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1. Introduction

Over the last fewdecades, some innovative companies and entrepre-
neurs have explored and exploited technological opportunities better
than others, thereby gaining competitive advantages (Day et al., 2004;
Newbert et al., 2006). At a national level, the causal link from technolog-
ical opportunities to economic growth has also been observed in many
countries (Audretsch, 1995; Hung and Chu, 2006; Olsson, 2005). Conse-
quently, there have been many efforts to better identify technological
opportunities in both private and public spheres.

Technological opportunity is defined as a set of possibilities for tech-
nological advances to improve either production or functional attributes
of a product (Klevorick et al., 1995; Olsson, 2005). According to the
current literature, technological opportunities can be divided into
two types: 1) innovative opportunities, and 2) arbitrage opportunities
(Eckhardt and Shane, 2003; Kirzner, 1997). Researchers have made
efforts to identify innovative opportunities to anticipate the future of
emerging technologies (Savioz and Blum, 2002). Some researchers fo-
cused on the latter, and have tried to identify application opportunities
for existing technologies (Shin and Lee, 2013; Yoon et al., 2014). Overall,
innovative opportunities have been of interest both in academia and in
practice.

Several methods have been suggested to better identify innovative
technological opportunities. Early studies depended on expert judgment
ted nor published elsewhere.
and entrepreneurial recognition (Baron and Ensley, 2006; Salo and
Cuhls, 2003). The increasing complexity of technology, the environment
and mutual interactions have reduced the reliability of this method. Re-
searchers have focused on utilizing electronic science and technology
data, including patents and journals, as substitutes or complements to
recognition. Conceptual frameworks,models and systemshave been gen-
erated, including TechnologyOpportunities Analysis (TOA) and technolo-
gy intelligence (Brenner, 1996; Kerr et al., 2006; Porter and Detampel,
1995). Despite some differences, they all have common characteristics
of monitoring and bibliometric analysis.

Focusing on the potential value of bibliometric analysis, some re-
searchers have developed advanced techniques by using social network
analysis (Shibata et al., 2011; Von Wartburg et al., 2005), morphology
(Xin et al., 2010; Yoon et al., 2014), topology (Shibata et al., 2008),
text mining (Kostoff, 2001; Lee et al., 2014), novelty detection (Lee et
al., 2015), patent maps (Lee et al., 2009b) and others. These studies
are a response to the need formore accurate and comprehensive oppor-
tunity identification in the earlier stages of an emerging technology, and
they also reduce theweaknesses of bibliometric data such as truncation
bias and unequal patent value.

Another important issue is practical operationalization for corporate
functions including strategy, planning, research and development
(R&D) and product development. Recently, some researchers have
linked technological opportunity identification to business planning
(Lee et al., 2009a), technology planning (Huang et al., 2014) and prod-
uct development (Lee et al., 2008; OuYang and Weng, 2011; Yoon et
al., 2014). They narrowed searches down to key patents or keywords,
identified technological opportunities, extracted information (including
business items, technological performance metrics and product
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attributes), linked each opportunity to relevant information and evalu-
ated its strategic priority.

Though these approaches are valuable, some problems remain un-
solved. Above all, the key target of technological performance identifica-
tion depends upon expert judgment, and thus is subject to its typical
drawbacks including subjective bias and bounded knowledge. Overall
technology/product performance is not easy to optimize because the
causal relationships among performance metrics are not sufficiently
considered. Trade-offs and synergies between different technological
performance metrics must be identified, but this is rarely done. Also,
there is little consideration for customization, which reduces planning
efficiency because experts have to spend time reviewing and filtering
out information, including irrelevant opportunities, unimportant tech-
nological performance metrics, and infeasible R&D methods.

To address these issues, we suggest a way of linking technological
opportunities to practical R&D planning customized to a company. Cus-
tomized technological opportunities are identified based on Lee et al.
(2008, 2014), which provide a starting point for R&D planning. Sequen-
tial iterations of chunk-based text mining and expert judgment enable
us to comprehensively identify key technological performance metrics
as well as competitors in the target market segment while minimizing
several biases due to either text mining or expert judgment.

Combining the normalized performance gap analysis with the deci-
sionmaking trial and evaluation laboratory (DEMATEL), we can narrow
potential items down to important target technological performance
metrics for a specific company, identify the performance structure of
their synergies and trade-offs, and select target performance metrics
to maximize R&D effectiveness. Further, we can evaluate the R&D feasi-
bility of target performance metrics, which enables R&D experts to
select more feasible target performance metrics by utilizing their
existing technological capability. R&D efficiency can be increased by fo-
cusing on more feasible performance metrics. Finally, the patent-based
technological trajectory is of great help to identify candidates of R&D so-
lutions to achieve targets. A systematic use of these tools can transform
a broadly defined technological opportunity to a specific R&D planwith
clear target technological performancemetrics, solution candidates and
competitors.

The remainder of this article is organized as follows. In Section 2, we
review existing TOA research. The research framework and ourmethod-
ology are explained in Section 3. Subsequently, an empirical analysis
about battery separator opportunities using membrane technology is
provided. Finally, conclusions are drawn after relevant discussions.

2. Technology opportunity analysis

In the 1990s, it became important to identify early signals of techno-
logical changes to optimize organizational response options (Brenner,
1996). The first technology signals emerge in scientific and technologi-
cal discussions or gray literature (Johnson, 2000). Later signals include
scientific papers, patents and R&D collaborations. Porter and Detampel
(1995) suggested using TOA to recognize the explosion of later signals
in electronic technology databases. This method combines monitoring
with bibliometrics, which are used to analyze information gleaned
from such databases to identify emerging technologies.

Researchers have worked to improve TOA and were driven by the
increasing volume of data as well as the need for new opportunities.
Key TOA processes consist of monitoring, bibliometric analysis, aug-
mented analysis and visualization (Porter and Detampel, 1995; Zhu
and Porter, 2002). There has been some research about themodification
and extension of TOA frameworks and systems (Cozzens et al., 2010;
Kerr et al., 2006; Porter and Newman, 2011). However, most re-
searchers focused on improving the effectiveness of a particular process.

Bibliometric analysis is an important area of research. Many believe
that advanced bibliometric analysis can be used to identify emerging
and unexplored technological opportunities more comprehensively
and accurately. Simple bibliometric indicators including counts of
publications and citations (Albert et al., 1991) have been replaced by ad-
vanced indicators (van Raan, 1996). Some researchers appreciate the
potential of the bibliometric indicator network such as the citation net-
work, and improve its analytics by using topology (Shibata et al., 2008),
clustering (Shibata et al., 2011), citation vectors (Érdi et al., 2013),
weighted citation networks (Fujita et al., 2014) and other approaches.

Advances in natural language processing have encouraged re-
searchers to use various mining techniques including text mining
(Kostoff, 2001; Porter and Cunningham, 2005), semantic analysis
(Gerken and Moehrle, 2012), term clumping (Zhang et al., 2014), Ac-
tion-Object (AO) analysis (Lee et al., 2014) and others. Some studies in-
tegrate two research streams into new methods using a text-mining
network (Yoon and Park, 2004) and a Subject-Action-Object (SAO) net-
work (Choi et al., 2011).

However, the most advanced bibliometric approaches depend
heavily on expert judgment for evaluation and selection of opportuni-
ties. Thus, there have been attempts to improve expert judgments.
Qualitative techniques from other disciplines have been introduced to
make expert judgment more systematic and comprehensive, and
these have been coupled with bibliometric tools, includingmorphology
(Yoon et al., 2014), TRIZ (OuYang and Weng, 2011), and conjoint anal-
ysis (Xin et al., 2010). Thesemethods can be used to narrow our focus to
valuable and feasible opportunities, but require intensive training and
involvement of experts.

