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The nonlinear complexity of volatility duration and volatility difference component based on voter 
financial dynamics is investigated in this paper. The statistic – volatility difference component is first 
introduced in this work, in an attempt to study the volatility behaviors comprehensively. The maximum 
change rate series and the average change rate series (both derived from the volatility difference 
components) are employed to characterize the volatility duration properties of financial markets. Further, 
for the proposed series model and the proposed financial statistic series (which are transformed to 
symbolic sequences), the permutation Lempel–Ziv complexity, a novel complexity measure, is introduced 
to study the corresponding randomness and complexity behaviors. Besides, Zipf analysis is also applied 
to investigate the corresponding Zipf distributions of the proposed series. The empirical study shows the 
similar complexity behaviors of volatility between the proposed price model and the real stock markets, 
which exhibits that the proposed model is feasible to some extent.
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1. Introduction

Recent researches on the financial field demonstrate that the 
financial market is a complex and dynamical system whose fluc-
tuations often represent strong nonlinear and dynamical char-
acteristics, and the interactions of financial market participants 
have attracted many financial researchers’ attentions. Over the past 
ten years, many new interacting particle models have been pro-
posed to study the financial markets [1–11], such as Bertrand and 
Cournot competitions in continuous time [1], reduced-form point 
process model [2], correlated default model [3] and so on. Many fi-
nancial behaviors, including large pools of loan [4], portfolio losses 
[5–8], inter-bank lending and borrowing [9–11], are studied with 
these models. The stock market is an important part of financial 
markets, where there are some common properties called stock 
market stylized empirical facts, including fat tails, absence of au-
tocorrelation, volatility clustering and so on [12]. In addition, with 
the governments’ deregulation of stock markets all over the world, 
it is becoming a vital topic to capture the dynamics of the forward 
prices of stock markets in risk management, derivatives pricing and 
physical assets valuation. The modeling of stock markets, aiming at 
understanding price fluctuation dynamics, demands to establish a 
mechanism for the formation of the stock price. In the past years, 
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considering the similarity between stock markets and physical 
systems, some scholars apply the statistical physics theories and 
methods to perform the empirical research on the stock markets 
[13–21]. Some agent-based interacting models from the percola-
tion networks, the Potts dynamic system, etc. [13,14,18–21], have 
been established attempting to reproduce the complex and dynam-
ical behaviors of stock markets. For example, Stauffer and Penna 
[14] developed a price model by the lattice percolation system and 
exhibited the existence of the fat tails for the return process; Hong 
and Wang [19] modeled the stock dynamics by the Potts model 
and explored the correlation of the logarithmic returns. The voter 
model, one of discrete agent-based models of opinion dynamics, 
is a stochastic interacting Markov process [20]. The voter process 
represents a voter’s attitude affected by his neighbors’ opinions 
at times distributed on a particular topic according to a stochas-
tic rule [22–26]. Taking into account most of agents in the stock 
market trade stocks basing on their opinions to the investment 
information, we suppose that the interaction among the stock mar-
ket agents is random, then utilize the voter interaction system to 
model the dynamics of the agents’ opinions attempting to repro-
duce financial price fluctuations and volatility behaviors. Then we 
investigate the nonlinear phenomena of volatilities of the voter 
price model.

It is very important to understand the volatility behavior of 
financial markets, since it helps investors quantify the risk, opti-
mize the portfolio and so on. The absolute returns, which is also 
called volatility series, is the key target for financial volatility be-
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havior research, and many new methods of volatility analysis are 
developed [27–29] for better understanding volatility behaviors, for 
example, the return interval analysis, characterizing the occurrence 
of volatilities within a certain range, are proposed in Refs. [27,28]. 
In this paper, we introduce a new statistic – volatility difference 
component (VDC) to characterize the volatility behaviors of the fi-
nancial model in the volatility duration length, and develop a new 
method to explore the nonlinear phenomena of volatilities for the 
proposed price model, by transferring the volatility series to three 
kinds of volatility duration statistical series, the volatility duration 
series, the maximum change rate series and the average change 
rate series. The volatility duration series reflects local rising or 
falling volatility duration length, while the rest two series (which 
are derived from the volatility difference components) record the 
maximum change rate and the average change rate of volatility 
difference components in every volatility duration length. The ex-
ploration on these three series is useful for further understanding 
the volatility behaviors of financial markets and the proposed price 
model. In the empirical research, the randomness and complexity 
of the proposed volatility duration statistical series are investi-
gated by introducing a novel approach – permutation Lempel–Ziv 
complexity (PLZC). The dynamic behaviors of volatilities are also 
studied by the Zipf analysis with different parameters of thresh-
olds and timescales. The daily closing price data of Shanghai Stock 
Exchange (SSE) Composite Index and Shenzhen Stock Exchange 
(SZSE) Component Index are selected as the real empirical data 
for comparison.

2. Voter interacting financial price model

2.1. Voter interaction system

The stochastic voter interacting particle system was introduced 
independently by Clifford and Sudbury [22] and Holley and Liggett 
[23]. The evolution mechanism of the voter system starts with vot-
ers located at the nodes of lattice Zd , which might have one of two 
possible opinions on a political issue (in favor “1” or against “0”) 
at independent exponential times. A voter reassesses his opinion 
by choosing a neighbor at random with certain probabilities and 
adopting his position. Let ξτ be the set of voters in favor, which 
is a continuous time Markov process. The dynamics of the process 
is specified by the collection of transition rates c(x, ξ) [24–26]. For 
any ξ ∈ {0, 1}Zd

, the state of x ∈ Z
d flips following the transition 

rates

0 → 1 at rate λ
∑

y∈Zd

p(x, y) I{ξ(y)=1} (1)

1 → 0 at rate
∑

y∈Zd

p(x, y) I{ξ(y)=0} (2)

where I is the indicator function, p(x, y) ≥ 0 for x, y ∈ Z
d , and ∑

y∈Zd p(x, y) = 1 for all x ∈ Z
d . The transition probability p(x, y)

is translation invariant and symmetric, and the voter process with 
those transition probabilities is irreducible. If a node x ∈ Z

d is oc-
cupied by 1 (respectively, 0), then, at rate 1 (respectively, λ), it 
picks a node y ∈ Z

d with probability p(x, y), then adopts the state 
of the voter at y. The stochastic dynamics of voter model ξτ on a 
configuration space {0, 1}Zd

is given as the form of generator by

Ag(ξ) =
∑

x∈Zd

c(x, ξ)[g(ξ x) − g(ξ)] (3)

where the function g on {0, 1}Zd
depends on the finitely many co-

ordinates, and ξ x(z) = ξ(z) if z �= x, ξ x(z) = 1 − ξ(x) if z = x, for 
x, z ∈ Z

d . In details: (i) if x ∈ ξτ , then x becomes vacant at a rate 
equal to the number of vacant neighbors; (ii) if x /∈ ξτ , then x be-
comes occupied at a rate equal to λ times the number of occupied 
neighbors, where λ is an intensity, which is called the carcino-
genic advantage in the voter process. When λ = 1, the model is 
called the voter model, and for λ > 1 it is called the biased voter 
model. Let ξ {A}

