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irected network

. Introduction

Among the many different types of centrality concepts defined
or social networks, one finds domination and the corresponding
elational power measures as introduced by van den Brink and
illes (2000) (henceforth referenced as vdBG2000) for directed
etworks.2 vdBG2000 characterize two relational power meas-
res: the ˇ-measure and the score measure. Their characterization
f the ˇ-measure helps us understand the key properties of
he ˇ-measure and to compare it with other relational power

easures3; for instance with the outdegree (called score-measure
y vdBG2000 or score function by Herings et al., 2005).

A couple of years later, van den Brink and Gilles (2003) (hence-
orth referenced as vdBG2003) characterized the ranking induced
y the score measure (they call this ranking the ranking by out-
egree). So far, no characterization of the ranking induced by the
-measure (we will call it the ˇ-ranking) has been published. There

s therefore a gap in the literature because it is not possible to
ompare the ˇ-ranking with the ranking by outdegree from an
xiomatic perspective. The aim of the present paper is to fill this
ap.
Since our main emphasis is on the characterization of the ˇ-
anking, we do not expand further on the motivation for the concept
f domination and for relational power measures; we  refer the

∗ Corresponding author.
E-mail addresses: bouyssou@lamsade.dauphine.fr (D. Bouyssou),

hierry.marchant@ugent.be (T. Marchant).
1 Authors are listed alphabetically. They have contributed equally.
2 van den Brink et al. (2008) consider the case of undirected networks.
3 Relational power measures are called power functions by Herings et al. (2005).

ttps://doi.org/10.1016/j.socnet.2017.06.005
378-8733/© 2017 Elsevier B.V. All rights reserved.
reader to vdBG2000 and, e.g., Herings et al. (2005) and Tabak et al.
(2010).

In the next section, we  present the notation and the main defini-
tions. Section 3 presents the characterization of the ˇ-ranking and
compares it with the characterization of the ranking by outdegree
in vdBG2003. In Section 4, we  present a new characterization of
the ˇ-measure. This alternative characterization of the ˇ-measure
mainly uses the same axioms as the characterization of the ˇ-
ranking. This allows us to have a unified view of the ranking and
the measure.

2. Notation and definitions

Unlike vdBG2003, we  consider a set of nodes (agents) that is not
fixed, i.e., the set X of nodes is a subset of a countably infinite uni-
verse � and X will be allowed to vary in our analysis. The motivation
for allowing X to vary will be detailed in Section 3.5.

A directed network4 N is a pair (X, D) where D is a binary relation
on X, i.e., a subset of X × X. Examples of such directed networks are
networks of papers and citations or Twitter accounts and followers.
We limit our analysis to finite irreflexive directed networks, that is,
networks N = (X, D) such that X is finite and (a, a) /∈ D for all a ∈ X.
Irreflexivity is assumed because it is coherent with the concept of
domination, but it could easily be dispensed with. The set of all
logically possible finite irreflexive directed networks is denoted by

N.

For every N = (X, D) ∈ N  and a ∈ X, we  define the set of succes-
sors of a as SN(a) = {b ∈ X : (a, b) ∈ D} and the set of predecessors of

4 Also often called directed graph or digraph.
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 as PN(a) = {b ∈ X : (b, a) ∈ D}. The cardinalities of these two  sets
re respectively called outdegree and indegree of node a and are
enoted by sN(a) and pN(a).

A relational power measure f (in vdBG2000’s terminology) is
 function mapping every network N = (X, D) ∈ N  to a vector in
X such that fN(a) is the relational power of node a in network N.
or instance, the outdegree sN is the score-measure characterized
n vdBG2000. A relational power ranking � is a function mapping
very network N = (X, D) ∈ N  to a weak order5 on X denoted �N.
or instance, the ranking by outdegree (vdBG2003) is defined by

 �s
N b iff sN(a) ≥ sN(b).
For every node a in network N = (X, D), the ˇ-measure is the

elational power measure defined by

N(a) =
∑

b ∈ SN (a)

1
pN(b)

,

here, by convention, the sum is equal to zero whenever SN(a)
s empty. It induces the ˇ-ranking �ˇ defined by a �ˇ

N b iff
N(a) ≥ ˇN(b). This paper will characterize the ˇ-ranking and the
-measure.

The intuition behind this measure is the following: if node a
ominates node b (there is an arc from a to b), then we have an
rgument for increasing the measure of a (there is a corresponding
erm in the sum), but this argument is weaker if b is dominated by

any other nodes: the strength of the argument is equal to 1/pN(b).
 similar idea (but a different operationalization) underlies the Elo
anking for chess players: when a player defeats a strong opponent,
e earns more points than when he defeats a weak one (Elo, 1978).

A much related idea can also be found in the literature on
ibliometrics. The “fractional counting of citations” proposed by
eydesdorff and Opthof (2010a,b) and Glänzel et al. (2011) and
xiomatized by Bouyssou and Marchant (2016) is indeed quite rem-
niscent of the ˇ-measure with links having a dual interpretation:
f a paper p is cited by paper q, this raises the index of p by a fac-
or that is inversely proportional to the number of papers citing q.
nother related index is the PageRank index (Page and Brin, 1998;
ltman and Tennenholtz, 2005), of which the fractional counting
f citations is in some sense a non-recursive version.

. The ˇ-ranking

.1. Axioms

We  present some conditions satisfied by the ˇ-ranking. The first
ne imposes that the labeling of the nodes be immaterial. Before
resenting it, we need a new piece of notation. For every network

 = (X, D) ∈ N  and every permutation � of X, we define D� by (�(a),
(b)) ∈ D� ⇔ (a, b) ∈ D and we define N� = (X, D�).

