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▼ The sequencing of the human genome has
greatly increased the pace of life-science research.
The knowledge gained creates new challenges
for researchers to understand and apply new life-
science data. Structured chemical and biological
data generated by experimental techniques 
such as high-throughput sequencing and high
throughput screening (HTS), play a major role in
the generation of new knowledge. However,
biotechnical literature also plays a crucial role
in integrating, annotating and communicating
experimental results and their implications. This
literature is constantly expanding, and researchers
struggle to keep up with both the volume of
information and the various domains of exper-
tise represented in the literature.

Text-based knowledge discovery tools and
methods can help researchers manage this wealth
of information, and discover facts, relationships

and implications in biomedical literature that can
be used to help solve biotechnical problems.Text
searching or traditional information retrieval
(IR) plays an important role in this discovery
process, but one that is increasingly overshad-
owed by a new generation of information extrac-
tion (IE) capabilities.These capabilities are helping
researchers discover much more precise, and
fine-grained facts and relationships that address
specific questions and topics expressed in text
information sources. Moreover, text-mining ca-
pabilities have an increasing role to play in the
broader methods of biomedical knowledge
discovery, in combination with data mining,
and modeling of biomedical structures and
processes.

In this context, therefore, discovery refers to
methods for generating and analyzing compi-
lations of text information that serve as a context
for interpreting biological data resulting from a
wide range of data-generation methods and ex-
periments. These interpretative contexts provide
clues for identifying the role of genes and
proteins in cell function and in mechanisms of
disease dysfunction, and can contribute to iden-
tifying potential drug targets for treating disease.
As Ng and Wong wrote, ‘The race to a new gene
or drug is now increasingly dependent on how
quickly a scientist can keep track of the volumi-
nous information online to capture the relevant
picture (such as protein–protein interaction
pathways) hidden within the latest research
articles’ [1]. Biomolecular data are fundamental
to knowledge discovery – in particular, drug
discovery – but raw sequence and structure data
require a context and explanation to be under-
stood, and integrating text and data is fundamental
to creating this context [2].
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in this literature. Although information retrieval or text searching

is useful, it is not sufficient to find specific facts and relations.

Information extraction methods are evolving to extract auto-

matically specific, fine-grained terms corresponding to the

names of entities referred to in the text, and the relationships

that connect these terms. Information extraction is, in turn, a

means to an end, and knowledge discovery methods are

evolving for the discovery of still more-complex structures and

connections among facts. These methods provide an interpretive

context for understanding the meaning of biological data.
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Information retrieval
Text searching involves submitting search specifications, based
on keywords that searchers believe are contained in docu-
ments, to a search engine, which retrieves documents as search
results. In the biotechnical domain, MEDLINE is the standard
corpus for describing literature, and search tools such as
PUBMED (http://www.pubmed.gov) provide text-search access
to these abstracts. Text search-engines analyze documents into
‘bags of words’, and index the documents associated with each
word. Different search methods help users specify relationships
between combinations of search keywords, and different
search algorithms exist for relating search terms to indexed
terms. For example, Boolean searching enables searchers to
look for documents containing combinations of keywords
specified by search operators such as ‘AND’, ‘OR’, and ‘NOT’.
‘Free text searching’ enables more informal or ‘natural’ search
specifications, that is, either lists of search terms without
search operators, or approximations to natural language (NL)
expressions (e.g. questions). Of course, conventional search-
engines do not analyze or exploit syntactic information in
these NL expressions, and the grammatical terms expressing
syntactic relations are ignored by the search engine. Search re-
sults are, to a first approximation, a ranking of indexed docu-
ments based on the relevance of those documents to the search
specification. Relevance ranking methods vary, but, generally,
the more search terms a document contains (and the more
unique those terms are across the collection) the more relevant,
and hence, the more highly ranked a document is in the ‘hit
list’ [3].

This characterization of search glosses over many important
variations in techniques for indexing, ranking and interpreting
query specifications. For example, modern Web search methods
also rank documents in terms of hyperlink patterns, indepen-
dent of specific search specifications: important Web pages 
are likely to be those that have relatively numerous links to
other pages, or are frequently linked from other pages [4].
Nonetheless, the characterization of search is close enough for
present purposes.