τ denote the state at time τ with the initial state set 
ξ

{A}
0 = {A}, and let ξ {0}

τ (x) be the state of x ∈ Z
d at time τ with the 

initial state ξ {0}
0 = {0}, which means that only the original point 

{0} of Zd is occupied in the initial state (at τ = 0) of the process 
ξ

{0}
τ . More generally, the initial distribution is considered as υρ , 

the product measure with density ρ (each node is independently 
occupied by probability ρ), and let ξυρ

τ be the voter model with 
initial distribution υρ .

For the biased voter model (λ > 1), there is a “critical value” 
for the process on � = {0, 1}Zd

, the critical value λc is defined as 
[13,14]

λc = inf{λ : P (|ξ {0}
τ | > 0, for all τ ≥ 0) > 0} (4)

where |ξ {0}
τ | is the cardinality of ξ {0}

τ . Suppose λ > λc , then there is 
convex set C so that on �∞ = {ξ {0}

τ �= ∅, for all τ }, for any ε > 0
and for all τ sufficiently large

(1 − ε)τC ∩Z
d ⊂ ξ

{0}
τ ⊂ (1 + ε)τC ∩Z

d. (5)

If λ ≤ λc , for some positive γ (λ), then

P (ξ
{0}
τ �= ∅) ≤ e−γ (λ)τ . (6)

The above theory shows that, on d-dimensional lattice, the pro-
cess becomes vacant exponentially for λ < λc , and survives with 
positive probability for λ > λc .

2.2. Construction of financial price model

The financial price dynamics based on the voter process is for-
mulated as follows. Suppose that the investment information leads 
to the fluctuation of a stock price, and there are three kinds of in-
formation including buying, selling and neutral, which classify the 
investors into their corresponding groups. Assume that each trader 
can trade the stock several times at each day t ∈ {1, 2, · · · , N}, but 
at most, one unit number of the stock at each time. Let l be the 
time length of one trading day, we denote the stock price at time 
τ in the tth trading day by Pt(τ ), where τ ∈ [0, l]. Suppose that 
the stock market is made up of 2m + 1 (m is large enough) in-
vertors, who are located in a line {−m, · · · , −1, 0, 1, · · · , m} ⊂ Z

(similarly for a d-dimensional lattice Zd). At the starting of each 
trading day, only the investor at the origin site “0” receives some 
information. And a random variable ζt with values 1, −1, 0 rep-
resents that this investor holds buying opinion, selling opinion or 
neutral opinion with probabilities p1, p−1 or 1 − p1 − p−1 respec-
tively. Then this investor sends bullish, bearish or neutral signal 
to his nearest neighbors. According to the voter dynamical system, 
investors can affect each other or the information can be dissemi-
nated, which is considered as the main factor of price fluctuations 
for the stock market.

For a trading day t ≤ N and τ ∈ [0, l], let

Bt(τ ) = ζt × |ξ {0}
τ |

2m + 1
, τ ∈ [0, l] (7)

where |ξ {0}
τ | = ∑m

w=−m ξ
{0}
τ (w). The stock price process at tth trad-

ing day is given as [30,31]

Pt(τ ) = eαt Bt (τ ) Pt−1(τ ), τ ∈ [0, l] (8)

Pt(τ ) = P0e
∑t

i=1 αi Bi(τ ), τ ∈ [0, l] (9)
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Fig. 1. (a) Fluctuation plots of prices and (b) returns respectively for the proposed model with different values of λ.
where αt > 0 denotes the depth parameter of the market, and P0
is the initial stock price at time 0. The corresponding logarithmic 
returns defined as following

r(t) = ln Pt(τ )− ln Pt−1(τ ), τ ∈ [0, l] and t = 1,2, · · · , N. (10)

From the dynamics of the voter process, if λ > λc , the investment 
information will be disseminated widely, so this will affect the in-
vestors’ opinions, and at last will affect the fluctuation of the stock 
price. If λ ≤ λc , the influence on the stock price by the investors 
is limited. For the above price model on Z, its critical value is 
λc = 1. Fig. 1 presents the plots of fluctuations of prices and the 
corresponding returns for four groups of the simulation data with 
λ ∈ {0.5, 1, 3, 6}. There is an evident that r(t) shows significant 
volatility clustering behaviors for the simulation data with λ > λc , 
while for the simulation data with λ ∈ {0.5, 1}, their volatility clus-
tering is not significant in Fig. 1(b). Besides, the volatility clustering 
of the simulation data with λ = 6 is more significant than that of 
the simulation data with λ = 3. In the following, we mainly inves-
tigate the volatility behaviors with λ > λc , since their return series 
show relatively significant volatility clustering behaviors.

2.3. Volatility duration and volatility difference component

The investigation on the volatility behaviors of financial markets 
is a crucial topic in financial research. The return interval analysis 
which analyzes the return interval between the daily volatilities 
of price changes is one of the methods applied in the volatil-
ity analysis. Refs. [27–29] explored the distribution function scales 
with mean return interval by this method. Inspired by the return 
interval analysis, we consider the duration of stock volatilities con-
sistently above or below a given data point in the volatility series 
[32], and some quantity relationships which are worth to be taken 
into account in the duration period of time. Then we introduce 
three volatility duration statistical series derived from the volatility 
series to characterize the financial volatility behaviors by embody-
ing the intensity–duration–quantity relationship in the volatility 
series.

We begin by generating the volatility duration length series I(t)
of |r(t)| at day t . At trading day t , if |r(t + 1)| − |r(t)| > 0, we say 
the volatility series is locally running up at t . On the opposite, if 
|r(t + 1)| − |r(t)| < 0, we say the volatility series displays locally 
sliding down trend at t . I(t) is set to record the duration length of 
the local trend of volatility intensity, defined as follows
Fig. 2. Illustrations of I(t), �|rt (i)| and �|rt (i)|max in the volatility series.