 1 (Anonymity). For every permutation � of X and every N =
X, D) ∈ N, we have, for all a, b ∈ X �(a) �N� �(b) ⇔ a �N b.

his condition is identical to Anonymity in vdBG2003. It is clear
hat Anonymity is necessary for the ˇ-ranking since the labels of
he nodes do not play any role in the definition of the ˇ-ranking;
nly the binary relation D matters.

We  also need a monotonicity condition guaranteeing that
dding an arc never hurts the origin.
 2 (Positive Responsiveness). For every N = (X, D) and N′ = (X, D′) in
 and every a, b, c ∈ X with a /= b, if a �N b, (a, c) /∈ D and D′ = D ∪ {(a,

)}, then a �N′ b.

5 A weak order on a set A is a complete (a � b or b � a for every a, b in A) and
ransitive (a � b and b � c imply a � c for every a, b, c in A) binary relation.
etworks 52 (2018) 145–153

Notice that this is a strict monotonicity condition. Indeed, after the
addition of the arc (a, c), if a was  strictly above b, this strict pref-
erence is preserved and, moreover, if a was  indifferent to b, this
indifference is transformed into a strict preference.

This condition is exactly Positive Responsiveness, as defined by
vdBG2003 for characterizing the outdegree.

Let us show the necessity of this condition. When we  add an
arc (a, c), we add a successor to SN(a) and, for all other succes-
sors of a, the number of predecessors does not vary. Hence ˇN′ (a) =
ˇN(a) + 1/pN(c) and, so, the ˇ-measure of a increases. At the same
time, when we add an arc (a, c), the number of successors of b does
not vary and the number of predecessors of a successor of b can
possibly increase by 1. Put differently, the ˇ-measure of b remains
unchanged or decreases. Consequently, if a was  at least as good as
b in the network N, then a is strictly better than b in N′.

Our next condition says that the addition of nodes that are not
linked to any other node has no influence on the ranking. Before
presenting it, we need a new definition. The restriction of a weak
order � on the set X to a subset X′ ⊂ X is the weak order �′ defined
for all a, b ∈ X′ by a �′ b iff a � b.

A 3 (Node Addition). For every network N = (X, D) ∈ N  and
N′ = (X ∪ {a}, D), the ranking �N′ restricted to X is equal to �N.

This condition is not related (at least not in a simple way) to any of
the conditions in vdBG2003. The Node Addition condition is satis-
fied by the ˇ-ranking. Indeed, adding an isolated node (i.e., a node
that is not linked to any other node) does not change the number
of successors or predecessors of any other node. The ˇ-measure of
all other nodes therefore remains constant.

Our next condition formalizes the idea that some arcs are
irrelevant for comparing a and b.

A 4 (Independence of Irrelevant Arcs). Let N = (X, D) and N′ = (X, D′)
be two networks in N  such that

• (c, d) /∈ D, D′ = D ∪ {(c, d)},
• c /∈ {a, b}, d /∈ SN(a) ∪ SN(b).

Then a �N′ b iff a �N b.

This condition is strictly weaker than Independence of Non-
dominated Arcs in vdBG2003. From the definition of the ˇ-measure,
it is clear that an arc influences the ˇ-measure of node a only if the
origin of the arc is a or if the destination of the arc is a successor
of a. Independence of Irrelevant Arcs is therefore satisfied by the
ˇ-ranking.

Consider two nodes a and b such that a dominates many nodes
while b dominates few ones. At first sight, we  may  be tempted to
conclude that a has more power than b. Suppose in addition that a
is in a very dense region of the network, i.e., a region where nodes
have many predecessors, while b is in a region with a low density.
This may  lead us to temper our previous conclusion. Our last con-
dition is based on this idea. It says that increasing the number of
successors of node a and simultaneously increasing their number of
predecessors, in the same proportion, does not improve or worsen
the position of a.

A 5 (Independence of Local Density). Consider two networks N = (X,
D) and N′ = (X, D′) in N  and l, n ∈ N. Let ak

1, . . .,  ak
n, bk for k ∈ {1, . . .,

l} be distinct nodes in X such that

1. PN(bk) = {ak
1, . . .,  ak

n}, for k ∈ {1, . . .,  l},
k k′ ′
2. (a
i
, b ) /∈ D, for k /= k ∈ {1, . . .,  l} and i ∈ {1, . . .,  n},

3. D′ = D ∪ {(ak
i
, bk′

) : k /= k′ ∈ {1, . . .,  l}, i ∈ {1, . . .,  n}}.

Then �N = �N′ .
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ig. 1. Independence of Local Density: left, the network N = (X, D) and right, the
etwork N′ = (X, D′), with l = 3 and n = 2.

This condition, illustrated in Fig. 1, is not related to any of the
onditions in vdBG2003. We  establish the necessity of this condi-
ion. Consider any node d ∈ X. We  must show that ˇN(d) = ˇN′ (d).

e distinguish several cases.

d /∈ {ak
1, . . .,  ak

n, bk} for k ∈ {1, . . .,  l}. Then the number of terms in
the sum defining the ˇ-measure does not change when going
from N to N′, i.e., when adding arcs of the form (ak

i
, bk′

). The
denominator of each term also remains the same because d is
not the predecessor of any bk′

.
d = ak

i
. Then the term (1/n) corresponding to the arc (d, bk) is

divided by l because of all the new arcs of the form (ak′
i

, bk). The
number of terms in the sum also changes: node d has l − 1 new
successors, because of the arcs of the form (d, bk′

), and each corre-
sponding term in the new sum is equal to 1/(n × l). The ˇ-measure
of d therefore remains unchanged since 1/n  = 1/nl + (l − 1)/nl.
d = bk. There is clearly no new term in the sum. Since we have
assumed in the statement of the condition that ak

1, . . .,  ak
n, bk for

k ∈ {1, . . .,  l} are distinct, we know that none of the new arcs
(ak

i
, bk′

) has a successor of d as destination. Each term of the sum
therefore remains unchanged.