Searching can be useful for identifying a set of documents
whose content has some probability of containing facts and re-
lationships relevant to the search intention, but text searching
itself is a coarse-grained way to access this information. Unless
users are skilled in crafting Boolean search specifications, text
results typically return too many documents. For example, a
text query against MEDLINE for documents about ‘cell cycle’
AND ‘Saccharmoyces’ returned 4909 abstracts in 2000 [2]. Other
capabilities provide additional ways to help users focus on
documents relevant to their search intention. Common search
functions include ‘fuzzy’ operators that search for canonical
forms of search terms, abstracting out morphological differ-
ences owing to differences in aspects such as tense and plurals.

Fuzzy searching increases recall, or the number of documents
that contain search terms. Proximity operators can require
search terms to occur within a certain window of text (e.g. a
sentence). These functions are aimed at increasing the preci-
sion of search, that is, the probability of finding documents
with relevant combinations of terms. Although these features
help, further enhancements to search quality exist.These involve
the use of IE techniques to extract automatically terms or key-
words from document content, and the use of these terms to
enhance query formulation, and analyze search result documents.

Enhanced search through text mining
Several functions can help users focus on finding documents
that answer the questions implied by their search specification.
These enhancements are based on a more systematic analysis of
document content, independent of the users’ search behavior.
These methods aim to organize search results into clusters or
categories, summarize documents, or help searchers find effec-
tive search terms in the first place. Recent surveys of many 
of these techniques in the broader context of knowledge 
management can be found elsewhere [3,5,6].

Query refinement
A typical problem in text searching is that the query terms
specified by users are not the ‘best’ terms for expressing the
information they require because the terms do not match those
expressed in the documents. Query refinement is intended to
help users identify terms that are more likely to be expressed in
documents. One approach for query refinement is based on
relevance feedback, where searchers select search documents
that appear relevant to their search goal, and then ask to retrieve
‘more documents like this’.The search application then formu-
lates and executes a new and expanded search specification,
which is automatically generated by the system using terms 
selected from the specified ‘relevant’ documents. There also
exist IE methods to find terms that co-occur with search terms
in the document within some specified window, such as
‘within a sentence’.These co-occurring terms can be presented
as query prompts that searchers can use to refine and/or ex-
pand an initial search specification [7]. Query-expansion
methods are discussed in more depth in [3].

Natural-language searching
Natural-language searching (sometimes referred to as ‘seman-
tic searching’) refers to approaches that enable users to express
queries in ‘more-natural language’ terms, for example, as ex-
plicit sentences or questions. In contrast to conventional search
engines, which do not use the syntactic or semantic information
available in natural-language expressions, natural-language searches
attempt to use such information in the search process. That is,
in addition to indexing ‘terms’ in documents, natural-language
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search methods extract and index higher level semantic struc-
tures composed of terms, and relationships between terms.This
can be done in different ways (for general discussion see [3]).

An example of a natural-language search involves enabling
searchers to enter explicit, well-formed questions. In a ques-
tion-answering prototype system developed by Prager et al. [8],
a question like ‘What are the symptoms of formaldehyde use in
humans?’ would be analyzed in semantic terms as follows: the
‘what’ question-form would be interpreted as a search for
terms expressing cause and effect between the terms defined as
‘symptoms’, and the chemical formaldehyde for ‘humans’.The
semantic categories implied by these terms are explicitly
represented as annotations CAUSE, SYMPTOM, CHEMICAL, in
analyzing the query, and in the search index itself.The search is
based not only on finding documents where both content
terms like ‘formaldehyde’ or ‘symptoms’ and semantic annota-
tions, co-occur within a window of text. An example of a rel-
evant document would be one that contains a passage such as
‘Formaldehyde [CHEMICAL], which is widely used in building
materials and furnishings, can cause [CAUSE] nose and throat

irritation [SYMPTOM], coughing [SYMPTOM], skin rashes
[SYMPTOM], headaches [SYMPTOM]...’ and so on. (The anno-
tations in square brackets are, of course, implicit, and not
visible to searchers).