Less attention has been paid to other processes. Some researchers
have recognized the importance of opportunity information visualiza-
tion, but they cannot go beyond simple clusters, maps and networks
(Shibata et al., 2008; Zhang et al., 2014; Zhu and Porter, 2002). Ad-
vanced monitoring methods including real-time Delphi (Gordon and
Pease, 2006) and scouting networks (Rohrbeck, 2010) have been sug-
gested, but they are not tightly integrated with TOA in academic
disciplines.

Opportunity identification itself has been a primary focus of TOA.
However, the issue of practical operationalization forces researchers to
broaden the scope of TOA. In response to this trend, some researchers
have suggested ways of linking technological opportunities to strategy
and planning. Pioneering research in the field of TOA has focused on fa-
cilitating expert-based strategic planning methods including TRIZ and
brainstorming by providing core keywords and patents related to op-
portunities (Lee et al., 2008; OuYang andWeng, 2011). Going a step fur-
ther, recent research has created keyword links between technologies
and products, therebymaking the linkmore specific (Yoon et al., 2014).

An important issue related to the appropriateness and usefulness of
opportunity information used by strategic planning experts remains un-
solved. Many opportunities described by keywords and patents are too
ambiguous to be easily used for planning. Thus, in practical strategic
planning, several experts must spend a lot of time to understand, eval-
uate and specify opportunities. They identify key technological perfor-
mance metrics, select target performance metrics, and create specific
plans for R&D and new product development. This time-consuming
process decreases R&D planning efficiency while reducing the applica-
tion value of TOA information. Thus, to boost the practical value of
TOA, opportunity information that strategist/planners need should be
identified, extracted and provided to them in a suitable form along
with the appropriate tools and processes.

3. Methodology

3.1. Research framework

Ourmethod consists of seven phases, as shown in Fig. 1. Once a com-
pany is selected, we identify its customized technological opportunities
based on Lee et al. (2008, 2014). An expert-based technological attri-
bute-application table is created and used to identify technological op-
portunities and its technological capability. Using multiple keyword
matching, we select relevant and feasible opportunities customized to



Fig. 1. Research framework.

55J. Lee et al. / Technological Forecasting & Social Change 119 (2017) 53–63
the company. Focusing on these opportunities, five experts create a list
of key product/technological performance metrics. Quantitative prod-
uct/technology performance data are retrieved and collected from pat-
ents and technological documents by using chunk-based text mining.
If unexpected performance information is found, then experts examine
the data and improve the list. These processes are iterated twice to
make the list more comprehensive and up-to-date. Then, we identify
key competitors including technology andmarket leaders by combining
performance data with patent assignee information.

To gain a technological advantage, the companymust identify target
technological performance metrics that should be achieved to catch up
with competitors. Thus, we measure the performance gap between the
focal company and competitors, and select target technological perfor-
mance metrics that are crucial to competition. The performance gap is
normalized to compare the importance of various performancemetrics.
However, different target performance metrics can result in synergies,
but may also involve conflicts or trade-offs. Thus, we quantify causal re-
lationships among performance metrics using DEMATEL as the perfor-
mance structure, and we rank technological performance metrics
based on their overall effects. At this point, we can select target techno-
logical performance metrics to maximize the sum of total positive
effects while minimizing negative effects.

Due to budget constraints, companies are forced to focus on more
feasible technological performance metrics that can be achieved based
on their technological capabilities because R&D failures can result in sig-
nificant losses. We developed an R&D feasibility index to measure the
feasibility of technological performance metrics and evaluate their
R&D priority. The R&D feasibility index is defined as the ratio of
corporate R&D capability to the normalized performance gap. Given
clear target technological performance metrics, there are always de-
bates on what R&D solutions are appropriate. To facilitate this process,
we generate patent-based technological trajectories of different techno-
logical alternatives of solutions, visualize these, and thus help the R&D
planning team easily recognize the advantages, feasibility and limita-
tions of each option.

3.2. Customized technological opportunity identification

Some recent research has suggested ways of identifying technologi-
cal opportunities customized to a particular company (Lee et al., 2008,
2014). Lee et al. (2008) extract core keywords of product and technolo-
gy attributes over three periods and used these to generate a keyword
evolution map. Using this map, experts can understand the dynamics
of key product/technology attributes, identify better opportunities for
an organization, and then create technology/product roadmaps. This
method can retrieve product/technology attribute data from patents,
but is subject to the typical drawbacks of expert judgments because it
depends on experts for customized opportunity identification and
evaluation.

Lee et al. (2014) improved this approach by using a combination of
action-object (AO) analysis and structured expert judgment. Experts
construct a technological attribute-application table in some technology
discipline, and identify basic opportunities. AO analysis finds additional
technological attributes, applications, and relevant newopportunities. A
set of expanded opportunities is created. Key technological attributes of
a focal company are extracted from their patents, and arematchedwith
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the expanded set of opportunities. Then, some opportunities are identi-
fied that are customized to a company's technological capability. This
method has the advantages of reducing the negative effects of bounded
knowledge and subjective bias and utilizing existing technological
capability.

Lee et al. (2014) addressed the need for opportunity information
customized to a company better than Lee et al. (2008). Thus, we use
the method by Lee et al. (2014). However, it does not consider product
performance metrics that must be included for product/technology
planning. Thus, we added a column of key product performancemetrics
for possible business applications in the technological attribute-applica-
tion table.

3.3. Chunk-based text mining

Text chunking is used to divide sentences into non-overlapping seg-
ments called chunks (Abney, 1992). This method can identify non-
recursive portions of noun phrases (NP chunks), and thus is useful for
specific entity recognition and extracting relevant information (Zhang
et al., 2002). When there are not many patterns of NP chunks and as-
suming they can be easily identified by experts, the rule-based chunking
approach is efficient and appropriate (Aggarwal and Zhai, 2012). How-
ever, it is of little use when experts have difficulty recognizing the
pattern.

Rule-based methods generally proceed as follows (Aggarwal and
Zhai, 2012). A set of rules composed of a pattern and an action is defined
by experts. A pattern is a regular expression defined by tokens and fea-
tures. An action usually identifies a specific entity and labels the entity
as a sequence of tokens. Text is broken into words, phrases, symbols
and othermeaningful elements called tokens. Then, each token is repre-
sented by a set of features. Text is compared against the rules, and the
specified action is made if a pattern is found in the text.

For instance, we can define a pattern as a sequence of an article or a
possessive case (pc) of a pronoun, any number of adjectives (adj), and a
noun. Whenever the algorithm finds this pattern in the text, the action
is to label these tokens as anNP-chunk. As shown in Fig. 2, this rule finds
two NP-chunks comprising ‘the newmaterial’ and ‘its thermal safety’ in
the example sentence.

3.4. Decision making trial and evaluation laboratory (DEMATEL)

DEMATEL was developed by Fontela and Gabus through the Science
andHumanAffairs Programof the BatteleMemorial Institute of Geneva.
DEMATEL can recognize causal relationships among evaluation criteria,
thereby identifying key criteria to maximize the effectiveness of solu-
tions (Fontela and Gabus, 1976). Thus, DEMATEL has been used to
Fig. 2. Example of rule-based
solve a number of complex problems including decision making, mar-
keting strategies, airline safetymeasurements, hospital servicemanage-
ment and others (Chiu et al., 2006; Liou et al., 2007; Shieh et al., 2010).
Other multi-criteria decision analysis methods (such as analytic net-
work processes) canmeasure the influences of one variable over others,
but they have difficulty identifying complex causal relationships among
variables. DEMATEL can overcome such weaknesses by quantifying di-
rect, indirect, and interdependent relationships among variables (Lee
et al., 2013). However, it is subject to the drawback of inadequate
weight of causality between objectives because of changing human
judgment in uncertain multi-person and multi-criteria decision
environments.