I(t) =

⎧⎪⎪⎨
⎪⎪⎩

max{τ : |r(t + i)| > |r(t)|, for i ≤ τ },
if |r(t + 1)| − |r(t)| > 0

max{τ : |r(t + i)| < |r(t)|, for i ≤ τ },
if |r(t + 1)| − |r(t)| < 0.

(11)

For |r(t +1)| = |r(t)|, let I(t) = 0. An illustration of I(t) is presented 
in Fig. 2. Then, the volatility duration series D(t) (t = 1, 2, · · · , T )

of |r(t)|, combining the local volatility trend and duration length 
of volatility intensity, is defined as follows

D(t) = sign(|r(t + 1)| − |r(t)|) × √
I(t). (12)

From the above definition, D(t) reflects the time length of volatility 
series’s local rising or falling duration at day t .

Albeit D(t) characterizes the volatility series’s local rising or 
falling duration time length, there are some other interesting 
statistics in accompany with the duration time I(t). In this pa-
per, we develop a new statistic, which is called volatility difference 
component (VDC) in the duration length, in an attempt to inves-
tigate the volatility behaviors comprehensively. Let �|rt(i)| denote 
the volatility difference component at time i in the duration time 
I(t) at day t , which is defined as

�|rt(i)| =
∣∣∣|r(t + i)| − |r(t)|

∣∣∣, 1 ≤ i ≤ I(t). (13)
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Fig. 3. Plots of |r(t)|, D(t), �|rt (i)|max, MC R(t) and AC R(t) for the SSE.
And let �|rt(i)|max = max{�|rt(i)|, 1 ≤ i ≤ I(t)} represent the 
largest volatility difference component which is also the maximum 
drawdown/drawup in the duration length I(t). The illustrations of 
�|rt(i)| and �|rt(i)|max are also shown in Fig. 2, and the volatility 
series and the �|rt(i)|max series of the SSE are present in Fig. 3. 
Then, we consider two kinds of change rates of volatility difference 
components, the maximum change rate and the average change 
rate of the volatility series in the duration length I(t) at day t . The 
maximum change rate series (MC R(t)) is defined as follows

MC R(t) = sign(|r(t + 1)| − |r(t)|)
× �|rt(i)|max

min{i : �|rt(i)| = �|rt(i)|max,1 ≤ i ≤ I(t)} . (14)

The other rate, the average change rate series (AC R(t)) is defined 
by

AC R(t) = sign(|r(t + 1)| − |r(t)|) × 1

I(t)

I(t)∑
i=1

�|rt(i)|. (15)

Note that, when I(t) = 0, we set MC R(t) = 0 and AC R(t) = 0. 
According to the above definitions, MC R(t) accompanying with 
the information of maximum drawdown/drawup �|rt(i)|max re-
flects the speed of the volatility series rising to the peak value 
or falling to the bottom value in the duration length time at day t , 
while AC R(t) records the average change rate of VDC during the 
local rising or falling time. Three kinds of volatility duration sta-
tistical series D(t), MC R(t) and AC R(t), which are also shown in 
Fig. 3, reflect different properties of the volatility series accom-
panying with the volatility duration, so the research on them is 
helpful to take a further step to understand the volatility behav-
iors in financial markets. In the following sections, we will mainly 
explore statistical and complex properties of these three time se-
ries for the real data and the simulation data.

3. Zipf distribution for volatility duration

3.1. Symbolic dynamic by Zipf analysis

Zipf analysis, originally introduced in the context of natural lan-
guages by George Kingsley Zipf [33,34], is one of the methods ap-
plied in bibliometrics. This technique is processed by counting the 
frequency of occurrence of each word in a given text, and reveals 
that the frequency of occurrence of each word f and its sym-
bol ranking R display a power law, i.e., f ∼ R−ω , for any natural 
language [35]. Recently, Zipf analysis has been applied to various 
area of physical and social sciences as a tool for quantifying time 
series symbolic complexity [36–39]. The core matter of Zipf anal-
ysis applied in time series analysis is based on converting a given 
time series into a symbol sequence. In this section, we covert the 
three volatility duration statistical series into 3-alphabet sequence, 
then explore the frequencies of each symbol and the correspond-
ing symbolic dynamics of the volatility behaviors for the real data 
and simulation data by Zipf analysis.

We start with the definition of k-return series of stock prices in 
this part. The k-return series is obtained by the following defini-
tion

rk(t) = ln P (t + k) − ln P (t), t = 1,2, · · · , N − k (16)

where P (t) (t = 1, 2, · · · , N) is the daily closing price series and 
the parameter k is the timescale. For k ∈ {1, 5, 20, 60, 250}, k is 
called the characteristic timescale, it approximately stands for one 
transaction day, one transaction week, one transaction month, 
one transaction quarter and one transaction year, respectively, in 
terms of business time units (with weekends and holidays elimi-
nated). For the symbolic conversion of original series, the extended 
random 3-alphabet conversion is applied to the three volatil-
ity duration statistical series Dk(t), MC Rk(t) and AC Rk(t) of the 
k-volatility series |rk(t)|. For the time series sk(t) (t = 1, 2, · · · ,

N − k), which is one of Dk(t), MC Rk(t) and AC Rk(t), there ex-
ists a symbolic sequence y(k, θ, sk(t)) obtained according to the 
following formula

y(k, θ, sk(t)) =
⎧⎨
⎩

u, if sk(t) ≥ θ

s, if |sk(t)| < θ

d, if sk(t) ≤ −θ

(17)

where “u”, “s” and “d” denote “sequence-up”, “sequence-stable” 
and “sequence-down” respectively in sk(t). θ (the variation thresh-
old) is a nonnegative random variable on a probability space 
with the probability distribution function Fθ (x). On the basis of 
the above conversion rule, we obtain the corresponding symbolic 
sequences y(k, θ, Dk(t)), y(k, θ, MC Rk(t)) and y(k, θ, AC Rk(t)) of 
Dk(t), MC Rk(t) and AC Rk(t), respectively. Now, we compute the 
absolute frequency and the relative frequency to analyze the sta-
tistical dynamics of their symbolic sequences. Let nu(k, θ, sk(t)), 
ns(k, θ, sk(t)) and nd(k, θ, sk(t)) denote the number of occurrences 
for “sequence-up”, “sequence-stable” and “sequence-down” in sk(t)
respectively. The corresponding absolute frequencies of symbolic 
sequence y(k, θ, sk(t)) are given as follows
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Table 1

SSE Simulation data with λ = 3

k = 1 k = 5 k = 20 k = 60 k = 250 k = 1 k = 5 k = 20 k = 60 k = 250

(a) The numbers of “u” of Dk(t), MC Rk(t) and AC Rk(t)