Independence of Local Density is a kind of normalization
ondition,6 in the sense that it permits comparisons across
etworks with different densities or to compare nodes located in
ifferent parts of a single network, with different local densities.
nother example of a normalized index is the density of a network

number of arcs divided by n(n − 1)/2); it is normalized in the sense
hat it is a ratio, and it is thereby independent of the size of the
etwork. Comparisons across networks of different size are thus
ossible. Notice that such a normalization has nothing to do with
nits of measurement.7 Indeed, even if we change the measure-
ent unit, i.e., we multiply the standard density index (resp. the
-measure) by 2, by 10 or by 100, the scaled up density index (resp.

he scaled up ˇ-measure) remains normalized and comparisons

cross networks remain possible.

6 This concept of “normalization” is often used in the literature on networks (e.g.,
uhnau, 2000; Koschützki et al., 2005).
7 Contrary to the Dominance Normalization condition used in vdBG2000, as

xplained later.
Fig. 2. Before step 1. The nodes a, b, their successors and the predecessors of their
successors in the network N = (X, D).

3.2. Result

We are now ready to state our first result, characterizing the
ranking induced by the ˇ-measure.

Theorem 1. A relational power ranking satisfies (i) Anonymity,
(ii) Positive Responsiveness, (iii) Node Addition, (iv) Independence of
Irrelevant Arcs, and (v) Independence of Local Density if and only if it
is the ˇ-ranking.

Before proving this theorem, we state and prove a lemma.

Lemma  1 (Transfer). Let N = (X, D) and N′ = (X, D′) be two networks
in N  and n ∈ N  be such that

1. PN(b) = {a1, . . .,  an}, PN(b′) = {a′
1, . . .,  a′

n},
2. PN′ (b) = {a′

1, a2, . . .,  an}, PN′ (b′) = {a1, a′
2, . . .,  a′

n},
3. (ai, b′) /∈ D and (a′

i
, b) /∈ D for all i ∈ {1, . . .,  n},

4. D�D′ = {(a1, b), (a′
1, b′), (a1, b′), (a′

1, b)}.

If � satisfies Independence of Local Density, then �N = �N′ .

Proof. Consider the network N′′ = (X, D′′) such that

D′′ = D ∪ {(ai, b′), (a′
i, b) : i ∈ {1, . . .,  n}}.

By Independence of Local Density, �N′′ = �N. By Independence of
Local Density as well, �N′′ = �N′ . Hence �N = �N′ . �

Proof of Theorem 1. The necessity of our conditions has been
shown above. We  now prove the sufficiency. Choose any two nodes
a, b in X. In a number of steps, we will transform the network N into
N1, N2, etc. in such a way that (1) the ˇ-measure of a and b will
not change and (2) the way  a and b compare to each other will also
not change. At each step, the obtained network will be simpler.
When we  will reach N4, it will be so simple, that, using Anonymity
and Positive Responsiveness, it will be easy to know how a and b
compare to each other. Figs. 2–6 illustrate the proof with a simple
example. The initial network N = (X, D) is displayed in Fig. 2.

Step 1. Let us construct N1 = (X1, D1) as follows. Let m be the
least common multiple of pN(c) for all c ∈ SN(a) ∪ SN(b). For each
successor c of a, we do the following (we will do the same with the
successors of b). Let n = m/pN(c). We relabel a as d1

1, c as c1 and the
other predecessors of c as d2

1, . . .,  dpN (c)
1 . We  add n − 1 new nodes c2,

. . .,  cn and (n − 1)pN(c) new nodes dj
i

with i ∈ {2, . . .,  n}, j ∈ {1, . . .,
pN(c)}. Thanks to Node Addition, the new nodes have no influence
on the comparison between a and b. We then add (n − 1)pN(c) new
arcs from ci to dj

i
for i ∈ {2, . . .,  n}, j ∈ {1, . . .,  pN(c)}. Thanks to

Independence of Irrelevant Arcs, the new arcs have no influence on
the comparison between a and b. We  then add an arc from each dj

i
to

each ci′ for all i /= i′ ∈ {1, . . .,  n} and all j ∈ {1, . . .,  pN(c)}. Thanks to
Independence of Local Density, a �N1

b iff a �N b. As a result of this
step (see Fig. 3), all successors of a and b have the same indegree
m. Notice that ˇN1 (a) = ˇN(a) and ˇN1 (b) = ˇN(b).

Step 2. Let us construct N2 = (X2, D2) as follows. For each suc-
cessor c of a, we add 1 + m new nodes: c′, d1, . . .,  dm. Thanks to
Node Addition, the new nodes have no influence on the compar-

ison between a and b. We  add a new arc from each d1, . . .,  dm to
c′. Thanks to Independence of Irrelevant Arcs, the new arcs have
no influence on the comparison between a and b. We  add two new
arcs (a, c′), (d1, c) and we remove the arcs (a, c), (d1, c′).
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ig. 3. Step 1. The network N1 = (X1, D1). The nodes added during step 1 are repre-
ented by a square. The least common multiple m is 6.

Thanks to Transfer, �N2
= �N1

and, therefore, a �N2
b iff a �N1

b.
ence a �N2

b iff a �N b. Notice that ˇN2 (a) = ˇN(a) and ˇN2 (b) =
N(b). As a result of this step (see Fig. 4), all successors of a have no
uccessor; each predecessor (unless it is a) of a successor of a has
o predecessor and has only one successor.