Application of DEMATEL proceeds through five phases as follows
(Lee et al., 2013; Shieh et al., 2010).

1) Phase 1: evaluation of direct influence between criteria.
Each expert evaluates the direct influence of a criterion on another
one based on a pair-wise comparison. The evaluation score can be
0 (no influence), 1 (low influence), 2 (medium influence) to 3
(high influence), or 4 (highest influence). For each expert, an n × n
non-negative matrix Xk is generated, in which xijk denotes the influ-
ence of the ith criterion on the jth criterion by the kth expert
(1bkbM). Then, we can obtain the averagematrix A,where aij is cal-
culated as follows.

aij ¼
1
M

∑
M

k¼1
xkij ð1Þ

2) Phase 2: normalization of direct influences.
Multiplying the matrix A by S, we can obtain the normalized matrix
N. S is defined as follows.

S ¼ Min
1

max 1≤ i≤nð Þ∑n
j¼1 aij

;
1

maxmaxð1≤ j≤n∑n
i¼1 aij

" #
ð2Þ

3) Phase 3: calculation of total influences.
Given the normalized direct influence matrix, N, the second indirect
influence matrix is N2. Thus, the total influence matrix T can be ob-
tained as follows.

T ¼ lim
n→∞

NþN2 þ…þNn
� �

¼ N I−Nð Þ−1 ð3Þ

4) Phase 4: calculation of the total influence of a criterion.
In matrix T, the ith row sum (ri) represents the total direct and indi-
rect influences by the ith criterion. Also, the jth column sum (cj)
NP-chunks identification.
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shows the total influences of other criteria on the jth criterion. Thus,
adding ri to ci, we can obtain the total influence given and received
by the ith criterion. If ri is larger than ci, the ith criterion is a net
cause. An ri value that is less than the corresponding ci makes the
ith criterion a net effect.

5) Phase 5: generation of a cause and effect diagram
The threshold value is used to eliminate minor causes and effects.
Then, a cause and effect diagram is generated bymapping all coordi-
nates of (ri + ci, ri − ci), or simply by visualizing the causal relation-
ships among criteria.

4. Empirical analysis

4.1. Background: membrane technology and Company A

Membranes are used as selective barriers for separation of individual
substances or mixtures. Membranes have the advantage of less energy
consumption than thermal separation methods, including distillation
and crystallization. Also, membranes can separate some chemicals
that cannot be separated by thermal methods. Thus, membrane tech-
nology is widely used in various fields, including medical dialysis,
waste water treatment, food purification and other applications. Re-
cently, the application areas for membranes have been widened to in-
clude secondary batteries and fuel cells.

The performance of amembrane is governed by its pore characteris-
tics (Khulbe et al., 2008). The pore characteristics dependmainly on the
material and pore diameters. Thus, membranes can be divided into four
classes based on pore diameter. When a pore diameter is less than one
nanometer (nm), it can remove salt and small organic molecules by re-
verse osmosis. Amembranewith a pore size between 1 and 2 nmcan be
used in nanofiltration processes and can separate viruses and ions.
Microfiltration is used to remove bacteria, proteins and other contami-
nants when the pore diameter of a membrane ranges from 2 nm to
100 nm. A membrane with pore sizes larger than 100 nm can remove
particles and yeast by means of a microfiltration process.

Membranes can also be distinguished based on material. Polymeric
membranes have been widely used in practical applications because
they are low cost andprovide superior separation performance. Ceramic
membranes are better at removing toxic and aggressive substances
with better thermal stability, and thus have been used in situations
where such substances exist in high temperature operations.

Company A has been developing hydrophobic membranes made of
polyethylene and polyethylene terephthalate for waste water treat-
ment. Its membranes have excellent chemical and microbial resistance,
and can exhibit a hydrophilic naturewhen air is introduced into themi-
cropores of the membrane. Company A is a supplier for several large
companies because of these technical advantages, and thus has annual
sales of about US$260 million. However, it cannot keep growing due
to the saturated domesticmarket, and it is also struggling tofind financ-
ing. In otherwords, the company has difficulty in the areas ofmarket ex-
pansion and new technology-based growth. This is a typical small
company, and itmust find new technological opportunities while utiliz-
ing existing technology where possible.

4.2. Data

Our method requires bibliometric data and several experts. Five ex-
perts were involved in identifying opportunities, technological perfor-
mance metrics and competitors. They also reviewed the results of the
following tasks: target performancemetrics identification, performance
structure analysis and feasibility evaluation.When analytic results are in
conflict with their knowledge, they examine the analytic processes and
data. The panel of experts consisted of two researchers, one R&D strate-
gist, one manufacturing expert and one sales manager in the focal com-
pany. They all had more than five years of experience, and there were
only small differences in age and position rank.
In bibliometric analysis, there have been debates on the advantages
and disadvantages of using patents as a proxy for technological innova-
tion aswell as capability, but there is a consensus that patents are better
than other documents in terms of information quantity, quality and
standardization (Griliches, 1990; Jaffe and Trajtenberg, 2002). We se-
lected the United States Patent and Trademark Office (USPTO) database
to review becausemembrane technologies are more often documented
in the USPTO than in other patent offices. However, recent performance
data cannot be found in patents because of the time-lag between R&D
and patenting (Nagaoka et al., 2010). To compensate for this weakness,
91 internal technology reports, magazine articles, and other technology
documents related to competitors were also collected.

4.3. Customized technology opportunity identification

Guided by the work of Lee et al. (2014), the researchers and five ex-
perts created the technological attribute-application table shown in
Appendix A. As shown, 6023 USPTO membrane patents were collected
by using a two-stage forward citation process (Von Wartburg et al.,
2005). Company A has two US, and seven Korean patents for hydropho-
bic membrane technology. These patents represent its existing techno-
logical capability. Thus, using these patents, we extracted keywords for
technological attributes related to the material, shape, and separation
process. Matching these with keywords of opportunities in the techno-
logical attribute-application table, we identified suitable technological
opportunities for the focal company.

Battery separators and fuel cells were selected as opportunities to
utilize existing technological capability more so than the others in
Table 1. Company A's membrane technology uses the same material,
has the same shape, and adopts a similar separation process. It has bet-
ter thermal stability performance than others in the wastewater treat-
ment market. Thus, thermal stability could be an advantage to exploit
for new opportunities. Additionally, challenges also become clear. Com-
pany A has little technological capability for lithium separation, and this
may represent a technological challenge or opportunity. Polymer elec-
trolyte membrane fuel cells are another opportunity, but these require
other electrical and mechanical technologies such as inverters and re-
formers. Considering the existing technological capability of Company
A, experts decided that the opportunity in battery separators is more
appropriate.