D(t) θ = 2.5 480 559 767 802 844 481 543 690 755 793
θ = 5 136 158 266 379 424 134 149 211 347 394
θ = 7.5 54 60 102 200 271 49 63 84 201 239
θ = 10 23 28 52 78 196 17 37 42 76 148

MC R(t) θ = 0.005 1124 1363 1430 1432 1345 1079 1383 1437 1433 1320
θ = 0.01 622 774 824 742 776 531 841 870 835 796
θ = 0.015 354 449 458 407 405 288 500 504 491 441
θ = 0.02 209 266 251 226 221 163 300 286 288 277

AC R(t) θ = 0.05 11 65 243 412 484 2 49 166 352 404
θ = 0.1 0 1 48 131 240 0 0 23 108 185
θ = 0.15 0 0 6 48 166 0 0 4 19 94
θ = 0.2 0 0 0 11 121 0 0 0 3 33

(b) The numbers of “d” of Dk(t), MC Rk(t) and AC Rk(t)

D(t) θ = 2.5 505 653 744 780 787 529 635 704 779 798
θ = 5 157 216 319 364 436 173 214 274 386 392
θ = 7.5 78 110 147 205 306 89 109 141 228 236
θ = 10 48 61 84 131 225 59 70 86 134 176

MC R(t) θ = 0.005 487 592 566 595 563 456 595 585 582 580
θ = 0.01 195 256 260 270 283 148 256 279 293 277
θ = 0.015 80 107 133 133 144 39 118 134 158 148
θ = 0.02 26 54 76 75 82 16 59 72 89 80

AC R(t) θ = 0.05 26 117 241 357 463 9 87 193 349 388
θ = 0.1 0 13 61 128 237 0 7 39 125 182
θ = 0.15 0 1 14 56 165 0 0 10 53 111
θ = 0.2 0 0 9 27 126 0 0 4 21 69

(c) The numbers of “s” of Dk(t), MC Rk(t) and AC Rk(t)

D(t) θ = 2.5 3014 2783 2469 2316 2161 2989 2817 2586 2387 2178
θ = 5 3706 3621 3395 3197 2890 3692 3632 3495 3207 2964
θ = 7.5 3867 3825 3731 3535 3173 3861 3823 3755 3511 3275
θ = 10 3923 3911 3844 3731 3329 3923 3888 3852 3730 3426

MC R(t) θ = 0.005 2388 2040 1984 1913 1842 2464 2017 1958 1925 1850
θ = 0.01 3182 2965 2896 2928 2691 3320 2898 2831 2812 2677
θ = 0.015 3565 3439 3389 3400 3201 3672 3377 3342 3291 3161
θ = 0.02 3764 3675 3653 3639 3447 3820 3636 3622 3563 3393

AC R(t) θ = 0.05 3962 3813 3496 3171 2803 3988 3859 3621 3239 2958
θ = 0.1 3999 3981 3871 3681 3273 3999 3988 3918 3707 3383
θ = 0.15 3999 3994 3960 3836 3419 3999 3995 3966 3868 3545
θ = 0.2 3999 3995 3971 3902 3503 3999 3995 3976 3916 3648
fu(k, θ, x, sk(t)) = nu(k, θ, sk(t))

N − k
× 1 − Fθ (x)

2
(18)

fd(k, θ, x, sk(t)) = nd(k, θ, sk(t))

N − k
× 1 − Fθ (x)

2
(19)

fs(k, θ, x, sk(t)) = ns(k, θ, sk(t))

N − k
× Fθ (x) (20)

where nu(k, θ, sk(t)) + ns(k, θ, sk(t)) + nd(k, θ, sk(t)) = N − k, and 
Fθ (x) = P (θ ≤ x). Here, x is the expected threshold of sk(t) for 
the investor, and Fθ (x) = P (θ ≤ x) is the probability that he can 
bear the expected volatility in sk(t). 1 − Fθ (x) is the probability 
of the investing risk (the investor has) when the volatility of sk(t)
exceeds the max expected threshold. The corresponding relative 
frequencies are given as

gu(k, θ, x, sk(t)) = nu(k, θ, sk(t))

nu(k, θ, sk(t)) + nd(k, θ, sk(t))
× (1 − Fθ (x)) (21)

gd(k, θ, x, sk(t)) = nd(k, θ, sk(t))

nu(k, θ, sk(t)) + nd(k, θ, sk(t))
× (1 − Fθ (x)) (22)

In this part, we let θ be a uniform distribution and x equal 
to the mean value of θ . According to the numeric ranges of Dk(t), 
MC Rk(t) and AC Rk(t), θ is on interval (0, 50) and x = 25 for Dk(t), 
θ is on (0, 0.1) and x = 0.05 for MC Rk(t), and θ is on (0, 1) and 
x = 0.5 for AC Rk(t). We denote the corresponding frequency func-
tions as fu(k, θ, sk(t)), fd(k, θ, sk(t)), fs(k, θ, sk(t)), gu(k, θ, sk(t))
and gd(k, θ, sk(t)) respectively for convenience. In this following 
section, we will mainly investigate the statistical behaviors of fre-
quency functions of Dk(t), MC Rk(t) and AC Rk(t) for different 
timescale k and threshold θ , and draw a parallel of symbolic dy-
namics of three volatility duration series between the real data and 
the simulation data by Zipf analysis.

3.2. Empirical Zipf analysis

We calculate the Zipf distributions of absolute frequency and 
relative frequency functions of Dk(t), MC Rk(t) and AC Rk(t) of 
k-volatility series for the SSE and the simulation data with λ = 3
for the various values of θ and k = 1, 5, 20, 60, 250. The numbers 
of “u”, “d” and “s” in the symbolic sequences of Dk(t), MC Rk(t)
and AC Rk(t) with k = 1, 5, 20, 60, 250 are also counted for some 
fixed values of θ in Table 1. At first, we focus on the “sequence-up” 
frequency function in Fig. 4. It is evident to find that “sequence-
up” frequency functions are undergoing exponent decrease as θ