The text and linguistic analysis methods used for this purpose
are common to the IE methods discussed later in this review.The
structural relationships between terms can also be indexed and
searched more explicitly and directly (as compared with look-
ing for co-occurrences in the Q&A system mentioned earlier),
and such an approach to natural-language searching has been 
developed by Baclawski et al. [9] (see also http://www.jarg.com).
(Note that ‘semantic searching’ is an active area of research,
and there are other vendors with such approaches.)

Clustering documents
Document clustering is a well-known and useful technique for
organizing large document collections, including document
collections resulting from text searches (for background see
[3,10]). Documents in a cluster have ‘similar content’ defined
by salient terms that are common to those documents. Iliopouos

S91

DDT Vol. 7, No. 11 (Suppl.), 2002 information biotechnology supplement | reviews

www.drugdiscoverytoday.com

Figure 1. Document clustering resulting from the text search specification ‘Asthma’, with the result documents clustered by topics. The search
input field is not shown. Each document cluster topic is represented by a list of terms or keywords automatically extracted from the documents in
each cluster. This figure is an abstraction of a search result clustering screen (i.e. some UI elements are not shown), part of a ‘Text Knowledge
Miner’ web-based search software tool (described more fully by searching for ‘TKM’ on http://www.ibm.com).
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et al. [11] developed an interesting variant to this technique by
clustering documents by biological topics.They identified doc-
ument clusters and the terms that best characterized those clus-
ters by adapting IR measures of term frequencies, within and
between document clusters. The defining terms are used to 
visually represent the cluster.These features can also be seen in
a text search and text mining tool called Text Knowledge Miner
(TKM; accessible via search from http://www.ibm.com), as
shown in Figs 1 and 2. In both figures, salient terms extracted
from the documents in each cluster are used as a description or
label for the cluster. In the graphic view shown in Fig. 2, the
links indicate the similarity of one cluster to another (in terms
of the content of the documents in each cluster), and show the
terms that label each cluster.

Categorizing documents
Another way to organize documents is through categorization.
In categorization, categories and sub-categories collectively
specifying a taxonomy are defined and named ahead of time
by a domain expert. Several biotechnical knowledge resources
(or ontologies) provide examples of taxonomies for classifying
biological or chemical entities. The meaning of a category 
is defined by manually associating a set of representative
documents (sometimes called training documents) with each
category. Categorization tools also analyze the term content of
these documents and create a representation of each category.
Conventional categorization schemes are based on represen-
tation of text documents in an n-dimensional vector space defined
by extracting terms from documents. Conversely, rule-based
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Figure 2. Another view of documents retrieved by the keyword ‘Asthma’, and clustered using a graphic visualization of the document clusters. The
lengths of the lines connecting the clusters are indicators of the strength of the semantic relationship of the clusters. The keywords shown in each
cluster node are extracted from the clustered documents, and provide descriptions of the cluster topic. This figure is an abstraction of a search
result clustering screen (i.e. some UI elements are not shown), part of a ‘Text Knowledge Miner’ web-based software tool (described more fully by
searching for ‘TKM’ on http://www.ibm.com). The list of terms overlaid on the network (beginning with ‘leukocyte’) is a pop-up window expanding
on the keywords describing the clusters that an end user has selected in the application.
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categorizers generate rules connecting terms and categories.
These rules can be user-readable and -editable, illustrating how
such tools assist humans in a difficult task, while still automating
the key aspects of those tasks [3,12].

Summarizing documents
Summarization techniques are intended to generate automati-
cally an abstract or summary of a full document that conveys
the general idea of the document. An effective summary can
help a searcher decide whether the document is relevant to
their search without reading the full content. Summarization
can be done at different levels. For example, a keyword sum-
mary collects terms extracted from a document and presents
them as a summary. These terms can be collected as a separate
‘summary text’ shown in place of the full document. These
terms can also be highlighted in the document content itself,

to make it easier for searchers to quickly scan for these terms in
the full document [13]. More sophisticated summarization
techniques collect sentences that contain salient keywords 
relevant to a search specification or to the general topic of the
document. The number of sentences, and hence the length of
the summary, is a parameter that can be changed.The more so-
phisticated methods modify summary sentences selected from
different parts of the document to form a more cohesive text,
for example, by resolving pronoun references [14,15].