4.4. Key technological performance identification

To expand the column of product performance metrics in the tech-
nological attribute-application table, the five experts created a list of
product performance metrics, technological performance metrics and
units of performance measurement. Using this, we developed a rule-
basedmethod for NP-chunk identification to extract performance infor-
mation from 1319 USPTO patents about battery separators using mem-
brane technology. We used this method to improve the list.
Technological performance data are typical NP chunks including perfor-
mance (noun), figures, and units ofmeasurement (amix of nouns, sym-
bols and figures). Our rule defines four patterns: 1) any number of
performance keywords (adjectives or nouns) with figures followed by
a unit of measurement, 2) any number of figures followed by a unit of
measurement, 3) iterations of any number of figures followed by a
unit of measurement, and 4) iterations of any number of performance
keywords and figures followed by a unit of measurement. This rule
says that an NP-chunk is formed whenever our algorithm finds such
patterns. NP-chunks are automatically labeled as product/technological
performance metrics, patent assignees and year of patent application,
and they are then stored in the database.

Our algorithm often finds NP-chunks for either new performance
keywords or units of measurement. Reviewing these, experts improved
the keyword list of units and performance metrics. Then, a new search
begins to improve the performance data. This process is iterated twice



Table 1
Customized opportunity for Company A.

Material Shape Substances to be separated Separation process Product performance Application

Polyethylenea (PE) Filma Lithium Iona, electrolyte, anode, cathode Capacity
Thermal safetya

Battery separator

PETa (polyethylene terephthalate), Filma Iona, electrolyte, anode, cathode Capacity
Thermal safetya

Fuel cell

a Same with keywords of Company A's technological capability extracted from its patents.
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until no new keywords are found. The final list includes all similar key-
words as shown in Table 2. There are six key technological performance
metrics: shrinkage, melting point, punctual strength, tensile strength,
thickness and air permeability.

4.5. Competitor identification

Note that the objective of R&D planning in Company A is to gain a
technological advantage in a specific market segment. Thus we selected
a targetmarket segment, and identified key competitors using our tech-
nological performance data and input from experts. The battery separa-
tor market can be divided based on size. Small batteries are used in
electric watches, mobile phones, notebooks and other small devices.
Medium and large batteries usually power automobiles, submarines
and other vehicles, and they are also used in energy storage systems.
We divided our patent data into two groups consisting of small andme-
dium/large batteries using these keywords related to usage and battery
size.

Combining our technological performance data with patent assignee
information, we identified key competitors in each group. Asahi Kasei,
Tonen and SK innovation are active key competitors in the small battery
market, and they account formore than 70%of themarket share. Theme-
dium/large battery market is more fragmented. Key competitors include
Ube, Mitsubishi, Sumitomo, LG Chemical, Vielene, Evonik and Celgard.

To identify a target market, we measured the gap in technological
performance metrics between Company A and the market average.
For each technological performance metric in a specific market, the
market average equals the sum of technological performance for the
above-mentioned competitors divided by the number of competitors.
In Table 3, Company A's performance is closer to average in the small
battery market than in the medium/large battery market. In other
words, there might be high hurdles to achieve technological perfor-
mance metrics required to compete in the medium/large battery mar-
ket. Thus, Company A may pursue technological opportunities in the
small market with less R&D effort while more effectively utilizing its
existing technological capability.

Once the small battery market was identified as the target
market, we had to find key competitors because their technological
performance metrics would provide the basis for R&D targets. We de-
fined three kinds of key competitors: 1) market leaders, 2) technology
leaders and 3) survivors. A company that has the largest market share
Table 2
Product performance, technological performance and unit of measurement.

Product performance Technological performance

Thermal stability Shrinkage
Melting point (melt integrity, melting temperature, melt-down

Mechanical stability Puncture strength (puncture resistance, resistance to puncture)
Tensile strength (tensile elongation, tensile modulus)

Capacity Thickness

Air permeability (gas permeability, Gurley number, MacMullin
is defined as the market leader. Similarly, the technology leader has at
least one best technology performance among the six key performance
metrics. Survivors have theworst technology performance, but retained
its market share more than three years.

As shown in Table 4, Company A has better technological
performance metrics than the survivor, and thus has the minimum
technological performance metrics required to enter this market. How-
ever, comparedwith the leaders, it must increase the performancemet-
rics related to the melting point, shrinkage, and air permeability.
Company A has advantages in terms of punctual strength, tensile
strength and thickness. However, target technological performance
metrics cannot be determined because the required performance to
gain a competitive technological advantage is not clear.

4.6. Target technological performance identification

The absolute difference in technological performance between the
focal company and market/technology leaders is not enough to select
target technological performance metrics. R&D planning must deter-
mine how the company can achieve a competitive advantage against
key competitors. To achieve this objective, the target technological
performance can be used to differentiate technologies/products. Also,
six key technological performance metrics have different units of
measurement.

Considering this, we normalized all performancemetrics of Company
A by scaling between 0 and 1. The performance gap between company A
and the market leader is then divided by the performance gap between
the technology leader and the worst technology performance player.
Note that Company A has better punctual strength and thickness than
the technology leader, as shown in Table 5. These absolute performance
gaps are negative, implying that Company A has technological advan-
tages. Normalized performance gaps between Company A and the mar-
ket leader show that it must improve air permeability, melting point and
shrinkage to compete with the market leader. Considering this, we can
narrow target technological performancemetrics down to air permeabil-
ity, shrinkage and melting point.

4.7. Performance structure analysis

R&D must create synergies among technological performance met-
rics while minimizing their conflicts to increase R&D effectiveness
Unit of measurement

%, percent, percentage
) degree C, degrees C, degree, degrees

N cm sup−1, b kg cm sup−2, kPa, g/Denier, %, g/d, psi Newtons/m,
kg f/mm·sup−2, N/cm, g/mil, kg f/mil, Newtons, mN/25 mu·m, g f,
grams/25 mu·m; N/mu·m, kg/mm, Pa, mil, grams, psi g, g/mu·m, N,
grams/mil, N/50 mm, grams force per mil, cN/mu·m·Mpa
μm, mu·m, mm, micron, microns, mu, N m, inches, inch, Angstroms,
micrometers, mils, ANG, mil, nanometer

number) sec, seconds/100 cc, sec/100 cm3, cm/s, sec/100 cm3, cc/cm·sup−2/s,
cfm/ft·sup−2 s/100 mL, sec/10 ml, sec/10cm3, m·sup−3/min/m·sup−2,
sec/100 cm·sup−3, mm Hg



Table 3
Technological performances level of company a against market average.

Technological performance (units) Market average Company A Relative performance level of Company A

Small size Medium/large size Against small market average Against medium/large market average

Melting point (°C) 186.7 212.3 185.00 99% 85%
Shrinkage (%) 3.03 2.9 5.00 61% 59%
Punctual strength (N/20 mu·m) 3.27 1.7 2.50 69% 67%
Tensile strength (kg f/cm·sup−2) 1233.3 707.5 1025.00 80% 69%
Air permeability (sec/100 cm3) 255.0 156.0 240.00 94% 65%
Thickness (mu·m) 20.3 28.6 20.60 99% 61%
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(Valderrama and Mulero-Mendigorri, 2005). Thus, we must identify
causal relationships among target technological performance metrics
to maximize performance metrics.

To address this issue, we used a slightly modified DEMATEL that has
no assumptions about negative influences. Relaxing this assumption,
we allowed influences to be either positive or negative, which allowed
us to quantify synergies and trade-offs among performance metrics.
Five experts were asked to evaluate the direct influences between six
technological performance metrics by a score from −3 (high negative
influence) to 0 (no influence) to 3 (high positive influence).We created
the average matrix, normalized it, and obtained the total relationship
matrix shown in Table 5.

Two negative causeswere recognized. If CompanyAmakes itsmem-
brane thinner or more air permeable, it will reduce thermal and me-
chanical stability. However, it can improve thermal and mechanical
stability without hurting other performance metrics. Six performance
metrics were ranked based on their total effect. Shrinkage had the
only positive total effect as well as the largest causal effect. Therefore,
it should be considered as the first priority for R&D. Melting point was
in the second position. As shown in Table 5, Company A must improve
these two performance metrics to catch up with key competitors.
Thus, to maximize R&D effectiveness for market penetration, the strate-
gy should focus on the shrinkage and melting point.

