
the case since it is easy to find other relational power measures sat-
isfying these three conditions. One such measure is the outdegree,
i.e., the relational power measure f defined by fy(a)=sy(a) for all
N=(X,D)and alla € X.

A pure normalization axiom (in the sense of setting a unit
of measurement) would be much simpler than Dominance
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Table 2

Comparison of the axioms in Theorem 2.7 in vdBG2000 and in our Theorem 2. Node Addition* is satisfied by the ranking by outdegree, but is not used in its characterization.

Theorem 2.7 in vdBG2000

Our Theorem 2

Dummy Node Property = Isolated Node
Symmetry < Anonymity
Additivity over Independent Partitions Additivity
(Nodo Addition®) s

Dominance Normalization

e g
Positive Responsiveness

Independence of Irrelevant Arcs
Independence of Local Density

Normalization. It could for instance be stated as follows: for every
network N = (X, D) € N such that D={(a, b)}, we have By(a)=1.
Such a condition does nothing else but setting the unit of measure-
ment. If we add it to the conditions of our Theorem 2, we exactly
characterize the S-measure. Without this condition, we character-
ize the f-measure up to a multiplication by a positive real number.

Theorem 2.7 in vdBG2000 continues to hold if we restate it in
a framework where X is allowed to vary: no additional condition
is needed to characterize the f-measure. So, we can compare The-
orem 2.7 in vdBG2000 to our Theorem 2. Table 2 summarizes the
axioms used in both theorems; it has five rows delimited by dot-
ted lines: one for each axiom of vdBG2000 plus an extra row for
Node Addition*. In a given row, the axioms in the right hand side
column are similar in spirit (or identical) to those in the left hand
side column. In the right hand side column, the last row has several
axioms, thereby showing that vdBG2000’s Dominance Normaliza-
tion has been split in several weaker axioms, that all have a clear
normative content. Hence, in our view, the alternative characteri-
zation of the B-mesure proposed in Theorem 2 does not compare
unfavorably with respect to Theorem 2.7 in vdBG2000.

The only condition in our Theorem 2 that has no clear normat-
ive content is Additivity (similar to Additivity over Independent
Partitions in vdBG2000). We do not see a way to avoid such a con-
dition, unless one is willing to work with a ranking rather than with
an index. Indeed, our Theorem 1 does not invoke any additivity
condition and uses all conditions with a clear normative content.
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