Step 3. This step is similar to the previous one; it handles the
uccessors of b. Let us construct N3 = (X3, D3) as follows. For each
uccessor c of b, we add 1 + m new nodes: c′, d1, . . .,  dm. Thanks to
ode Addition, the new nodes have no influence on the comparison
etween a and b. We  add a new arc from each d1, . . .,  dm to c′. Thanks
o Independence of Irrelevant Arcs, the new arcs have no influence
n the comparison between a and b. We  add two new arcs (b, c′), (d1,
) and we remove the arcs (b, c), (d1, c′). Thanks to Transfer, a �N3

b
ff a �N2

b. Hence a �N3
b iff a �N b. Notice that ˇN3 (a) = ˇN(a) and

N3 (b) = ˇN(b). As a result of this step (see Fig. 5), all successors
f a and b have no successor and they all have the same indegree;
ach predecessor (unless it is a or b) of a successor of a or b has no
redecessor and has only one successor; a and b have no successor

n common.
Step 4. Let N4 = (X4, D4) be such that X4 = X3 and D4 = D3\{(c, d) :

 /∈ SN3 (a) ∪ SN3 (b)}. Thanks to Independence of Irrelevant Arcs,
 �N4

b iff a �N3
b. Hence a �N4

b iff a �N b. Notice that ˇN4 (a) =
N(a) and ˇN4 (b) = ˇN(b). As a result of this step (see Fig. 6), all
rcs have a successor of a or b as destination; only a and b can have
n outdegree larger than 1; only successors of a or b have a positive
ndegree; a and b have no successor in common; all successors of a
nd b have no successor and they all have the same indegree.

We  now consider three cases.
. ˇN(a) = ˇN(b). In this case, it is easy to see that a and b have the
same outdegree in N4. Because of the high symmetry of N4, there

Fig. 4. Step 2. The network N2 = (X2, D2). The nodes added during
etworks 52 (2018) 145–153

is clearly a permutation � of X4 such that �(a) = b, �(b) = a and
N�

4 = N4 (there are actually many such permutations). Because
of Anonymity, we have b �N�

4
a ⇔ a �N4

b. Since N�
4 = N4, this

implies a ∼N4 b and, hence, a ∼N b.
2. ˇN(a) > ˇN(b). In this case, the outdegree of a in N4 is larger than

that of b. By removing some arcs leaving a, we can construct a
network N5 (see Fig. 6) in which ˇN5 (a) = ˇN5 (b). From case 1, we
know that a ∼N5 b and by Positive Responsiveness, we  conclude
that a �N4 b. Hence a �N b.

3. ˇN(a) < ˇN(b). This case is handled as the previous one.

3.3. Independence of the conditions in Theorem 1

For each of the five conditions invoked in Theorem 1, we  provide
an example of a relational power ranking satisfying four conditions
but one. This proves that our result cannot be improved by dropping
one of the five conditions.

Example 1 (Anonymity). Choose any a ∈ �.  For all N = (X, D) ∈ N
and all b ∈ X, define the relational power measure f by

fN(b) =
{

2ˇN(b), if b = a,

ˇN(b), otherwise.

Define then the relational power ranking � by b �N c iff fN(b) ≥ fN(c),
for all b, c ∈ X.

It is simple to check that � violates Anonymity but satisfies Node
Addition, Positive Responsiveness, Independence of Irrelevant Arcs
and Independence of Local Density.

Example 2 (Positive Responsiveness). For all N = (X, D) ∈ N, define
the relational power ranking � by �N = X2. It is simple to check
that � violates Positive Responsiveness but satisfies Anonymity,
Node Addition, Independence of Irrelevant Arcs and Independence
of Local Density.

Example 3 (Independence of Irrelevant Arcs). For all N = (X, D) ∈
N  and all a ∈ X, define the relational power measure f by fN(a) =
ˇN(a) −

∑
c ∈ PN (a)ˇN(c). Define then the relational power ranking

� by a �N b iff fN(a) ≥ fN(b) for all a, b ∈ X.
Adding a node to the set X does not affect the ˇ-measure of
any node and Node Addition is therefore satisfied. Anonymity is
clearly satisfied. Positive Responsiveness holds because, when we
add an arc from node a to any other node d, the measure fN(a) strictly
increases. Indeed, ˇN(a) strictly increases and, for all c ∈ PN(a), ˇN(c)

 step 2 (3 groups of 7 nodes) are represented by a triangle.
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Fig. 5. Step 3. The network N3 = (X3, D3). The nodes added during step 3 (2 groups of 7 nodes) are represented by a empty square.

this fi

r
T

h
D
t
a
c

n
S
w
d

E
a
D
f

D
s

Fig. 6. Step 4. The network N4 = (X4, D4) contains all arcs in 

emains constant except if d ∈ SN(c). In that case, ˇN(c) decreases.
he overall effect on fN(a) is thus an increase.

We  now show that Independence of Irrelevant Arcs does not
old. Consider the network N = (X, D) with X = {a, b, c, d, e} and

 = {(c, a), (e, b)}. Then a ∼N b because fN(a) = −1 = fN(b). We  now add
he arc (c, d) to this network and we obtain N′ = (X, D′) with D′ = {(c,
), (e, b), (c, d)}. We have a ≺N b because fN(a) = −2 and fN(b) = −1,
ontrary to what Independence of Irrelevant Arcs imposes.

Independence of Local Density holds because fN(a) is a combi-
ation of the ˇ-measures of some nodes and we  have shown in
ection 3.1 that the ˇ-measure of all nodes remains unchanged
hen we increase the local density as in the statement of Indepen-
ence of Local Density.

xample 4 (Independence of Local Density). For all N = (X, D) ∈ N
nd all a ∈ X, define the relational power measure f by fN(a) = sN(a).
efine then the relational power ranking � by a �N b iff fN(a) ≥ fN(b)
or all a, b ∈ X.
It is simple to check that � violates Independence of Local

ensity but satisfies Anonymity, Node Addition, Positive Respon-
iveness and Independence of Irrelevant Arcs.
gure. The network N5 = (X5, D5) contains only the solid arcs.