Air permeability is difficult to improve, but is of great importance for
competition. To be on the leading edge in the battery separator market,
Company A must achieve a technological advantage in air permeability
performance. However, higher air permeability has a negative effect on
other key performance metrics. Also, deviations from uniform perme-
ability might produce uneven current density distribution, thereby
causing the formation of crystals on the anode. In other words, R&D to
improve air permeability is a high-risk and high-return investment
(Table 6).

4.8. R&D feasibility analysis

Inmany cases, some technological performance objectives cannot be
achieved due to a lack of R&D capability. Target technological perfor-
mance is of little use for gaining a technological advantage if R&D fails
to achieve it. Thus, under budget constraints, R&D planning must be
both effective and efficient (Braunschweig and Becker, 2004). In other
words, R&D priority should be given tomore feasible technological per-
formance metrics than others to reduce R&D failures.

Considering this, we evaluated the R&D feasibility of three key tech-
nological performancemetrics for Company A. The R&D feasibility index
Table 4
Technological performances of market leader, technology leader, and survivor.

Technological performance Market leader

Melting point (°C) 195.67
Shrinkage (%) 1.77
Punctual strength (N/20 mu·m) 1.93
Tensile strength (kg f/cm·sup−2) 687.00
Air permeability (sec/100 cm3) 116.67
Thickness (mu·m) 23.12
is defined as the ratio of corporate R&D capability to thenormalized per-
formance gap. Higher R&D capability and small performance gaps in-
crease the feasibility of closing the performance gap.

Five experts rated the R&D capability of Company A to improve each
technological performance metric. The ratings ranged from 0 (no capa-
bility), 0.2 (little capability), 0.5 (weak capability), 0.7 (strong capability
to achieve the target), and 1 (same capability as the leader). Normalized
performance gaps between the focal company and market leader,
shown in Table 5, were used. As shown in Table 7, Company A can easily
reach themelting point performance of themarket leader, but it has dif-
ficulty in improving air permeability up to the same level. Considering
R&D efficiency more than effectiveness, the company established an
R&D priority order of melting point, shrinkage and air permeability.

4.9. Identification of technological alternatives

Given important and feasible target technological performancemet-
rics, the next task of R&D planning is to decide how those performance
targets can be achieved. Benchmarking of leading companies is usually
used to identify the principal methods. To reduce the burden of this
time-consuming process, we created technological trajectories of key
competitors in the target performance space using our performance
data. The horizontal axis represents time, and the vertical axis repre-
sents the target performance. We can understand the advantages and
disadvantages of several methods, and thus choose the most appropri-
atemethod for the focal company by comparing the dynamics of perfor-
mance improvement for key competitors over the last few years.

Fig. 3 shows the technological trajectories of Sumitomo, Mitsubishi,
LG, Evonik, Asahi Kasei and Tonen. Asmentioned previously, these com-
panies are key competitors in the small and medium/large size battery
markets. Another common characteristic is that they have the top ther-
mal stability performance metrics (melting point) compared to others.
Note that the melting point is the target performance for Company A
to maximize its R&D efficiency.

In the small batterymarket, the co-extrusion of polymer and another
head-resistant material is a typical dry productionmethod, and this has
been used by several companies in the 2000s. However, its performance
improvement is close to a limit of 200 °C. Nonwovens composed of a
sheet, web, or mat of directionally oriented fibers were attractive
methods in the early 2000s, and these broke the ceiling of 200 °C.
These materials had superior performance compared to others, even
in 2012, but the performance has not improved much recently. The in-
organic composite method was an emerging technology in 2010, and
has shown steady performance increases over the last several years. It
Technology leader Survivor Company A

288.50 171.00 185.00
0.25 6.15 5.00
2.25 1.30 2.50
1108.00 307.00 1025.00
75.00 245.00 240.00
20.75 38.93 20.60



Table 5
Absolute and normalized performance gap.

Technological performance
(units)

Absolute performance gap Normalized performance Normalized performance gap

Market leader—Company A Technology leader—Company A Company A Market leader Market leader—Company A

Melting point (°C) 10.67 103.5 0.12 0.21 0.09
Shrinkage (%) 3.23 4.75 0.19 0.74 0.55
Punctual strength (N/20 mu·m) −0.57 −0.25
Tensile strength (kg f/cm·sup−2) −338.00 83 0.89 0.47 −0.42
Air permeability (sec/100 cm3) 123.33 165.00 0.03 0.75 0.72
Thickness (mu·m) −2.52 −0.15
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also cannot overcome the barrier of 200 °C. Sumitomo has developed
expanded polymerfilmswith better elastic recovery and heat resistance
by using their own dry process. This method has the best thermal
stability, but is too difficult to develop. Company A can choose the co-
extrusion and inorganic composited methods, but might face limita-
tions in performance improvement in the near future.

5. Discussion

Our method does not simply link opportunity information from
bibliometric analysis to expert-based R&D planning. In such simple
linking approach, the experts must be extensively involved in the
whole process of bibliometric information evaluation, analysis and inte-
gration. This has the advantage of overcoming bounded knowledge and
subjective judgment, but in many cases, there are few differences in the
results. Considering the tremendous effort required for bibliometric
data collection, analysis and expert involvement, some corporate man-
agers have doubted the effectiveness and efficiency of the method.

However, leading companies successfully combine bibliometric in-
formation with a human-centered approach to create an improved cor-
porate foresight process that includes technological opportunity
identification, technology strategy, R&Dplanning and business planning
(Heger and Rohrbeck, 2012; Rohrbeck, 2010). Bibliometric information
is provided to experts in an appropriate context, and thus improves
expert judgment while increasing efficiency of foresight, strategy and
planning. Well-designed information integration is crucial to such suc-
cess, and is also crucial to the operationalization of TOA.

The effectiveness and efficiency of R&D planning depends on the ap-
propriateness of target technological performance metrics and R&D so-
lutions. Focusing on this, we extracted key technological performance
metrics information from bibliometric data and converted it to an
easily understandable and usable form for strategists and R&D experts.
Also, sequential processes were designed to complement the analytic
output in the previous process. For instance, target technological perfor-
mance identification cannot consider the causal relationships among
performance metrics. The performance structure analysis revealed
their synergies and trade-offs, thereby increasing the usefulness and re-
liability of the analytical results.

In our membrane case, all five experts concurred that they did not
have to collect other complementary data because the information re-
lated to performance metrics and competitors was reliable. Also, they
Table 6
Total relation matrix of key technological performances.

Effect Thickness Air permeability Shrinkag
Cause

Thickness 0. 0.1515 −0.2304
Air permeability 0 0 −0.1704
Shrinkage 0 0 0.0009
Melting point 0 0 0.0343
Puncture strength 0 0 0.0306
Tensile strength 0 0 0.0306
Causal effect −0.9248 −0.7933 0.3383
Total effect −0.9248 −0.6418 0.0429
appreciated the ease of use and usefulness of the three analytic tools,
which included the normalized performance gap analysis, feasibility
index and technological trajectory. Rather than consisting of an open
discussion and simple scoringmethod, these tools helpedmake the pro-
cess of strategy and planning less difficult and time-consuming while
reducing biases such as the bandwagon effect, bounded knowledge
and subjective judgment.