increases for both the real data and the simulation data, which 
indicates that there will be fewer “sequence-up” occurring in 
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n data with λ = 3. The inner figure is the corresponding 
Fig. 4. (a)–(c) Plots of fu(k, θ, Dk(t)), fu(k, θ, MC Rk(t)) and fu(k, θ, AC Rk(t)) for SSE; (d)–(f) Plots of fu(k, θ, Dk(t)), fu(k, θ, MC Rk(t)) and fu(k, θ, AC Rk(t)) for the simulatio
log–log plot.
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Dk(t), MC Rk(t) and AC Rk(t). Moreover, for fu(k, θ, Dk(t)) and 
fu(k, θ, AC Rk(t)) of the SEE and the simulation data in Figs. 4(a), 
(c), (d), (f), the figures display significant distinct decaying traits for 
decreasing timescale k, i.e., the curve with the larger timescale k
lies above the one with the smaller value k. For θ = 2.5, 5, 7.5, 10
in Table 1(a), the numbers of “u” in the symbolic sequences of 
Dk(t) and AC Rk(t) with a large k are more than that with a 
small k. So for fixed θ , the increase of timescale k will lead 
more “sequence-up” happening in Dk(t) and AC Rk(t). Although 
the curve of fu(k, θ, MC Rk(t)) with k = 1 almost lies below the 
rest curves in Figs. 4(b), (e), the curves except the one with k = 1
are very close when θ increases. Besides, the numbers of “u” in 
the symbolic sequences of MC Rk(t) with k > 1 are closed to each 
other for fixed θ in Table 1(a). Thereby, there are not obvious 
distinct decaying traits of fu(k, θ, MC Rk(t)) for decreasing k in 
Figs. 4(b), (e).

As for the “sequence-down” and “sequence-up” frequency func-
tions of Dk(t), MC Rk(t) and AC Rk(t) of the SSE and the simulation 
data, the curves in Fig. 5 show the similar dynamic behaviors 
with those in Fig. 4, while the curves in Fig. 6 exhibit the op-
posite dynamic behaviors as θ and k vary in the comparison 
with Fig. 4. Therefore, for both the real data and the simula-
tion data, fd(k, θ, Dk(t)), fd(k, θ, MC Rk(t)) and fd(k, θ, AC Rk(t))
decrease to 0 exponentially with the increase of θ , and the 
plots of fd(k, θ, Dk(t)) and fd(k, θ, AC Rk(t)) show distinct de-
caying traits for decreasing k, while the distinct decaying traits 
of fd(k, θ, MC Rk(t)) are not significant. On the contrary, the 
“sequence-stable” frequency functions of Dk(t), MC Rk(t)) and 
AC Rk(t)) increase exponentially to 0.5 with the increase of thresh-
old θ , and there exit distinct decaying traits for the increase of 
timescale k in Figs. 6(a), (c), (d), (f), while the distinct decaying 
traits for increasing k in Figs. 6(b), (e) are not evident.

In a word, for both the real data and the simulation data, 
“sequence-up” and “sequence-down” in Dk(t), MC Rk(k) and
AC Rk(t) happen less when the threshold θ increases. Whereas, 
“sequence-stable” in the three series occurs more with the in-
crease of θ . In addition, for the given threshold θ , the increase of 
timescale k will make “sequence-up” and “sequence-down” hap-
pen less but lead “sequence-stable” happening more in Dk(t) and 
AC Rk(t) of |rk(t)|. However, the increase of k does not have sig-
nificant effect on the absolute frequency functions of MC Rk(t). 
Furthermore in Figs. 4–6, the plots of the simulation data are very 
similar with the corresponding plots of the real data when thresh-
old θ increases. Thus, the dynamic behaviors of absolute frequency 
functions of Dk(t), MC Rk(k) and AC Rk(t) of |rk(t)| of the simula-
tion data are analogous to those of the real date for the changes of 
timescale k and threshold θ .

Next, we study the properties of relative frequency functions of 
Dk(t), MC Rk(t) and AC Rk(t) when threshold θ varies for the SSE 
and the simulation data with different timescales. Fig. 7 demon-
strates the plots of relative frequency functions versus log(θ) with 
k = 1, 5, 20, 60, 250. For the Dk(t) in Figs. 7(a), (d), it is evi-
dent to find that there exist two phases as the relative frequency 
functions evolve with θ for all k = 1, 5, 20, 60, 250. Within the 
first phase when θ is relatively small, both of gu(k, θ, Dk(t)) and 
gd(k, θ, Dk(t)) are approximately almost equal to 0.25 (since x is 
set to be the mean value of θ , the maximum value of the rela-
tive frequencies is equal to 0.5 in this paper), which means that 
“sequence-up” and “sequence-down” in Dk(t) occur with almost 
equal probability. With the increase of θ , a significant deviation of 
two relative frequency functions of Dk(t) comes out. gd(k, θ, Dk(t))
taking advantage over gu(k, θ, Dk(t)) increases to 0.5 at relative 
large θ for any timescale k, while gu(k, θ, Dk(t)) shows opposite 
dynamic behaviors. Since θ is a psychological threshold of the in-
vestors’ expected duration, investors are willing to trade stocks ac-
tively leading relatively high volatility intensity when θ is less than 
the max expected threshold. So “u” and “d” in Dk(t) happen with 
almost equal probability. When θ exceeds the investors’ max ex-
pected threshold, investors will face with relatively high investing 
risk, which causes them not to actively participate in stock trad-
ing. The volatility intensity will decrease while the length of the 
volatility series’s local falling duration will increase, that is, there 
are more “d” occurring than ‘u’ in Dk(t). Therefore, gd(k, θ, Dk(t))
becomes greater than gu(k, θ, Dk(t)) increasing to 0.5 at relatively 
large θ . For the MC Rk(t) in Figs. 7(b), (e), there also exist sig-
nificant deviations of gu(k, θ, MC Rk(t)) and gd(k, θ, MC Rk(t)), but 
the deviation of relative frequency functions of MC Rk(t) presents 
opposite properties to that of Dk(t), i.e., gu(k, θ, MC Rk(t)) is big-
ger than gd(k, θ, MC Rk(t)) as θ increases for all timescale k. This 
indicates that there are more “sequence-up” occurring in the max-
imum change rate of k-volatility series during the increase of θ .