Example 5 (Node Addition). For all N = (X, D) ∈ N  and all a ∈ X,
define the relational power measure f by

fN(a) =
{

sN(a), if #X ≤ 3,

ˇN(a), otherwise.

Define then the relational power ranking � by a �N b iff fN(a) ≥ fN(b)
for all a, b ∈ X.

To see that Node Addition is not satisfied, use the following
example. Consider the network N = (X, D) with X = {a, b, c} and
D = {(a, b), (b, a), (b, c), (c, b), (c, a)}. We  have fN(a) = sN(a) = 1. Simi-
larly, fN(b) = 2 and fN(c) = 2. Therefore, b ∼N c �N a. Consider now the
network N′ = (X′, D) with X′ = {a, b, c, d}. We  have fN′ (a) = ˇN′ (a) =
1/2. Similarly, fN′ (b) = 3/2 and fN′ (c) = 1. Therefore, b �N′ c �N′ a.
Hence �N /= �N′ contrary to what Node Addition imposes.

It is clear that Anonymity, Positive Responsiveness, Indepen-
dence of Irrelevant Arcs and Independence of Local density are
satisfied when #X > 3. It is also clear that Anonymity, Positive

Responsiveness and Independence of Irrelevant Arcs hold when
#X ≤ 3. Finally, Independence of Local density holds when #X ≤ 3
because Independence of Local Density is vacuous (the premise is
never true) when #X ≤ 3.
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Table 1
Comparison of the axioms in Theorem 2.4 in vdBG2003 and in our Theorem 1. Node Addition is satisfied by the ranking by outdegree, but is not used in its characterization.
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hese five examples formally prove the logical independence of our
onditions. Yet, the last one, although formally correct, is not fully
atisfactory. Indeed, if we would state Theorem 1 for sets containing
t least four nodes, Example 5 would no longer work. Finding a
etter example or slightly weakening some of our conditions so
s to obtain conditions that are logically independent even if the
esult is stated for sets containing at least k alternatives (with k > 3)
s left as an open problem.

.4. Comparison with the characterization of the ranking by
utdegree

Theorem 2.4 in vdBG2003 characterizes the ranking by
utdegree by means of three conditions: Anonymity, Posi-
ive Responsiveness and Independence of Non-Dominated Arcs.
bviously, the same result holds in a framework where X is allowed

o vary: no additional condition is needed to characterize the out-
egree. So, when we compare their Theorem 2.4 (adapted to a
ramework with X varying) and our Theorem 1, we find the follow-
ng (see Table 1). The ranking by outdegree and the ˇ-ranking have
wo characterizing axioms in common: Anonymity and Positive
esponsiveness. They both satisify Node Addition, but this condi-
ion is not used in the characterization result for the outdegree.
he fact that the ranking based on the outdegree can be charac-
erized without appealing to Node Addition is also the sign that
he measure on which this ranking is based is somewhat simpler
han the ˇ-measure. What are then the differences? The ranking
y outdegree satisfies Independence of Non-Dominated Arcs while
he ˇ-ranking satisfies a weaker independence condition, namely
ndependence of Irrelevant Arcs. Besides, the ˇ-ranking satisfies
ndependence of Local Density.

.5. Why  do we let X vary?

Given a fixed, finite set of nodes, the number of possible
etworks is also finite. And the set of all different values taken by
he ˇ-measure is also finite. Any axiom stated for rankings imposes
n ordering constraint or an equality constraint on some pairs
f values. When the set of all different values is finite, an axiom
mposes a finite number of such constraints. With a finite set of
xioms, the number of ordering or equality constraints remains
nite. Obviously, with a finite number of ordering or equality
onstraints imposed on a finite number of pairs of values, it is
mpossible to completely determine what these values are, unless
hey are equally-spaced. For instance, the set of all values taken
y the outdegree is equally-spaced. It is the set {0, 1, 2, . . .,  n − 1},
here n is the size of the set of nodes. But the set of values taken

y the ˇ-measure on a fixed set of nodes is not equally-spaced. For
nstance, with 4 alternatives, the set of values that can possibly be
aken by the ˇ-measure is {0, 1/3, 1/2, . . .}. We  therefore think it is
mpossible to characterize the ˇ-ranking with a fixed set of nodes.
By considering a variable set of nodes and imposing a finite
umber of axioms, we actually impose infinitely many constraints.
his way, it is possible to isolate the ˇ-ranking among all possible
ankings.
4. The ˇ-measure

In this section, we  are interested in the ˇ-measure itself, and
no longer in the ranking induced by the ˇ-measure. A characteri-
zation of the ˇ-measure has already been published by vdBG2000.
The alternative characterization we  will propose will use many of
the conditions already introduced for the characterization of the
ˇ-ranking presented in the previous section. It therefore offers a
unified view of the ranking and the measure and it allows us to
clearly identify the difference between the ranking and the measure
in terms of axioms.

Since any relational power measure induces a ranking and since
we already characterized the ˇ-ranking in Theorem 1, a first way
to impose conditions on a relational power measure f is to impose
the conditions of Theorem 1 on the ranking induced by f. This way,
we are sure that f is a numerical representation of the ˇ-ranking
in the sense that fN(a) ≥ fN(b) iff a �ˇ

N b. Yet, these conditions will
not be strong enough to characterize the ˇ-measure because many
different measures induce the same ranking. Indeed, any strictly
increasing transformation of f induces the same ranking as the one
induced by f. So we need to add some new conditions and/or to
reinforce some of the conditions used in Theorem 1. We  will actu-
ally use two additional conditions and reinforce the Node Addition
condition.