In previous R&Dplanning sessions, CompanyA used about 400man-
hours (five experts and 80 h per each expert) to complete the first R&D
plan. Simple brainstorming and open off-line discussion were used.
Using our approach, five experts took 290 man-hours. This time reduc-
tion (27.5%) is mainly due to reduced information asymmetry and
bounded rationality among experts. Experts have limited information
regarding technological performance metrics, their relationship and
competitors. Therefore, they need considerable time to share their
information. Given comprehensive and structured information by
bibliometric analysis, they could focus on evaluating technological alter-
natives while cutting the discussion time down by more than 60%.

However, they had difficulty in using DEMATEL because the scaling
can vary from expert to expert. A model to quantify the causal relation-
ships among performance metrics figures would be more practically
useful. Another complaint was that the pros and cons of technological
alternatives were not provided in an integrated form. A visualization
tool that compares alternatives based on several criteria would meet
their needs well.

Two challenges became apparent in our approach. Above all, it is
difficult to use the best experts in other departments. Heads of other
departments recognize the importance of R&D planning, but are not al-
ways willing to assign the best experts to their core tasks. This increases
the risk of a technology performance-oriented R&D planwith little con-
sideration for product feasibility andmarket need. Another challenge is
to design cross-departmental communication protocols between ex-
perts and bibliometric analysts. Communication mistakes frequently
occur due to differences in culture and expertise, and this can slow the
process. Top management commitment, problem identification and ac-
tion plansmust be carefully implemented to dealwith these challenges.

From a strategic perspective, the goal of our approach is to set an
R&D plan to gain a technological advantage against competitors. This
might be suitable for either small or medium companies to obtain com-
petitive advantages in the business-to-business market because either
better technological performance or low cost can be achieved through
e Melting point Puncture strength Tensile strength

−0.2209 −0.2670 −0.3579
−0.2128 −0.2050 −0.2050
0.1836 0.0723 0.0723
0.0062 0.0631 0.0631
0.0056 0.0022 0.0022
0.0056 0.0022 0.0022
0.1667 0.0406 0.0406
−0.0066 −0.2917 −0.3826



Table 7
R&D feasibility evaluation.

Criteria Melting point Shrinkage Air permeability

Normalized performance gap
(Company A—market leader)

0.09 0.55 0.72

R&D capability 0.62 0.88 0.28
R&D feasibility index 6.89 1.6 0.39
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a technology-oriented R&Dplan. However, in the business-to-consumer
markets, technological advantages do not always result in competitive
advantages because product value and customer satisfaction are depen-
dent on other factors, including design and brand image. Thus, market
and customer information must be collected, analyzed and provided
to a broader pool of experts, including marketing managers and
designers.

A large company has its full lineup of products in a specific market
segment, and often runs businesses across industries. These types of
companies should compare a number of technological opportunities,
and utilize their existing capabilities across different business units
and R&D organizations. Our method has limitations and may not be
able to deal with such complex processes. Therefore, it needs to be
extended to use complex concepts and models including portfolios,
system dynamics, road mapping and other strategies.

6. Conclusion

Focusing on the weak link from TOA to practical R&D planning, we
suggested a practical way of strengthening it. Using our method, R&D
experts can reduce their efforts to determine the best customized R&D
plan because the information that they need is provided in a suitable
form. Compared with simple brainstorming and open discussion, our
approach reduced time for R&D planning bymore than 25%while iden-
tifying two more technological alternatives in our membrane case.
Biases associated with human-centered approaches and lack of reliable
data were also reduced.

Thus, we can increase R&D efficiency as well as effectiveness
while reducing expert involvement in selection and evaluation of
Fig. 3. Technological trajectories of key compe
technological opportunities. Therefore, TOA can be more valuable in
strategy and planning practices. Some important R&D project selection
criteria, including R&D feasibility and technological performance, were
used to select target technological performance metrics and R&D
methods in the R&D planning process. This method can facilitate the
next process of R&D project selection, making the overall R&D process
faster and more efficient.

Academic contributions come mainly from clarification of
the linkage between TOA and R&D planning. We identified key
information for R&Dplanning, provided appropriate tools andprocesses
to extract such information from bibliometric data, and suggested
how this information can be converted to a suitable form for R&D
planners and experts. Put differently, we found an integrated form of
TOA information analytics that best serves the needs of R&D experts.
Also, our systematic approach continuously complements weaknesses
in analytic output in the previous process. Thus, a set of data and
tools to overcome several bottlenecks in R&D planning were also
provided.

Our study has some technical limitations such as using bibliometric
data that results in time-lag. Our method might be of little use to short
lifecycle technologies less than two years old because the average
time-lag between patent applications and grants is more than
18 months. Also, the R&D feasibility indicator cannot compare absolute
values. It is only possible to perform relative feasibility comparisons be-
tween performance metrics. Chunk-based mining does not cover all
performance units and keywords, and thus has difficulty in finding
some rarely used but important items. Furthermore, the direct-relation
matrix in the DEMATEL to infinite power might not converge to zero.
This infeasibility needs to be resolved. Lastly, it should be noted that
the effect of our approach on the efficiency improvement needs to be
statistically tested.
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Technological attribute Product
performance

Application

Material Specific material Shape Substances to be separated Separation process

Polymer PES (polyethersulfone), PE (polyethylene), PTFE
(polytetrafluoroethylene),
PVDF (polyvinylidene fluoride)

Film
(sheet),
fiber

Virus, bacteria, colloid, microorganism, E.
coli, Giardia, crypto, yeast, sulfate,
colloidal DOC, organic microcontaminant

Molecule,
microfiltration,
ultrafiltration

Purity,
selectivity,
energy
efficiency

Water
treatment
(filtration)

Toxin, endotoxin, inulin, uricacid,
pathogen

Purity,
selectivity

Medical
dialysis
hemodialysis

PA (polyamide), cellulose Film
(sheet),
fiber,
spiral
wound

Sodium, chlorine, magnesium, sulfate,
metalion, dissolved salts, TDS (total
dissolved solids)

Reverse osmosis,
electro dialysis

Purity,
energy
efficiency

Sea
desalination

PTFE (polytetrafluoroethylene), PE, Nafion, Flemion,
Aciplex, PI (polyimide), PAI (polyamideimide), PSF
(polysulfone), PES (polyethersulfone), PEK
(polyetherketone), Polyolefin PEEK
(polyetheretherketone), PP (polypropylene), PBI
(polybenzimidazole), PZ (polyphosphazene), PVA
(polyvinyl alcohol)

Film
(sheet),
fiber

Hydrogen, proton Ion, electrolyte,
anode, cathode

Capacity,
thermal
safety

Fuel cell

PET (polyethylene terephthalate), PVDF
(polyvinylidenefluoride)

Film
(sheet)

Lithium Electrolyte, anode,
cathode

Capacity,
thermal
safety

Battery

PI (polyimide), PSF (polysulfone), cellulose, PC
(polycarbonate), PEI (polyetheramide), PET (polyester),
PU (polyurethane), polyether, polystyrene, PMMA,
PTMSP, PDMS

Film
(sheet),
fiber,
spiral
wound

Hydrogen, helium, carbon dioxide, SOx,
NOx, smog, fumes, dusts, spores, tobacco
smoke, bacteria, virus, spores, human hair

Molecule,
microfiltration,
ultrafiltration

Purity,
energy
efficiency

Gas
separation
(air cleaning)

PVA (polyvinyl alcohol), Chitosan, PAN
(polyacrylonitrile)