Information extraction
Information extraction methods automatically identify the ‘en-
tities’ expressed in text as names, and the relationships between
those names [16,17]. The enhanced text-search methods
discussed previously are based, in part, on the extraction of
terms (including names and phrases) from documents, which
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Figure 3. Lexical network for the root keyword ‘Zeneca Pharmaceuticals’, graphically representing terms related to the root keyword. The
relationships have names extracted from the text context in which the terms co-occur, for example, ‘property-of’, ‘location’, and so on. This figure is
an abstraction of an IBM research prototype (described more fully in [7]). ‘Zeneca Pharmaceuticals’ is a search term that is used to retrieve
documents (in another part of the application), and is used to find related terms, that are represented to end users as a network of terms and links.
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are then used by other text analysis methods such as document
clustering, among other things. However, the promise of IE is
more ambitious: extracting ‘facts’ at the level of specific propo-
sitions expressed in sentences and paragraphs (that is, a relation-
ship between two or more named entities expressing a fact).
This is an active area of bioinformatics research, and examples
include: extraction of specific categories of biomedical terms
such as gene or protein names [18,19]; relationships between
these entities, such as protein–protein interactions [20]; terms
describing functional attributes of proteins [21]; or relationships
between genes, cell-lines and drug treatments [22].

Consider EDGAR, for example, a system developed by
Rindflesch et al. for ‘extracting drug, gene and relations [among
them].’ Like most IE tools, EDGAR uses a variety of linguistic
methods to infer from sentences like (1), the semantic propo-
sitions or facts underlying them, as exemplified in (2) and (3):
(1) Compared with parental or mock-transfected HAG-1 cells,

v-src-transfected HAG/src3-1 cells showed a 3.5-fold
resistance to cisdiamminedicholoroplatinum (CDDP).

(2) Resistant (v-src, HAG/src3-1, CDDP).
(3) Cell (‘99140404’, ‘HAG-1’, ‘gallbladder’, ‘adenocarinoma’,

tfw (‘v- ... src’), ‘human’).
The proposition in (3) was constructed, in part, by associating

the cell-line name ‘HAG-1’ with information derived from a
knowledge source (or ontology) and annotating the extracted
name from other facts known about the cell-line.

Visualizing terms and relationships graphically can be a use-
ful way to interpret extracted information. An example is the
‘lexical network’ shown in Fig. 3. A lexical network is a graph
showing terms and the relationships connecting them. These
relationships can be named or unnamed. Figure 3 shows some
simple entities and named relations based around the corpo-
rate entity ‘(Astra) Zeneca’. In this example, the relationship
named ‘location’ is connected to the named country entity
‘United Kingdom’. The lexical relations represented in Fig. 3
are generated using a variety of methods, including some level
of linguistic parsing, and computation of statistical co-occurrence
between terms [7]. Note that even if these methods cannot 
extract named relationships, unnamed relationships can be
computed based on analyzing simpler co-occurrences between
named entities – these relationships can also be useful.

The natural-language processing (NLP) methods necessary
to analyze text at this level of meaning, vary in depth and so-
phistication, from statistical analysis methods defined over lin-
guistic entities (that is, terms), to linguistic methods of varying
depth and completeness, including syntactic parsing methods
(for more discussion see [19,23,24]). At present, linguistic
methods are still demanding in terms of linguistic expertise or
the computational resources needed to apply these methods.
The expertise required is that of writing grammars that can
parse and identify the linguistic structures needed to extract

‘entity’ descriptions (e.g. noun phrase) and the relationships
between them (e.g. expressed in verb phrases and syntax).
Natural language is complex, typically expressing the same
underlying semantic meaning in more than one surface forms
of sentence expression. For example, ‘protein A inhibits pro-
tein B’ can be expressed in a variety of ways, such as active or
passive voice, or as a variety of other descriptions (an interesting
analysis can be found in [20]). IE methods try to extract the
underlying meaning (fact) expressed by varied surface forms
of textual discourse [25].

The linguistic methods used in IE are available in both re-
search and commercial tools. For example, the tool shown in
Fig. 3 is a research prototype based on an IBM ‘Intelligent Miner
for Text’ product [7]. It should be noted here that several
other commercial technologies exist for extracting terms and
relations, in addition to tools for graphically representing enti-
ties and relations in various business and technical domains.
Examples include: Inxight Software (http://www.inxight.com/
.com), a spin-off of Xerox PARC Research;The Brain Technnologies
Corporation (http://www.thebrain.com); and LexiQuest (http://
www.lexiquest.com), recently acquired by SPSS (http://www.
spss.com; Jouve, O. et al., unpublished observations).