4.1. Axioms

We  begin with an additivity condition satisfied by the ˇ-
measure. Suppose two  networks have the same set of nodes while
their sets of arcs have almost nothing in common. Then, if we  merge
the two  networks, the relational power measure of any node is the
sum of the relational power measure in the two  original networks. It
is difficult to motivate this condition on purely normative grounds.
Why  the sum and not another binary operation? Or  more generally,
why should the measure in the merged network be a combination
of the measures in the original networks? There is no clear nor-
mative reason for this. Yet such a condition is necessary if we want
to characterize the measure rather than the ranking. We  can nev-
ertheless motivate this condition by some operational arguments:
the fact that the measure in the merged network is the sum of the
measures in the original networks guarantees that the measure will
be easy to calculate and that many optimization problems that we
may  want to define and to solve (in terms of the relational power
measure), will have some nice computational properties.

Before we formally define our additivity condition, we  need an
extra piece of notation: for N = (X, D) ∈ N, define IN = {a ∈ X: (b,
a) or (a, b) ∈ D for some b ∈ X}.

A 6 (Additivity). Let X ⊂ �. Consider three networks N1 = (X, D1),
N2 = (X, D2) and N = (X, D1 ∪ D2) ∈ N  such that there is some a ∈ X
with IN1 ∩ IN2 = {a} and PN(a) = ∅. Then fN(b) = fN1 (b) + fN2 (b) for all

nodes b ∈ X.

This condition, illustrated in Fig. 7, is clearly similar in spirit
to the Additivity over Independent Partitions condition used in
vdBG2000.
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ig. 7. Additivity. The network N = (X, D1 ∪ D2) with two  components connected via
.

Let us show the necessity of this condition for the ˇ-measure.
hoose any node b ∈ X (except a). If it has successors in N1, then it
as no successors in N2 (and vice versa). Besides, its successors in N
re the same as in N1. And the predecessors of the successors of b are
he same in N as in N1. Hence ˇN(b) = ˇN1 (b) + 0 = ˇN1 (b) + ˇN2 (b).

e now consider the node a. It has successors in N1 and in N2, but
he predecessors of the successors of a in N1 are distinct of the
redecessors of the successors of a in N2. Furthermore the merging
f N1 and N2 does not change the set of predecessors of any node.
ence ˇN(a) = ˇN1 (a) + ˇN2 (a).

The second additional condition says that a node that has no
uccessor nor predecessor has a relational power measure equal to
ero.

 7 (Isolated Node).  Let N = (X, D) ∈ N  and a ∈ X. If SN(a) = PN(a) = ∅,
hen fN(a) = 0.

his is very close in spirit to the Dummy  Node Condition of
dBG2000, but our condition is weaker because vdBG2000 impose

N(a) = 0 whenever a node has no successor. It is clearly satisfied by
he ˇ-measure.

We  now reinforce the Node Addition condition: adding an iso-
ated node (that has no successor nor predecessor) has no effect on
he relational power measure.

 8 (Node Addition*).  For all networks N = (X, D) ∈ N  and all a ∈
 \ X, if N′ = (X ∪ {a}, D), then fN(b) = fN′ (b) for all b ∈ X.

ode Addition* is not related to the Dummy  Node Condition of
dBG2000. The necessity of Node Addition* for the ˇ-measure is
bvious. The following example shows that Node Addition does
ot imply Node Addition*.

xample 6. For all N = (X, D) ∈ N, define the relational power
easure f by

N(a) = ˇN(a)
#X

, ∀a ∈ X.

ode Addition* is clearly violated while Node Addition is satisfied.

.2. Result

heorem 2. A relational power measure f satisfies (i) Additivity, (ii)
solated Node and (iii) Node Addition* and induces a ranking � sat-
sfying (iv) Anonymity, (v) Positive Responsiveness, (vi) Independence
f Irrelevant Arcs, and (vii) Independence of Local Density if and only
f f = k  ̌ for some positive real number k.

Instead of imposing Anonymity, Positive Responsiveness, Inde-
endence of Local Density, and Independence of Irrelevant Arcs on

he ranking induced by the relational power measure f, we could
lternatively redefine those conditions for relational power meas-
res and impose them directly on f. For instance, Anonymity would
ecome
etworks 52 (2018) 145–153 151

A 9 (f-Anonymity).  For every permutation � of X and every N =
(X, D) ∈ N, we have, for all a, b ∈ X fN� (�(a)) ≥ fN� (�(b)) ⇔ fN(a) ≥
fN(b).

The statement of Theorem 2 would then read “A relational power
measure f satisfies f-Anonymity, f-Positive Responsiveness, f-
Independence of Local Density, f-Independence of Irrelevant Arcs,
Additivity, Isolated Node and Node Addition* if and only if f = kˇ
for some positive real number k.” We prefer the former statement
because it makes clear which conditions are specifically tailored
for the index (the cardinal conditions), as opposed to the ordinal
conditions.

Proof of Theorem 2. The necessity of our conditions has been
shown above. We  now prove the sufficiency. Clearly, if f satisfies
Node Addition*, then � satisfies Node Addition. Hence, thanks to
Theorem 1, � = �ˇ (defined in Section 2). Consider two networks
N = (X, D) and M = (Y, B) ∈ N  with a ∈ X ∩ Y. The proof will consist
of three parts: (i) the index fN(b) = kˇN(b), for any node b ∈ X; (ii)
the index fM(b) = kˇM(b), for any b ∈ Y (with the same constant k);
(iii) parts i and ii hold even if X ∩ Y = ∅.