For the rest series AC Rk(t) of the SSE and the simulation 
data, its relative frequencies show the similar behaviors with those 
of Dk(t) in Figs. 7(c), (f). gu(k, θ, AC Rk(t)) and gd(k, θ, AC Rk(t))
are almost equal at relative small θ , then the deviation of them 
comes out at relative large θ . Besides, the deviation of the rel-
ative frequencies of AC Rk(t) for small timescale k is more sig-
nificant than that for large k, for example, gu(k, θ, AC Rk(t)) and 
gd(k, θ, AC Rk(t)) for k = 250 are almost equal when θ increases 
in Figs. 7(c), (f). In fact, |rk(t)| is the annual volatility series 
when k = 250 and it has relatively large fluctuation range, so 
that the interval of θ (on (0, 1)) may not be enough to the rel-
ative frequency function of ARCk(t) with k = 250. We set the 
interval of θ as (0, 10) for ARCk(t) with k = 250 and calculate 
its relative frequency functions with θ increasing from 0 to 10. 
Fig. 8 presents the plots of relative frequency functions of ARCk(t)
with k = 250 for the SSE and the simulation data. The figures of 
gu(k, θ, AC Rk(t)) and gd(k, θ, AC Rk(t)) with k = 250 show simi-
lar behaviors with those with k = 1 by comparing Figs. 7(c), (f) 
and Figs. 7(a), (b), that is, a significant deviation of two relative 
frequency functions of AC Rk(t) with k = 250 comes out with the 
increase of θ from 0 to 10, and gd(k, θ, AC Rk(t)) also taking ad-
vantage over gu(k, θ, AC Rk(t)) increases to 0.5 at relative large θ , 
while gu(k, θ, AC Rk(t)) shows opposite dynamic behavior. Besides, 
in the comparison of the plots of the real data and the simulation 
data in Figs. 7–8, the relative frequency functions of three series of 
k-volatility series of the simulation data show the similar dynamic 
behaviors with those of the real data during the increase of θ .

4. Permutation Lempel–Ziv complexity for volatility duration

4.1. PLZC analysis of symbolic sequence

The Lempel–Ziv complexity (LZC), proposed by Lempel and Ziv 
[40,41], is a non-parametric measure of complexity used as a tech-
nique to evaluate the randomness of a finite symbolic sequence. 
Recently, this measure has been extensively employed to evalu-
ate the complexity of the series of discrete-time in many fields 
[42–45]. For calculating the LZC, times series must be transformed 
into a finite sequence s(t) whose elements are only a few symbols 
[46], this process is called coarse-graining. For example, the binary 
conversion method processed by complaining each element of the 
original series x(t) with a threshold (commonly the mean value or 
the median value of x(t)) is a typical one [47]. The coarse-graining 
process in the LZC plays an important role because the conversion 
process determines how much information retained of the original 
series, and more types of elements in s(t) means more informa-
tion of the original series remained [45–48]. In this section, we 
apply a novel method called permutation conversion to the coarse-
graining process of D(t), MC R(t) and AC R(t), then calculate their 
permutation Lempel–Ziv complexity (PLZC) to investigate the sym-
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n data with λ = 3. The inner figure is the corresponding 
Fig. 5. (a)–(c) Plots of fd(k, θ, Dk(t)), fd(k, θ, MC Rk(t)) and fd(k, θ, AC Rk(t)) for SSE; (d)–(f) Plots of fd(k, θ, Dk(t)), fd(k, θ, MC Rk(t)) and fd(k, θ, AC Rk(t)) for the simulatio
log–log plot.
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ation data with λ = 3. The inner figure is the corresponding 
Fig. 6. (a)–(c) Plots of fs(k, θ, Dk(t)), fs(k, θ, MC Rk(t)) and fs(k, θ, AC Rk(t)) for SSE; (d)–(f) Plots of fs(k, θ, Dk(t)), fs(k, θ, MC Rk(t)) and fs(k, θ, AC Rk(t)) for the simul
log–log plot.
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k, θ, sk(t)) versus log(θ) of Dk(t), MC Rk(t) and AC Rk(t)
Fig. 7. (a)–(c) Plots of gu(k, θ, sk(t)) and gd(k, θ, sk(t)) versus log(θ) of Dk(t), MC Rk(t) and AC Rk(t) for SSE with k = 1, 5, 20, 60, 250; (d)–(f) Plots of gu(k, θ, sk(t)) and gd(

for the simulation data with k = 1, 5, 20, 60, 250.
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Fig. 8. (a) Plots of gu(k, θ, AC Rk(t)) and gd(k, θ, AC Rk(t)) versus log(θ) of SSE with k = 250 for θ varies in (0, 10); (b) Plots of gu(k, θ, AC Rk(t)) and gd(k, θ, AC Rk(t)) versus 
log(θ) of the simulation data with k = 250 for θ varies in (0, 10).
bolic complexity of volatility behaviors for the real stock market 
and the proposed price model.

Firstly, we introduce the permutation conversion method [45,
48,49]. For a time series x(t) (t = 1, 2, · · · , N), given an em-
bedding dimension m and a time delay η, x(t) is embed to an 
m-dimensional space X(t) = [x(t), x(t + η), · · · , x(t + (m − 1)η)]
(t ∈ {1, 2, · · · , N − (m + 1)η}). Then, arrange the components of 
X(t) in an increasing order

ys(t + (q1 − 1)η) ≤ ys(t + (q2 − 1)η)

≤ · · · ≤ ys(t + (qm − 1))η). (23)

When an equality coming out, e.g., x(t +(qi −1)η) = x(t +(q j −1)η)

(i, j ∈ {1, 2, · · · , m}), the quantity order depends on the q values, 
namely if qi ≤ q j , let x(t + (qi − 1)η) ≤ x(t + (q j − 1)η). So, any 
vector X(t) has a permutation πt = [q1, q2, · · · , qm], which is one 
of permutations of m distinct symbol set {1, 2, · · · , m}. The distinct 
symbol set {1, 2, · · · , m} has m! different permutations, which can 
be corresponding to m! different characters {c1, c2, · · · , cm!}. For 
each permutation πl (l ∈ {1, 2, · · · , m!}) of symbol set {1, 2, · · · , m}, 
it has only one corresponding character cl (cl ∈ {c1, c2, · · · , cm!}). 
Therefore, the vector X(t) (t ∈ {1, 2, · · · , N − (m + 1)η}) whose 
permutation is πt can be converted to character ct which is cor-
responding to πt . In this way, the time series x(t) is converted to 
a symbolic sequence s(t) with no more than m! kinds of differ-
ent characters in. Moreover, s(t) records the local structure of x(t), 
since every character in s(t) reflects a local permutation pattern 
of x(t).

Now, we introduce the permutation Lempel–Ziv complexity al-
gorithm. For a time series x(t), the PLZC of x(t) is measured in the 
following steps [42–45,47,48]. Let S and Q represent two differ-
ent character sequences, and S Q represents the concatenation of 
S and Q . S Q π is the sequence obtained from S Q in which its last 
character is deleted. Let ν(S Q π) represent the set comprising all 
different subsequences of S Q π .

(i) Set dimension parameter m and time delay parameter η. 
Convert the original series x(t) to a symbol sequence s(t) whose 
length is n according to the permutation conversion method.

(ii) At the beginning, set c(n) = 1, S = s(1), Q = s(2), then 
S Q = s(1), s(2), and S Q π = s(1).