Semantic annotation and ontologies
One approach to recovering and representing the original se-
mantic intentions expressed in the literature, is to have experts
manually describe the key entities, their attributes and relation-
ships between them, and use these descriptions to manually
annotate (curate) the documents. In the biomedical domain,
standards have been set for manual curating of biomedical
documents. MEDLINE consists of abstracts annotated with a
standard controlled vocabulary called Medical Source
Headings or MeSH.

However, MeSH is more than a controlled vocabulary. It is
also an example of an ontology, a framework of concepts and
relationships expressed in terms, term relationships, syn-
onyms, and categories that collectively express relatively sta-
ble knowledge about biomedical topics. Ontology relation-
ships can be taxonomic, for example, classifying chemicals or
drugs by various criteria, pharmacological or otherwise, or
describing part-whole relationships between cells and cell
structures. Other ontologies have been developed for other
biomedical domains. The Unified Medical Language System
(UMLS; sponsored by the US National Library of Medicine) 
is a comprehensive set of ontologies, a superset of specific 
ontologies, such as MeSH, among other ontologies (see
http://www.nlm.nih.gov/research/umis).

Ontologies can be used effectively in information retrieval
and information extraction. They can be used to help identify
the ‘named entities’ in documents by mapping lexical terms
extracted from documents to the corresponding terms in the

S94

DDT Vol. 7, No. 11 (Suppl.), 2002reviews | information biotechnology supplement

www.drugdiscoverytoday.com



ontology. MetaMap is a tool available with licensed access 
to UMLS that maps terms in documents to those in UMLS 
ontologies. Information extraction techniques have also been
applied to annotate document content automatically using on-
tology terms. For example, Soumya et al. [26] (http://www.
nlm.nih.gov/research/umis) have used categorization techniques
to assign automatically Gene Ontology codes [27] expressing
gene functions for genes referred to in MEDLINE abstracts.
Baclawski et al. [9] have explored methods for annotating not
only terms but also specific relationships expressed in text and
ontologies (the authors call these term–relation structure keynets).

Of course, ontologies do not really solve the problem of
extracting knowledge. Ontologies need to be updated, and
although automatic annotation methods are promising, manual
methods will be necessary for some time to come. Documents
describing research findings or interpretations express poten-
tial new facts and implications that are as-yet not represented
in an existing ontology. Building, extending and maintaining
ontologies entails a host of difficult technical issues, including
how to validate new facts and connections, and how to repre-
sent knowledge in a way to support inference and higher-level
biological knowledge beyond atomic facts. Examples of 
research in the development of ontologies can be found 
elsewhere [28–30].

Knowledge discovery
Information extraction potentially provides better support for
text-based understanding than IR in that it extracts specific
facts and implications originally intended by the writers of the
text document. However, IE is ultimately a means to an end.
Biomedical researchers need to discover new facts about genes
and proteins and the biological contexts in which they func-
tion, with the aim of identifying new drug targets or disease
treatments. Knowledge discovery methods involve compiling
and integrating text descriptions and other kinds of data to
create an interpretive context for understanding the meaning
and implications of biological data. These contexts can range
from informal models of terms and relationships, for example,
term clusters or lexical graphs, to more formal models of
biological structure and function, for example, metabolic
pathways. These compilations not only focus on textual infor-
mation, but also typically involve integration of information
from multiple sources, including repositories of biological
data, and organization of the compiled information into clusters,
profiles or networks.

The MEDMINER prototype is an example of a system that
searches and integrates information from text and data sources,
and then analyzes and organizes the compiled information
around topics that are relevant to the search specification [31].
MEDMINER searches PUBMED for MEDLINE documents,
starting with a searcher’s initial query specification (e.g. a

combination of protein names and a relationship of interest,
such as ‘inhibit’), followed by an expanded text search automat-
ically generated with additional biomolecular terms derived
from a gene profiling tool called GeneCards. The latter tool
searches biomolecular data sources, using the search entities
(e.g. protein names) as search criteria, and then identifies name
variants and synonyms, and uses these to create an expanded
text query for additional searches. MEDMINER methods filter,
organize and prioritize these expanded search results by looking
for combinations of the search terms within the text. By
contrast, searching PUBMED directly for documents containing
these combinations of search terms would require searchers,
following the authors’ analysis, to create complicated Boolean
search specifications.