By construction, for any c ∈ X or d ∈ Y, ˇN(c) and ˇM(d) are ratio-
nal numbers. There exist therefore

• a natural number z,
• #X natural numbers xc, ∀ c ∈ X, such that ˇN(c) = xc/z and
• #Y natural numbers yc, ∀ c ∈ Y, such that ˇM(c) = yc/z.

Let us choose any b ∈ X and construct a new network N′ = (X′,
D′) with D′ = D and X ′ = X ∪ {b′, c1, . . .,  cxb

, e1,1, . . .,  exb,z}. By Node
Addition*, fN′ (b) = fN(b). By construction, ˇN′ (b) = ˇN(b). By Iso-
lated Node, fN′ (c) = 0 for all c ∈ X′ \ X. We now construct a series
of networks N1, N2, . . . in a number of steps.

Step 1. Define N1 = (X′, D1) by

D1 = D′ ∪ {(b′, c1)} ∪ {(e1,j, c1) : j = 1, . . .,  z − 1}.
By construction, ˇN1 (b) = ˇN(b) and ˇN1 (b′) = 1/z. By Addi-
tivity, fN1 (b) = fN(b) and fN1 (b′) = fN(b′). Let � = fN1 (b′); thanks to
Anonymity, it is independent of b′ (and thus of b) because it only
depends upon the structure of the subgraph {(b′, c1)} ∪ {(e1,j, c1):
j = 1, . . .,  z − 1}.

Step i, for i ∈ {2, . . .,  xb}. Define Ni = (X′, Di) by

Di = Di−1 ∪ {(b′, ci)} ∪ {(ei,j, ci): j = 1, . . .,  z − 1}.
By construction, ˇNi

(b) = ˇN(b) and ˇNi
(b′) = i/z.  By Additivity,

fNi
(b) = fN(b). Anonymity and Additivity imply fNi

(b′) = i� .  Notice
that, at the end of Step xb, fNxb

(b′) = xb� . It is also clear that ˇNxb
(b) =

ˇNxb
(b′). This and Theorem 1 imply fNxb

(b) = fNxb
(b′). As a conse-

quence, fN(b) = fNxb
(b) = fNxb

(b′) = xb� . So,

fN(b)
ˇN(b)

= xb�

xb/z
= �z. (1)

Remember we  have shown that � does not depend on b. The ratio
fN(b)/ˇN(b) is therefore constant for all b ∈ X. This concludes the
proof of part i.

Notice also that the same reasoning applies to the network M
and any b ∈ Y, that is,

fM(b)
ˇM(b)

= yb�

yb/z
= �z (2)

for any b ∈ Y. By construction, z is the same number in (1) and (2).
The same holds for � . The ratio fN(b)/ˇN(b) is therefore constant for

all N = (X, D) ∈ N  that share a common agent a and for all b ∈ X.
This concludes the proof of part ii.

We now turn to part iii. Consider two  networks N = (X, D)
and M = (Y, B) with X ∩ Y = ∅. We  can easily construct a third
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etwork O = (Z, C) with X ∩ Z /= ∅ and Y ∩ Z /= ∅. Applying the
bove reasoning to the pair (N, O) and to the pair (M,  O)
ields fN(b)/ˇN(b) = fO(b)/ˇO(b) = fM(b)/ˇM(b). The ratio fN(b)/ˇN(b)
s therefore constant for all N = (X, D) ∈ N  and for all b ∈ X.

In order to complete the proof, define k = �z and notice that, by
ositive Responsiveness, k > 0.

.3. Independence of the conditions in Theorem 2

Examples 1, 3 and 4 in Section 3 are stated for rankings but
re all induced by a relational power measure. They can therefore
e reused for showing that none of Anonymity, Independence of
rrelevant Arcs or Independence of Local Density is implied by the
ther conditions of Theorem 2.

In order to prove that Node Addition* is not implied by the other
onditions of Theorem 2, we can use fN as defined in Example 5. Yet,
e prefer to use Example 6. It is simpler than Example 5 and it can-
ot be used in place of Example 5 for showing the independence of
he conditions of Theorem 1 because it induces a ranking that satis-
es the Node Addition condition. Besides, Example 6 does not make

 distinction between sets with at most three nodes and sets with
ore than three nodes. The logical independence of the axioms in

heorem 2 is thus more strongly established than for Theorem 1.
For the other conditions, we need some additional examples.

xample 7 (Positive Responsiveness). For all N = (X, D) ∈ N, define
he relational power measure f by

N(a) = 0, ∀a ∈ X.

he ranking induced by f violates Positive Responsiveness. All other
onditions are satisfied. This example is essentially identical to
xample 2, but stated in terms of relational power measure.

xample 8 (Additivity). For all N = (X, D) ∈ N, define the relational
ower measure f by

N(a) = (ˇN(a))2, ∀a ∈ X.

t obviously violates Additivity. That is satisfies Isolated Node and
ode Addition* is clear as well. Since f is a strictly increasing trans-

orm of ˇ, it is also a numerical representation of the ranking �ˇ

nd it therefore satisfies Anonymity, Positive Responsiveness, Inde-
endence of Local Density, and Independence of Irrelevant Arcs.

xample 9 (Isolated Node).  For all N = (X, D) ∈ N, define the rela-
ional power measure f by

N(a) = #D + ˇN(a), ∀a ∈ X.

t clearly violates the Isolated Node condition. It satisfies Addi-
ivity because each of #D and ˇN(a) are additive measures. Node
ddition* is easy to check since the addition of an isolated node
oes not change #D. Anonymity is obvious. Positive Responsive-
ess holds because, when we add an arc, all measures increase by
, but the measure of the origin of the arc increases by more than 1.

ndependence of Local Density is satisfied. Indeed, when we trans-
orm a network as in the statement of the condition, the measure
f all nodes (without exception) increases by exactly 1. A similar
easoning shows that Independence of Irrelevant Arcs holds.