Fiber Volatile organic compound (VOC),
Benzene, ketone cyclohexane

Osmosis,
evaporation,
molecule,
microfiltration,
ultrafiltration

Purity,
energy
efficiency

Pervaporation

PU (polyurethane), PVDF (polyvinylidene fluoride),
PTFE (polytetrafluoroethylene), PE (polyethylene), PP
(polypropylene), PEI (polyetheramide), PET (polyester)

Film
(sheet)

Water vapor (breathable, waterproof,
water tight, moisture permeability),
urine, ammonia

Molecule,
microfiltration,
ultrafiltration

Thermal
safety,
chemical
safety

Functional
garment

Ceramic Silica (SiO2), silicon oxide, alumina (Al2O3), aluminum
oxide, zirconia (ZrO2),
zirconium oxide, titania (TiO2),
titanium oxide, zeolite

Tube,
plate
(frame)

Virus, bacteria, colloid, microorganism Molecule,
microfiltration,
ultrafiltration

Purity,
selectivity,
energy
efficiency

Water
treatment
(filtration)

Volatile organic compound (VOC),
Bensen, Keton

Osmosis,
evaporation,
molecule,
microfiltration,
ultrafiltration

Purity,
energy
efficiency

Pervaporation

Hydrogen, helium, carbon dioxide, SOx,
NOx, nitrogen, smog, fumes, dusts, spores,
tobacco smoke, bacteria, virus, spores,
human hair

Molecule,
microfiltration,
ultrafiltration

Purity,
energy
efficiency

Gas
membrane
(air cleaning)

Silica (SiO2), silicon oxide, zirconia (ZrO2), zirconium
oxide

Hydrogen, proton Io, electrolyte,
anode, cathode

Capacity,
thermal
safety

Sensor, fuel
cell

Metal Palladium alloy, tantalum alloy, vanadium alloy,
niobium alloy

Tube Hydrogen, helium, carbon dioxide, SOx,
NOx, nitrogen

Molecule,
microfiltration,
ultrafiltration

Purity,
energy
efficiency

Gas
membrane
(air cleaning)Smog, fumes, dusts, spores, tobacco

smoke, bacteria, virus, spores, human hair

Appendix A. Technological attribute-application table for membrane technology

62 J. Lee et al. / Technological Forecasting & Social Change 119 (2017) 53–63
References

Abney, S.P., 1992. Parsing by Chunks. Springer, Netherlands.
Aggarwal, C.C., Zhai, C., 2012. Mining Text Data. Springer Science & Business Media, New

York.
Albert, M.B., Avery, D., Narin, F., McAllister, P., 1991. Direct validation of citation counts as

indicators of industrially important patents. Res. Policy 20, 251–259.
Audretsch, D.B., 1995. Innovation, growth and survival. Int. J. Ind. Organ. 13, 441–457.
Baron, R., Ensley, M., 2006. Opportunity recognition as the detection of meaningful

patterns: evidence from comparisons of novice and experienced entrepreneurs.
Manag. Sci. 52, 1331–1344.

Braunschweig, T., Becker, B., 2004. Choosing research priorities by using the analytic hier-
archy process: an application to international agriculture. R&D Manag. 34, 77–86.

Brenner, M.S., 1996. Technology intelligence and technology scouting. Competitive Intell.
Rev. 7, 20–27.

Chiu, Y.J., Chen, H.C., Tzeng, G.H., Shyu, J.Z., 2006. Marketing strategy based on customer
behaviour for the LCD-TV. Int. J. Manag. Decis. Mak. 7, 143–165.
Choi, S., Yoon, J., Kim, K., Lee, J.Y., Kim, C.H., 2011. SAO network analysis of patents for
technology trends identification: a case study of polymer electrolyte membrane tech-
nology in proton exchange membrane fuel cells. Scientometrics 88, 863–883.

Cozzens, S., Gatchair, S., Kang, J., Kim, K.S., Lee, H.J., Ordóñez, G., Porter, A., 2010. Emerging
technologies: quantitative identification and measurement. Tech. Anal. Strat. Manag.
22, 361–376.

Day, G.S., Schoemaker, P.J., Gunther, R.E., 2004. Wharton onManaging Emerging Technol-
ogies. John Wiley & Sons, New Jersey.

Eckhardt, J.T., Shane, S.A., 2003. Opportunities and entrepreneurship. J. Manag. 29,
333–349.

Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., Zalányi, L., 2013.
Prediction of emerging technologies based on analysis of the US patent citation net-
work. Scientometrics 95, 225–242.

Fontela, E., Gabus, A., 1976. The DEMATEL Observer. Battelle Institute, Geneva Research
Center.

Fujita, K., Kajikawa, Y., Mori, J., Sakata, I., 2014. Detecting research fronts using different
types of weighted citation networks. J. Eng. Technol. Manag. 32, 129–146.

http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0005
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0010
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0010
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0015
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0015
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0020
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0025
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0025
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0025
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0030
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0030
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0035
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0035
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0040
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0040
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0045
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0045
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0045
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0050
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0050
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0050
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0055
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0055
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0060
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0060
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0065
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0065
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0070
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0070
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0075
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0075


63J. Lee et al. / Technological Forecasting & Social Change 119 (2017) 53–63
Gerken, J.M., Moehrle, M.G., 2012. A new instrument for technology monitoring: novelty
in patents measured by semantic patent analysis. Scientometrics 91, 645–670.

Gordon, T., Pease, A., 2006. RT Delphi: an efficient, “round-less” almost real time Delphi
method. Technol. Forecast. Soc. Chang. 73, 321–333.

Griliches, Z., 1990. Patent statistics as economic indicators: a survey. National Bureau of
Economic Research No. w3301.

Heger, T., Rohrbeck, R., 2012. Strategic foresight for collaborative exploration of new busi-
ness fields. Technol. Forecast. Soc. Chang. 79, 819–831.

Huang, L., Zhang, Y., Guo, Y., Zhu, D., Porter, A.L., 2014. Four dimensional science and
technology planning: a new approach based on bibliometrics and technology
roadmapping. Technol. Forecast. Soc. Chang. 81, 39–48.

Hung, S., Chu, Y., 2006. Stimulating new industries from emerging technologies: chal-
lenges for the public sector. Technovation 26, 104–110.

Jaffe, A.B., Trajtenberg, M., 2002. Patents, Citations, and Innovations: A Window on the
Knowledge Economy. MIT Press, Cambridge, MA.

Johnson, P., 2000. Information sources in gray literature. Libr. Collect. Acquis. Tech. Serv.
24, 512–513.

Kerr, C.I.V., Mortara, L., Probert, D.R., 2006. A conceptual model for technology intelli-
gence. Int. J. Technol. Intell. Plan. 2, 73–93.

Khulbe, K.C., Feng, C.Y., Matsuura, T., 2008. Synthetic Polymeric Membranes: Characteri-
zation by Atomic Force Microscopy. Springer-Verlag, Berlin Hidelberg.

Kirzner, I.M., 1997. Entrepreneurial discovery and the competitive market process: an
Austrian approach. J. Econ. Lit. 35, 60–85.

Klevorick, A.K., Levin, R.C., Nelson, R.R., Winter, S.G., 1995. On the sources and significance
of interindustry differences in technological opportunities. Res. Policy 24, 185–205.

Kostoff, R., 2001. Text mining using database tomography and bibliometrics: a review.
Technol. Forecast. Soc. Chang. 68, 223–253.

Lee, S., Lee, S., Seol, H., Park, Y., 2008. Using patent information for designing new product
and technology: keyword based technology roadmapping. R&D Manag. 38, 169–188.

Lee, S., Yoon, B., Lee, C., Park, J., 2009a. Business planning based on technological capabil-
ities: patent analysis for technology-driven roadmapping. Technol. Forecast. Soc.
Chang. 76, 769–786.