(iii) In general, suppose that S = s(1), s(2), · · · , s(r), Q = s(r +
1), so S Q π = s(1), s(2), · · · , s(r). If Q ∈ ν(S Q π), then Q is a sub-
sequence of S Q π , not a new sequence.
(iv) Renew Q by adding s(r+2) to Q , that is, Q = s(r+1), s(r+
2), then judge if Q belongs to ν(S Q π).

(v) Repeat steps (iii) and (iv) until Q does not belong to 
ν(S Q π). Now Q = s(r + 1), s(r + 2), · · · , s(r + i) is not a subse-
quence of S Q π = s(1), s(2), · · · , s(r + i − 1), but a new sequence, 
so increase c(n) by one.

(vi) Then, S is renewed to be S Q = s(1), s(2), · · · , s(r + i), and 
Q = s(r + i + 1).

(vii) Repeat the previous steps until Q contains the last charac-
ter of s(t). At that time, c(n) is the complexity of symbol sequence 
s(t) which denotes the number of distinct new patterns in the 
original time series.

For the c(n), which is the total number of new subsequences in 
above s(t), Lempel and Ziv [40,50] has proved that its upper bound 
L(n) is given by

c(n) < L(n) = n

(1 − εn) logm!(n)
(24)

where

εn = 2
1 + logm! logm!(m!n)

logm!(n)
(25)

and εn → 0 (n → ∞). In general, the limit of L(n), i.e.,

lim
n→∞ L(n) = n

logm!(n)
(26)

is the upper bound of c(n) [43], so c(n) can be normalized by 
n/logm!(n)

C(n) = c(n) logm!(n)

n
. (27)

C(n), the normalized PLZC of x(t), reflects the arising rate of new 
pattern generation along with the sequence, capturing the tem-
poral structure of a time series [43,51]. In the PLZC algorithm, 
dimension parameter m and time delay parameter η are crucial 
for calculating PLZC because these will generate different symbolic 
sequences for different parameters m and η. Traditional permu-
tation process recommends m to be 3–7 [49,52] for when m < 3, 
there will be too few possible patterns to make the permutation no 
sense. But, the calculation of PLZC will be very complex for m > 7. 
Therefore, a large value of m and n should not be selected in order 
to maintain sensitivity to the instantaneous characteristic changes 
of nonlinear dynamic systems and economize computation time. 
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Table 2
PLZC values of D(t), MC R(t) and AC R(t) of |r(t)|.

SSE SZSE λ = 3 λ = 6 λ = 9 λ = 12

D(t) 0.4432 0.4396 0.4612 ± 0.0120 0.4456 ± 0.0130 0.4420 ± 0.0117 0.4480 ± 0.0091
MC R(t) 0.5055 0.5115 0.5139 ± 0.0124 0.5055 ± 0.0052 0.5091 ± 0.0100 0.5187 ± 0.0177
AC R(t) 0.4971 0.4768 0.5007 ± 0.0156 0.5019 ± 0.0060 0.5139 ± 0.0106 0.5031 ± 0.0108
Furthermore, to ensure every possible character of {c1, c2, · · · , cm!}
occurs in s(t) with length n, m! has to be less than or equal to 
n − (m − 1)η. And n needs to satisfy n  m! + (m − 1)η to avoid 
under sampling [52,53]. Bai et al. [48] recommends m = 4 for 
n ≥ 1000 or m = 5 for n ≥ 2000. In this paper, we choose a low 
dimension m = 4 when calculating the PLZC. The another param-
eter η is chosen according to the autocorrelation function (ACF) 
e−1 rule, i.e., the ACF of x(t) decays to e−1 of its peak value, the 
corresponding lag is chosen as the time delay parameter η [54,55].

We calculate the PLZC values of D(t), MC R(t) and AC R(t) of 
daily volatility series for the SSE, the SZSE and the simulation data 
with λ = 3, 6, 9, 12 in Table 2. The standard errors of the PLZC 
values for the simulation data are also presented in Table 2. For 
the real data and the simulation data, the PLZC values of D(t), 
MC R(t) and AC R(t) are close to 0.5 less than 1, which indicates 
that D(t), MC R(t) and AC R(t) exhibit regularity and randomness 
at the same time. For D(t), the PLZC values are all less than 0.5, 
so the regularity and periodicity in D(t) are more significant than 
its randomness for both the real data and the simulation data. On 
the contrary, the randomness of MC R(t) is more significant than 
the regularity and periodicity, since the PLZC values of MC R(t) in 
Table 2 are more than 0.5. As for the AC R(t), although its PLZC val-
ues of the real data are less than 0.5 while those of the simulation 
data are more than 0.5, the difference of PLZC values of AC R(t)
between the SSE and the simulation data with λ = 3, 6, 12 is 
less than the corresponding standard error respectively. So AC R(t)
of the real data and the simulation data shows similar random-
ness and periodicity. Generally speaking, the PLZC values of D(t), 
MC R(t) and AC R(t) of daily volatility series for the real data and 
the simulation data are very close respectively in Table 2, so the 
volatility behaviors of the real data and the simulation data show 
similar symbolic complexity.

4.2. PLZC analysis for different timescale

Now we investigate the PLZC dynamics of Dk(t), MC Rk(t) and 
AC Rk(t) of k-volatility series. We calculate the corresponding PLZC 
values when timescale k varies from 1 to 250. Fig. 9 displays the 
plots of PLZC versus timescale k for the real data and the sim-
ulation data, the corresponding box plots of the PLZC values are 
shown in Fig. 10. Table 3 contains the 25% percentile q1, the 
median value qm and 75% percentile q3 of the PLZC values. In 
Figs. 9–10, we find that the PLZC values of Dk(t) almost con-
centrate in three intervals (0.4, 0.45), (0.6, 0.65) and (0.75, 0.8)

for both the real data and the simulation data. When timescale 
k increases from 1 to 250, the PLZC of Dk(t) swings between the 
three intervals, which means that Dk(t) shows three levels of com-
plexity during the increase of k. When the PLZC is in the interval 
(0.4, 0.45), the regularity and periodicity of Dk(t) are more signif-
icant, while for the Dk(t) whose PLZC in the other two intervals, 
its randomness is more obvious.

In Table 3, qm and q3 of PLZC of Dk(t) for both the real data 
and the simulation data are all in (0.6, 0.65). For the SZSE and 
the simulation data with λ = 6, 9, q1 of PLZC of Dk(t) is also in 
this interval, while that for the SSE and the rest simulation data 
is in (0.4, 0.45). In general, most of PLZC of Dk(t) are between 
0.6 and 0.65 during timescale’s increase, so the randomness of 
Dk(t) is more significant than its regularity and periodicity. More-
over in Fig. 9, the PLZC values of Dk(t) swing in (0.4, 0.45) at 
Table 3
Percentile and median of PLZC values of Dk(t), MC Rk(t) and AC Rk(t).