The lexical networks described earlier for graphical visual-
ization of terms and relationships, also provide a tool for 
discovering potential new connections among terms (Fig. 3).
Lexical networks show relationships between terms, and these
relationships can express either semantic relationship (e.g.
‘located in’) or an unidentified ‘mutual co-occurrence’ relation-
ship between terms. Mutual co-occurrence measures do not 
result in identification of the relationship, but they do provide
a connection, a strength of relationship, and links to the original
document contexts containing the unnamed relationship.

An example of the potential use of unnamed relationships 
is to identify ‘hidden links’ among terms across collections 
of documents that do not directly (one-to-one) connect the
terms. The concept of hidden links derives from work by
Swanson, which started in the mid-eighties, and found rela-
tionships between disease syndromes and dietary or other
chemical substances that could treat diseases [32,33]. For
example, Swanson found a connection between Raynaud’s dis-
ease and fatty acids in fish oil. The novelty of Swanson’s work 
is that these relationships were not (at that time) actually ex-
pressed in specific sentences or documents. Instead, the disease
syndrome was connected to an intermediate cluster of concepts
in an intermediate literature collection associated with blood
aggregation and viscosity.These concepts were, in turn, connected
via an entirely different document context to the dietary or
chemical substances in question.

Initially, Swanson used essentially manual methods and clever
inference to deduce this relationship (he later developed 
specialized computer tools for supporting these analyses).
However, an alternative lexical network tool shown in Fig. 4
shows the connection directly as it emerged from searching for
named and unnamed relationships in the same two sets of
literature orginally used by Swanson. Of course, lexical networks
can be quite complicated, and additional tools are required to
manage the networks. In Fig. 4, the taxonomy tree on the left of
the screen corresponds to the biomedical MeSH taxonomy. The
lexical network terms are mapped into this taxonomy, and then
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the taxonomy categories are used to filter out entire classes of
terms thereby focussing on subsets of terms and relationships,
and increasing the likelihood of finding useful connections.

Several studies, in somewhat different contexts, demonstrate
the value of integrating text and biomolecular data into net-
works or clusters of terms, annotated with various categories
of terms. For example, Jenssen et al.[34] identified co-occurrences
of gene names within the scope of an entire MEDLINE abstract.
They constructed from these names a graph of gene co-
occurrences, assigning strengths to the relationships based on
frequency of co-occurrence (although they do not appear to
use the specific mutual co-occurrence measure described
previously). Next, they used the gene names in the network to
search for other literature references involving the genes, and

annotated the network with these descriptions.These compiled
annotations, in the context of the network relationships among
genes, suggested real connections to the corresponding gene
products and their role in various cell processes of disease.

Stapley and Benoit [2] also compiled networks of genes
based on co-occurrence of gene references in text (they used a
‘bibliometric’ measure of co-occurrence strength). They used
the genes named in these networks to search for and compile
biomolecular data on the genes. Kankar et al. [35] analyzed
gene clusters starting from biomolecular experiments. Gene
clusters derived from microarray experiments were used to
search for MEDLINE documents referring to these genes. The
researchers analyzed the distribution of MeSH keywords used
to annotate the abstracts across genes, and then clustered these
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Figure 4. An alternative version of the lexical network shown in Fig. 3. This version exemplifies the ‘hidden links’ between ‘Raynaud’s disease’
(node at the top), and fatty acids in fish oil (e.g. ‘fish oils’ at the top or ‘eicosapentaenoic acid’ in the lower right). This figure is an abstraction of
an IBM research prototype (described more fully in [7]). The links represent relationships between terms, and ‘none’ means these relationships
are not yet identified. The indented tree on the left is a set of MeSH categories, and extracted terms in MEDLINE documents that are classified
under MeSH categories. For example, ‘Melaphalan’ and ‘Octreotide’ are terms that appeared in MEDLINE abstracts, which are instances of the
MeSH category ‘Amino acids, peptides, and proteins’. These MeSH categories can be used to filter the number and categories of terms that are
depicted in the network.
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keywords into general topics about the entire gene cluster, and
subtopics about subsets of the genes. Both studies exemplify
the integration and compilation of text and biomolecular data
with the aim of creating an interpretive context for the genes
of interest.