Lee, S., Yoon, B., Park, Y., 2009b. An approach to discovering new technology
opportunities: keyword-based patent map approach. Technovation 29, 481–497.

Lee, H.S., Tzeng, G.H., Yeih, W., Wang, Y.J., Yang, S.C., 2013. Revised DEMATEL: resolving
the infeasibility of DEMATEL. Appl. Math. Model. 37, 6746–6757.

Lee, Y., Kim, S.Y., Song, I., Park, Y., Shin, J., 2014. Technology opportunity identification cus-
tomized to the technological capability of SMEs through two-stage patent analysis.
Scientometrics 100, 227–244.

Lee, C., Kang, B., Shin, J., 2015. Novelty-focused patent mapping for technology opportuni-
ty analysis. Technol. Forecast. Soc. Chang. 90, 355–365.

Liou, J.J., Tzeng, G.H., Chang, H.C., 2007. Airline safety measurement using a hybrid model.
J. Air Trans. Manag. 13, 243–249.

Nagaoka, S., Motohashi, K., Goto, A., 2010. Patent statistics as an innovation indicator.
Handb. Econ. Innov. 2, 1083–1127.

Newbert, S., Walsh, S., Kirchhoff, B., Chavez, V., 2006. Technology-driven entrepreneur-
ship: muddling through and succeeding with the second product. Entrep. Engine
Growth 3, 291–312.

Olsson, O., 2005. Technology opportunity and growth. J. Econ. Growth 10, 35–57.
OuYang, K., Weng, C.S., 2011. A new comprehensive patent analysis approach for

new product design in mechanical engineering. Technol. Forecast. Soc. Chang. 78,
1183–1199.

Porter, A.L., Cunningham, S.W., 2005. TechMining: Exploiting New Technologies for Com-
petitive Advantage. Wiley, New York.

Porter, A.L., Detampel, M.J., 1995. Technology opportunities analysis. Technol. Forecast.
Soc. Chang. 49, 237–255.
Porter, A.L., Newman, N.C., 2011. Mining external R&D. Technovation 31, 171–176.
van Raan, A.F.J., 1996. Advanced bibliometric methods as quantitative core of peer review

based evaluation and foresight exercises. Scientometrics 36, 397–420.
Rohrbeck, R., 2010. Corporate Foresight: Towards a Maturity Model for the Future Orien-

tation of a Firm. Physica-Verlag HD, Berlin.
Salo, A., Cuhls, K., 2003. Technology foresight—past and future. J. Forecast. 22, 79–82.
Savioz, P., Blum,M., 2002. Strategic forecast tool for SMEs: how the opportunity landscape

interacts with business strategy to anticipate technological trends. Technovation 22,
91–100.

Shibata, N., Kajikawa, Y., Takeda, Y., Matsushima, K., 2008. Detecting emerging research
fronts based on topological measures in citation networks of scientific publications.
Technovation 28, 758–775.

Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., Matsushima, K., 2011. Detecting emerging
research fronts in regenerative medicine by the citation network analysis of scientific
publications. Technol. Forecast. Soc. Chang. 78, 274–282.

Shieh, J.I., Wu, H.H., Huang, K.K., 2010. A DEMATEL method in identifying key success fac-
tors of hospital service quality. Knowl.-Based Syst. 23, 277–282.

Shin, J., Lee, H., 2013. Low-risk opportunity recognition from mature technologies for
SMEs. J. Eng. Technol. Manag. 30, 402–418.

Valderrama, T.G., Mulero-Mendigorri, E., 2005. Content validation of a measure of R&D ef-
fectiveness. R&D Manag. 35, 311–331.

Von Wartburg, I., Teichert, T., Rost, K., 2005. Inventive progress measured by multi-stage
patent citation analysis. Res. Policy 34, 1591–1607.

Xin, L., Jiwu, W., Lucheng, H., Jiang, L., Jian, L., 2010. Empirical research on the technology
opportunities analysis based onmorphology analysis and conjoint analysis. Foresight
12, 66–76.

Yoon, B., Park, Y., 2004. A text-mining-based patent network: analytical tool for high-
technology trend. J. High Technol. Managem. Res. 15, 37–50.

Yoon, B., Park, I., Coh, B.Y., 2014. Exploring technological opportunities by linking technol-
ogy and products: application ofmorphology analysis and text mining. Technol. Fore-
cast. Soc. Chang. 86, 287–303.

Zhang, T., Damerau, F., Johnson, D., 2002. Text chunking based on a generalization of win-
now. J. Mach. Learn. Res. 2, 615–637.

Zhang, Y., Zhou, X., Porter, A.L., Gomila, J.M.V., Yan, A., 2014. Triple helix innovation in
China's dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and
technology roadmapping. Scientometrics 99, 55–75.

Zhu, D., Porter, A.L., 2002. Automated extraction and visualization of information for tech-
nological intelligence and forecasting. Technol. Forecast. Soc. Chang. 69, 495–506.

Jeongjin Lee is Associate Professor of School of Computer Science & Engineering in
Soongsil University. His research interest focuses on deep learning, image segmentation
and registration. Recently, he is interested in analyzing scientific and technological docu-
ments, images and others.

Changseok Kim is a researcher in Hyundai Motor Group, and also a Ph.D. candidate in
Graduate School of Management of Technology at Sungkyunkwan University. He is inter-
ested in building robust R&D portfolios and technology strategy.

Juneseuk Shin is Associate Professor of Systems Management Engineering and Graduate
School of Management of Technology at Sungkyunkwan University. His research interest
focuses on corporate foresight, business model, technology strategy and innovation man-
agement. He has published articles in Technology Forecasting& Social Change, Technovation,
R&D Management and others.

http://refhub.elsevier.com/S0040-1625(16)30589-3/rf201703220736399808
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf201703220736399808
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0080
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0080
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0085
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0085
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0090
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0090
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0095
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0095
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0095
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0100
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0100
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0105
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0105
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0110
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0110
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0115
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0115
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0120
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0120
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0125
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0125
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0130
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0130
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0135
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0135
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0140
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0140
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0145
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0145
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0145
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0150
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0150
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0155
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0155
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0160
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0160
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0160
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0165
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0165
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0170
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0170
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0175
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0175
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0180
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0180
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0180
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0185
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0190
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0190
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0190
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0195
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0195
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0200
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0200
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0205
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0210
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0210
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0215
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0215
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0220
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0225
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0225
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0225
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0230
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0230
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0230
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0235
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0235
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0235
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0240
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0240
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0245
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0245
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0250
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0250
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0255
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0255
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0260
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0260
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0260
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0265
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0265
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0270
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0270
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0270
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0275
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0275
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0280
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0280
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0280
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0285
http://refhub.elsevier.com/S0040-1625(16)30589-3/rf0285

	Technology opportunity discovery to R&D planning: Key technological performance analysis
	1. Introduction
	2. Technology opportunity analysis
	3. Methodology
	3.1. Research framework
	3.2. Customized technological opportunity identification
	3.3. Chunk-based text mining
	3.4. Decision making trial and evaluation laboratory (DEMATEL)

	4. Empirical analysis
	4.1. Background: membrane technology and Company A
	4.2. Data
	4.3. Customized technology opportunity identification
	4.4. Key technological performance identification
	4.5. Competitor identification
	4.6. Target technological performance identification
	4.7. Performance structure analysis
	4.8. R&D feasibility analysis
	4.9. Identification of technological alternatives

	5. Discussion
	6. Conclusion
	Acknowledgments
	References