SSE SZSE λ = 3 λ = 6 λ = 9 λ = 12

Dk(t) q1 0.4432 0.6105 0.4217 0.6045 0.6069 0.4277
qm 0.6201 0.6237 0.6285 0.6249 0.6213 0.6357
q3 0.6309 0.6321 0.6393 0.6369 0.6321 0.6465

MC Rk(t) q1 0.5307 0.5295 0.5271 0.5283 0.5283 0.5259
qm 0.5343 0.5331 0.5319 0.5319 0.5319 0.5307
q3 0.5391 0.5379 0.5355 0.5367 0.5355 0.5343

AC Rk(t) q1 0.6729 0.6765 0.6753 0.6801 0.6753 0.6849
qm 0.6849 0.6885 0.6897 0.6897 0.6843 0.6987
q3 0.6957 0.7053 0.6969 0.6981 0.6957 0.7089

relative small k, while at relative larger timescale, most of PLZC 
values of Dt(k) fluctuate in the interval (0.6, 0.65), which indicates 
that the increasing timescale will cause the increasing complexity 
of Dk(t) of k-volatility series. For MC Rk(t) of k-volatility series, 
the PLZC swings between 0.5 to 0.55 during the timescale’s in-
crease in Fig. 9. In the corresponding box plots, the PLZC values of 
MC Rk(t) lie almost in the interval (0.5, 0.55), and q1, qm and q3

of PLZC of MC Rk(t) are between 0.52 to 0.54 in Table 3. Therefore, 
the randomness of MC Rk(t) is more obvious than its regularity 
and periodicity, and the timescale k will not affect the complexity 
of MC Rk(t) so much. For the AC Rk(t) from Figs. 9–10, we find 
that its PLZC values also concentrate three intervals (0.5, 0.55), 
(0.65, 0.7) and (0.8, 0.85), and the PLZC shows the similar behav-
iors with the PLZC of Dk(t) during the timescale’s increase, which 
indicates that the AC Rk(k) displays three level of complexity dur-
ing the increase of k. The q1, qm and q3 of PLZC of AC Rk(t) are all 
in (0.65, 0.7) in Table 3, so that most PLZC values of AC Rk(t) are 
between 0.65 and 0.7 when k varies from 1 to 250. Furthermore, 
the randomness of AC Rk(t) is more significant than regularity and 
periodicity since the PLZC values of AC Rk(t) are more than 0.5 
during timescale’s increase, and the randomness of AC Rk(t) be-
comes more obvious with the increase of k.

Moreover, the PLZC of MC Rk(t) is larger than that of Dk(t)
and AC Rk(t) at relative small k, while at large k, the PLZC of 
MC Rk(t) becomes the smallest one in Fig. 9. However, for both 
the real data and the simulation data, the median value in Ta-
ble 3 of PLZC of AC Rk(t) is the largest among Dk , MC Rk(t) and 
AC Rk(t), while that of MC Rk(t) is the smallest one. In general, 
AC Rk(t) is more random and complex than Dk(t) and MC Rk(t), 
and the regularity and periodicity of MC Rk(t) is more significant 
than those of Dk(t) and AC Rk(t). In Fig. 9, although the plots of 
PLZC values of Dk(t), MC Rk(t) and AC Rk(t) of the simulation data 
do not display significant regular change as λ increases, the plots 
of some simulation data are similar with those of the real data. For 
example, Figs. 9(d), (f) are similar with Figs. 8(a), (b) in the com-
parison of dynamical behaviors of PLZC values of Dk(t), MC Rk(t)
and AC Rk(t) comprehensively as k increases. From Figs. 9–10, as 
k increases, the dynamical behavior of complexity and random-
ness of Dk(t), MC Rk(t) and AC Rk(t) of the simulation data with 
λ = 6 is similar with that of the SZSE, while that of the simula-
tion data with λ = 12 is similar with that of the SSE. Therefore, as 
λ increases, Dk(t), MC Rk(t) and AC Rk(t) of some simulation data 
shows similar complex and random properties with those of the 
real data when the timescale k varies.
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Fig. 9. (a)–(f) Plots of PLZC versus k of Dk(t), MC Rk(t) and AC Rk(t) for SSE, SZSE and the simulation data with λ = 3
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increases from 1 to 250.
Fig. 10. (a)–(f) Box plots of PLZC values of Dk(t), MC Rk(t) and AC Rk(t) for SSE, SZSE and the simulation data with λ = 3,6,9,12, where k
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5. Conclusion

In the present paper, two new concepts of series about volatil-
ity duration and volatility difference component are introduced, 
which are the maximum change rate series and the average change 
rate series of the volatilities in the volatility duration. The pro-
posed volatility return duration series and the above two series 
are transformed to symbolic sequences, and then the correspond-
ing symbolic complexity analysis are performed by the permuta-
tion Lempel–Ziv complexity (which is a novel complexity measure) 
analysis and Zipf analysis with different timescales and thresh-
olds. Meanwhile, a stochastic voter financial dynamics model is 
proposed to utilize making comparison on the volatility behav-
iors with the real market data. The PLZC empirical results dis-
play that D(t), MC R(t) and AC R(t) show regularity and random-
ness, and the regularity and periodicity of D(t) are more signif-
icant than the randomness, while those of MC R(t) and AC R(t)
show the opposite properties. The changing value of timescale k
causes the fluctuation of randomness and complexity of Dk(t) and 
AC Rk(t) between three different levels, but does not affect those 
of MC Rk(t) so much. Generally speaking, MC Rk(t) is more random 
than Dk(t) and AC Rk(t) at relative small timescale. But at relative 
large timescale, AC Rk(t) is more random than the rest two series, 
and MC Rk(t) become the most regular series. Furthermore, Zipf 
analysis on the proposed three series shows that, the increasing 
threshold θ will lead to the exponential increase or decrease of ab-
solute frequency functions of the three series, and cause the devia-
tion of the relative frequency functions. The change of timescale k
will lead significant change of the frequency functions of Dk(t) and 
AC Rk(t) while does not affect those of MC Rk(t) so much. Through 
the comparison of the above analyses on the three volatility du-
ration series, the simulation data derived from the financial price 
model has the similar symbolic complex properties of volatilities 
with the real data, which indicates that the presented financial 
price model is reasonable for the real stock market to some ex-
tent.
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