Andrade and Valencia [21] focussed on compiling infor-
mation about proteins. They used term frequency to annotate
proteins described in MEDLINE documents with terms describing
the functions of proteins. Terms were selected for annotation
when they occurred more frequently with the protein family
to which a target protein belonged, compared with frequency
of occurrence with other protein families. Comparisons to
manually annotated abstracts suggest the validity of this
method.

Text mining can also be used to enhance data mining. Chang
et al. demonstrated how text literature can improve the likeli-
hood of finding valid homologies or similarities between
human gene sequences and those of other species [36].
Similarities in gene sequences could imply similarities in gene
products and the role they play in cell and organism functioning,
hence providing a basis for making inferences about human
gene sequences from information known about simpler organ-
isms. However, these inferences are not always valid. Chang
et al. showed that, in some cases, valid homologies also correlate
with text descriptions of the genes involved in the sequences.
That is, combining data-based homology searches with text
searches of collateral information can help refine the homology
search process, thereby increasing the precision of finding rel-
evant and real homologies.

Discovery can also refer to the compilation of smaller facts
into larger representations that express more-complicated
biological structures and functions – for example, metabolic
pathways in cell function.These can be represented as complex
interconnected networks of proteins and enzymes that interact
in cell processes. Many sources of data and experimentation are
needed to infer such networks, but one of these sources can be
text literature. Ng and Wong, for example, have demonstrated
that protein–protein interactions extracted from text can be
compiled to infer sub-networks of larger pathways [1].

In all these examples, the relationships between terms were
all expressed in the text documents, and, theoretically, are avail-
able for researchers to read, remember and comprehend. The
overwhelming issue is that this human-mediated understanding
is increasingly difficult, given the huge volume, complexity and
specialization of the literature.Text-mining techniques can help
humans represent the content of large collections of documents
in ways that make the implications easier to comprehend.

Frontiers of text-based knowledge discovery
There is great opportunity for improving the text-mining methods
outlined in this review. A key research focus is discovering

more-effective methods for inferring facts and implications,
and relating them to more complex and formal models of bio-
logical structure and function. Current IE methods focus on rel-
atively small facts, but, of course, text documents express more
complicated concepts as well. These could involve propositions
expressed in multiple sentences, in more-complicated discourse
structures and arguments, or even in multiple documents and
non-text data sources.Advances in IE, natural language processing,
integrated text and data mining, and knowledge representation
schemes, all hold the promise of automating human-like capa-
bilities for comprehending complicated knowledge structures.
A good source of leading-edge research in these areas include
the Pacific Symposium on Biocomputing (PSB), which began in
1996 (http://psb.stanford.edu); worth noting are the online
tutorials with annotated biobliographies, presented at PSB 2001
by J-I. Tusujii and S. Ananiadou (HTTP://www-tsujii.is.s.
u-tokyo.ac.jp/ ~genia/ tutorial/) [37].

The development and application of ontologies will con-
tinue to be an active area of research. Ontologies reflect the fact
that small facts are themselves connected to form larger entities,
expressing what we know about a topic. Developing ontologies
is not simple, and will require innovation in both how knowl-
edge is represented and organized in larger structures than
propositions, and how these structures can be used to make
inferences. We believe that ontologies will be important for
capturing, representing and managing knowledge as it emerges
from different sources, including text mining. As ontologies
evolve into more-complex knowledge representations, the rela-
tionship between ontologies and biological models will need
to be explored (see [28,29]).

Finally, linguistic structures could do more than just express
knowledge. An emerging research direction is potential
language-based approaches to biological modeling and predic-
tion. This hypothesis is based on the observation that – like 
language – biological entities (e.g. protein molecules) are
made up of a hierarchy of structures, and that these structures
and their interactions might be captured in grammar-like
structures and rules (Institute for Research in Cognitive Science;
http://www.ircs.upenn.edu/modeling2000) [38].
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