.4. The characterization of van den Brink and Gilles
In this section, we present vdBG2000’s characterization of the
-measure and we compare it with ours. In their characterization
f the ˇ-measure, vdBG2000 use the following four axioms.
etworks 52 (2018) 145–153

A 10 (Dominance Normalization). For every network N = (X, D) ∈ N,

∑
a ∈ X

fN(a) = #{a ∈ X : PN(a) /= ∅}.

A 11 (Dummy Node Property). For every network N = (X, D) ∈ N  and
every a in X with SN(a) = ∅, it holds fN(a) = 0.

A 12 (Symmetry). For every network N = (X, D) ∈ N  and every a, b
in X such that SN(a) = SN(b) and PN(a) = PN(b), it holds fN(a) = fN(b).

For the fourth axiom, we need a new definition. A collection
{D1, . . .,  Dm} of binary relations on X is an independent partition of
N = (X, D) if

• the union of {D1, . . .,  Dm} is equal to D,
• all relations {D1, . . .,  Dm} are mutually disjoint,
• each node has no predecessor in D or has predecessors in only

one of the relations {D1, . . .,  Dm}.

A 13 (Additivity over Independent Partitions).  For every network N =
(X, D) ∈ N, if the collection {D1, . . .,  Dm} of binary relations on X is an
independent partition of N = (X, D), then

fN(a) =
m∑

i=1

f(X,Di)(a),

for all a ∈ X.

Their characterization result is then:

Theorem 3 (vdBG2000, Th. 2.7, p. 145). Suppose X is given. A rela-
tional power measure satisfies Dominance Normalization, Dummy
Node Property, Symmetry and Additivity over Independent Partitions
if and only if it is the ˇ-measure.

The most salient difference between vdBG2000’s result and our
Theorem 2 is that vdBG2000 exactly characterize the ˇ-measure
while we characterize it up to a multiplicative constant. We  do
so because we think there is no need for normalization in the
sense that there is no need for setting a unit of measurement (in
vdBG2000’s words, p.144). To make our point clear, we consider
a simple example in geometry. Suppose we  want to characterize
the Euclidean distance. Shall we  impose an axiom saying that the
distance be measured in meters? Or in yards? Definitely not. We
want to characterize the Euclidean distance up to a multiplica-
tion by some positive real number. This is perfectly sufficient for
understanding the Euclidean distance. The same is true for the ˇ-
measure: the relational power measure f defined by fN(a) = 10ˇN(a)
is for all purposes as good as ˇN(a). We  therefore want to charac-
terize the ˇ-measure up to a multiplication by some positive real
number.

Since vdBG2000 want to exactly characterize the ˇ-measure,
they need to use a normalization condition for setting a unit of mea-
surement: this is their Dominance Normalization. Unfortunately
this is a complex condition and it does more than normalizing (in
the sense of setting a unit of measurement for) the relational power
measure. If it were just a normalization condition (in the sense of
setting a unit of measurement), then the three other conditions
(namely Dummy  Node Property, Symmetry and Additivity over
independent partitions) would characterize the ˇ-measure up to
a multiplication by some positive real number. This is clearly not
the case since it is easy to find other relational power measures sat-
isfying these three conditions. One such measure is the outdegree,

i.e., the relational power measure f defined by fN(a) = sN(a) for all
N = (X, D) and all a ∈ X.

A pure normalization axiom (in the sense of setting a unit
of measurement) would be much simpler than Dominance
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Table  2
Comparison of the axioms in Theorem 2.7 in vdBG2000 and in our Theorem 2. Node Addition* is satisfied by the ranking by outdegree, but is not used in its characterization.
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Soc. Netw. 22, 141–157.
van den Brink, R., Gilles, R.P., 2003. Ranking by outdegree for directed graphs.

Discrete Math. 271 (1-3), 261–270.
van den Brink, R., Borm, P., Hendrickx, R., Owen, G., 2008. Characterization of the

ˇ-  and the degree network power measure. Theory Decis. 64, 519–536.
ormalization. It could for instance be stated as follows: for every
etwork N = (X, D) ∈ N  such that D = {(a, b)}, we have ˇN(a) = 1.
uch a condition does nothing else but setting the unit of measure-
ent. If we add it to the conditions of our Theorem 2, we  exactly

haracterize the ˇ-measure. Without this condition, we character-
ze the ˇ-measure up to a multiplication by a positive real number.

Theorem 2.7 in vdBG2000 continues to hold if we  restate it in
 framework where X is allowed to vary: no additional condition
s needed to characterize the ˇ-measure. So, we can compare The-
rem 2.7 in vdBG2000 to our Theorem 2. Table 2 summarizes the
xioms used in both theorems; it has five rows delimited by dot-
ed lines: one for each axiom of vdBG2000 plus an extra row for
ode Addition*. In a given row, the axioms in the right hand side
olumn are similar in spirit (or identical) to those in the left hand
ide column. In the right hand side column, the last row has several
xioms, thereby showing that vdBG2000’s Dominance Normaliza-
ion has been split in several weaker axioms, that all have a clear
ormative content. Hence, in our view, the alternative characteri-
ation of the ˇ-mesure proposed in Theorem 2 does not compare
nfavorably with respect to Theorem 2.7 in vdBG2000.

The only condition in our Theorem 2 that has no clear normat-
ve content is Additivity (similar to Additivity over Independent
artitions in vdBG2000). We  do not see a way to avoid such a con-
ition, unless one is willing to work with a ranking rather than with
n index. Indeed, our Theorem 1 does not invoke any additivity
ondition and uses all conditions with a clear normative content.
cknowledgement
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